Sample records for visual pattern selective

  1. Selective attention determines emotional responses to novel visual stimuli.

    PubMed

    Raymond, Jane E; Fenske, Mark J; Tavassoli, Nader T

    2003-11-01

    Distinct complex brain systems support selective attention and emotion, but connections between them suggest that human behavior should reflect reciprocal interactions of these systems. Although there is ample evidence that emotional stimuli modulate attentional processes, it is not known whether attention influences emotional behavior. Here we show that evaluation of the emotional tone (cheery/dreary) of complex but meaningless visual patterns can be modulated by the prior attentional state (attending vs. ignoring) used to process each pattern in a visual selection task. Previously ignored patterns were evaluated more negatively than either previously attended or novel patterns. Furthermore, this emotional devaluation of distracting stimuli was robust across different emotional contexts and response scales. Finding that negative affective responses are specifically generated for ignored stimuli points to a new functional role for attention and elaborates the link between attention and emotion. This finding also casts doubt on the conventional marketing wisdom that any exposure is good exposure.

  2. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    PubMed Central

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  4. Localized direction selective responses in the dendrites of visual interneurons of the fly

    PubMed Central

    2010-01-01

    Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983

  5. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  6. Domain Selectivity in the Parahippocampal Gyrus Is Predicted by the Same Structural Connectivity Patterns in Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; He, Chenxi; Peelen, Marius V; Zhong, Suyu; Gong, Gaolang; Caramazza, Alfonso; Bi, Yanchao

    2017-05-03

    Human ventral occipital temporal cortex contains clusters of neurons that show domain-preferring responses during visual perception. Recent studies have reported that some of these clusters show surprisingly similar domain selectivity in congenitally blind participants performing nonvisual tasks. An important open question is whether these functional similarities are driven by similar innate connections in blind and sighted groups. Here we addressed this question focusing on the parahippocampal gyrus (PHG), a region that is selective for large objects and scenes. Based on the assumption that patterns of long-range connectivity shape local computation, we examined whether domain selectivity in PHG is driven by similar structural connectivity patterns in the two populations. Multiple regression models were built to predict the selectivity of PHG voxels for large human-made objects from white matter (WM) connectivity patterns in both groups. These models were then tested using independent data from participants with similar visual experience (two sighted groups) and using data from participants with different visual experience (blind and sighted groups). Strikingly, the WM-based predictions between blind and sighted groups were as successful as predictions between two independent sighted groups. That is, the functional selectivity for large objects of a PHG voxel in a blind participant could be accurately predicted by its WM pattern using the connection-to-function model built from the sighted group data, and vice versa. Regions that significantly predicted PHG selectivity were located in temporal and frontal cortices in both sighted and blind populations. These results show that the large-scale network driving domain selectivity in PHG is independent of vision. SIGNIFICANCE STATEMENT Recent studies have reported intriguingly similar domain selectivity in sighted and congenitally blind individuals in regions within the ventral visual cortex. To examine whether these similarities originate from similar innate connectional roots, we investigated whether the domain selectivity in one population could be predicted by the structural connectivity pattern of the other. We found that the selectivity for large objects of a PHG voxel in a blind participant could be predicted by its structural connectivity pattern using the connection-to-function model built from the sighted group data, and vice versa. These results reveal that the structural connectivity underlying domain selectivity in the PHG is independent of visual experience, providing evidence for nonvisual representations in this region. Copyright © 2017 the authors 0270-6474/17/374706-12$15.00/0.

  7. Development of visual category selectivity in ventral visual cortex does not require visual experience

    PubMed Central

    van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.

    2017-01-01

    To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127

  8. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  9. A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish.

    PubMed

    Chiao, Chuan-Chin; Chubb, Charles; Hanlon, Roger T

    2015-09-01

    We review recent research on the visual mechanisms of rapid adaptive camouflage in cuttlefish. These neurophysiologically complex marine invertebrates can camouflage themselves against almost any background, yet their ability to quickly (0.5-2 s) alter their body patterns on different visual backgrounds poses a vexing challenge: how to pick the correct body pattern amongst their repertoire. The ability of cuttlefish to change appropriately requires a visual system that can rapidly assess complex visual scenes and produce the motor responses-the neurally controlled body patterns-that achieve camouflage. Using specifically designed visual backgrounds and assessing the corresponding body patterns quantitatively, we and others have uncovered several aspects of scene variation that are important in regulating cuttlefish patterning responses. These include spatial scale of background pattern, background intensity, background contrast, object edge properties, object contrast polarity, object depth, and the presence of 3D objects. Moreover, arm postures and skin papillae are also regulated visually for additional aspects of concealment. By integrating these visual cues, cuttlefish are able to rapidly select appropriate body patterns for concealment throughout diverse natural environments. This sensorimotor approach of studying cuttlefish camouflage thus provides unique insights into the mechanisms of visual perception in an invertebrate image-forming eye.

  10. A Comparison of the Visual Attention Patterns of People With Aphasia and Adults Without Neurological Conditions for Camera-Engaged and Task-Engaged Visual Scenes.

    PubMed

    Thiessen, Amber; Beukelman, David; Hux, Karen; Longenecker, Maria

    2016-04-01

    The purpose of the study was to compare the visual attention patterns of adults with aphasia and adults without neurological conditions when viewing visual scenes with 2 types of engagement. Eye-tracking technology was used to measure the visual attention patterns of 10 adults with aphasia and 10 adults without neurological conditions. Participants viewed camera-engaged (i.e., human figure facing camera) and task-engaged (i.e., human figure looking at and touching an object) visual scenes. Participants with aphasia responded to engagement cues by focusing on objects of interest more for task-engaged scenes than camera-engaged scenes; however, the difference in their responses to these scenes were not as pronounced as those observed in adults without neurological conditions. In addition, people with aphasia spent more time looking at background areas of interest and less time looking at person areas of interest for camera-engaged scenes than did control participants. Results indicate people with aphasia visually attend to scenes differently than adults without neurological conditions. As a consequence, augmentative and alternative communication (AAC) facilitators may have different visual attention behaviors than the people with aphasia for whom they are constructing or selecting visual scenes. Further examination of the visual attention of people with aphasia may help optimize visual scene selection.

  11. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  12. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  13. A novel role for visual perspective cues in the neural computation of depth.

    PubMed

    Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C

    2015-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.

  14. Selection on quantitative colour variation in Centaurea cyanus: the role of the pollinator's visual system.

    PubMed

    Renoult, J P; Thomann, M; Schaefer, H M; Cheptou, P-O

    2013-11-01

    Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.

    PubMed

    Schmitt, Russell J; Holbrook, Sally J

    1984-07-01

    Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.

  16. Emotional modulation of body-selective visual areas.

    PubMed

    Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik

    2007-12-01

    Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.

  17. How learning might strengthen existing visual object representations in human object-selective cortex.

    PubMed

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  19. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4.

    PubMed

    Fries, Pascal; Womelsdorf, Thilo; Oostenveld, Robert; Desimone, Robert

    2008-04-30

    Selective attention lends relevant sensory input priority access to higher-level brain areas and ultimately to behavior. Recent studies have suggested that those neurons in visual areas that are activated by an attended stimulus engage in enhanced gamma-band (30-70 Hz) synchronization compared with neurons activated by a distracter. Such precise synchronization could enhance the postsynaptic impact of cells carrying behaviorally relevant information. Previous studies have used the local field potential (LFP) power spectrum or spike-LFP coherence (SFC) to indirectly estimate spike synchronization. Here, we directly demonstrate zero-phase gamma-band coherence among spike trains of V4 neurons. This synchronization was particularly evident during visual stimulation and enhanced by selective attention, thus confirming the pattern inferred from LFP power and SFC. We therefore investigated the time course of LFP gamma-band power and found rapid dynamics consistent with interactions of top-down spatial and feature attention with bottom-up saliency. In addition to the modulation of synchronization during visual stimulation, selective attention significantly changed the prestimulus pattern of synchronization. Attention inside the receptive field of the recorded neuronal population enhanced gamma-band synchronization and strongly reduced alpha-band (9-11 Hz) synchronization in the prestimulus period. These results lend further support for a functional role of rhythmic neuronal synchronization in attentional stimulus selection.

  20. A description of discrete internal representation schemes for visual pattern discrimination.

    PubMed

    Foster, D H

    1980-01-01

    A general description of a class of schemes for pattern vision is outlined in which the visual system is assumed to form a discrete internal representation of the stimulus. These representations are discrete in that they are considered to comprise finite combinations of "components" which are selected from a fixed and finite repertoire, and which designate certain simple pattern properties or features. In the proposed description it is supposed that the construction of an internal representation is a probabilistic process. A relationship is then formulated associating the probability density functions governing this construction and performance in visually discriminating patterns when differences in pattern shape are small. Some questions related to the application of this relationship to the experimental investigation of discrete internal representations are briefly discussed.

  1. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

    PubMed Central

    Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.

    2015-01-01

    Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  2. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  3. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  4. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  5. Dynamic reorganization of human resting-state networks during visuospatial attention.

    PubMed

    Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio

    2015-06-30

    Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.

  6. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity.

    PubMed

    Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.

  7. Effects of Isoflurane Anesthesia on Ensemble Patterns of Ca2+ Activity in Mouse V1: Reduced Direction Selectivity Independent of Increased Correlations in Cellular Activity

    PubMed Central

    Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867

  8. A novel role for visual perspective cues in the neural computation of depth

    PubMed Central

    Kim, HyungGoo R.; Angelaki, Dora E.; DeAngelis, Gregory C.

    2014-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extra-retinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We demonstrate that incorporating these “dynamic perspective” cues allows the visual system to generate selectivity for depth sign from motion parallax in macaque area MT, a computation that was previously thought to require extra-retinal signals regarding eye velocity. Our findings suggest novel neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations. PMID:25436667

  9. Piscivore-prey fish interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear water.

    PubMed

    Ranåker, Lynn; Persson, Jens; Jönsson, Mikael; Nilsson, P Anders; Brönmark, Christer

    2014-01-01

    Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on piscivore-prey interaction strength and thereby ecosystem responses to brownification of waters.

  10. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  11. Feature-based attentional modulations in the absence of direct visual stimulation.

    PubMed

    Serences, John T; Boynton, Geoffrey M

    2007-07-19

    When faced with a crowded visual scene, observers must selectively attend to behaviorally relevant objects to avoid sensory overload. Often this selection process is guided by prior knowledge of a target-defining feature (e.g., the color red when looking for an apple), which enhances the firing rate of visual neurons that are selective for the attended feature. Here, we used functional magnetic resonance imaging and a pattern classification algorithm to predict the attentional state of human observers as they monitored a visual feature (one of two directions of motion). We find that feature-specific attention effects spread across the visual field-even to regions of the scene that do not contain a stimulus. This spread of feature-based attention to empty regions of space may facilitate the perception of behaviorally relevant stimuli by increasing sensitivity to attended features at all locations in the visual field.

  12. Simulating the role of visual selective attention during the development of perceptual completion

    PubMed Central

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P.

    2014-01-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds’ performance on a second measure, the perceptual unity task. Two parameters in the model – corresponding to areas in the occipital and parietal cortices – were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. PMID:23106728

  13. Simulating the role of visual selective attention during the development of perceptual completion.

    PubMed

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P

    2012-11-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds' performance on a second measure, the perceptual unity task. Two parameters in the model - corresponding to areas in the occipital and parietal cortices - were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. © 2012 Blackwell Publishing Ltd.

  14. The effect of human engagement depicted in contextual photographs on the visual attention patterns of adults with traumatic brain injury.

    PubMed

    Thiessen, Amber; Brown, Jessica; Beukelman, David; Hux, Karen

    2017-09-01

    Photographs are a frequently employed tool for the rehabilitation of adults with traumatic brain injury (TBI). Speech-language pathologists (SLPs) working with these individuals must select photos that are easily identifiable and meaningful to their clients. In this investigation, we examined the visual attention response to camera- (i.e., depicted human figure looking toward camera) and task-engaged (i.e., depicted human figure looking at and touching an object) contextual photographs for a group of adults with TBI and a group of adults without neurological conditions. Eye-tracking technology served to accurately and objectively measure visual fixations. Although differences were hypothesized given the cognitive deficits associated with TBI, study results revealed little difference in the visual fixation patterns of adults with and without TBI. Specifically, both groups of participants tended to fixate rapidly on the depicted human figure and fixate more on objects in which a human figure was task-engaged than when a human figure was camera-engaged. These results indicate that strategic placement of human figures in a contextual photograph may modify the way in which individuals with TBI visually attend to and interpret photographs. In addition, task-engagement appears to have a guiding effect on visual attention that may be of benefit to SLPs hoping to select more effective contextual photographs for their clients with TBI. Finally, the limited differences in visual attention patterns between individuals with TBI and their age and gender matched peers without neurological impairments indicates that these two groups find similar photograph regions to be worthy of visual fixation. Readers will gain knowledge regarding the photograph selection process for individuals with TBI. In addition, readers will be able to identify camera- and task-engaged photographs and to explain why task-engagement may be a beneficial component of contextual photographs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    PubMed

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  16. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  17. A neural measure of precision in visual working memory.

    PubMed

    Ester, Edward F; Anderson, David E; Serences, John T; Awh, Edward

    2013-05-01

    Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an individual's memory. Here, we provide a direct test of this claim. We used fMRI and a forward encoding model to characterize population-level orientation-selective responses in visual cortex while human participants held an oriented grating in memory. This analysis, which enables a precise quantitative description of multivoxel, population-level activity measured during working memory storage, revealed graded response profiles whose amplitudes were greatest for the remembered orientation and fell monotonically as the angular distance from this orientation increased. Moreover, interparticipant differences in the dispersion-but not the amplitude-of these response profiles were strongly correlated with performance on a concurrent memory recall task. These findings provide important new evidence linking the precision of sustained population-level responses in visual cortex and memory acuity.

  18. Orientation-Enhanced Parallel Coordinate Plots.

    PubMed

    Raidou, Renata Georgia; Eisemann, Martin; Breeuwer, Marcel; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

  19. Visual field progression in glaucoma: total versus pattern deviation analyses.

    PubMed

    Artes, Paul H; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C

    2005-12-01

    To compare visual field progression with total and pattern deviation analyses in a prospective longitudinal study of patients with glaucoma and healthy control subjects. A group of 101 patients with glaucoma (168 eyes) with early to moderately advanced visual field loss at baseline (average mean deviation [MD], -3.9 dB) and no clinical evidence of media opacity were selected from a prospective longitudinal study on visual field progression in glaucoma. Patients were examined with static automated perimetry at 6-month intervals for a median follow-up of 9 years. At each test location, change was established with event and trend analyses of total and pattern deviation. The event analyses compared each follow-up test to a baseline obtained from averaging the first two tests, and visual field progression was defined as deterioration beyond the 5th percentile of test-retest variability at three test locations, observed on three consecutive tests. The trend analyses were based on point-wise linear regression, and visual field progression was defined as statistically significant deterioration (P < 5%) worse than -1 dB/year at three locations, confirmed by independently omitting the last and the penultimate observation. The incidence and the time-to-progression were compared between total and pattern deviation analyses. To estimate the specificity of the progression analyses, identical criteria were applied to visual fields obtained in 102 healthy control subjects, and the rate of visual field improvement was established in the patients with glaucoma and the healthy control subjects. With both event and trend methods, pattern deviation analyses classified approximately 15% fewer eyes as having progressed than did the total deviation analyses. In eyes classified as progressing by both the total and pattern deviation methods, total deviation analyses tended to detect progression earlier than the pattern deviation analyses. A comparison of the changes observed in MD and the visual fields' general height (estimated by the 85th percentile of the total deviation values) confirmed that change in the glaucomatous eyes almost always comprised a diffuse component. Pattern deviation analyses of progression may therefore underestimate the true amount of glaucomatous visual field progression. Pattern deviation analyses of visual field progression may underestimate visual field progression in glaucoma, particularly when there is no clinical evidence of increasing media opacity. Clinicians should have access to both total and pattern deviation analyses to make informed decisions on visual field progression in glaucoma.

  20. The neural basis of visual word form processing: a multivariate investigation.

    PubMed

    Nestor, Adrian; Behrmann, Marlene; Plaut, David C

    2013-07-01

    Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.

  1. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  2. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  4. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset

    PubMed Central

    Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G

    2011-01-01

    Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851

  5. A Cortical Network for the Encoding of Object Change

    PubMed Central

    Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.

    2015-01-01

    Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425

  6. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  7. A Complex Story: Universal Preference vs. Individual Differences Shaping Aesthetic Response to Fractals Patterns.

    PubMed

    Street, Nichola; Forsythe, Alexandra M; Reilly, Ronan; Taylor, Richard; Helmy, Mai S

    2016-01-01

    Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics.

  8. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces

    ERIC Educational Resources Information Center

    Kim, Philseok; Alvarenga, Jack; Aizenberg, Joanna; Sleeper, Raymond S.

    2013-01-01

    A visual demonstration of the difference between hydrophilic and hydrophobic surfaces has been developed. It involves placing a shadow mask on an optically clear hydrophobic plastic dish, corona treating the surface with a modified Tesla coil, removing the shadow mask, and visualizing the otherwise invisible message or pattern by applying water,…

  9. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex.

    PubMed

    Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2018-06-01

    How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.

  10. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex

    PubMed Central

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2011-01-01

    Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788

  11. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  12. Selective Attention and Sensory Modality in Aging: Curses and Blessings.

    PubMed

    Van Gerven, Pascal W M; Guerreiro, Maria J S

    2016-01-01

    The notion that selective attention is compromised in older adults as a result of impaired inhibitory control is well established. Yet it is primarily based on empirical findings covering the visual modality. Auditory and especially, cross-modal selective attention are remarkably underexposed in the literature on aging. In the past 5 years, we have attempted to fill these voids by investigating performance of younger and older adults on equivalent tasks covering all four combinations of visual or auditory target, and visual or auditory distractor information. In doing so, we have demonstrated that older adults are especially impaired in auditory selective attention with visual distraction. This pattern of results was not mirrored by the results from our psychophysiological studies, however, in which both enhancement of target processing and suppression of distractor processing appeared to be age equivalent. We currently conclude that: (1) age-related differences of selective attention are modality dependent; (2) age-related differences of selective attention are limited; and (3) it remains an open question whether modality-specific age differences in selective attention are due to impaired distractor inhibition, impaired target enhancement, or both. These conclusions put the longstanding inhibitory deficit hypothesis of aging in a new perspective.

  13. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    PubMed

    Orbán, Levente L; Chartier, Sylvain

    2015-01-01

    Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  14. Character displacement of Cercopithecini primate visual signals

    PubMed Central

    Allen, William L.; Stevens, Martin; Higham, James P.

    2014-01-01

    Animal visual signals have the potential to act as an isolating barrier to prevent interbreeding of populations through a role in species recognition. Within communities of competing species, species recognition signals are predicted to undergo character displacement, becoming more visually distinctive from each other, however this pattern has rarely been identified. Using computational face recognition algorithms to model primate face processing, we demonstrate that the face patterns of guenons (tribe: Cercopithecini) have evolved under selection to become more visually distinctive from those of other guenon species with whom they are sympatric. The relationship between the appearances of sympatric species suggests that distinguishing conspecifics from other guenon species has been a major driver of diversification in guenon face appearance. Visual signals that have undergone character displacement may have had an important role in the tribe’s radiation, keeping populations that became geographically separated reproductively isolated on secondary contact. PMID:24967517

  15. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits

    PubMed Central

    Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy

    2016-01-01

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as “readouts” of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. PMID:27030771

  16. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  17. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    PubMed Central

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  18. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    PubMed

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  19. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  20. Experience improves feature extraction in Drosophila.

    PubMed

    Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike

    2007-05-09

    Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.

  1. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  2. Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data

    PubMed Central

    Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-01

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803

  3. Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex

    PubMed Central

    Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro

    2009-01-01

    We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625

  4. Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex

    PubMed Central

    Vaden, Ryan J.; Visscher, Kristina M.

    2015-01-01

    Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806

  5. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  6. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    PubMed

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  7. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  8. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    PubMed

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. A Complex Story: Universal Preference vs. Individual Differences Shaping Aesthetic Response to Fractals Patterns

    PubMed Central

    Street, Nichola; Forsythe, Alexandra M.; Reilly, Ronan; Taylor, Richard; Helmy, Mai S.

    2016-01-01

    Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics. PMID:27252634

  10. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  11. Sex differences in motor and cognitive abilities predicted from human evolutionary history with some implications for models of the visual system.

    PubMed

    Sanders, Geoff

    2013-01-01

    This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.

  12. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.

    PubMed

    Xu, Hong-Ping; Burbridge, Timothy J; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z Jimmy; Crair, Michael C

    2016-03-30

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. Copyright © 2016 the authors 0270-6474/16/363872-16$15.00/0.

  13. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.

    PubMed

    Peelen, Marius V; Wiggett, Alison J; Downing, Paul E

    2006-03-16

    Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.

  14. Basic level category structure emerges gradually across human ventral visual cortex.

    PubMed

    Iordan, Marius Cătălin; Greene, Michelle R; Beck, Diane M; Fei-Fei, Li

    2015-07-01

    Objects can be simultaneously categorized at multiple levels of specificity ranging from very broad ("natural object") to very distinct ("Mr. Woof"), with a mid-level of generality (basic level: "dog") often providing the most cognitively useful distinction between categories. It is unknown, however, how this hierarchical representation is achieved in the brain. Using multivoxel pattern analyses, we examined how well each taxonomic level (superordinate, basic, and subordinate) of real-world object categories is represented across occipitotemporal cortex. We found that, although in early visual cortex objects are best represented at the subordinate level (an effect mostly driven by low-level feature overlap between objects in the same category), this advantage diminishes compared to the basic level as we move up the visual hierarchy, disappearing in object-selective regions of occipitotemporal cortex. This pattern stems from a combined increase in within-category similarity (category cohesion) and between-category dissimilarity (category distinctiveness) of neural activity patterns at the basic level, relative to both subordinate and superordinate levels, suggesting that successive visual areas may be optimizing basic level representations.

  15. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  16. Interactive visual exploration and analysis of origin-destination data

    NASA Astrophysics Data System (ADS)

    Ding, Linfang; Meng, Liqiu; Yang, Jian; Krisp, Jukka M.

    2018-05-01

    In this paper, we propose a visual analytics approach for the exploration of spatiotemporal interaction patterns of massive origin-destination data. Firstly, we visually query the movement database for data at certain time windows. Secondly, we conduct interactive clustering to allow the users to select input variables/features (e.g., origins, destinations, distance, and duration) and to adjust clustering parameters (e.g. distance threshold). The agglomerative hierarchical clustering method is applied for the multivariate clustering of the origin-destination data. Thirdly, we design a parallel coordinates plot for visualizing the precomputed clusters and for further exploration of interesting clusters. Finally, we propose a gradient line rendering technique to show the spatial and directional distribution of origin-destination clusters on a map view. We implement the visual analytics approach in a web-based interactive environment and apply it to real-world floating car data from Shanghai. The experiment results show the origin/destination hotspots and their spatial interaction patterns. They also demonstrate the effectiveness of our proposed approach.

  17. Model-based analysis of pattern motion processing in mouse primary visual cortex

    PubMed Central

    Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.

    2015-01-01

    Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738

  18. Two symmetry-breaking mechanisms for the development of orientation selectivity in a neural system

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won; Chun, Min Young

    2015-11-01

    Orientation selectivity is a remarkable feature of the neurons located in the primary visual cortex. Provided that the visual neurons acquire orientation selectivity through activity-dependent Hebbian learning, the development process could be understood as a kind of symmetry-breaking phenomenon in the view of physics. This paper examines the key mechanisms of the orientation selectivity development process. Be found that at least two different mechanisms, which lead to the development of orientation selectivity by breaking the radial symmetry in receptive fields. The first is a simultaneous symmetry-breaking mechanism occurring based on the competition between neighboring neurons, and the second is a spontaneous one occurring based on the nonlinearity in interactions. Only the second mechanism leads to the formation of a columnar pattern whose characteristics is in accord with those observed in an animal experiment.

  19. Beyond magic traits: Multimodal mating cues in Heliconius butterflies.

    PubMed

    Mérot, Claire; Frérot, Brigitte; Leppik, Ene; Joron, Mathieu

    2015-11-01

    Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called "magic traits" for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short-distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Flash signal evolution in Photinus fireflies: character displacement and signal exploitation in a visual communication system.

    PubMed

    Stanger-Hall, Kathrin F; Lloyd, James E

    2015-03-01

    Animal communication is an intriguing topic in evolutionary biology. In this comprehensive study of visual signal evolution, we used a phylogenetic approach to study the evolution of the flash communication system of North American fireflies. The North American firefly genus Photinus contains 35 described species with simple ON-OFF visual signals, and information on habitat types, sympatric congeners, and predators. This makes them an ideal study system to test hypotheses on the evolution of male and female visual signal traits. Our analysis of 34 Photinus species suggests two temporal pattern generators: one for flash duration and one for flash intervals. Reproductive character displacement was a main factor for signal divergence in male flash duration among sympatric Photinus species. Male flash pattern intervals (i.e., the duration of the dark periods between signals) were positively correlated with the number of sympatric Photuris fireflies, which include predators of Photinus. Females of different Photinus species differ in their response preferences to male traits. As in other communication systems, firefly male sexual signals seem to be a compromise between optimizing mating success (sexual selection) and minimizing predation risk (natural selection). An integrative model for Photinus signal evolution is proposed. © 2015 The Author(s).

  1. Neural codes of seeing architectural styles

    PubMed Central

    Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.

    2017-01-01

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765

  2. Neural codes of seeing architectural styles.

    PubMed

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  3. Visual Aggregate Analysis of Eligibility Features of Clinical Trials

    PubMed Central

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-01-01

    Objective To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Methods Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. Results We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions “hypertension” and “Type 2 diabetes”, respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. Conclusions We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. PMID:25615940

  4. Visual aggregate analysis of eligibility features of clinical trials.

    PubMed

    He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua

    2015-04-01

    To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions "hypertension" and "Type 2 diabetes", respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  6. Social Groups Prioritize Selective Attention to Faces: How Social Identity Shapes Distractor Interference

    PubMed Central

    Hill, LaBarron K.; Williams, DeWayne P.; Thayer, Julian F.

    2016-01-01

    Human faces automatically attract visual attention and this process appears to be guided by social group memberships. In two experiments, we examined how social groups guide selective attention toward in-group and out-group faces. Black and White participants detected a target letter among letter strings superimposed on faces (Experiment 1). White participants were less accurate on trials with racial out-group (Black) compared to in-group (White) distractor faces. Likewise, Black participants were less accurate on trials with racial out-group (White) compared to in-group (Black) distractor faces. However, this pattern of out-group bias was only evident under high perceptual load—when the task was visually difficult. To examine the malleability of this pattern of racial bias, a separate sample of participants were assigned to mixed-race minimal groups (Experiment 2). Participants assigned to groups were less accurate on trials with their minimal in-group members compared to minimal out-group distractor faces, regardless of race. Again, this pattern of out-group bias was only evident under high perceptual load. Taken together, these results suggest that social identity guides selective attention toward motivationally relevant social groups—shifting from out-group bias in the domain of race to in-group bias in the domain of minimal groups—when perceptual resources are scarce. PMID:27556646

  7. Spatial adaptation of the cortical visual evoked potential of the cat.

    PubMed

    Bonds, A B

    1984-06-01

    Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.

  8. Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers

    PubMed Central

    2013-01-01

    Background Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or computer screens to human ‘predators’. Yet, few attempts have been made to confirm that rates of detection by humans can predict patterns of selection and evolutionary modifications of prey colour patterns in nature. In this study, we first analyzed encounters between human ‘predators’ and images of natural black, grey and striped colour morphs of the polymorphic Tetrix subulata pygmy grasshoppers presented on background images of unburnt, intermediate or completely burnt natural habitats. Next, we compared detection rates with estimates of capture probabilities and survival of free-ranging grasshoppers, and with estimates of relative morph frequencies in natural populations. Results The proportion of grasshoppers that were detected and time to detection depended on both the colour pattern of the prey and on the type of visual background. Grasshoppers were detected more often and faster on unburnt backgrounds than on 50% and 100% burnt backgrounds. Striped prey were detected less often than grey or black prey on unburnt backgrounds; grey prey were detected more often than black or striped prey on 50% burnt backgrounds; and black prey were detected less often than grey prey on 100% burnt backgrounds. Rates of detection mirrored previously reported rates of capture by humans of free-ranging grasshoppers, as well as morph specific survival in the wild. Rates of detection were also correlated with frequencies of striped, black and grey morphs in samples of T. subulata from natural populations that occupied the three habitat types used for the detection experiment. Conclusions Our findings demonstrate that crypsis is background-dependent, and implicate visual predation as an important driver of evolutionary modifications of colour polymorphism in pygmy grasshoppers. Our study provides the clearest evidence to date that using humans as ‘predators’ in detection experiments may provide reliable information on the protective values of prey colour patterns and of natural selection and microevolution of camouflage in the wild. PMID:23639215

  9. Hierarchical streamline bundles.

    PubMed

    Yu, Hongfeng; Wang, Chaoli; Shene, Ching-Kuang; Chen, Jacqueline H

    2012-08-01

    Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.

  10. Selection Difficulty and Interitem Competition Are Independent Factors in Rapid Visual Stream Perception

    ERIC Educational Resources Information Center

    Kawahara, Jun-ichiro; Enns, James T.

    2009-01-01

    When observers try to identify successive targets in a visual stream at a rate of 100 ms per item, accuracy for the 2nd target is impaired for intertarget lags of 100-500 ms. Yet, when the same stream is presented more rapidly (e.g., 50 ms per item), this pattern reverses and a 1st-target deficit is obtained. M. C. Potter, A. Staub, and D. H.…

  11. Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm.

    PubMed

    Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E

    2011-02-01

    Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Optical-Correlator Neural Network Based On Neocognitron

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  13. The effect of visual salience on memory-based choices.

    PubMed

    Pooresmaeili, Arezoo; Bach, Dominik R; Dolan, Raymond J

    2014-02-01

    Deciding whether a stimulus is the "same" or "different" from a previous presented one involves integrating among the incoming sensory information, working memory, and perceptual decision making. Visual selective attention plays a crucial role in selecting the relevant information that informs a subsequent course of action. Previous studies have mainly investigated the role of visual attention during the encoding phase of working memory tasks. In this study, we investigate whether manipulation of bottom-up attention by changing stimulus visual salience impacts on later stages of memory-based decisions. In two experiments, we asked subjects to identify whether a stimulus had either the same or a different feature to that of a memorized sample. We manipulated visual salience of the test stimuli by varying a task-irrelevant feature contrast. Subjects chose a visually salient item more often when they looked for matching features and less often so when they looked for a nonmatch. This pattern of results indicates that salient items are more likely to be identified as a match. We interpret the findings in terms of capacity limitations at a comparison stage where a visually salient item is more likely to exhaust resources leading it to be prematurely parsed as a match.

  14. A three-layer model of natural image statistics.

    PubMed

    Gutmann, Michael U; Hyvärinen, Aapo

    2013-11-01

    An important property of visual systems is to be simultaneously both selective to specific patterns found in the sensory input and invariant to possible variations. Selectivity and invariance (tolerance) are opposing requirements. It has been suggested that they could be joined by iterating a sequence of elementary selectivity and tolerance computations. It is, however, unknown what should be selected or tolerated at each level of the hierarchy. We approach this issue by learning the computations from natural images. We propose and estimate a probabilistic model of natural images that consists of three processing layers. Two natural image data sets are considered: image patches, and complete visual scenes downsampled to the size of small patches. For both data sets, we find that in the first two layers, simple and complex cell-like computations are performed. In the third layer, we mainly find selectivity to longer contours; for patch data, we further find some selectivity to texture, while for the downsampled complete scenes, some selectivity to curvature is observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Attention Modulates Visual-Tactile Interaction in Spatial Pattern Matching

    PubMed Central

    Göschl, Florian; Engel, Andreas K.; Friese, Uwe

    2014-01-01

    Factors influencing crossmodal interactions are manifold and operate in a stimulus-driven, bottom-up fashion, as well as via top-down control. Here, we evaluate the interplay of stimulus congruence and attention in a visual-tactile task. To this end, we used a matching paradigm requiring the identification of spatial patterns that were concurrently presented visually on a computer screen and haptically to the fingertips by means of a Braille stimulator. Stimulation in our paradigm was always bimodal with only the allocation of attention being manipulated between conditions. In separate blocks of the experiment, participants were instructed to (a) focus on a single modality to detect a specific target pattern, (b) pay attention to both modalities to detect a specific target pattern, or (c) to explicitly evaluate if the patterns in both modalities were congruent or not. For visual as well as tactile targets, congruent stimulus pairs led to quicker and more accurate detection compared to incongruent stimulation. This congruence facilitation effect was more prominent under divided attention. Incongruent stimulation led to behavioral decrements under divided attention as compared to selectively attending a single sensory channel. Additionally, when participants were asked to evaluate congruence explicitly, congruent stimulation was associated with better performance than incongruent stimulation. Our results extend previous findings from audiovisual studies, showing that stimulus congruence also resulted in behavioral improvements in visuotactile pattern matching. The interplay of stimulus processing and attentional control seems to be organized in a highly flexible fashion, with the integration of signals depending on both bottom-up and top-down factors, rather than occurring in an ‘all-or-nothing’ manner. PMID:25203102

  16. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    PubMed

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  17. Alcohol consumption and visual impairment in a rural Northern Chinese population.

    PubMed

    Li, Zhijian; Xu, Keke; Wu, Shubin; Sun, Ying; Song, Zhen; Jin, Di; Liu, Ping

    2014-12-01

    To investigate alcohol drinking status and the association between drinking patterns and visual impairment in an adult population in northern China. Cluster sampling was used to select samples. The protocol consisted of an interview, pilot study, visual acuity (VA) testing and a clinical examination. Visual impairment was defined as presenting VA worse than 20/60 in any eye. Drinking patterns included drinking quantity (standard drinks per week) and frequency (drinking days in the past week). Information on alcohol consumption was obtained from 8445 subjects, 963 (11.4%) of whom reported consuming alcohol. In multivariate analysis, alcohol consumption was significantly associated with older age (p < 0.001), male sex (p < 0.001), and higher education level (p < 0.01). Heavy intake (>14 drinks/week) was associated with higher odds of visual impairment. However, moderate intake (>1-14 drinks/week) was significantly associated with lower odds (adjusted odds ratio, OR, 0.7, 95% confidence interval, CI, 0.5-1.0) of visual impairment (p = 0.03). Higher drinking frequency was significantly associated with higher odds of visual impairment. Multivariate analysis showed that older age, male sex, and higher education level were associated with visual impairment among current drinkers. Age- and sex-adjusted ORs for the association of cataract and alcohol intake showed that higher alcohol consumption was not significantly associated with an increased prevalence of cataract (OR 1.2, 95% CI 0.4-3.6), whereas light and moderate alcohol consumption appeared to reduce incidence of cataract. Drinking patterns were associated with visual impairment. Heavy intake had negative effects on distance vision; meanwhile, moderate intake had a positive effect on distance vision.

  18. Measurement of visual contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Vongierke, H. E.; Marko, A. R.

    1985-04-01

    This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.

  19. Interhemispheric interaction expands attentional capacity in an auditory selective attention task.

    PubMed

    Scalf, Paige E; Banich, Marie T; Erickson, Andrew B

    2009-04-01

    Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.

  20. Spectrally queued feature selection for robotic visual odometery

    NASA Astrophysics Data System (ADS)

    Pirozzo, David M.; Frederick, Philip A.; Hunt, Shawn; Theisen, Bernard; Del Rose, Mike

    2011-01-01

    Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the development of pattern recognition and decision algorithms and they have been exploring perception capabilities of numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic visual odometry. The motivation for this applied research was to develop a feasibility analysis on multi-spectrally queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to enable human like behavior in these systems has yet to be defined.

  1. Sequential sensory and decision processing in posterior parietal cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J

    2017-01-01

    Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332

  2. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search.

    PubMed

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-03-01

    Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.

  4. NeuroPG: open source software for optical pattern generation and data acquisition

    PubMed Central

    Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873

  5. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  7. Effect of Message Type on the Visual Attention of Adults With Traumatic Brain Injury.

    PubMed

    Thiessen, Amber; Brown, Jessica; Beukelman, David; Hux, Karen; Myers, Angela

    2017-05-17

    The purpose of this investigation was to measure the effect of message type (i.e., action, naming) on the visual attention patterns of individuals with and without traumatic brain injury (TBI) when viewing grids composed of 3 types of images (i.e., icons, decontextualized photographs, and contextualized photographs). Fourteen adults with TBI and 14 without TBI-assigned either to an action or naming message condition-viewed grids composed of 3 different image types. Participants' task was to select/sustain visual fixation on the image they felt best represented a stated message (i.e., action or naming). With final fixation location serving as a proxy for selection, participants in the naming message condition selected decontextualized photographs significantly more often than the other 2 image types. Participants in the action message condition selected contextualized photographs significantly more frequently than the other 2 image types. Minimal differences were noted between participant groups. This investigation provides preliminary evidence of the relationship between image and message type. Clinicians involved in the selection of images used for message representation should consider the message being represented when designing supports for people with TBI. Further research is necessary to fully understand the relationship between images and message type.

  8. Relationship between neural response and adaptation selectivity to form and color: an ERP study.

    PubMed

    Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees

    2012-01-01

    Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.

  9. An investigation of the spatial selectivity of the duration after-effect.

    PubMed

    Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E

    2017-01-01

    Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Top-down dimensional weight set determines the capture of visual attention: evidence from the PCN component.

    PubMed

    Töllner, Thomas; Müller, Hermann J; Zehetleitner, Michael

    2012-07-01

    Visual search for feature singletons is slowed when a task-irrelevant, but more salient distracter singleton is concurrently presented. While there is a consensus that this distracter interference effect can be influenced by internal system settings, it remains controversial at what stage of processing this influence starts to affect visual coding. Advocates of the "stimulus-driven" view maintain that the initial sweep of visual processing is entirely driven by physical stimulus attributes and that top-down settings can bias visual processing only after selection of the most salient item. By contrast, opponents argue that top-down expectancies can alter the initial selection priority, so that focal attention is "not automatically" shifted to the location exhibiting the highest feature contrast. To precisely trace the allocation of focal attention, we analyzed the Posterior-Contralateral-Negativity (PCN) in a task in which the likelihood (expectancy) with which a distracter occurred was systematically varied. Our results show that both high (vs. low) distracter expectancy and experiencing a distracter on the previous trial speed up the timing of the target-elicited PCN. Importantly, there was no distracter-elicited PCN, indicating that participants did not shift attention to the distracter before selecting the target. This pattern unambiguously demonstrates that preattentive vision is top-down modifiable.

  11. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    PubMed

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  12. Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.

    PubMed

    Foxe, John J; Simpson, Gregory V; Ahlfors, Seppo P; Saron, Clifford D

    2005-10-01

    Brain activity associated with directing attention to one of two possible sensory modalities was examined using high-density mapping of human event-related potentials. The deployment of selective attention was based on visually presented symbolic cue-words instructing subjects on a trial-by-trial basis, which sensory modality to attend. We measured the spatio-temporal pattern of activation in the approximately 1 second period between the cue-instruction and a subsequent compound auditory-visual imperative stimulus. This allowed us to assess the flow of processing across brain regions involved in deploying and sustaining inter-sensory selective attention, prior to the actual selective processing of the compound audio-visual target stimulus. Activity over frontal and parietal areas showed sensory specific increases in activation during the early part of the anticipatory period (~230 ms), probably representing the activation of fronto-parietal attentional deployment systems for top-down control of attention. In the later period preceding the arrival of the "to-be-attended" stimulus, sustained differential activity was seen over fronto-central regions and parieto-occipital regions, suggesting the maintenance of sensory-specific biased attentional states that would allow for subsequent selective processing. Although there was clear sensory biasing in this late sustained period, it was also clear that both sensory systems were being prepared during the cue-target period. These late sensory-specific biasing effects were also accompanied by sustained activations over frontal cortices that also showed both common and sensory specific activation patterns, suggesting that maintenance of the biased state includes top-down inputs from generators in frontal cortices, some of which are sensory-specific regions. These data support extensive interactions between sensory, parietal and frontal regions during processing of cue information, deployment of attention, and maintenance of the focus of attention in anticipation of impending attentionally relevant input.

  13. Directional sexual selection on chroma and within-pattern colour contrast in Labeotropheus fuelleborni.

    PubMed

    Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J

    2004-12-07

    Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population.

  14. Directional sexual selection on chroma and within-pattern colour contrast in Labeotropheus fuelleborni.

    PubMed Central

    Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J

    2004-01-01

    Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population. PMID:15801599

  15. The relationship between 3D morphology of optic disc and spatial patterns of visual field loss in glaucoma

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Wang, Hui; Baniasadi, Neda; Elze, Tobias

    2017-02-01

    Purpose: Optic disc tilt defined over 3D optic disc morphology has been shown to be associated with the location of initial glaucomatous damages. In this work, we study the impact of optic cup depth (OCD) on spatial patterns of visual field loss in glaucoma. Methods: Pairs of reliable Cirrus OCT scans around optic disc and Humphrey visual fields of glaucoma patients without visually significant cataract and age-related macular degeneration were selected. The most recent visit of a randomly selected eye of each patient was chosen. The OCD was automatically calculated on the superior-inferior cross sectional image passing through the optic disc center. The correlations between the mean pattern deviation (PD) of each sector in glaucoma hemifield test (GHT) and Garway-Heath scheme and OCD were evaluated for all severities glaucoma and mild glaucoma (mean deviation >= -5 dB), respectively. Results: 424 eyes of 424 patients passed the data reliability criteria with 346 mild glaucoma patients. For all severities glaucoma, there was no significant correlation between the mean sector PD and OCD. For mild glaucoma, OCD was uniquely correlated to the mean PD of the inferior pericentral sector (r=-0.18, p=0.01) in GHT, which was independent of mean deviation and retinal nerve fiber layer thickness (p<0.001 for both). Conclusion: OCD was uniquely correlated to the vision loss of the inferior pericentral sector in GHT and Garway- Health scheme for mild glaucoma. Future advancement of OCT imaging techniques may provide better clinical diagnosis for early glaucoma by focusing on 3D morphological variation of the optic disc.

  16. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  17. Selection on male sex pheromone composition contributes to butterfly reproductive isolation

    PubMed Central

    Bacquet, P. M. B.; Brattström, O.; Wang, H.-L.; Allen, C. E.; Löfstedt, C.; Brakefield, P. M.; Nieberding, C. M.

    2015-01-01

    Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged. PMID:25740889

  18. Selective Visual Attention during Mirror Exposure in Anorexia and Bulimia Nervosa.

    PubMed

    Tuschen-Caffier, Brunna; Bender, Caroline; Caffier, Detlef; Klenner, Katharina; Braks, Karsten; Svaldi, Jennifer

    2015-01-01

    Cognitive theories suggest that body dissatisfaction results from the activation of maladaptive appearance schemata, which guide mental processes such as selective attention to shape and weight-related information. In line with this, the present study hypothesized that patients with anorexia nervosa (AN) and bulimia nervosa (BN) are characterized by increased visual attention for the most dissatisfying/ugly body part compared to their most satisfying/beautiful body part, while a more balanced viewing pattern was expected for controls without eating disorders (CG). Eye movements were recorded in a group of patients with AN (n = 16), BN (n = 16) and a CG (n = 16) in an ecologically valid setting, i.e., during a 3-min mirror exposure. Evidence was found that patients with AN and BN display longer and more frequent gazes towards the most dissatisfying relative to the most satisfying and towards their most ugly compared to their most beautiful body parts, whereas the CG showed a more balanced gaze pattern. The results converge with theoretical models that emphasize the role of information processing in the maintenance of body dissatisfaction. Given the etiological importance of body dissatisfaction in the development of eating disorders, future studies should focus on the modification of the reported patterns.

  19. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers

    NASA Astrophysics Data System (ADS)

    Biesmeijer, Jacobus C.; Giurfa, Martin; Koedam, Dirk; Potts, Simon G.; Joel, Daniel M.; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects’ orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  20. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers.

    PubMed

    Biesmeijer, Jacobus C; Giurfa, Martin; Koedam, Dirk; Potts, Simon G; Joel, Daniel M; Dafni, Amots

    2005-09-01

    Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects' orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

  1. Take a look at the bright side: Effects of positive body exposure on selective visual attention in women with high body dissatisfaction.

    PubMed

    Glashouwer, Klaske A; Jonker, Nienke C; Thomassen, Karen; de Jong, Peter J

    2016-08-01

    Women with high body dissatisfaction look less at their 'beautiful' body parts than their 'ugly' body parts. This study tested the robustness of this selective viewing pattern and examined the influence of positive body exposure on body-dissatisfied women's attention for 'ugly' and 'beautiful' body parts. In women with high body dissatisfaction (N = 28) and women with low body dissatisfaction (N = 14) eye-tracking was used to assess visual attention towards pictures of their own and other women's bodies. Participants with high body dissatisfaction were randomly assigned to 5 weeks positive body exposure (n = 15) or a no-treatment condition (n = 13). Attention bias was assessed again after 5 weeks. Body-dissatisfied women looked longer at 'ugly' than 'beautiful' body parts of themselves and others, while participants with low body dissatisfaction attended equally long to own/others' 'beautiful' and 'ugly' body parts. Although positive body exposure was very effective in improving participants' body satisfaction, it did not systematically change participants' viewing pattern. The tendency to preferentially allocate attention towards one's 'ugly' body parts seems a robust phenomenon in women with body dissatisfaction. Yet, modifying this selective viewing pattern seems not a prerequisite for successfully improving body satisfaction via positive body exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Putative pyramidal neurons and interneurons in the monkey parietal cortex make different contributions to the performance of a visual grouping task.

    PubMed

    Yokoi, Isao; Komatsu, Hidehiko

    2010-09-01

    Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.

  3. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    PubMed

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Single-exposure visual memory judgments are reflected in inferotemporal cortex

    PubMed Central

    Meyer, Travis

    2018-01-01

    Our visual memory percepts of whether we have encountered specific objects or scenes before are hypothesized to manifest as decrements in neural responses in inferotemporal cortex (IT) with stimulus repetition. To evaluate this proposal, we recorded IT neural responses as two monkeys performed a single-exposure visual memory task designed to measure the rates of forgetting with time. We found that a weighted linear read-out of IT was a better predictor of the monkeys’ forgetting rates and reaction time patterns than a strict instantiation of the repetition suppression hypothesis, expressed as a total spike count scheme. Behavioral predictions could be attributed to visual memory signals that were reflected as repetition suppression and were intermingled with visual selectivity, but only when combined across the most sensitive neurons. PMID:29517485

  5. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex.

    PubMed

    Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C

    2014-07-01

    Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles.

  6. Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica.

    PubMed

    Kang, Changku; Kim, Ye Eun; Jang, Yikweon

    2016-03-02

    Colour change in animals can be adaptive phenotypic plasticity in heterogeneous environments. Camouflage through background colour matching has been considered a primary force that drives the evolution of colour changing ability. However, the mechanism to which animals change their colour and patterns under visually heterogeneous backgrounds (i.e. consisting of more than one colour) has only been identified in limited taxa. Here, we investigated the colour change process of the Japanese tree frog (Hyla japonica) against patterned backgrounds and elucidated how the expression of dorsal patterns changes against various achromatic/chromatic backgrounds with/without patterns. Our main findings are i) frogs primarily responded to the achromatic differences in background, ii) their contrasting dorsal patterns were conditionally expressed dependent on the brightness of backgrounds, iii) against mixed coloured background, frogs adopted intermediate forms between two colours. Using predator (avian and snake) vision models, we determined that colour differences against different backgrounds yielded perceptible changes in dorsal colours. We also found substantial individual variation in colour changing ability and the levels of dorsal pattern expression between individuals. We discuss the possibility of correlational selection on colour changing ability and resting behaviour that maintains the high variation in colour changing ability within population.

  7. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.

    PubMed

    Trivedi, Chintan A; Bollmann, Johann H

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  8. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    PubMed

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mother-infant interaction during the first 3 months: the emergence of culture-specific contingency patterns.

    PubMed

    Kärtner, Joscha; Keller, Heidi; Yovsi, Relindis D

    2010-01-01

    This study analyzed German and Nso mothers' auditory, proximal, and visual contingent responses to their infants' nondistress vocalizations in postnatal Weeks 4, 6, 8, 10, and 12. Visual contingency scores increased whereas proximal contingency scores decreased over time for the independent (German urban middle-class, N = 20) but not the interdependent sociocultural context (rural Nso farmers, N = 24). It seems, therefore, that culture-specific differences in the modal patterns of contingent responsiveness emerge during the 2nd and 3rd months of life. This differential development was interpreted as the result of the interplay between maturational processes associated with the 2-month shift that are selectively integrated and reinforced in culture-specific mother-infant interaction.

  10. Multiphase flow modeling in centrifugal partition chromatography.

    PubMed

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    PubMed

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  12. Effects of Peripheral Visual Field Loss on Eye Movements During Visual Search

    PubMed Central

    Wiecek, Emily; Pasquale, Louis R.; Fiser, Jozsef; Dakin, Steven; Bex, Peter J.

    2012-01-01

    Natural vision involves sequential eye movements that bring the fovea to locations selected by peripheral vision. How peripheral visual field loss (PVFL) affects this process is not well understood. We examine how the location and extent of PVFL affects eye movement behavior in a naturalistic visual search task. Ten patients with PVFL and 13 normally sighted subjects with full visual fields (FVF) completed 30 visual searches monocularly. Subjects located a 4° × 4° target, pseudo-randomly selected within a 26° × 11° natural image. Eye positions were recorded at 50 Hz. Search duration, fixation duration, saccade size, and number of saccades per trial were not significantly different between PVFL and FVF groups (p > 0.1). A χ2 test showed that the distributions of saccade directions for PVFL and FVL subjects were significantly different in 8 out of 10 cases (p < 0.01). Humphrey Visual Field pattern deviations for each subject were compared with the spatial distribution of eye movement directions. There were no significant correlations between saccade directional bias and visual field sensitivity across the 10 patients. Visual search performance was not significantly affected by PVFL. An analysis of eye movement directions revealed patients with PVFL show a biased directional distribution that was not directly related to the locus of vision loss, challenging feed-forward models of eye movement control. Consequently, many patients do not optimally compensate for visual field loss during visual search. PMID:23162511

  13. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search

    PubMed Central

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-01-01

    Background Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. Aims The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Materials and methods Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. Results The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. Conclusion We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI. PMID:24683515

  14. Neural differentiation of lexico-syntactic categories or semantic features? event-related potential evidence for both.

    PubMed

    Kellenbach, Marion L; Wijers, Albertus A; Hovius, Marjolijn; Mulder, Juul; Mulder, Gijsbertus

    2002-05-15

    Event-related potentials (ERPs) were used to investigate whether processing differences between nouns and verbs can be accounted for by the differential salience of visual-perceptual and motor attributes in their semantic specifications. Three subclasses of nouns and verbs were selected, which differed in their semantic attribute composition (abstract, high visual, high visual and motor). Single visual word presentation with a recognition memory task was used. While multiple robust and parallel ERP effects were observed for both grammatical class and attribute type, there were no interactions between these. This pattern of effects provides support for lexical-semantic knowledge being organized in a manner that takes account both of category-based (grammatical class) and attribute-based distinctions.

  15. Modulation of neuronal responses during covert search for visual feature conjunctions

    PubMed Central

    Buracas, Giedrius T.; Albright, Thomas D.

    2009-01-01

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385

  16. Modulation of neuronal responses during covert search for visual feature conjunctions.

    PubMed

    Buracas, Giedrius T; Albright, Thomas D

    2009-09-29

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.

  17. DNA Data Visualization (DDV): Software for Generating Web-Based Interfaces Supporting Navigation and Analysis of DNA Sequence Data of Entire Genomes.

    PubMed

    Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard

    2015-01-01

    Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.

  18. Variable environmental effects on a multicomponent sexually selected trait.

    PubMed

    Cole, Gemma L; Endler, John A

    2015-04-01

    Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.

  19. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    PubMed

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity

    PubMed Central

    Chavane, Frédéric; Sharon, Dahlia; Jancke, Dirk; Marre, Olivier; Frégnac, Yves; Grinvald, Amiram

    2011-01-01

    Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread. PMID:21629708

  1. A multichip aVLSI system emulating orientation selectivity of primary visual cortical cells.

    PubMed

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2005-07-01

    In this paper, we designed and fabricated a multichip neuromorphic analog very large scale integrated (aVLSI) system, which emulates the orientation selective response of the simple cell in the primary visual cortex. The system consists of a silicon retina and an orientation chip. An image, which is filtered by a concentric center-surround (CS) antagonistic receptive field of the silicon retina, is transferred to the orientation chip. The image transfer from the silicon retina to the orientation chip is carried out with analog signals. The orientation chip selectively aggregates multiple pixels of the silicon retina, mimicking the feedforward model proposed by Hubel and Wiesel. The chip provides the orientation-selective (OS) outputs which are tuned to 0 degrees, 60 degrees, and 120 degrees. The feed-forward aggregation reduces the fixed pattern noise that is due to the mismatch of the transistors in the orientation chip. The spatial properties of the orientation selective response were examined in terms of the adjustable parameters of the chip, i.e., the number of aggregated pixels and size of the receptive field of the silicon retina. The multichip aVLSI architecture used in the present study can be applied to implement higher order cells such as the complex cell of the primary visual cortex.

  2. Visual Search Performance in Patients with Vision Impairment: A Systematic Review.

    PubMed

    Senger, Cassia; Margarido, Maria Rita Rodrigues Alves; De Moraes, Carlos Gustavo; De Fendi, Ligia Issa; Messias, André; Paula, Jayter Silva

    2017-11-01

    Patients with visual impairment are constantly facing challenges to achieve an independent and productive life, which depends upon both a good visual discrimination and search capacities. Given that visual search is a critical skill for several daily tasks and could be used as an index of the overall visual function, we investigated the relationship between vision impairment and visual search performance. A comprehensive search was undertaken using electronic PubMed, EMBASE, LILACS, and Cochrane databases from January 1980 to December 2016, applying the following terms: "visual search", "visual search performance", "visual impairment", "visual exploration", "visual field", "hemianopia", "search time", "vision lost", "visual loss", and "low vision". Two hundred seventy six studies from 12,059 electronic database files were selected, and 40 of them were included in this review. Studies included participants of all ages, both sexes, and the sample sizes ranged from 5 to 199 participants. Visual impairment was associated with worse visual search performance in several ophthalmologic conditions, which were either artificially induced, or related to specific eye and neurological diseases. This systematic review details all the described circumstances interfering with visual search tasks, highlights the need for developing technical standards, and outlines patterns for diagnosis and therapy using visual search capabilities.

  3. Visual Pattern Analysis in Histopathology Images Using Bag of Features

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.

    This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.

  4. Spatio-temporal Dynamics of Referential and Inferential Naming: Different Brain and Cognitive Operations to Lexical Selection.

    PubMed

    Fargier, Raphaël; Laganaro, Marina

    2017-03-01

    Picture naming tasks are largely used to elicit the production of specific words and sentences in psycholinguistic and neuroimaging research. However, the generation of lexical concepts from a visual input is clearly not the exclusive way speech production is triggered. In inferential speech encoding, the concept is not provided from a visual input, but is elaborated though semantic and/or episodic associations. It is therefore likely that the cognitive operations leading to lexical selection and word encoding are different in inferential and referential expressive language. In particular, in picture naming lexical selection might ensue from a simple association between a perceptual visual representation and a word with minimal semantic processes, whereas richer semantic associations are involved in lexical retrieval in inferential situations. Here we address this hypothesis by analyzing ERP correlates during word production in a referential and an inferential task. The participants produced the same words elicited from pictures or from short written definitions. The two tasks displayed similar electrophysiological patterns only in the time-period preceding the verbal response. In the stimulus-locked ERPs waveform amplitudes and periods of stable global electrophysiological patterns differed across tasks after the P100 component and until 400-500 ms, suggesting the involvement of different, task-specific neural networks. Based on the analysis of the time-windows affected by specific semantic and lexical variables in each task, we conclude that lexical selection is underpinned by a different set of conceptual and brain processes, with semantic processes clearly preceding word retrieval in naming from definition whereas the semantic information is enriched in parallel with word retrieval in picture naming.

  5. Orbit Selection for Earth Observation Missions

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1978-01-01

    The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.

  6. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1

    PubMed Central

    Tal, Zohar; Geva, Ran; Amedi, Amir

    2016-01-01

    Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. PMID:26673114

  7. Support for distinct subcomponents of spatial working memory: a double dissociation between spatial-simultaneous and spatial-sequential performance in unilateral neglect.

    PubMed

    Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry

    2015-01-01

    Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.

  8. Face adaptation improves gender discrimination.

    PubMed

    Yang, Hua; Shen, Jianhong; Chen, Juan; Fang, Fang

    2011-01-01

    Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern. However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the present study, we performed three experiments to investigate if face gender adaptation could affect gender discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhancement induced by face adaptation could transfer across a substantial change in three-dimensional face viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and improve discrimination at the adapted characteristic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Selective Visual Attention during Mirror Exposure in Anorexia and Bulimia Nervosa

    PubMed Central

    Tuschen-Caffier, Brunna; Bender, Caroline; Caffier, Detlef; Klenner, Katharina; Braks, Karsten; Svaldi, Jennifer

    2015-01-01

    Objective Cognitive theories suggest that body dissatisfaction results from the activation of maladaptive appearance schemata, which guide mental processes such as selective attention to shape and weight-related information. In line with this, the present study hypothesized that patients with anorexia nervosa (AN) and bulimia nervosa (BN) are characterized by increased visual attention for the most dissatisfying/ugly body part compared to their most satisfying/beautiful body part, while a more balanced viewing pattern was expected for controls without eating disorders (CG). Method Eye movements were recorded in a group of patients with AN (n = 16), BN (n = 16) and a CG (n = 16) in an ecologically valid setting, i.e., during a 3-min mirror exposure. Results Evidence was found that patients with AN and BN display longer and more frequent gazes towards the most dissatisfying relative to the most satisfying and towards their most ugly compared to their most beautiful body parts, whereas the CG showed a more balanced gaze pattern. Discussion The results converge with theoretical models that emphasize the role of information processing in the maintenance of body dissatisfaction. Given the etiological importance of body dissatisfaction in the development of eating disorders, future studies should focus on the modification of the reported patterns. PMID:26714279

  11. Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica

    PubMed Central

    Kang, Changku; Kim, Ye Eun; Jang, Yikweon

    2016-01-01

    Colour change in animals can be adaptive phenotypic plasticity in heterogeneous environments. Camouflage through background colour matching has been considered a primary force that drives the evolution of colour changing ability. However, the mechanism to which animals change their colour and patterns under visually heterogeneous backgrounds (i.e. consisting of more than one colour) has only been identified in limited taxa. Here, we investigated the colour change process of the Japanese tree frog (Hyla japonica) against patterned backgrounds and elucidated how the expression of dorsal patterns changes against various achromatic/chromatic backgrounds with/without patterns. Our main findings are i) frogs primarily responded to the achromatic differences in background, ii) their contrasting dorsal patterns were conditionally expressed dependent on the brightness of backgrounds, iii) against mixed coloured background, frogs adopted intermediate forms between two colours. Using predator (avian and snake) vision models, we determined that colour differences against different backgrounds yielded perceptible changes in dorsal colours. We also found substantial individual variation in colour changing ability and the levels of dorsal pattern expression between individuals. We discuss the possibility of correlational selection on colour changing ability and resting behaviour that maintains the high variation in colour changing ability within population. PMID:26932675

  12. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    PubMed

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.

  13. Recognition without Awareness: Encoding and Retrieval Factors

    ERIC Educational Resources Information Center

    Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel

    2015-01-01

    The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…

  14. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators.

    PubMed

    Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T

    2011-05-31

    Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.

  15. Understanding pictorial information in biology: students' cognitive activities and visual reading strategies

    NASA Astrophysics Data System (ADS)

    Brandstetter, Miriam; Sandmann, Angela; Florian, Christine

    2017-06-01

    In classroom, scientific contents are increasingly communicated through visual forms of representations. Students' learning outcomes rely on their ability to read and understand pictorial information. Understanding pictorial information in biology requires cognitive effort and can be challenging to students. Yet evidence-based knowledge about students' visual reading strategies during the process of understanding pictorial information is pending. Therefore, 42 students at the age of 14-15 were asked to think aloud while trying to understand visual representations of the blood circulatory system and the patellar reflex. A category system was developed differentiating 16 categories of cognitive activities. A Principal Component Analysis revealed two underlying patterns of activities that can be interpreted as visual reading strategies: 1. Inferences predominated by using a problem-solving schema; 2. Inferences predominated by recall of prior content knowledge. Each pattern consists of a specific set of cognitive activities that reflect selection, organisation and integration of pictorial information as well as different levels of expertise. The results give detailed insights into cognitive activities of students who were required to understand the pictorial information of complex organ systems. They provide an evidence-based foundation to derive instructional aids that can promote students pictorial-information-based learning on different levels of expertise.

  16. Jewelled spiders manipulate colour-lure geometry to deceive prey

    PubMed Central

    2017-01-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally ‘static’ signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. PMID:28356411

  17. Jewelled spiders manipulate colour-lure geometry to deceive prey.

    PubMed

    White, Thomas E

    2017-03-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).

  18. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex

    PubMed Central

    Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C

    2014-01-01

    Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles. DOI: http://dx.doi.org/10.7554/eLife.02670.001 PMID:24986734

  20. Stroboscopic Image Modulation to Reduce the Visual Blur of an Object Being Viewed by an Observer Experiencing Vibration

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K. (Inventor); Adelstein, Bernard D. (Inventor); Anderson, Mark R. (Inventor); Beutter, Brent R. (Inventor); Ahumada, Albert J., Jr. (Inventor); McCann, Robert S. (Inventor)

    2014-01-01

    A method and apparatus for reducing the visual blur of an object being viewed by an observer experiencing vibration. In various embodiments of the present invention, the visual blur is reduced through stroboscopic image modulation (SIM). A SIM device is operated in an alternating "on/off" temporal pattern according to a SIM drive signal (SDS) derived from the vibration being experienced by the observer. A SIM device (controlled by a SIM control system) operates according to the SDS serves to reduce visual blur by "freezing" (or reducing an image's motion to a slow drift) the visual image of the viewed object. In various embodiments, the SIM device is selected from the group consisting of illuminator(s), shutter(s), display control system(s), and combinations of the foregoing (including the use of multiple illuminators, shutters, and display control systems).

  1. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    PubMed

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  2. Déjà vu in unilateral temporal-lobe epilepsy is associated with selective familiarity impairments on experimental tasks of recognition memory.

    PubMed

    Martin, Chris B; Mirsattari, Seyed M; Pruessner, Jens C; Pietrantonio, Sandra; Burneo, Jorge G; Hayman-Abello, Brent; Köhler, Stefan

    2012-11-01

    In déjà vu, a phenomenological impression of familiarity for the current visual environment is experienced with a sense that it should in fact not feel familiar. The fleeting nature of this phenomenon in daily life, and the difficulty in developing experimental paradigms to elicit it, has hindered progress in understanding déjà vu. Some neurological patients with temporal-lobe epilepsy (TLE) consistently experience déjà vu at the onset of their seizures. An investigation of such patients offers a unique opportunity to shed light on its possible underlying mechanisms. In the present study, we sought to determine whether unilateral TLE patients with déjà vu (TLE+) show a unique pattern of interictal memory deficits that selectively affect familiarity assessment. In Experiment 1, we employed a Remember-Know paradigm for categorized visual scenes and found evidence for impairments that were limited to familiarity-based responses. In Experiment 2, we administered an exclusion task for highly similar categorized visual scenes that placed both recognition processes in opposition. TLE+ patients again displayed recognition impairments, and these impairments spared their ability to engage recollective processes so as to counteract familiarity. The selective deficits we observed in TLE+ patients contrasted with the broader pattern of recognition-memory impairments that was present in a control group of unilateral patients without déjà vu (TLE-). MRI volumetry revealed that ipsilateral medial temporal structures were less broadly affected in TLE+ than in TLE- patients, with a trend for more focal volume reductions in the rhinal cortices of the TLE+ group. The current findings establish a first empirical link between déjà vu in TLE and processes of familiarity assessment, as defined and measured in current cognitive models. They also reveal a pattern of selectivity in recognition impairments that is rarely observed and, thus, of significant theoretical interest to the memory literature at large. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Supramodal processing optimizes visual perceptual learning and plasticity.

    PubMed

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory-invariant representations - here, global coherence levels across sensory modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Color vision but not visual attention is altered in migraine.

    PubMed

    Shepherd, Alex J

    2006-04-01

    To examine visual search performance in migraine and headache-free control groups and to determine whether reports of selective color vision deficits in migraine occur preattentively. Visual search is a classic technique to measure certain components of visual attention. The technique can be manipulated to measure both preattentive (automatic) and attentive processes. Here, visual search for colored targets was employed to extend earlier reports that the detection or discrimination of colors selective for the short-wavelength sensitive cone photoreceptors in the retina (S or "blue" cones) is impaired in migraine. Visual search performance for small and large color differences was measured in 34 migraine and 34 control participants. Small and large color differences were included to assess attentive and preattentive processing, respectively. In separate conditions, colored stimuli were chosen that would be detected selectively by either the S-, or by the long- (L or "red") and middle (M or "green")-wavelength sensitive cone photoreceptors. The results showed no preattentive differences between the migraine and control groups. For active, or attentive, search, differences between the migraine and control groups occurred for colors detected by the S-cones only, there were no differences for colors detected by the L- and M-cones. The migraine group responded significantly more slowly than the control group for the S-cone colors. The pattern of results indicates that there are no overall differences in search performance between migraine and control groups. The differences found for the S-cone colors are attributed to impaired discrimination of these colors in migraine and not to differences in attention.

  6. Online decoding of object-based attention using real-time fMRI.

    PubMed

    Niazi, Adnan M; van den Broek, Philip L C; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A J

    2014-01-01

    Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transparently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder performed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based attention requires a multivariate decoding approach that can detect these distributed patterns of cortical activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases.

    PubMed

    Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N

    2016-01-01

    A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed.

  8. Nicotine deprivation elevates neural representation of smoking-related cues in object-sensitive visual cortex: a proof of concept study.

    PubMed

    Havermans, Anne; van Schayck, Onno C P; Vuurman, Eric F P M; Riedel, Wim J; van den Hurk, Job

    2017-08-01

    In the current study, we use functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA) to investigate whether tobacco addiction biases basic visual processing in favour of smoking-related images. We hypothesize that the neural representation of smoking-related stimuli in the lateral occipital complex (LOC) is elevated after a period of nicotine deprivation compared to a satiated state, but that this is not the case for object categories unrelated to smoking. Current smokers (≥10 cigarettes a day) underwent two fMRI scanning sessions: one after 10 h of nicotine abstinence and the other one after smoking ad libitum. Regional blood oxygenated level-dependent (BOLD) response was measured while participants were presented with 24 blocks of 8 colour-matched pictures of cigarettes, pencils or chairs. The functional data of 10 participants were analysed through a pattern classification approach. In bilateral LOC clusters, the classifier was able to discriminate between patterns of activity elicited by visually similar smoking-related (cigarettes) and neutral objects (pencils) above empirically estimated chance levels only during deprivation (mean = 61.0%, chance (permutations) = 50.0%, p = .01) but not during satiation (mean = 53.5%, chance (permutations) = 49.9%, ns.). For all other stimulus contrasts, there was no difference in discriminability between the deprived and satiated conditions. The discriminability between smoking and non-smoking visual objects was elevated in object-selective brain region LOC after a period of nicotine abstinence. This indicates that attention bias likely affects basic visual object processing.

  9. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637

  10. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    PubMed Central

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  11. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  12. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: the case of Australian Mallee dragons (Ctenophorus fordi).

    PubMed

    Garcia, Jair E; Rohr, Detlef; Dyer, Adrian G

    2013-11-15

    Colour patterns displayed by animals may result from the balance of the opposing requirements of sexual selection through display and natural selection through camouflage. Currently, little is known about the possibility of the dual purpose of an animal colour pattern in the UV region of the spectrum, which is potentially perceivable by both predators and conspecifics for detection or communication purposes. Here, we implemented linearised digital UV photography to characterise and quantify the colour pattern of an endemic Australian Agamid lizard classically regarded as monomorphic when considering data from the visible region of the spectrum. Our results indicate a widespread presence of UV elements across the entire body of the lizards and these patterns vary significantly in intensity, size and frequency between sexes. These results were modelled considering either lizard or avian visual characteristics, revealing that UV reflectance represents a trade-off between the requirements of sexual displaying to conspecifics and concealment from avian predators.

  13. Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies

    NASA Astrophysics Data System (ADS)

    MacLeod, Katrina; Laurent, Gilles

    1996-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.

  14. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization.

    PubMed

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri

    2015-02-19

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.

  15. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.

  16. Patterned light flash evoked short latency activity in the visual system of visually normal and in amblyopic subjects.

    PubMed

    Sjöström, A; Abrahamsson, M

    1994-04-01

    In a previous experimental study on anaesthetized cat it was shown that a short latency (35-40 ms) cortical potential changed polarity due to the presence or absence of a pattern in the flash stimulus. The results suggested one pathway of neuronal activation in the cortex to a pattern that was within the level of resolution and another to patterns that were not. It was implied that a similar difference in impulse transmission to pattern and non-pattern stimuli may be recorded in humans. The present paper describes recordings of the short-latency visual evoked response to varying light flash checkerboard pattern stimuli of high intensity in visually normal and amblyopic children and adults. When stimulating the normal eye a visual evoked response potential with a peak latency between 35 to 40 ms showed a polarity change to patterned compared to non-patterned stimulation. The visual evoked response resolution limit could be correlated to a visual acuity of 0.5 and below. In amblyopic eyes the shift in polarity was recorded at the acuity limit level. The latency of the pattern depending potential was increased in patients with amblyopia compared to normal, but not directly related to amblyopic degree. It is concluded that the short latency, visual evoked response that mainly represents the retino-geniculo-cortical activation may be used to estimate visual resolution below 0.5 in acuity level.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face- and body-evoked activity patterns

    PubMed Central

    Kaiser, Daniel; Strnad, Lukas; Seidl, Katharina N.; Kastner, Sabine

    2013-01-01

    Visual cues from the face and the body provide information about another's identity, emotional state, and intentions. Previous neuroimaging studies that investigated neural responses to (bodiless) faces and (headless) bodies have reported overlapping face- and body-selective brain regions in right fusiform gyrus (FG). In daily life, however, faces and bodies are typically perceived together and are effortlessly integrated into the percept of a whole person, raising the possibility that neural responses to whole persons are qualitatively different than responses to isolated faces and bodies. The present study used fMRI to examine how FG activity in response to a whole person relates to activity in response to the same face and body but presented in isolation. Using multivoxel pattern analysis, we modeled person-evoked response patterns in right FG through a linear combination of face- and body-evoked response patterns. We found that these synthetic patterns were able to accurately approximate the response patterns to whole persons, with face and body patterns each adding unique information to the response patterns evoked by whole person stimuli. These results suggest that whole person responses in FG primarily arise from the coactivation of independent face- and body-selective neural populations. PMID:24108794

  18. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory

    PubMed Central

    Murty, Vishnu P.; Tompary, Alexa; Adcock, R. Alison

    2017-01-01

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. SIGNIFICANCE STATEMENT Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the anterior hippocampus and the VTA with high-level visual cortex selectively predicts memory for high-reward memoranda at a 24 h delay. These findings provide evidence for a novel mechanism guiding the consolidation of memories for valuable events, namely, postencoding interactions between neural systems supporting mesolimbic dopamine activation, episodic memory, and perception. PMID:28100737

  19. Egg-laying substrate selection for optimal camouflage by quail.

    PubMed

    Lovell, P George; Ruxton, Graeme D; Langridge, Keri V; Spencer, Karen A

    2013-02-04

    Camouflage is conferred by background matching and disruption, which are both affected by microhabitat. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs. For most animals, phenotypic variation is continuous; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high and egg appearance shows strong between-female variation. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail "know" their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Decoding and reconstructing color from responses in human visual cortex.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2009-11-04

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.

  1. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  2. Recurrent Activation of Neural Circuits during Attention to Global and Local Visual Information.

    PubMed

    Iglesias-Fuster, Jorge; Piña-Novo, Daniela; Ontivero-Ortega, Marlis; Lage-Castellanos, Agustín; Valdés-Sosa, Mitchell

    2018-05-28

    The attentional selection of different hierarchical level within compound (Navon) figures has been studied with event related potentials (ERPs), by controlling the ERPs obtained during attention to the global or the local echelon. These studies, using the canonical Navon figures, have produced contradictory results, with doubts regarding the scalp distribution of the effects. Moreover, the evidence about the temporal evolution of the processing of these two levels is not clear. Here, we unveiled global and local letters at distinct times, which enabled separation of their ERP responses. We combine this approach with the temporal generalization methodology, a novel multivariate technique which facilitates exploring the temporal structure of these ERPs. Opposite lateralization patterns were obtained for the selection negativities generated when attending global and local distracters (D statistics, p < .005), with maxima in right and left occipito-temporal scalp regions, respectively (η2 = .111, p < .01; η2 = .042, p < .04). However, both discrimination negativities elicited when comparing targets and distractors at the global or the local level were lateralized to the left hemisphere (η2 = .25, p < .03 and η2 = .142, p < .05 respectively). Recurrent activation patterns were found for both global and local stimuli, with scalp topographies corresponding to early preparatory stages reemerging during the attentional selection process, thus indicating recursive attentional activation. This implies that selective attention to global and local hierarchical levels recycles similar neural correlates at different time points. These neural correlates appear to be mediated by visual extra-striate areas.

  3. Emotion processing in the visual brain: a MEG analysis.

    PubMed

    Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus

    2008-06-01

    Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.

  4. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    PubMed

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by alterations in activity patterns of the visual association areas, their connectivity with the prefrontal cortex, and their relationship with core clinical characteristics. These results highlight the role of information updating deficits in the cognitive control and symptomatology of depression.

  5. The Rise and Fall of Priming: How Visual Exposure Shapes Cortical Representations of Objects

    PubMed Central

    Zago, Laure; Fenske, Mark J.; Aminoff, Elissa; Bar, Moshe

    2006-01-01

    How does the amount of time for which we see an object influence the nature and content of its cortical representation? To address this question, we varied the duration of initial exposure to visual objects and then measured functional magnetic resonance imaging (fMRI) signal and behavioral performance during a subsequent repeated presentation of these objects. We report a novel ‘rise-and-fall’ pattern relating exposure duration and the corresponding magnitude of fMRI cortical signal. Compared with novel objects, repeated objects elicited maximal cortical response reduction when initially presented for 250 ms. Counter-intuitively, initially seeing an object for a longer duration significantly reduced the magnitude of this effect. This ‘rise-and-fall’ pattern was also evident for the corresponding behavioral priming. To account for these findings, we propose that the earlier interval of an exposure to a visual stimulus results in a fine-tuning of the cortical response, while additional exposure promotes selection of a subset of key features for continued representation. These two independent mechanisms complement each other in shaping object representations with experience. PMID:15716471

  6. The Neural Dynamics of Attentional Selection in Natural Scenes.

    PubMed

    Kaiser, Daniel; Oosterhof, Nikolaas N; Peelen, Marius V

    2016-10-12

    The human visual system can only represent a small subset of the many objects present in cluttered scenes at any given time, such that objects compete for representation. Despite these processing limitations, the detection of object categories in cluttered natural scenes is remarkably rapid. How does the brain efficiently select goal-relevant objects from cluttered scenes? In the present study, we used multivariate decoding of magneto-encephalography (MEG) data to track the neural representation of within-scene objects as a function of top-down attentional set. Participants detected categorical targets (cars or people) in natural scenes. The presence of these categories within a scene was decoded from MEG sensor patterns by training linear classifiers on differentiating cars and people in isolation and testing these classifiers on scenes containing one of the two categories. The presence of a specific category in a scene could be reliably decoded from MEG response patterns as early as 160 ms, despite substantial scene clutter and variation in the visual appearance of each category. Strikingly, we find that these early categorical representations fully depend on the match between visual input and top-down attentional set: only objects that matched the current attentional set were processed to the category level within the first 200 ms after scene onset. A sensor-space searchlight analysis revealed that this early attention bias was localized to lateral occipitotemporal cortex, reflecting top-down modulation of visual processing. These results show that attention quickly resolves competition between objects in cluttered natural scenes, allowing for the rapid neural representation of goal-relevant objects. Efficient attentional selection is crucial in many everyday situations. For example, when driving a car, we need to quickly detect obstacles, such as pedestrians crossing the street, while ignoring irrelevant objects. How can humans efficiently perform such tasks, given the multitude of objects contained in real-world scenes? Here we used multivariate decoding of magnetoencephalogaphy data to characterize the neural underpinnings of attentional selection in natural scenes with high temporal precision. We show that brain activity quickly tracks the presence of objects in scenes, but crucially only for those objects that were immediately relevant for the participant. These results provide evidence for fast and efficient attentional selection that mediates the rapid detection of goal-relevant objects in real-world environments. Copyright © 2016 the authors 0270-6474/16/3610522-07$15.00/0.

  7. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    PubMed Central

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  8. Visual Search for Motion-Form Conjunctions: Selective Attention to Movement Direction.

    PubMed

    Von Mühlenen, Adrian; Müller, Hermann J

    1999-07-01

    In 2 experiments requiring visual search for conjunctions of motion and form, the authors reinvestigated whether motion-based filtering (e.g., P. McLeod, J. Driver, Z. Dienes, & J. Crisp, 1991) is direction selective and whether cuing of the target direction promotes efficient search performance. In both experiments, the authors varied the number of movement directions in the display and the predictability of the target direction. Search was less efficient when items moved in multiple (2, 3, and 4) directions as compared with just 1 direction. Furthermore, precuing of the target direction facilitated the search, even with "wrap-around" displays, relatively more when items moved in multiple directions. The authors proposed 2 principles to explain that pattern of effects: (a) interference on direction computation between items moving in different directions (e.g., N. Qian & R. A. Andersen, 1994) and (b) selective direction tuning of motion detectors involving a receptive-field contraction (cf. J. Moran & R. Desimone, 1985; S. Treue & J. H. R. Maunsell, 1996).

  9. PMv Neuronal Firing May Be Driven by a Movement Command Trajectory within Multidimensional Gaussian Fields.

    PubMed

    Agarwal, Rahul; Thakor, Nitish V; Sarma, Sridevi V; Massaquoi, Steve G

    2015-06-24

    The premotor cortex (PM) is known to be a site of visuo-somatosensory integration for the production of movement. We sought to better understand the ventral PM (PMv) by modeling its signal encoding in greater detail. Neuronal firing data was obtained from 110 PMv neurons in two male rhesus macaques executing four reach-grasp-manipulate tasks. We found that in the large majority of neurons (∼90%) the firing patterns across the four tasks could be explained by assuming that a high-dimensional position/configuration trajectory-like signal evolving ∼250 ms before movement was encoded within a multidimensional Gaussian field (MGF). Our findings are consistent with the possibility that PMv neurons process a visually specified reference command for the intended arm/hand position trajectory with respect to a proprioceptively or visually sensed initial configuration. The estimated MGF were (hyper) disc-like, such that each neuron's firing modulated strongly only with commands that evolved along a single direction within position/configuration space. Thus, many neurons appeared to be tuned to slices of this input signal space that as a collection appeared to well cover the space. The MGF encoding models appear to be consistent with the arm-referent, bell-shaped, visual target tuning curves and target selectivity patterns observed in PMV visual-motor neurons. These findings suggest that PMv may implement a lookup table-like mechanism that helps translate intended movement trajectory into time-varying patterns of activation in motor cortex and spinal cord. MGFs provide an improved nonlinear framework for potentially decoding visually specified, intended multijoint arm/hand trajectories well in advance of movement. Copyright © 2015 the authors 0270-6474/15/359508-18$15.00/0.

  10. Binocular rivalry from invisible patterns

    PubMed Central

    Zou, Jinyou; He, Sheng; Zhang, Peng

    2016-01-01

    Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535

  11. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  12. Estimation of 3D shape from image orientations.

    PubMed

    Fleming, Roland W; Holtmann-Rice, Daniel; Bülthoff, Heinrich H

    2011-12-20

    One of the main functions of vision is to estimate the 3D shape of objects in our environment. Many different visual cues, such as stereopsis, motion parallax, and shading, are thought to be involved. One important cue that remains poorly understood comes from surface texture markings. When a textured surface is slanted in 3D relative to the observer, the surface patterns appear compressed in the retinal image, providing potentially important information about 3D shape. What is not known, however, is how the brain actually measures this information from the retinal image. Here, we explain how the key information could be extracted by populations of cells tuned to different orientations and spatial frequencies, like those found in the primary visual cortex. To test this theory, we created stimuli that selectively stimulate such cell populations, by "smearing" (filtering) images of 2D random noise into specific oriented patterns. We find that the resulting patterns appear vividly 3D, and that increasing the strength of the orientation signals progressively increases the sense of 3D shape, even though the filtering we apply is physically inconsistent with what would occur with a real object. This finding suggests we have isolated key mechanisms used by the brain to estimate shape from texture. Crucially, we also find that adapting the visual system's orientation detectors to orthogonal patterns causes unoriented random noise to look like a specific 3D shape. Together these findings demonstrate a crucial role of orientation detectors in the perception of 3D shape.

  13. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure.

    PubMed

    Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande

    2003-01-01

    To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.

  14. Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas.

    PubMed

    Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan

    2013-02-01

    In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location

    PubMed Central

    Fiebelkorn, Ian C.; Saalmann, Yuri B.; Kastner, Sabine

    2013-01-01

    SUMMARY The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based selection) spreads to uncued locations, if those locations are part of the same object (i.e., resulting in object-based selection). But little is known about the relationship between these fundamental selection mechanisms. Here, we used human behavioral data to determine how space- and object-based selection simultaneously evolve under conditions that promote sustained attention at a cued location, varying the cue-to-target interval from 300—1100 ms. We tracked visual-target detection at a cued location (i.e., space-based selection), at an uncued location that was part of the same object (i.e., object-based selection), and at an uncued location that was part of a different object (i.e., in the absence of space- and object-based selection). The data demonstrate that even under static conditions, there is a moment-to-moment reweighting of attentional priorities based on object properties. This reweighting is revealed through rhythmic patterns of visual-target detection both within (at 8 Hz) and between (at 4 Hz) objects. PMID:24316204

  16. A Comparison of the Visual Attention Patterns of People with Aphasia and Adults without Neurological Conditions for Camera-Engaged and Task-Engaged Visual Scenes

    ERIC Educational Resources Information Center

    Thiessen, Amber; Beukelman, David; Hux, Karen; Longenecker, Maria

    2016-01-01

    Purpose: The purpose of the study was to compare the visual attention patterns of adults with aphasia and adults without neurological conditions when viewing visual scenes with 2 types of engagement. Method: Eye-tracking technology was used to measure the visual attention patterns of 10 adults with aphasia and 10 adults without neurological…

  17. Distribution of Orientation Selectivity in Recurrent Networks of Spiking Neurons with Different Random Topologies

    PubMed Central

    Sadeh, Sadra; Rotter, Stefan

    2014-01-01

    Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity. PMID:25469704

  18. Temporal dynamics of attention during encoding vs. maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations

    PubMed Central

    Myers, Nicholas E.; Walther, Lena; Wallis, George; Stokes, Mark G.; Nobre, Anna C.

    2015-01-01

    Working memory (WM) is strongly influenced by attention. In visual working-memory tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar fronto-parietal control network, the two are likely to exhibit some processing differences, since precues invite anticipation of upcoming information, while retrocues may guide prioritisation, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual working-memory task designed to permit a direct comparison between cueing conditions. We found marked differences in event-related potential (ERP) profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information. PMID:25244118

  19. Face-selective neurons maintain consistent visual responses across months

    PubMed Central

    McMahon, David B. T.; Jones, Adam P.; Bondar, Igor V.; Leopold, David A.

    2014-01-01

    Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron. It therefore remains unclear how neuronal properties observed on a given day predict that same neuron's activity months or years later. Here we show that the macaque inferotemporal cortex contains face-selective cells that show virtually no change in their patterns of visual responses over time periods as long as one year. Using chronically implanted microwire electrodes guided by functional MRI targeting, we obtained distinct profiles of selectivity for face and nonface stimuli that served as fingerprints for individual neurons in the anterior fundus (AF) face patch within the superior temporal sulcus. Longitudinal tracking over a series of daily recording sessions revealed that face-selective neurons maintain consistent visual response profiles across months-long time spans despite the influence of ongoing daily experience. We propose that neurons in the AF face patch are specialized for aspects of face perception that demand stability as opposed to plasticity. PMID:24799679

  20. Face-selective neurons maintain consistent visual responses across months.

    PubMed

    McMahon, David B T; Jones, Adam P; Bondar, Igor V; Leopold, David A

    2014-06-03

    Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron. It therefore remains unclear how neuronal properties observed on a given day predict that same neuron's activity months or years later. Here we show that the macaque inferotemporal cortex contains face-selective cells that show virtually no change in their patterns of visual responses over time periods as long as one year. Using chronically implanted microwire electrodes guided by functional MRI targeting, we obtained distinct profiles of selectivity for face and nonface stimuli that served as fingerprints for individual neurons in the anterior fundus (AF) face patch within the superior temporal sulcus. Longitudinal tracking over a series of daily recording sessions revealed that face-selective neurons maintain consistent visual response profiles across months-long time spans despite the influence of ongoing daily experience. We propose that neurons in the AF face patch are specialized for aspects of face perception that demand stability as opposed to plasticity.

  1. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.

    PubMed

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-08-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.

  2. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures

    PubMed Central

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-01-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971

  3. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  4. Coping with Volume and Variety in Temporal Event Sequences: Strategies for Sharpening Analytic Focus.

    PubMed

    Fan Du; Shneiderman, Ben; Plaisant, Catherine; Malik, Sana; Perer, Adam

    2017-06-01

    The growing volume and variety of data presents both opportunities and challenges for visual analytics. Addressing these challenges is needed for big data to provide valuable insights and novel solutions for business, security, social media, and healthcare. In the case of temporal event sequence analytics it is the number of events in the data and variety of temporal sequence patterns that challenges users of visual analytic tools. This paper describes 15 strategies for sharpening analytic focus that analysts can use to reduce the data volume and pattern variety. Four groups of strategies are proposed: (1) extraction strategies, (2) temporal folding, (3) pattern simplification strategies, and (4) iterative strategies. For each strategy, we provide examples of the use and impact of this strategy on volume and/or variety. Examples are selected from 20 case studies gathered from either our own work, the literature, or based on email interviews with individuals who conducted the analyses and developers who observed analysts using the tools. Finally, we discuss how these strategies might be combined and report on the feedback from 10 senior event sequence analysts.

  5. Establishing the behavioural limits for countershaded camouflage.

    PubMed

    Penacchio, Olivier; Harris, Julie M; Lovell, P George

    2017-10-20

    Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis.

  6. Learning to Recognize Patterns: Changes in the Visual Field with Familiarity

    NASA Astrophysics Data System (ADS)

    Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo

    1995-01-01

    Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].

  7. Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.

    PubMed

    Williams, Jason A

    2012-06-01

    The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.

  8. Differences in neural responses to ipsilateral stimuli in wide-view fields between face- and house-selective areas

    PubMed Central

    Li, Ting; Niu, Yan; Xiang, Jie; Cheng, Junjie; Liu, Bo; Zhang, Hui; Yan, Tianyi; Kanazawa, Susumu; Wu, Jinglong

    2018-01-01

    Category-selective brain areas exhibit varying levels of neural activity to ipsilaterally presented stimuli. However, in face- and house-selective areas, the neural responses evoked by ipsilateral stimuli in the peripheral visual field remain unclear. In this study, we displayed face and house images using a wide-view visual presentation system while performing functional magnetic resonance imaging (fMRI). The face-selective areas (fusiform face area (FFA) and occipital face area (OFA)) exhibited intense neural responses to ipsilaterally presented images, whereas the house-selective areas (parahippocampal place area (PPA) and transverse occipital sulcus (TOS)) exhibited substantially smaller and even negative neural responses to the ipsilaterally presented images. We also found that the category preferences of the contralateral and ipsilateral neural responses were similar. Interestingly, the face- and house-selective areas exhibited neural responses to ipsilateral images that were smaller than the responses to the contralateral images. Multi-voxel pattern analysis (MVPA) was implemented to evaluate the difference between the contralateral and ipsilateral responses. The classification accuracies were much greater than those expected by chance. The classification accuracies in the FFA were smaller than those in the PPA and TOS. The closer eccentricities elicited greater classification accuracies in the PPA and TOS. We propose that these ipsilateral neural responses might be interpreted by interhemispheric communication through intrahemispheric connectivity of white matter connection and interhemispheric connectivity via the corpus callosum and occipital white matter connection. Furthermore, the PPA and TOS likely have weaker interhemispheric communication than the FFA and OFA, particularly in the peripheral visual field. PMID:29451872

  9. 'Who is the ideal candidate?': decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity

    NASA Astrophysics Data System (ADS)

    Merabet, Lotfi B.; Rizzo, Joseph F., III; Pascual-Leone, Alvaro; Fernandez, Eduardo

    2007-03-01

    Appropriate delivery of electrical stimulation to intact visual structures can evoke patterned sensations of light in individuals who have been blind for many years. This pivotal finding has lent credibility to the concept of restoring functional vision by artificial means. As numerous groups worldwide pursue human clinical testing with visual prosthetic devices, it is becoming increasingly clear that there remains a considerable gap between the challenges of prosthetic device development and the rehabilitative strategies needed to implement this new technology in patients. An important area of future work will be the development of appropriate pre- and post-implantation measures of performance and establishing candidate selection criteria in order to quantify technical advances, guide future device design and optimize therapeutic success. We propose that the selection of an 'ideal' candidate should also be considered within the context of the variable neuroplastic changes that follow vision loss. Specifically, an understanding of the adaptive and compensatory changes that occur within the brain could assist in guiding the development of post-implantation rehabilitative strategies and optimize behavioral outcomes.

  10. Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases

    PubMed Central

    Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N.

    2016-01-01

    A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed. PMID:26858668

  11. [The key parameters of design research and analysis of the Chinese reading visual acuity chart].

    PubMed

    Wang, Chen-xiao; Liu, Zhi-hui; Gao, Ji-tuo; Guo, Ying-xuan; He, Ji-cang; Qu, Jia; Lü, Fan

    2013-06-01

    Reading is a visual function human being used to understand environmental events based on writing materials. This study investigated the feasibility of reading visual acuity chart in assessment of reading ability by analysis of the key factors involved in the design of the visual acuity chart. The reading level was determined as grade 3 primary school with Song as the font and 30 characters included in the sentences. Each of the sentences consisted of 27 commonly-used Chinese characters (9 characters between any two punctuations) and 3 punctuations. There were no contextual clues between the 80 sentences selected. The characters had 13 different sizes with an increment of 0.1 log unit (e.g.1.2589) and 2.5 pt was determined as the critical threshold. Readable test for visual target was followed as (1) 29 candidates with a raw or corrected visual acuity (VA)of at least 1.0 were selected to read 80 selected sentences with the size of characters of 2.5 pt at a distance of 40 cm, (2) the time used for reading with the number of characters wrongly read was recorded, (3) 39 sentences were selected as visual targets based on reading speed, effective reading position and total number of character strokes, (4) The 39 selected sentences were then randomly divided into 3 groups with no significant difference among the groups in the 3 factors listed at (3) with paired t-test. This reading visual chart was at level of Grade 3 primary school with a total stroke number of 165-210(Mean 185 ± 10), 13 font sizes a 0.1 log unit increment, a song pattern and 2.5 pt as the critical threshold. All candidates achieved 100% correct in reading test under 2.5 pt with an effective reading speed as 120.65-162 wpm (Mean 142.93 ± 11.80) and effective reading position as 36.03-61.48(Mean 48.85 ± 6.81). The reading test for the 3 groups of sentences showed effective reading speed as (142.49 ± 12.14) wpm,(142.86 ± 12.55) wpm and (143.44 ± 11.63) wpm respectively(t1-2 = -0.899, t2-3 = -1.295, t1-3 = -1.435). The reading position was 48.55 ± 6.69, 48.99 ± 7.49 and 49.00 ± 6.76, respectively(t1-2 = -1.019, t2-3 = -0.019, t1-3 = -0.816). The total number of character strokes was 185.54 ± 7.55, 187.69 ± 13.76 and 182.62 ± 8.17, respectively(t1-2 = 0.191, t2-3 = 1.385, t1-3 = 1.686). A practical design of the Chinese reading visual chart should consider size, increment, legibility in selection of reading sentences. Reading visual acuity, critical threshold and effective reading speed could be used to express the reading visual function.

  12. Visual attention in preterm born adults: specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode.

    PubMed

    Finke, Kathrin; Neitzel, Julia; Bäuml, Josef G; Redel, Petra; Müller, Hermann J; Meng, Chun; Jaekel, Julia; Daamen, Marcel; Scheef, Lukas; Busch, Barbara; Baumann, Nicole; Boecker, Henning; Bartmann, Peter; Habekost, Thomas; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian

    2015-02-15

    Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma.

    PubMed

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha

    2014-01-01

    To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  14. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Neural activation patterns and connectivity in visual attention during Number and Non-number processing: An ERP study using the Ishihara pseudoisochromatic plates.

    PubMed

    Al-Marri, Faraj; Reza, Faruque; Begum, Tahamina; Hitam, Wan Hazabbah Wan; Jin, Goh Khean; Xiang, Jing

    2017-10-25

    Visual cognitive function is important to build up executive function in daily life. Perception of visual Number form (e.g., Arabic digit) and numerosity (magnitude of the Number) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of Number representations are complex occurrences when their semantic categories are assimilated with other concepts of shape and colour. Colour perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green colour vision testing. However, there is a lack of study of visual cognitive function assessment using these pseudoisochromatic plates. We recruited 25 healthy normal trichromat volunteers and extended these studies using a 128-sensor net to record event-related EEG. Subjects were asked to respond by pressing Numbered buttons when they saw the Number and Non-number plates of the Ishihara colour vision test. Amplitudes and latencies of N100 and P300 event related potential (ERP) components were analysed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns and Granger causation (effective connectivity) were analysed from 128 electrode sites. No major significant differences between N100 ERP components in either stimulus indicate early selective attention processing was similar for Number and Non-number plate stimuli, but Non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 ERP component with a slower reaction time compared to Number plate stimuli imply the allocation of attentional load was more in Non-number plate processing. A different pattern of asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for Number plate tasks and higher intensity in the right hemisphere for Non-number plate tasks. Asymmetric cortical activation and connectivity patterns revealed that Number recognition occurred in the occipital and left frontal areas where as the consequence was limited to the occipital area during the Non-number plate processing. Finally, the results displayed that the visual recognition of Numbers dissociates from the recognition of Non-numbers at the level of defined neural networks. Number recognition was not only a process of visual perception and attention, but it was also related to a higher level of cognitive function, that of language.

  16. Interdisciplinary Collaboration in the Choice of an Adapted Mobility Device for a Child with Cerebral Palsy and Visual Impairment.

    ERIC Educational Resources Information Center

    Glanzman, Allan; Ducret, Walter

    2003-01-01

    To select an adapted mobility device for a 5-year-old boy with blindness and spastic diplegic cerebral palsy, a multidisciplinary team used 8-millimeter videography to evaluate the subject's joint angle during ambulation with one of three canes and with no cane. The I-style cane provided optimal posture and gait pattern. (Contains references.) (CR)

  17. Natural course of visual field loss in patients with Type 2 Usher syndrome.

    PubMed

    Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William

    2007-06-01

    To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.

  18. Relative Spatial Frequency Processing Drives Hemispheric Asymmetry in Conscious Awareness

    PubMed Central

    Piazza, Elise A.; Silver, Michael A.

    2017-01-01

    Visual stimuli with different spatial frequencies (SFs) are processed asymmetrically in the two cerebral hemispheres. Specifically, low SFs are processed relatively more efficiently in the right hemisphere than the left hemisphere, whereas high SFs show the opposite pattern. In this study, we ask whether these differences between the two hemispheres reflect a low-level division that is based on absolute SF values or a flexible comparison of the SFs in the visual environment at any given time. In a recent study, we showed that conscious awareness of SF information (i.e., visual perceptual selection from multiple SFs simultaneously present in the environment) differs between the two hemispheres. Building upon that result, here we employed binocular rivalry to test whether this hemispheric asymmetry is due to absolute or relative SF processing. In each trial, participants viewed a pair of rivalrous orthogonal gratings of different SFs, presented either to the left or right of central fixation, and continuously reported which grating they perceived. We found that the hemispheric asymmetry in perception is significantly influenced by relative processing of the SFs of the simultaneously presented stimuli. For example, when a medium SF grating and a higher SF grating were presented as a rivalry pair, subjects were more likely to report that they initially perceived the medium SF grating when the rivalry pair was presented in the left visual hemifield (right hemisphere), compared to the right hemifield. However, this same medium SF grating, when it was paired in rivalry with a lower SF grating, was more likely to be perceptually selected when it was in the right visual hemifield (left hemisphere). Thus, the visual system’s classification of a given SF as “low” or “high” (and therefore, which hemisphere preferentially processes that SF) depends on the other SFs that are present, demonstrating that relative SF processing contributes to hemispheric differences in visual perceptual selection. PMID:28469585

  19. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  20. Color in graphic design: an analysis of meaning and trends

    NASA Astrophysics Data System (ADS)

    Martinson, Barbara; Waldron, Carol C.

    2002-06-01

    Graphic design is visual communication through the selection, arrangement, and presentation of words and images, most often for the printed page which offer the designer almost limitless options for color use. The objective of this project is to identify patterns of color use. Ethnographic content analysis was used to document color use in annual reports represented in two publications, Print and Communication Arts, 1993-2000. The analysis focuses on the selection, combination, and contrast of hues; and their use with achromatic values. An analysis of the entire sample indicates that one-third of the annual reports used a palette that include black, white, and a hue from quadrant one (red to yellow). Nearly one-fifth of the designs used black, white, and colors from quadrants one and three (cyan to blue). The large samples for Technology, Health Sciences, Financial, and Civic organizations follow the first pattern. Food Service, Business products and services, and Transportation industries favor the second pattern.

  1. Beyond sensory images: Object-based representation in the human ventral pathway

    PubMed Central

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396

  2. Directed forgetting of visual symbols: evidence for nonverbal selective rehearsal.

    PubMed

    Hourihan, Kathleen L; Ozubko, Jason D; MacLeod, Colin M

    2009-12-01

    Is selective rehearsal possible for nonverbal information? Two experiments addressed this question using the item method directed forgetting paradigm, where the advantage of remember items over forget items is ascribed to selective rehearsal favoring the remember items. In both experiments, difficult-to-name abstract symbols were presented for study, followed by a recognition test. Directed forgetting effects were evident for these symbols, regardless of whether they were or were not spontaneously named. Critically, a directed forgetting effect was observed for unnamed symbols even when the symbols were studied under verbal suppression to prevent verbal rehearsal. This pattern indicates that a form of nonverbal rehearsal can be used strategically (i.e., selectively) to enhance memory, even when verbal rehearsal is not possible.

  3. The evolution of pattern camouflage strategies in waterfowl and game birds.

    PubMed

    Marshall, Kate L A; Gluckman, Thanh-Lan

    2015-05-01

    Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.

  4. The evolution of pattern camouflage strategies in waterfowl and game birds

    PubMed Central

    Marshall, Kate L A; Gluckman, Thanh-Lan

    2015-01-01

    Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution. PMID:26045950

  5. Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns.

    PubMed

    Lawson, David A; Chittka, Lars; Whitney, Heather M; Rands, Sean A

    2018-06-13

    Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee. © 2018 The Authors.

  6. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  7. Behavior analysis for elderly care using a network of low-resolution visual sensors

    NASA Astrophysics Data System (ADS)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  8. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  9. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    PubMed

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.

  10. INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species.

    PubMed

    Kwon, Daehong; Lee, Daehwan; Kim, Juyeon; Lee, Jongin; Sim, Mikang; Kim, Jaebum

    2018-05-09

    Proteins perform biological functions through cascading interactions with each other by forming protein complexes. As a result, interactions among proteins, called protein-protein interactions (PPIs) are not completely free from selection constraint during evolution. Therefore, the identification and analysis of PPI changes during evolution can give us new insight into the evolution of functions. Although many algorithms, databases and websites have been developed to help the study of PPIs, most of them are limited to visualize the structure and features of PPIs in a chosen single species with limited functions in the visualization perspective. This leads to difficulties in the identification of different patterns of PPIs in different species and their functional consequences. To resolve these issues, we developed a web application, called INTER-Species Protein Interaction Analysis (INTERSPIA). Given a set of proteins of user's interest, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins and searches for different patterns of PPIs in multiple species through a server-side pipeline, and second visualizes the dynamics of PPIs in multiple species using an easy-to-use web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/.

  11. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory.

    PubMed

    Murty, Vishnu P; Tompary, Alexa; Adcock, R Alison; Davachi, Lila

    2017-01-18

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the anterior hippocampus and the VTA with high-level visual cortex selectively predicts memory for high-reward memoranda at a 24 h delay. These findings provide evidence for a novel mechanism guiding the consolidation of memories for valuable events, namely, postencoding interactions between neural systems supporting mesolimbic dopamine activation, episodic memory, and perception. Copyright © 2017 the authors 0270-6474/17/370537-09$15.00/0.

  12. Metacognitive evaluation in the avoidance of demand.

    PubMed

    Dunn, Timothy L; Lutes, David J C; Risko, Evan F

    2016-09-01

    In the current set of experiments our goal was to test the hypothesis that individuals avoid courses of action based on a kind of metacognitive evaluation of demand in a Demand Selection Task (DST). Individuals in Experiment 1 completed a DST utilizing visual stimuli known to yield a dissociation between performance and perceived demand. Patterns of demand avoidance followed that of perceived demand. Experiment 2 provided a replication of the aforementioned results, in addition to demonstrating a second dissociation between a peripheral physiological measure of demand (i.e., blink rates) and demand avoidance. Experiment 3 directly tested the assumption that individuals make use of a general metacognitive evaluation of task demand during selections. A DST was utilized in a forced-choice paradigm that required individuals to either select the most effortful, time demanding, or least accurate of 2 choices. Patterns of selections were similar across all rating dimensions, lending credit to this notion. Findings are discussed within a metacognitive framework of demand avoidance and contrasted to current theories. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Three-dimensional vortex patterns in a starting flow

    NASA Astrophysics Data System (ADS)

    Freymuth, P.; Finaish, F.; Bank, W.

    1985-12-01

    Freymuth et al. (1983, 1984, 1985) have conducted investigations involving chordwise vortical-pattern visualizations in a starting flow of constant acceleration around an airfoil. Detailed resolution of vortical shapes in two dimensions could be obtained. No visualization in the third spanwise dimension is needed as long as the flow remains two-dimensional. However, some time after flow startup, chordwise vortical patterns become blurred, indicating the onset of turbulence. The present investigation is concerned with an extension of the flow visualization from a chordwise cross section to the spanwise dimension. The investigation has the objective to look into the two-dimensionality of the initial vortical developments and to resolve three-dimensional effects during the transition to turbulence. Attention is given to the visualization method, the chordwise vs spanwise visualization in the two-dimensional regime, the spanwise visualization of transition, and the visualization of vortical patterns behind the trailing edge.

  14. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates.

    PubMed

    Baker, Daniel H; Meese, Tim S

    2016-07-27

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50-100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.

  15. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates

    PubMed Central

    Baker, Daniel H.; Meese, Tim S.

    2016-01-01

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures. PMID:27460430

  16. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  17. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children.

    PubMed

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.

  18. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  19. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  20. Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity

    PubMed Central

    Beck, Cornelia; Neumann, Heiko

    2011-01-01

    Background The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance We propose a new neural model for MT pattern computation and motion disambiguation that is based on a combination of feature selection and integration. The model can explain a range of recent neurophysiological findings including temporally dynamic behaviour. PMID:21814543

  1. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  2. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2016-11-20

    Compressive spectral imaging systems can reliably capture multispectral data using far fewer measurements than traditional scanning techniques. In this paper, a thin-film patterned filter array-based compressive spectral imager is demonstrated, including its optical design and implementation. The use of a patterned filter array entails a single-step three-dimensional spatial-spectral coding on the input data cube, which provides higher flexibility on the selection of voxels being multiplexed on the sensor. The patterned filter array is designed and fabricated with micrometer pitch size thin films, referred to as pixelated filters, with three different wavelengths. The performance of the system is evaluated in terms of references measured by a commercially available spectrometer and the visual quality of the reconstructed images. Different distributions of the pixelated filters, including random and optimized structures, are explored.

  3. Is Hand Selection Modulated by Cognitive-perceptual Load?

    PubMed

    Liang, Jiali; Wilkinson, Krista; Sainburg, Robert L

    2018-01-15

    Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    PubMed

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  6. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes.

    PubMed

    Morrow, James M; Lazic, Savo; Dixon Fox, Monica; Kuo, Claire; Schott, Ryan K; de A Gutierrez, Eduardo; Santini, Francesco; Tropepe, Vincent; Chang, Belinda S W

    2017-01-15

    Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed. © 2017. Published by The Company of Biologists Ltd.

  7. Infectious optic neuropathies: a clinical update

    PubMed Central

    Kahloun, Rim; Abroug, Nesrine; Ksiaa, Imen; Mahmoud, Anis; Zeghidi, Hatem; Zaouali, Sonia; Khairallah, Moncef

    2015-01-01

    Different forms of optic neuropathy causing visual impairment of varying severity have been reported in association with a wide variety of infectious agents. Proper clinical diagnosis of any of these infectious conditions is based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular findings. Diagnosis is confirmed by serologic testing and polymerase chain reaction in selected cases. Treatment of infectious optic neuropathies involves the use of specific anti-infectious drugs and corticosteroids to suppress the associated inflammatory reaction. The visual prognosis is generally good, but persistent severe vision loss with optic atrophy can occur. This review presents optic neuropathies caused by specific viral, bacterial, parasitic, and fungal diseases. PMID:28539795

  8. Neutron and positron techniques for fluid transfer system analysis and remote temperature and stress measurement

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.

    1987-05-01

    Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.

  9. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  10. Measuring the interrelations among multiple paradigms of visual attention: an individual differences approach.

    PubMed

    Huang, Liqiang; Mo, Lei; Li, Ying

    2012-04-01

    A large part of the empirical research in the field of visual attention has focused on various concrete paradigms. However, as yet, there has been no clear demonstration of whether or not these paradigms are indeed measuring the same underlying construct. We collected a very large data set (nearly 1.3 million trials) to address this question. We tested 257 participants on nine paradigms: conjunction search, configuration search, counting, tracking, feature access, spatial pattern, response selection, visual short-term memory, and change blindness. A fairly general attention factor was identified. Some of the participants were also tested on eight other paradigms. This general attention factor was found to be correlated with intelligence, visual marking, task switching, mental rotation, and Stroop task. On the other hand, a few paradigms that are very important in the attention literature (attentional capture, consonance-driven orienting, and inhibition of return) were found to be dissociated from this general attention factor.

  11. Visual scanning with or without spatial uncertainty and time-sharing performance

    NASA Technical Reports Server (NTRS)

    Liu, Yili; Wickens, Christopher D.

    1989-01-01

    An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.

  12. iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting

    PubMed Central

    Sinha, Amit U.; Armstrong, Scott A.

    2012-01-01

    Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression. PMID:22393367

  13. Artificial vision by multi-layered neural networks: neocognitron and its advances.

    PubMed

    Fukushima, Kunihiko

    2013-01-01

    The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Relationship between abstract thinking and eye gaze pattern in patients with schizophrenia.

    PubMed

    Oh, Jooyoung; Chun, Ji-Won; Lee, Jung Suk; Kim, Jae-Jin

    2014-04-16

    Effective integration of visual information is necessary to utilize abstract thinking, but patients with schizophrenia have slow eye movement and usually explore limited visual information. This study examines the relationship between abstract thinking ability and the pattern of eye gaze in patients with schizophrenia using a novel theme identification task. Twenty patients with schizophrenia and 22 healthy controls completed the theme identification task, in which subjects selected which word, out of a set of provided words, best described the theme of a picture. Eye gaze while performing the task was recorded by the eye tracker. Patients exhibited a significantly lower correct rate for theme identification and lesser fixation and saccade counts than controls. The correct rate was significantly correlated with the fixation count in patients, but not in controls. Patients with schizophrenia showed impaired abstract thinking and decreased quality of gaze, which were positively associated with each other. Theme identification and eye gaze appear to be useful as tools for the objective measurement of abstract thinking in patients with schizophrenia.

  15. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    PubMed

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  16. Variation in the Visual Habitat May Mediate the Maintenance of Color Polymorphism in a Poeciliid Fish

    PubMed Central

    Hurtado-Gonzales, Jorge L.; Loew, Ellis R.; Uy, J. Albert C.

    2014-01-01

    The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments. PMID:24987856

  17. How Temporal and Spatial Aspects of Presenting Visualizations Affect Learning about Locomotion Patterns

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter

    2012-01-01

    Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…

  18. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  19. a Web-Based Interactive Platform for Co-Clustering Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Wu, X.; Poorthuis, A.; Zurita-Milla, R.; Kraak, M.-J.

    2017-09-01

    Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.

  20. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    PubMed

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  1. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  2. Seeing without knowing: task relevance dissociates between visual awareness and recognition.

    PubMed

    Eitam, Baruch; Shoval, Roy; Yeshurun, Yaffa

    2015-03-01

    We demonstrate that task relevance dissociates between visual awareness and knowledge activation to create a state of seeing without knowing-visual awareness of familiar stimuli without recognizing them. We rely on the fact that in order to experience a Kanizsa illusion, participants must be aware of its inducers. While people can indicate the orientation of the illusory rectangle with great ease (signifying that they have consciously experienced the illusion's inducers), almost 30% of them could not report the inducers' color. Thus, people can see, in the sense of phenomenally experiencing, but not know, in the sense of recognizing what the object is or activating appropriate knowledge about it. Experiment 2 tests whether relevance-based selection operates within objects and shows that, contrary to the pattern of results found with features of different objects in our previous studies and replicated in Experiment 1, selection does not occur when both relevant and irrelevant features belong to the same object. We discuss these findings in relation to the existing theories of consciousness and to attention and inattentional blindness, and the role of cognitive load, object-based attention, and the use of self-reports as measures of awareness. © 2015 New York Academy of Sciences.

  3. Encouraging expressions affect the brain and alter visual attention.

    PubMed

    Martín-Loeches, Manuel; Sel, Alejandra; Casado, Pilar; Jiménez, Laura; Castellanos, Luis

    2009-06-17

    Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically. To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN. This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition.

  4. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies.

    PubMed

    McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D

    2017-09-01

    Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  6. Dissolved organic carbon and unimodal variation in sexual signal coloration in mosquitofish: a role for light limitation?

    PubMed Central

    Layman, Craig A.

    2017-01-01

    Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. PMID:28381625

  7. Dissolved organic carbon and unimodal variation in sexual signal coloration in mosquitofish: a role for light limitation?

    PubMed

    Giery, Sean T; Layman, Craig A

    2017-04-12

    Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. © 2017 The Author(s).

  8. Control of Wind Tunnel Operations Using Neural Net Interpretation of Flow Visualization Records

    NASA Technical Reports Server (NTRS)

    Buggele, Alvin E.; Decker, Arthur J.

    1994-01-01

    Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Research Center is discussed. The tunnel and the layout for neural net control or control by other parallel processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumentation and components, as well as parallel processing and control strategies. Neural nets have already been tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic cascade mode of operation. That mode was operated for performing wake surveys in connection with NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was presented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve settings or tunnel state identifiers for selected tunnel operating points, conditions, or states. The neural nets were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough so that ten or more can be combined per control operation to interpret flow visualization data, point sensor data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind tunnel operations at Mach 2.0 based on shock wave patterns.

  9. Reconstructions of information in visual spatial working memory degrade with memory load.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers.

    PubMed

    Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P

    2010-07-15

    Within the past decade computational approaches adopted from the field of machine learning have provided neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have applied pattern classification algorithms to electroencephalography data to predict the category of presented visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers (Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector Machine, SVM), five training methods differing in the selection of training data sets and three analyses procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP measurements in their ability to predict individual differences in performance. Although the differences across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity for trials in which observers expressed high confidence about their decisions performed the highest at predicting perceptual performance of observers. We also show that the neural activity predicting the performance across individuals was distributed through time starting at 120ms, and unlike the face-selective ERP response, sustained for more than 400ms after stimulus presentation, indicating that both early and late components contain information correlated with observers' behavioral performance. Together, our results further demonstrate the potential of pattern classifiers compared to more traditional ERP techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and relating neural activity to behavior. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    ERIC Educational Resources Information Center

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  12. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory

    PubMed Central

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374

  13. Do Pattern-Focused Visuals Improve Skin Self-Examination Performance? Explicating the Visual Skill Acquisition Model

    PubMed Central

    JOHN, KEVIN K.; JENSEN, JAKOB D.; KING, ANDY J.; RATCLIFF, CHELSEA L.; GROSSMAN, DOUGLAS

    2017-01-01

    Skin self-examination (SSE) consists of routinely checking the body for atypical moles that might be cancerous. Identifying atypical moles is a visual task; thus, SSE training materials utilize pattern-focused visuals to cultivate this skill. Despite widespread use, researchers have yet to explicate how pattern-focused visuals cultivate visual skill. Using eye tracking to capture the visual scanpaths of a sample of laypersons (N = 92), the current study employed a 2 (pattern: ABCDE vs. ugly duckling sign [UDS]) × 2 (presentation: photorealistic images vs. illustrations) factorial design to assess whether and how pattern-focused visuals can increase layperson accuracy in identifying atypical moles. Overall, illustrations resulted in greater sensitivity, while photos resulted in greater specificity. The UDS × photorealistic condition showed greatest specificity. For those in the photo condition with high self-efficacy, UDS increased specificity directly. For those in the photo condition with self-efficacy levels at the mean or lower, there was a conditional indirect effect such that these individuals spent a larger amount of their viewing time observing the atypical moles, and time on target was positively related to specificity. Illustrations provided significant gains in specificity for those with low-to-moderate self-efficacy by increasing total fixation time on the atypical moles. Findings suggest that maximizing visual processing efficiency could enhance existing SSE training techniques. PMID:28759333

  14. Induced and evoked neural correlates of orientation selectivity in human visual cortex.

    PubMed

    Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D

    2011-02-14

    Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Toward statistical modeling of saccadic eye-movement and visual saliency.

    PubMed

    Sun, Xiaoshuai; Yao, Hongxun; Ji, Rongrong; Liu, Xian-Ming

    2014-11-01

    In this paper, we present a unified statistical framework for modeling both saccadic eye movements and visual saliency. By analyzing the statistical properties of human eye fixations on natural images, we found that human attention is sparsely distributed and usually deployed to locations with abundant structural information. This observations inspired us to model saccadic behavior and visual saliency based on super-Gaussian component (SGC) analysis. Our model sequentially obtains SGC using projection pursuit, and generates eye movements by selecting the location with maximum SGC response. Besides human saccadic behavior simulation, we also demonstrated our superior effectiveness and robustness over state-of-the-arts by carrying out dense experiments on synthetic patterns and human eye fixation benchmarks. Multiple key issues in saliency modeling research, such as individual differences, the effects of scale and blur, are explored in this paper. Based on extensive qualitative and quantitative experimental results, we show promising potentials of statistical approaches for human behavior research.

  16. Coding of navigational affordances in the human visual system

    PubMed Central

    Epstein, Russell A.

    2017-01-01

    A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669

  17. Functional implications of orientation maps in primary visual cortex

    NASA Astrophysics Data System (ADS)

    Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim

    2016-11-01

    Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.

  18. Crowding with detection and coarse discrimination of simple visual features.

    PubMed

    Põder, Endel

    2008-04-24

    Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.

  19. Category learning increases discriminability of relevant object dimensions in visual cortex.

    PubMed

    Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel

    2013-04-01

    Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.

  20. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. How visual search relates to visual diagnostic performance: a narrative systematic review of eye-tracking research in radiology.

    PubMed

    van der Gijp, A; Ravesloot, C J; Jarodzka, H; van der Schaaf, M F; van der Schaaf, I C; van Schaik, J P J; Ten Cate, Th J

    2017-08-01

    Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology domain aims to identify visual search patterns associated with high perceptual performance. Databases PubMed, EMBASE, ERIC, PsycINFO, Scopus and Web of Science were searched using 'visual perception' OR 'eye tracking' AND 'radiology' and synonyms. Two authors independently screened search results and included eye tracking studies concerning visual skills in radiology published between January 1, 1994 and July 31, 2015. Two authors independently assessed study quality with the Medical Education Research Study Quality Instrument, and extracted study data with respect to design, participant and task characteristics, and variables. A thematic analysis was conducted to extract and arrange study results, and a textual narrative synthesis was applied for data integration and interpretation. The search resulted in 22 relevant full-text articles. Thematic analysis resulted in six themes that informed the relation between visual search and level of expertise: (1) time on task, (2) eye movement characteristics of experts, (3) differences in visual attention, (4) visual search patterns, (5) search patterns in cross sectional stack imaging, and (6) teaching visual search strategies. Expert search was found to be characterized by a global-focal search pattern, which represents an initial global impression, followed by a detailed, focal search-to-find mode. Specific task-related search patterns, like drilling through CT scans and systematic search in chest X-rays, were found to be related to high expert levels. One study investigated teaching of visual search strategies, and did not find a significant effect on perceptual performance. Eye tracking literature in radiology indicates several search patterns are related to high levels of expertise, but teaching novices to search as an expert may not be effective. Experimental research is needed to find out which search strategies can improve image perception in learners.

  2. The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process.

    PubMed

    Horridge, Adrian

    2007-09-01

    By working with very simple images, a number of different visual cues used by the honeybee have been described over the past decades. In most of the work, the bees had no control over the choice of the images, and it was not clear whether they learned the rewarded pattern or the difference between two images. Preferences were known to exist when untrained bees selected one pattern from a variety of them, but because the preferences of the bees were ignored, it was not possible to understand how natural images displaying several cues were detected. The preferences were also essential to make a computer model of the visual system. Therefore experiments were devised to show the order of preference for the known cues in the training situation. Freely flying bees were trained to discriminate between a rewarded target with one pattern on the left side and a different one on the right, versus a white or neutral target. This arrangement gave the bees a choice of what to learn. Tests showed that in some cases they learned two or three cues simultaneously; in other cases the bees learned one, or they preferred to avoid the unrewarded target. By testing with different combinations of patterns, it was possible to put the cues into an order of preference. Of the known cues, loosely or tightly attached to eye coordinates, a black or blue spot was the most preferred, followed by strong modulation caused by edges, the orientation of parallel bars, six equally spaced spokes, a clean white target, and then a square cross and a ring. A patch of blue colour was preferred to yellow.

  3. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa

    PubMed Central

    Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.

    2014-01-01

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705

  4. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  5. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.

    PubMed

    Andrews, T J; Coppola, D M

    1999-08-01

    Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.

  6. Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion?

    PubMed

    Miletto Petrazzini, Maria Elena; Bisazza, Angelo; Agrillo, Christian

    2017-05-01

    In the last decade, visual illusions have been repeatedly used as a tool to compare visual perception among species. Several studies have investigated whether non-human primates perceive visual illusions in a human-like fashion, but little attention has been paid to other mammals, and sensitivity to visual illusions has been never investigated in the dog. Here, we studied whether domestic dogs perceive the Delboeuf illusion. In human and non-human primates, this illusion creates a misperception of item size as a function of its surrounding context. To examine this effect in dogs, we adapted the spontaneous preference paradigm recently used with chimpanzees. Subjects were presented with two plates containing food. In control trials, two different amounts of food were presented in two identical plates. In this circumstance, dogs were expected to select the larger amount. In test trials, equal food portion sizes were presented in two plates differing in size: if dogs perceived the illusion as primates do, they were expected to select the amount of food presented in the smaller plate. Dogs significantly discriminated the two alternatives in control trials, whereas their performance did not differ from chance in test trials with the illusory pattern. The fact that dogs do not seem to be susceptible to the Delboeuf illusion suggests a potential discontinuity in the perceptual biases affecting size judgments between primates and dogs.

  7. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex

    NASA Astrophysics Data System (ADS)

    Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay

    2005-02-01

    Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.

  8. Combining photorealistic immersive geovisualization and high-resolution geospatial data to enhance human-scale viewshed modelling

    NASA Astrophysics Data System (ADS)

    Tabrizian, P.; Petrasova, A.; Baran, P.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.

    2017-12-01

    Viewshed modelling- a process of defining, parsing and analysis of landscape visual space's structure within GIS- has been commonly used in applications ranging from landscape planning and ecosystem services assessment to geography and archaeology. However, less effort has been made to understand whether and to what extent these objective analyses predict actual on-the-ground perception of human observer. Moreover, viewshed modelling at the human-scale level require incorporation of fine-grained landscape structure (eg., vegetation) and patterns (e.g, landcover) that are typically omitted from visibility calculations or unrealistically simulated leading to significant error in predicting visual attributes. This poster illustrates how photorealistic Immersive Virtual Environments and high-resolution geospatial data can be used to integrate objective and subjective assessments of visual characteristics at the human-scale level. We performed viewshed modelling for a systematically sampled set of viewpoints (N=340) across an urban park using open-source GIS (GRASS GIS). For each point a binary viewshed was computed on a 3D surface model derived from high-density leaf-off LIDAR (QL2) points. Viewshed map was combined with high-resolution landcover (.5m) derived through fusion of orthoimagery, lidar vegetation, and vector data. Geo-statistics and landscape structure analysis was performed to compute topological and compositional metrics for visual-scale (e.g., openness), complexity (pattern, shape and object diversity), and naturalness. Based on the viewshed model output, a sample of 24 viewpoints representing the variation of visual characteristics were selected and geolocated. For each location, 360o imagery were captured using a DSL camera mounted on a GIGA PAN robot. We programmed a virtual reality application through which human subjects (N=100) immersively experienced a random representation of selected environments via a head-mounted display (Oculus Rift CV1), and rated each location on perceived openness, naturalness and complexity. Regression models were performed to correlate model outputs with participants' responses. The results indicated strong, significant correlations for openness, and naturalness and moderate correlation for complexity estimations.

  9. FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research.

    PubMed

    Mader, Malte; Simon, Ronald; Kurtz, Stefan

    2014-03-31

    A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle.

  10. Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target

    PubMed Central

    Goschy, Harriet; Müller, Hermann Joseph

    2013-01-01

    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience. PMID:23382820

  11. The effect of flower-like and non-flower-like visual properties on choice of unrewarding patterns by bumblebees

    NASA Astrophysics Data System (ADS)

    Orbán, Levente L.; Plowright, Catherine M. S.

    2013-07-01

    How do distinct visual stimuli help bumblebees discover flowers before they have experienced any reward outside of their nest? Two visual floral properties, type of a pattern (concentric vs radial) and its position on unrewarding artificial flowers (central vs peripheral on corolla), were manipulated in two experiments. Both visual properties showed significant effects on floral choice. When pitted against each other, pattern was more important than position. Experiment 1 shows a significant effect of concentric pattern position, and experiment 2 shows a significant preference towards radial patterns regardless of their position. These results show that the presence of markings at the center of a flower are not so important as the presence of markings that will direct bees there.

  12. Cognitive approaches for patterns analysis and security applications

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Ogiela, Lidia

    2017-08-01

    In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.

  13. Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity

    PubMed Central

    2015-01-01

    We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877

  14. Selective attention to a talker's mouth in infancy: role of audiovisual temporal synchrony and linguistic experience.

    PubMed

    Hillairet de Boisferon, Anne; Tift, Amy H; Minar, Nicholas J; Lewkowicz, David J

    2017-05-01

    Previous studies have found that infants shift their attention from the eyes to the mouth of a talker when they enter the canonical babbling phase after 6 months of age. Here, we investigated whether this increased attentional focus on the mouth is mediated by audio-visual synchrony and linguistic experience. To do so, we tracked eye gaze in 4-, 6-, 8-, 10-, and 12-month-old infants while they were exposed either to desynchronized native or desynchronized non-native audiovisual fluent speech. Results indicated that, regardless of language, desynchronization disrupted the usual pattern of relative attention to the eyes and mouth found in response to synchronized speech at 10 months but not at any other age. These findings show that audio-visual synchrony mediates selective attention to a talker's mouth just prior to the emergence of initial language expertise and that it declines in importance once infants become native-language experts. © 2016 John Wiley & Sons Ltd.

  15. Production and perception rules underlying visual patterns: effects of symmetry and hierarchy.

    PubMed

    Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W Tecumseh

    2012-07-19

    Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups.

  16. Production and perception rules underlying visual patterns: effects of symmetry and hierarchy

    PubMed Central

    Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W. Tecumseh

    2012-01-01

    Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups. PMID:22688636

  17. Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey

    PubMed Central

    Bosiger, Yoland J.; McCormick, Mark I.

    2014-01-01

    Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096

  18. Familiarity and recollection produce distinct eye movement, pupil and medial temporal lobe responses when memory strength is matched.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2012-11-01

    Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity (F3) and recollection (R) responses. In Experiment 1, visual scanning behaviour at retrieval distinguished familiarity-based from recollection-based recognition. Recollection, relative to strength-matched familiarity, involved significantly larger pupil dilations and more dispersed fixation patterns. In Experiment 2, the hippocampus was selectively activated for recollected stimuli, while no evidence of activation was observed in the hippocampus for strong familiarity of matched accuracy. Recollection also activated the parahippocampal cortex (PHC), while the adjacent perirhinal cortex (PRC) was actively engaged in response to strong familiarity (than to recollection). Activity in prefrontal and parietal areas differentiated familiarity and recollection in both the extent and the magnitude of activity they exhibited, while the dorsomedial thalamus showed selective familiarity-related activity, and the ventrolateral and anterior thalamus selective recollection-related activity. These findings are consistent with the view that the hippocampus and PRC play contrasting roles in supporting recollection and familiarity and that these differences are not a result of differences in memory strength. Overall, the combined pupil dilation, eye movement and fMRI data suggest the operation of recognition mechanisms drawing differentially on familiarity and recollection, whose neural bases are distinct within the MTL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Recurrent V1-V2 interaction in early visual boundary processing.

    PubMed

    Neumann, H; Sepp, W

    1999-11-01

    A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.

  20. Evidence of different underlying processes in pattern recall and decision-making.

    PubMed

    Gorman, Adam D; Abernethy, Bruce; Farrow, Damian

    2015-01-01

    The visual search characteristics of expert and novice basketball players were recorded during pattern recall and decision-making tasks to determine whether the two tasks shared common visual-perceptual processing strategies. The order in which participants entered the pattern elements in the recall task was also analysed to further examine the nature of the visual-perceptual strategies and the relative emphasis placed upon particular pattern features. The experts demonstrated superior performance across the recall and decision-making tasks [see also Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. The Quarterly Journal of Experimental Psychology, 65, 1151-1160; Gorman, A. D., Abernethy, B., & Farrow, D. (2013a). Is the relationship between pattern recall and decision-making influenced by anticipatory recall? The Quarterly Journal of Experimental Psychology, 66, 2219-2236)] but a number of significant differences in the visual search data highlighted disparities in the processing strategies, suggesting that recall skill may utilize different underlying visual-perceptual processes than those required for accurate decision-making performance in the natural setting. Performance on the recall task was characterized by a proximal-to-distal order of entry of the pattern elements with participants tending to enter the players located closest to the ball carrier earlier than those located more distal to the ball carrier. The results provide further evidence of the underlying perceptual processes employed by experts when extracting visual information from complex and dynamic patterns.

  1. More than one way to see it: Individual heuristics in avian visual computation

    PubMed Central

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh

    2015-01-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444

  2. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  3. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  4. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  5. An advanced selective liquid-metal plating technique for stretchable biosensor applications.

    PubMed

    Li, Guangyong; Lee, Dong-Weon

    2017-10-11

    This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.

  6. Attention Priority Map of Face Images in Human Early Visual Cortex.

    PubMed

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.

  7. Tilt aftereffect following adaptation to translational Glass patterns

    PubMed Central

    Pavan, Andrea; Hocketstaller, Johanna; Contillo, Adriano; Greenlee, Mark W.

    2016-01-01

    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention. PMID:27005949

  8. A pulse-forming network for particle path visualization. [at Ames Aeromechanics Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.

    1981-01-01

    A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.

  9. Seeing Blue As Red: A Hypnotic Suggestion Can Alter Visual Awareness of Colors.

    PubMed

    Kallio, Sakari; Koivisto, Mika

    2016-01-01

    Some highly hypnotizable individuals have reported changes in objects' color with suggestions given in normal waking state. However, it is not clear whether this occurs only in their imagination. The authors show that, although subjects could imagine colors, a posthypnotic suggestion was necessary for seeing altered colors, even for a hypnotic virtuoso. She reported posthypnotic color alterations also selectively in response to specific target shapes in briefly presented object arrays. Surprisingly, another highly hypnotizable person showed a very different pattern of results. The control participants could not simulate virtuosos' results by applying cognitive strategies. The results imply that hypnosis can alter the functioning of automatic visual processes but only in some of the most hypnotizable individuals.

  10. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory.

    PubMed

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Liu, Yongjian; Liang, Changhong; Sun, Pei

    2015-02-01

    Previous studies have shown that audiovisual integration improves identification performance and enhances neural activity in heteromodal brain areas, for example, the posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG). Furthermore, it has also been demonstrated that attention plays an important role in crossmodal integration. In this study, we considered crossmodal integration in audiovisual facial perception and explored its effect on the neural representation of features. The audiovisual stimuli in the experiment consisted of facial movie clips that could be classified into 2 gender categories (male vs. female) or 2 emotion categories (crying vs. laughing). The visual/auditory-only stimuli were created from these movie clips by removing the auditory/visual contents. The subjects needed to make a judgment about the gender/emotion category for each movie clip in the audiovisual, visual-only, or auditory-only stimulus condition as functional magnetic resonance imaging (fMRI) signals were recorded. The neural representation of the gender/emotion feature was assessed using the decoding accuracy and the brain pattern-related reproducibility indices, obtained by a multivariate pattern analysis method from the fMRI data. In comparison to the visual-only and auditory-only stimulus conditions, we found that audiovisual integration enhanced the neural representation of task-relevant features and that feature-selective attention might play a role of modulation in the audiovisual integration. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  13. Artificial neural network models: A decision support tool for enhancing seedling selection in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Currently, sugarcane selection begins at the seedling stage with visual selection for cane yield and other yield-related traits. Although subjective and inefficient, visual selection remains the primary method for selection. Visual selection is inefficient because of the confounding effect of genoty...

  14. Soldier-in-the-Loop Target Acquisition Performance Prediction Through 2001: Integration of Perceptual and Cognitive Models

    DTIC Science & Technology

    2006-07-01

    parameters such as motion (e.g., Meitzler, Kistner et al ., 1998), multiple observers (Rotman, 1989), scene obscurants (Rotman, Gordan, & Kowalczyk...1989), clutter (Tidhar et al ., 1994), and multiple targets (Rotman, Gordan, & Kowalczyk, 1989) and selective visual attention2. As such, it is...resolvable cycles, N, of a bar pattern (i.e., a square wave) on a target (Johnson, 1958), or complexity (e.g., Tidhar et al ., 1994). Such metrics

  15. Spontaneous generalization of abstract multimodal patterns in young domestic chicks.

    PubMed

    Versace, Elisabetta; Spierings, Michelle J; Caffini, Matteo; Ten Cate, Carel; Vallortigara, Giorgio

    2017-05-01

    From the early stages of life, learning the regularities associated with specific objects is crucial for making sense of experiences. Through filial imprinting, young precocial birds quickly learn the features of their social partners by mere exposure. It is not clear though to what extent chicks can extract abstract patterns of the visual and acoustic stimuli present in the imprinting object, and how they combine them. To investigate this issue, we exposed chicks (Gallus gallus) to three days of visual and acoustic imprinting, using either patterns with two identical items or patterns with two different items, presented visually, acoustically or in both modalities. Next, chicks were given a choice between the familiar and the unfamiliar pattern, present in either the multimodal, visual or acoustic modality. The responses to the novel stimuli were affected by their imprinting experience, and the effect was stronger for chicks imprinted with multimodal patterns than for the other groups. Interestingly, males and females adopted a different strategy, with males more attracted by unfamiliar patterns and females more attracted by familiar patterns. Our data show that chicks can generalize abstract patterns by mere exposure through filial imprinting and that multimodal stimulation is more effective than unimodal stimulation for pattern learning.

  16. Perceptual learning in a non-human primate model of artificial vision

    PubMed Central

    Killian, Nathaniel J.; Vurro, Milena; Keith, Sarah B.; Kyada, Margee J.; Pezaris, John S.

    2016-01-01

    Visual perceptual grouping, the process of forming global percepts from discrete elements, is experience-dependent. Here we show that the learning time course in an animal model of artificial vision is predicted primarily from the density of visual elements. Three naïve adult non-human primates were tasked with recognizing the letters of the Roman alphabet presented at variable size and visualized through patterns of discrete visual elements, specifically, simulated phosphenes mimicking a thalamic visual prosthesis. The animals viewed a spatially static letter using a gaze-contingent pattern and then chose, by gaze fixation, between a matching letter and a non-matching distractor. Months of learning were required for the animals to recognize letters using simulated phosphene vision. Learning rates increased in proportion to the mean density of the phosphenes in each pattern. Furthermore, skill acquisition transferred from trained to untrained patterns, not depending on the precise retinal layout of the simulated phosphenes. Taken together, the findings suggest that learning of perceptual grouping in a gaze-contingent visual prosthesis can be described simply by the density of visual activation. PMID:27874058

  17. Early Selection versus Late Correction: Age-Related Differences in Controlling Working Memory Contents

    PubMed Central

    Schwarzkopp, Tina; Mayr, Ulrich; Jost, Kerstin

    2016-01-01

    We examined whether a reduced ability to ignore irrelevant information is responsible for the age-related decline of working-memory (WM) functions. By means of event-related brain potentials we will show that filtering is not out of service in older adults but shifted to a later processing stage. Participants performed a visual short-term memory task (change-detection task) in which targets were presented along with distractors. To allow early selection, a cue was presented in advance of each display, indicating where the targets were to appear. Despite this relatively easy selection criterion, older adults’ filtering was delayed as indicated by the amplitude pattern of the contralateral delay activity. Importantly, WM-equated younger adults did not show a delay indicating that the delay is specific to older adults and not a general phenomenon that comes with low WM capacity. Moreover, the analysis of early visual potentials revealed qualitatively different perceptual/attentional processing between the age groups. Young adults exhibited stronger distractor sensitivity that in turn facilitated filtering. Older adults, in contrast, seemed to initially store distractors and to suppress them after the fact. These early-selection versus late-correction modes suggest an age-related shift in the strategy to control the contents of WM. PMID:27253867

  18. Circadian timed episodic-like memory - a bee knows what to do when, and also where.

    PubMed

    Pahl, Mario; Zhu, Hong; Pix, Waltraud; Tautz, Juergen; Zhang, Shaowu

    2007-10-01

    This study investigates how the colour, shape and location of patterns could be memorized within a time frame. Bees were trained to visit two Y-mazes, one of which presented yellow vertical (rewarded) versus horizontal (non-rewarded) gratings at one site in the morning, while another presented blue horizontal (rewarded) versus vertical (non-rewarded) gratings at another site in the afternoon. The bees could perform well in the learning tests and various transfer tests, in which (i) all contextual cues from the learning test were present; (ii) the colour cues of the visual patterns were removed, but the location cue, the orientation of the visual patterns and the temporal cue still existed; (iii) the location cue was removed, but other contextual cues, i.e. the colour and orientation of the visual patterns and the temporal cue still existed; (iv) the location cue and the orientation cue of the visual patterns were removed, but the colour cue and temporal cue still existed; (v) the location cue, and the colour cue of the visual patterns were removed, but the orientation cue and the temporal cue still existed. The results reveal that the honeybee can recall the memory of the correct visual patterns by using spatial and/or temporal information. The relative importance of different contextual cues is compared and discussed. The bees' ability to integrate elements of circadian time, place and visual stimuli is akin to episodic-like memory; we have therefore named this kind of memory circadian timed episodic-like memory.

  19. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Is race erased? Decoding race from patterns of neural activity when skin color is not diagnostic of group boundaries.

    PubMed

    Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J

    2013-10-01

    Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.

  1. Patterned Video Sensors For Low Vision

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1996-01-01

    Miniature video cameras containing photoreceptors arranged in prescribed non-Cartesian patterns to compensate partly for some visual defects proposed. Cameras, accompanied by (and possibly integrated with) miniature head-mounted video display units restore some visual function in humans whose visual fields reduced by defects like retinitis pigmentosa.

  2. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    PubMed Central

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  3. Common capacity-limited neural mechanisms of selective attention and spatial working memory encoding

    PubMed Central

    Fusser, Fabian; Linden, David E J; Rahm, Benjamin; Hampel, Harald; Haenschel, Corinna; Mayer, Jutta S

    2011-01-01

    One characteristic feature of visual working memory (WM) is its limited capacity, and selective attention has been implicated as limiting factor. A possible reason why attention constrains the number of items that can be encoded into WM is that the two processes share limited neural resources. Functional magnetic resonance imaging (fMRI) studies have indeed demonstrated commonalities between the neural substrates of WM and attention. Here we investigated whether such overlapping activations reflect interacting neural mechanisms that could result in capacity limitations. To independently manipulate the demands on attention and WM encoding within one single task, we combined visual search and delayed discrimination of spatial locations. Participants were presented with a search array and performed easy or difficult visual search in order to encode one, three or five positions of target items into WM. Our fMRI data revealed colocalised activation for attention-demanding visual search and WM encoding in distributed posterior and frontal regions. However, further analysis yielded two patterns of results. Activity in prefrontal regions increased additively with increased demands on WM and attention, indicating regional overlap without functional interaction. Conversely, the WM load-dependent activation in visual, parietal and premotor regions was severely reduced during high attentional demand. We interpret this interaction as indicating the sites of shared capacity-limited neural resources. Our findings point to differential contributions of prefrontal and posterior regions to the common neural mechanisms that support spatial WM encoding and attention, providing new imaging evidence for attention-based models of WM encoding. PMID:21781193

  4. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention.

    PubMed

    Jacobsen, Leslie K; Slotkin, Theodore A; Mencl, W Einar; Frost, Stephen J; Pugh, Kenneth R

    2007-12-01

    Prenatal exposure to active maternal tobacco smoking elevates risk of cognitive and auditory processing deficits, and of smoking in offspring. Recent preclinical work has demonstrated a sex-specific pattern of reduction in cortical cholinergic markers following prenatal, adolescent, or combined prenatal and adolescent exposure to nicotine, the primary psychoactive component of tobacco smoke. Given the importance of cortical cholinergic neurotransmission to attentional function, we examined auditory and visual selective and divided attention in 181 male and female adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. Groups did not differ in age, educational attainment, symptoms of inattention, or years of parent education. A subset of 63 subjects also underwent functional magnetic resonance imaging while performing an auditory and visual selective and divided attention task. Among females, exposure to tobacco smoke during prenatal or adolescent development was associated with reductions in auditory and visual attention performance accuracy that were greatest in female smokers with prenatal exposure (combined exposure). Among males, combined exposure was associated with marked deficits in auditory attention, suggesting greater vulnerability of neurocircuitry supporting auditory attention to insult stemming from developmental exposure to tobacco smoke in males. Activation of brain regions that support auditory attention was greater in adolescents with prenatal or adolescent exposure to tobacco smoke relative to adolescents with neither prenatal nor adolescent exposure to tobacco smoke. These findings extend earlier preclinical work and suggest that, in humans, prenatal and adolescent exposure to nicotine exerts gender-specific deleterious effects on auditory and visual attention, with concomitant alterations in the efficiency of neurocircuitry supporting auditory attention.

  5. Signal Enhancement and Suppression During Visual-Spatial Selective Attention

    PubMed Central

    Couperus, J. W.; Mangun, G.R.

    2010-01-01

    Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target and distracter processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli. PMID:20807513

  6. The Responsiveness of Biological Motion Processing Areas to Selective Attention Towards Goals

    PubMed Central

    Herrington, John; Nymberg, Charlotte; Faja, Susan; Price, Elinora; Schultz, Robert

    2012-01-01

    A growing literature indicates that visual cortex areas viewed as primarily responsive to exogenous stimuli are susceptible to top-down modulation by selective attention. The present study examines whether brain areas involved in biological motion perception are among these areas – particularly with respect to selective attention towards human movement goals. Fifteen participants completed a point-light biological motion study following a two-by-two factorial design, with one factor representing an exogenous manipulation of human movement goals (goal-directed versus random movement), and the other an endogenous manipulation (a goal identification task versus an ancillary color-change task). Both manipulations yielded increased activation in the human homologue of motion-sensitive area MT+ (hMT+) as well as the extrastriate body area (EBA). The endogenous manipulation was associated with increased right posterior superior temporal sulcus (STS) activation, whereas the exogenous manipulation was associated with increased activation in left posterior STS. Selective attention towards goals activated portion of left hMT+/EBA only during the perception of purposeful movement consistent with emerging theories associating this area with the matching of visual motion input to known goal-directed actions. The overall pattern of results indicates that attention towards the goals of human movement activates biological motion areas. Ultimately, selective attention may explain why some studies examining biological motion show activation in hMT+ and EBA, even when using control stimuli with comparable motion properties. PMID:22796987

  7. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  8. Neuromuscular disease classification system

    NASA Astrophysics Data System (ADS)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  9. Testing the Usability of Interactive Visualizations for Complex Problem-Solving: Findings Related to Improving Interfaces and Help.

    ERIC Educational Resources Information Center

    Mirel, Barbara

    2001-01-01

    Conducts a scenario-based usability test with 10 data analysts using visual querying (visually analyzing data with interactive graphics). Details a range of difficulties found in visual selection that, at times, gave rise to inaccurate selections, invalid conclusions, and misguided decisions. Argues that support for visual selection must be built…

  10. Development of visual cortical function in infant macaques: A BOLD fMRI study

    PubMed Central

    Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne

    2017-01-01

    Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469

  11. Detecting distortion: bridging visual and quantitative reasoning on similarity tasks

    NASA Astrophysics Data System (ADS)

    Cox, Dana C.; Lo, Jane-Jane

    2014-03-01

    This study is focused on identifying and describing the reasoning patterns of middle grade students when examining potentially similar figures. Described here is a framework that includes 11 strategies that students used during clinical interview to differentiate similar and non-similar figures. Two factors were found to influence the strategies students selected: the complexity of the figures being compared and the type of distortion present in nonsimilar pairings. Data from this study support the theory that distortions are identified as a dominant property of figures and that students use the presence and absence of distortion to visually decide if two figures are similar. Furthermore, this study shows that visual reasoning is not as primitive or nonconstructive as represented in earlier literature and supports students who are developing numeric reasoning strategies. This illuminates possible pathways students may take when advancing from using visual and additive reasoning strategies to using multiplicative proportional reasoning on similarity tasks. In particular, distortion detection is a visual activity that enables students to reflect upon and evaluate the validity and accuracy of differentiation and quantify perceived relationships leading to ratio. This study has implications for curriculum developers as well as future research.

  12. Long-term application of computer-based pleoptics in home therapy: selected results of a prospective multicenter study.

    PubMed

    Kämpf, Uwe; Shamshinova, Angelika; Kaschtschenko, Tamara; Mascolus, Wilfried; Pillunat, Lutz; Haase, Wolfgang

    2008-01-01

    The paper presents selected results of a prospective multicenter study. The reported study was aimed at the evaluation of a software-based stimulation method of computer training applied in addition to occlusion as a complementary treatment for therapy-resistant cases of amblyopia. The stimulus was a drifting sinusoidal grating of a spatial frequency of 0.3 cyc/deg and a temporal frequency of 1 cyc/sec, reciprocally coordinated with each other to a drift of 0.33 deg/sec. This pattern was implemented as a background stimulus into simple computer games to bind attention by sensory-motor coordination tasks. According to an earlier proposed hypothesis, the stimulation aims at the provocation of stimulus-induced phase-coupling in order to contribute to the refreshment of synchronization and coordination processes in the visual transmission channels. To assess the outcome of the therapy, we studied the development of the visual acuity during a period of 6 months. Our cooperating partners of this prospective multicenter study were strabologic departments in ophthalmic clinics and private practices as well. For the issue of therapy control, a partial sample of 55 patients from an overall sample of 198 patients was selected, according to the criterion of strong therapy resistance. The visual acuity was increased about two logarithmic steps by an occlusion combined with computer training in addition to the earlier obtained gain of the same amount by occlusion alone. Recalculated relatively to the duration of the therapy periods, the computer training combined with occlusion was found to be about twice as effective as the preceding occlusion alone. The results of combined computer training and occlusion show an additional increase of the same amount as the preceding occlusion alone, which yielded at its end no further advantage to the development of visual acuity in the selected sample of our 55 therapy-resistant patients. In a concluding theoretical note, a preliminary hypothesis about the neuronal mechanisms of the stimulus-induced treatment effect is discussed.

  13. Role of temporal processing stages by inferior temporal neurons in facial recognition.

    PubMed

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.

  14. Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition

    PubMed Central

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904

  15. Why the leopard got its spots: relating pattern development to ecology in felids

    PubMed Central

    Allen, William L.; Cuthill, Innes C.; Scott-Samuel, Nicholas E.; Baddeley, Roland

    2011-01-01

    A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study examines variation in the camouflage patterns displayed on the flanks of many felids. After controlling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that likelihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids' habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely explanation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecology over relatively short time scales. Our method could be applied to any taxon with colour patterns that can reasonably be matched to reaction–diffusion and similar models, where the kinetics of the reaction between two or more initially randomly dispersed morphogens determines the outcome of pattern development. PMID:20961899

  16. Interpretation of geographic patterns in simulated orbital television imagery of earth resources

    NASA Technical Reports Server (NTRS)

    Latham, J. P.; Cross, C. I.; Kuyper, W. H.; Witmer, R. E.

    1972-01-01

    In order to better determine the effects of the television imagery characteristics upon the interpretation of geographic patterns obtainable from orbital television sensors, and in order to better evaluate the influences of alternative sensor system parameters such as changes in orbital altitudes or scan line rates, a team of three professional interpreters independently mapped thematically the selected geographic phenomena that they could detect in orbital television imagery produced on a fourteen inch monitor and recorded photographically for analysis. Three thematic maps were compiled by each interpreter. The maps were: (1) transportation patterns; (2) other land use; and (3) physical regions. The results from the three interpreters are compared, agreements noted, and differences analyzed for cause such as disagreement on identification of phenomenon, visual acuity, differences in interpretation techniques, and differing professional backgrounds.

  17. Temporal stability of visual search-driven biometrics

    NASA Astrophysics Data System (ADS)

    Yoon, Hong-Jun; Carmichael, Tandy R.; Tourassi, Georgia

    2015-03-01

    Previously, we have shown the potential of using an individual's visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circles shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant's "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, temporally stable personalized fingerprint of perceptual organization.

  18. Visual and spatial working memory are not that dissociated after all: a time-based resource-sharing account.

    PubMed

    Vergauwe, Evie; Barrouillet, Pierre; Camos, Valérie

    2009-07-01

    Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and spatial storage were combined with both visual and spatial on-line processing components in computer-paced working memory span tasks (Experiment 1) and in a selective interference paradigm (Experiment 2). The cognitive load of the processing components was manipulated to investigate its impact on concurrent maintenance for both within-domain and between-domain combinations of processing and storage components. In contrast to both domain- and process-based fractionations of visuo-spatial working memory, the results revealed that recall performance was determined by the cognitive load induced by the processing of items, rather than by the domain to which those items pertained. These findings are interpreted as evidence for a time-based resource-sharing mechanism in visuo-spatial working memory.

  19. The Role of Left Occipitotemporal Cortex in Reading: Reconciling Stimulus, Task, and Lexicality Effects

    PubMed Central

    Humphries, Colin; Desai, Rutvik H.; Seidenberg, Mark S.; Osmon, David C.; Stengel, Ben C.; Binder, Jeffrey R.

    2013-01-01

    Although the left posterior occipitotemporal sulcus (pOTS) has been called a visual word form area, debate persists over the selectivity of this region for reading relative to general nonorthographic visual object processing. We used high-resolution functional magnetic resonance imaging to study left pOTS responses to combinatorial orthographic and object shape information. Participants performed naming and visual discrimination tasks designed to encourage or suppress phonological encoding. During the naming task, all participants showed subregions within left pOTS that were more sensitive to combinatorial orthographic information than to object information. This difference disappeared, however, when phonological processing demands were removed. Responses were stronger to pseudowords than to words, but this effect also disappeared when phonological processing demands were removed. Subregions within the left pOTS are preferentially activated when visual input must be mapped to a phonological representation (i.e., a name) and particularly when component parts of the visual input must be mapped to corresponding phonological elements (consonant or vowel phonemes). Results indicate a specialized role for subregions within the left pOTS in the isomorphic mapping of familiar combinatorial visual patterns to phonological forms. This process distinguishes reading from picture naming and accounts for a wide range of previously reported stimulus and task effects in left pOTS. PMID:22505661

  20. Compression and reflection of visually evoked cortical waves

    PubMed Central

    Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young

    2007-01-01

    Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821

  1. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  2. Neural Mechanisms of Selective Visual Attention.

    PubMed

    Moore, Tirin; Zirnsak, Marc

    2017-01-03

    Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.

  3. Visualizing Human Migration Trhough Space and Time

    NASA Astrophysics Data System (ADS)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  4. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  5. Unilateral Amblyopia Affects Two Eyes: Fellow Eye Deficits in Amblyopia.

    PubMed

    Meier, Kimberly; Giaschi, Deborah

    2017-03-01

    Unilateral amblyopia is a visual disorder that arises after selective disruption of visual input to one eye during critical periods of development. In the clinic, amblyopia is understood as poor visual acuity in an eye that was deprived of pattern vision early in life. By its nature, however, amblyopia has an adverse effect on the development of a binocular visual system and the interactions between signals from two eyes. Visual functions aside from visual acuity are impacted, and many studies have indicated compromised sensitivity in the fellow eye even though it demonstrates normal visual acuity. While these fellow eye deficits have been noted, no overarching theory has been proposed to describe why and under what conditions the fellow eye is impacted by amblyopia. Here, we consider four explanations that may account for decreased fellow eye sensitivity: the fellow eye is adversely impacted by treatment for amblyopia; the maturation of the fellow eye is delayed by amblyopia; fellow eye sensitivity is impacted for visual functions that rely on binocular cortex; and fellow eye deficits reflect an adaptive mechanism that works to equalize the sensitivity of the two eyes. To evaluate these ideas, we describe five visual functions that are commonly reported to be deficient in the amblyopic eye (hyperacuity, contrast sensitivity, spatial integration, global motion, and motion-defined form), and unify the current evidence for fellow eye deficits. Further research targeted at exploring fellow eye deficits in amblyopia will provide us with a broader understanding of normal visual development and how amblyopia impacts the developing visual system.

  6. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex

    PubMed Central

    Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A.; Grill-Spector, Kalanit; Rossion, Bruno

    2016-01-01

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. SIGNIFICANCE STATEMENT Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. PMID:27511014

  7. Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by Clade model analyses

    PubMed Central

    2012-01-01

    Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a) visual pigment protein (opsin) in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω) following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African cichlid RH2a opsins. At least some of this variation may reflect an adaptive response to differences in light environment. Interestingly, these patterns only became apparent through the use of Clade models, not through the use of the more widely employed Branch-site models; we suggest that this difference stems from the increased flexibility associated with Clade models. Our results thus bear both on studies of cichlid visual system evolution and on studies of gene family evolution in general. PMID:23078361

  8. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects

    PubMed Central

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R.; Jafari, Amir H.

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies. PMID:29892219

  9. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    PubMed

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  10. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  11. Visual Foraging With Fingers and Eye Gaze

    PubMed Central

    Thornton, Ian M.; Smith, Irene J.; Chetverikov, Andrey; Kristjánsson, Árni

    2016-01-01

    A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints. PMID:27433323

  12. Relationship between abstract thinking and eye gaze pattern in patients with schizophrenia

    PubMed Central

    2014-01-01

    Background Effective integration of visual information is necessary to utilize abstract thinking, but patients with schizophrenia have slow eye movement and usually explore limited visual information. This study examines the relationship between abstract thinking ability and the pattern of eye gaze in patients with schizophrenia using a novel theme identification task. Methods Twenty patients with schizophrenia and 22 healthy controls completed the theme identification task, in which subjects selected which word, out of a set of provided words, best described the theme of a picture. Eye gaze while performing the task was recorded by the eye tracker. Results Patients exhibited a significantly lower correct rate for theme identification and lesser fixation and saccade counts than controls. The correct rate was significantly correlated with the fixation count in patients, but not in controls. Conclusions Patients with schizophrenia showed impaired abstract thinking and decreased quality of gaze, which were positively associated with each other. Theme identification and eye gaze appear to be useful as tools for the objective measurement of abstract thinking in patients with schizophrenia. PMID:24739356

  13. Visualizing Patterns of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the Military Health System

    DTIC Science & Technology

    2013-06-01

    1 Visualizing Patterns of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the...asthmatics within the Military Health System (MHS). Visualizing the patterns of asthma medication use surrounding a LABA prescription is a quick way to...random sample of 100 asthma patients under age 65 with a new LABA prescription from January 1, 2006-March 1, 2010 in MHS healthcare claims. Analysis was

  14. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.

    PubMed

    Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E

    2013-08-01

    Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New approach for cognitive analysis and understanding of medical patterns and visualizations

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2003-11-01

    This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.

  16. Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic.

    PubMed

    Cai, Sophie; Elze, Tobias; Bex, Peter J; Wiggs, Janey L; Pasquale, Louis R; Shen, Lucy Q

    2017-04-01

    To assess the clinical validity of visual field (VF) archetypal analysis, a previously developed machine learning method for decomposing any Humphrey VF (24-2) into a weighted sum of clinically recognizable VF loss patterns. For each of 16 previously identified VF loss patterns ("archetypes," denoted AT1 through AT16), we screened 30,995 reliable VFs to select 10-20 representative patients whose VFs had the highest decomposition coefficients for each archetype. VF global indices and patient ocular and demographic features were extracted retrospectively. Based on resemblances between VF archetypes and clinically observed VF patterns, hypotheses were generated for associations between certain VF archetypes and clinical features, such as an association between AT6 (central island, representing severe VF loss) and large cup-to-disk ratio (CDR). Distributions of the selected clinical features were compared between representative eyes of certain archetypes and all other eyes using the two-tailed t-test or Fisher exact test. 243 eyes from 243 patients were included, representative of AT1 through AT16. CDR was more often ≥ 0.7 among eyes representative of AT6 (central island; p = 0.002), AT10 (inferior arcuate defect; p = 0.048), AT14 (superior paracentral defect; p = 0.016), and AT16 (inferior paracentral defect; p = 0.016) than other eyes. CDR was more often < 0.7 among eyes representative of AT1 (no focal defect; p < 0.001) and AT2 (superior defect; p = 0.027), which was also associated with ptosis (p < 0.001). AT12 (temporal hemianopia) was associated with history of stroke (p = 0.022). AT11 (concentric peripheral defect) trended toward association with trial lens correction > 6D (p = 0.069). Shared clinical features between computationally derived VF archetypes and clinically observed VF patterns support the clinical validity of VF archetypal analysis.

  17. The Relationship Between Visual Sensor Equipment in Flying Insects and their Flight Performance -- a Neurobio-Engineering Approach

    DTIC Science & Technology

    2014-03-16

    College in the Department of Bioengineering with: Dr Martyn Boutelle (Biosensors), Dr Simon Schultz (Neural Coding), Dr Manos Drakakis (Low-power VLSI...in the fly gaze stabilization system. PLoS Biology, 6(7):e173 (2008). O27. Saleem A, Krapp H.G., and Schultz S.R.: Spike-triggered independent...D., Krapp H.G., Schultz S.R.: Bimodal optomotor response to plaids in blowflies: mechanisms of component selectivity and evidence for pattern

  18. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    PubMed

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  19. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.

    PubMed

    Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J

    2014-08-19

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Developmental trajectory of neural specialization for letter and number visual processing.

    PubMed

    Park, Joonkoo; van den Berg, Berry; Chiang, Crystal; Woldorff, Marty G; Brannon, Elizabeth M

    2018-05-01

    Adult neuroimaging studies have demonstrated dissociable neural activation patterns in the visual cortex in response to letters (Latin alphabet) and numbers (Arabic numerals), which suggest a strong experiential influence of reading and mathematics on the human visual system. Here, developmental trajectories in the event-related potential (ERP) patterns evoked by visual processing of letters, numbers, and false fonts were examined in four different age groups (7-, 10-, 15-year-olds, and young adults). The 15-year-olds and adults showed greater neural sensitivity to letters over numbers in the left visual cortex and the reverse pattern in the right visual cortex, extending previous findings in adults to teenagers. In marked contrast, 7- and 10-year-olds did not show this dissociable neural pattern. Furthermore, the contrast of familiar stimuli (letters or numbers) versus unfamiliar ones (false fonts) showed stark ERP differences between the younger (7- and 10-year-olds) and the older (15-year-olds and adults) participants. These results suggest that both coarse (familiar versus unfamiliar) and fine (letters versus numbers) tuning for letters and numbers continue throughout childhood and early adolescence, demonstrating a profound impact of uniquely human cultural inventions on visual cognition and its development. © 2017 John Wiley & Sons Ltd.

  1. FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research

    PubMed Central

    2014-01-01

    Background A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. Results We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. Conclusions The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:24684958

  2. Computational models of cortical visual processing.

    PubMed Central

    Heeger, D J; Simoncelli, E P; Movshon, J A

    1996-01-01

    The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605

  3. Application of local binary pattern and human visual Fibonacci texture features for classification different medical images

    NASA Astrophysics Data System (ADS)

    Sanghavi, Foram; Agaian, Sos

    2017-05-01

    The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.

  4. An intracellular analysis of the visual responses of neurones in cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981

  5. Integration of a vision-based tracking platform, visual instruction, and error analysis models for an efficient billiard training system

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong; Hsiung, Pao-Ann; Wan, Chieh-Hao; Koong, Chorng-Shiuh; Liu, Tang-Kun; Yang, Yuanfan; Lin, Chu-Hsing; Chu, William Cheng-Chung

    2009-02-01

    A billiard ball tracking system is designed to combine with a visual guide interface to instruct users for a reliable strike. The integrated system runs on a PC platform. The system makes use of a vision system for cue ball, object ball and cue stick tracking. A least-squares error calibration process correlates the real-world and the virtual-world pool ball coordinates for a precise guidance line calculation. Users are able to adjust the cue stick on the pool table according to a visual guidance line instruction displayed on a PC monitor. The ideal visual guidance line extended from the cue ball is calculated based on a collision motion analysis. In addition to calculating the ideal visual guide, the factors influencing selection of the best shot among different object balls and pockets are explored. It is found that a tolerance angle around the ideal line for the object ball to roll into a pocket determines the difficulty of a strike. This angle depends in turn on the distance from the pocket to the object, the distance from the object to the cue ball, and the angle between these two vectors. Simulation results for tolerance angles as a function of these quantities are given. A selected object ball was tested extensively with respect to various geometrical parameters with and without using our integrated system. Players with different proficiency levels were selected for the experiment. The results indicate that all players benefit from our proposed visual guidance system in enhancing their skills, while low-skill players show the maximum enhancement in skill with the help of our system. All exhibit enhanced maximum and average hit-in rates. Experimental results on hit-in rates have shown a pattern consistent with that of the analysis. The hit-in rate is thus tightly connected with the analyzed tolerance angles for sinking object balls into a target pocket. These results prove the efficiency of our system, and the analysis results can be used to attain an efficient game-playing strategy.

  6. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  7. Handwriting Error Patterns of Children with Mild Motor Difficulties.

    ERIC Educational Resources Information Center

    Malloy-Miller, Theresa; And Others

    1995-01-01

    A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…

  8. STT Doubles with Large DM - Part IV: Ophiuchus and Hercules

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Nanson, John

    2016-04-01

    The results of visual double star observing sessions suggested a pattern for STT doubles with large DM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. We found that like in the other constellations covered so far (Gem, Leo, UMa, etc.) at least several of the selected objects in Ophiuchus and Hercules show parameters quite different from the current WDS data.

  9. STT Doubles with Large DM - Part V: Aquila, Delphinus, Cygnus, Aquarius

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Nanson, John

    2016-07-01

    The results of visual double star observing sessions suggested a pattern for STT doubles with large DM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. We found that, as in the other constellations covered so far (Gem, Leo, UMa etc.), at least several of the selected objects in Aql, Del, Cyg and Aqr show parameters quite different from the current WDS data

  10. Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2.

    PubMed

    Vernon, Richard J W; Gouws, André D; Lawrence, Samuel J D; Wade, Alex R; Morland, Antony B

    2016-05-25

    Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to "functional" organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1-V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more "abstracted" representation, typically considered the preserve of "category-selective" extrastriate cortex, can nevertheless emerge in retinotopic regions. Visual areas are typically identified either through retinotopy (e.g., V1-V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations. Copyright © 2016 Vernon et al.

  11. Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence.

    PubMed

    Reimer, Christina B; Strobach, Tilo; Schubert, Torsten

    2017-12-01

    Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.

  12. Visual pattern image sequence coding

    NASA Technical Reports Server (NTRS)

    Silsbee, Peter; Bovik, Alan C.; Chen, Dapang

    1990-01-01

    The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.

  13. Spectral and spatial selectivity of luminance vision in reef fish.

    PubMed

    Siebeck, Ulrike E; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha

    2014-01-01

    Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective-it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors ("bright green", "dark green" and "blue") were used to create two sets of color and two sets of pattern stimuli. The "bright green" and "dark green" were similar in their chromatic properties for fish, but differed in their lightness; the "dark green" differed from "blue" in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate "bright green" from "dark green" and "dark green" from "blue" stimuli. Fish also could discriminate the fine patterns created from "dark green" and "bright green". However, fish failed to discriminate fine patterns created from "blue" and "dark green" colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.

  14. Neural network models for spatial data mining, map production, and cortical direction selectivity

    NASA Astrophysics Data System (ADS)

    Parsons, Olga

    A family of ARTMAP neural networks for incremental supervised learning has been developed over the last decade. The Sensor Exploitation Group of MIT Lincoln Laboratory (LL) has incorporated an early version of this network as the recognition engine of a hierarchical system for fusion and data mining of multiple registered geospatial images. The LL system has been successfully fielded, but it is limited to target vs. non-target identifications and does not produce whole maps. This dissertation expands the capabilities of the LL system so that it learns to identify arbitrarily many target classes at once and can thus produce a whole map. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of a consistent procedure and a benchmark testbed has permitted the evaluation of candidate recognition networks as well as pre- and post-processing and feature extraction options. The resulting default ARTMAP network and mapping methodology set a standard for a variety of related mapping problems and application domains. The second part of the dissertation investigates the development of cortical direction selectivity. The possible role of visual experience and oculomotor behavior in the maturation of cells in the primary visual cortex is studied. The responses of neurons in the thalamus and cortex of the cat are modeled when natural scenes are scanned by several types of eye movements. Inspired by the Hebbian-like synaptic plasticity, which is based upon correlations between cell activations, the second-order statistical structure of thalamo-cortical activity is examined. In the simulations, patterns of neural activity that lead to a correct refinement of cell responses are observed during visual fixation, when small ocular movements occur, but are not observed in the presence of large saccades. Simulations also replicate experiments in which kittens are reared under stroboscopic illumination. The abnormal fixational eye movements of these cats may account for the puzzling finding of a specific loss of cortical direction selectivity but preservation of orientation selectivity. This work indicates that the oculomotor behavior of visual fixation may play an important role in the refinement of cell response selectivity.

  15. Visual Object Pattern Separation Varies in Older Adults

    ERIC Educational Resources Information Center

    Holden, Heather M.; Toner, Chelsea; Pirogovsky, Eva; Kirwan, C. Brock; Gilbert, Paul E.

    2013-01-01

    Young and nondemented older adults completed a visual object continuous recognition memory task in which some stimuli (lures) were similar but not identical to previously presented objects. The lures were hypothesized to result in increased interference and increased pattern separation demand. To examine variability in object pattern separation…

  16. More than one way to see it: Individual heuristics in avian visual computation.

    PubMed

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M; Fitch, W Tecumseh

    2015-10-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Universality in the Evolution of Orientation Columns in the Visual Cortex

    PubMed Central

    Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred

    2011-01-01

    The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599

  18. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  20. Fractal analysis of radiologists' visual scanning pattern in screening mammography

    NASA Astrophysics Data System (ADS)

    Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; Morin-Ducote, Garnetta; Tourassi, Georgia

    2015-03-01

    Several researchers have investigated radiologists' visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists' visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists' scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4- view scanpaths. For each case, the complexity of each radiologist's scanpath was measured using fractal dimension estimated with the box counting method. The association between the fractal dimension of the radiologists' visual scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA showed that the complexity of the radiologists' visual search pattern in screening mammography is dependent on case specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is also substantial inter-observer variability which cannot be explained only by experience level.

  1. Patterns in Illinois educational school data

    NASA Astrophysics Data System (ADS)

    Stevens, Cacey S.; Marder, Michael; Nagel, Sidney R.

    2015-06-01

    We examine Illinois educational data from standardized exams and analyze primary factors affecting the achievement of public school students. We focus on the simplest possible models: representation of data through visualizations and regressions on single variables. Exam scores are shown to depend on school type, location, and poverty concentration. For most schools in Illinois, student test scores decline linearly with poverty concentration. However, Chicago must be treated separately. Selective schools in Chicago, as well as some traditional and charter schools, deviate from this pattern based on poverty. For any poverty level, Chicago schools perform better than those in the rest of Illinois. Selective programs for gifted students show high performance at each grade level, most notably at the high school level, when compared to other Illinois school types. The case of Chicago charter schools is more complex. Up to 2008, Chicago charter and neighborhood schools had similar performance scores. In the last few years, charter students' scores overtook those of students in traditional schools as the number of charter school locations increased.

  2. Transformations of visual memory induced by implied motions of pattern elements.

    PubMed

    Finke, R A; Freyd, J J

    1985-10-01

    Four experiments measured distortions in short-term visual memory induced by displays depicting independent translations of the elements of a pattern. In each experiment, observers saw a sequence of 4 dot patterns and were instructed to remember the third pattern and to compare it with the fourth. The first three patterns depicted translations of the dots in consistent, but separate directions. Error rates and reaction times for rejecting the fourth pattern as different from the third were substantially higher when the dots in that pattern were displaced slightly forward, in the same directions as the implied motions, compared with when the dots were displaced in the opposite, backward directions. These effects showed little variation across interstimulus intervals ranging from 250 to 2,000 ms, and did not depend on whether the displays gave rise to visual apparent motion. However, they were eliminated when the dots in the fourth pattern were displaced by larger amounts in each direction, corresponding to the dot positions in the next and previous patterns in the same inducing sequence. These findings extend our initial report of the phenomenon of "representational momentum" (Freyd & Finke, 1984a), and help to rule out alternatives to the proposal that visual memories tend to undergo, at least to some extent, the transformations implied by a prior sequence of observed events.

  3. Comparative study of visual pathways in owls (Aves: Strigiformes).

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Wylie, Douglas R

    2013-01-01

    Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer. Copyright © 2012 S. Karger AG, Basel.

  4. Visual Analytics for Pattern Discovery in Home Care

    PubMed Central

    Monsen, Karen A.; Bae, Sung-Heui; Zhang, Wenhui

    2016-01-01

    Summary Background Visualization can reduce the cognitive load of information, allowing users to easily interpret and assess large amounts of data. The purpose of our study was to examine home health data using visual analysis techniques to discover clinically salient associations between patient characteristics with problem-oriented health outcomes of older adult home health patients during the home health service period. Methods Knowledge, Behavior and Status ratings at discharge as well as change from admission to discharge that was coded using the Omaha System was collected from a dataset on 988 de-identified patient data from 15 home health agencies. SPSS Visualization Designer v1.0 was used to visually analyze patterns between independent and outcome variables using heat maps and histograms. Visualizations suggesting clinical salience were tested for significance using correlation analysis. Results The mean age of the patients was 80 years, with the majority female (66%). Of the 150 visualizations, 69 potentially meaningful patterns were statistically evaluated through bivariate associations, revealing 21 significant associations. Further, 14 associations between episode length and Charlson co-morbidity index mainly with urinary related diagnoses and problems remained significant after adjustment analyses. Through visual analysis, the adverse association of the longer home health episode length and higher Charlson co-morbidity index with behavior or status outcomes for patients with impaired urinary function was revealed. Conclusions We have demonstrated the use of visual analysis to discover novel patterns that described high-needs subgroups among the older home health patient population. The effective presentation of these data patterns can allow clinicians to identify areas of patient improvement, and time periods that are most effective for implementing home health interventions to improve patient outcomes. PMID:27466053

  5. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    PubMed

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  6. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy.

    PubMed

    Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne

    2017-04-01

    We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.

  7. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    PubMed

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  8. Neuronal integration in visual cortex elevates face category tuning to conscious face perception

    PubMed Central

    Fahrenfort, Johannes J.; Snijders, Tineke M.; Heinen, Klaartje; van Gaal, Simon; Scholte, H. Steven; Lamme, Victor A. F.

    2012-01-01

    The human brain has the extraordinary capability to transform cluttered sensory input into distinct object representations. For example, it is able to rapidly and seemingly without effort detect object categories in complex natural scenes. Surprisingly, category tuning is not sufficient to achieve conscious recognition of objects. What neural process beyond category extraction might elevate neural representations to the level where objects are consciously perceived? Here we show that visible and invisible faces produce similar category-selective responses in the ventral visual cortex. The pattern of neural activity evoked by visible faces could be used to decode the presence of invisible faces and vice versa. However, only visible faces caused extensive response enhancements and changes in neural oscillatory synchronization, as well as increased functional connectivity between higher and lower visual areas. We conclude that conscious face perception is more tightly linked to neural processes of sustained information integration and binding than to processes accommodating face category tuning. PMID:23236162

  9. Holistic neural coding of Chinese character forms in bilateral ventral visual system.

    PubMed

    Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei

    2015-02-01

    How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of hemisphere speech dominance and seizure focus on patterns of behavioral response errors for three types of stimuli.

    PubMed

    Rausch, R; MacDonald, K

    1997-03-01

    We used a protocol consisting of a continuous presentation of stimuli with associated response requests during an intracarotid sodium amobarbital procedure (IAP) to study the effects of hemisphere injected (speech dominant vs. nondominant) and seizure focus (left temporal lobe vs. right temporal lobe) on the pattern of behavioral response errors for three types of visual stimuli (pictures of common objects, words, and abstract forms). Injection of the left speech dominant hemisphere compared to the right nondominant hemisphere increased overall errors and affected the pattern of behavioral errors. The presence of a seizure focus in the contralateral hemisphere increased overall errors, particularly for the right temporal lobe seizure patients, but did not affect the pattern of behavioral errors. Left hemisphere injections disrupted both naming and reading responses at a rate similar to that of matching-to-sample performance. Also, a short-term memory deficit was observed with all three stimuli. Long-term memory testing following the left hemisphere injection indicated that only for pictures of common objects were there fewer errors during the early postinjection period than for the later long-term memory testing. Therefore, despite the inability to respond to picture stimuli, picture items, but not words or forms, could be sufficiently encoded for later recall. In contrast, right hemisphere injections resulted in few errors, with a pattern suggesting a mild general cognitive decrease. A selective weakness in learning unfamiliar forms was found. Our findings indicate that different patterns of behavioral deficits occur following the left vs. right hemisphere injections, with selective patterns specific to stimulus type.

  11. Love is in the gaze: an eye-tracking study of love and sexual desire.

    PubMed

    Bolmont, Mylene; Cacioppo, John T; Cacioppo, Stephanie

    2014-09-01

    Reading other people's eyes is a valuable skill during interpersonal interaction. Although a number of studies have investigated visual patterns in relation to the perceiver's interest, intentions, and goals, little is known about eye gaze when it comes to differentiating intentions to love from intentions to lust (sexual desire). To address this question, we conducted two experiments: one testing whether the visual pattern related to the perception of love differs from that related to lust and one testing whether the visual pattern related to the expression of love differs from that related to lust. Our results show that a person's eye gaze shifts as a function of his or her goal (love vs. lust) when looking at a visual stimulus. Such identification of distinct visual patterns for love and lust could have theoretical and clinical importance in couples therapy when these two phenomena are difficult to disentangle from one another on the basis of patients' self-reports. © The Author(s) 2014.

  12. Visualizing Dynamic Bitcoin Transaction Patterns.

    PubMed

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.

  13. Visualizing Dynamic Bitcoin Transaction Patterns

    PubMed Central

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  14. What has driven the evolution of multiple cone classes in visual systems: object contrast enhancement or light flicker elimination?

    PubMed

    Sabbah, Shai; Hawryshyn, Craig W

    2013-07-04

    Two competing theories have been advanced to explain the evolution of multiple cone classes in vertebrate eyes. These two theories have important, but different, implications for our understanding of the design and tuning of vertebrate visual systems. The 'contrast theory' proposes that multiple cone classes evolved in shallow-water fish to maximize the visual contrast of objects against diverse backgrounds. The competing 'flicker theory' states that multiple cone classes evolved to eliminate the light flicker inherent in shallow-water environments through antagonistic neural interactions, thereby enhancing object detection. However, the selective pressures that have driven the evolution of multiple cone classes remain largely obscure. We show that two critical assumptions of the flicker theory are violated. We found that the amplitude and temporal frequency of flicker vary over the visible spectrum, precluding its cancellation by simple antagonistic interactions between the output signals of cones. Moreover, we found that the temporal frequency of flicker matches the frequency where sensitivity is maximal in a wide range of fish taxa, suggesting that the flicker may actually enhance the detection of objects. Finally, using modeling of the chromatic contrast between fish pattern and background under flickering illumination, we found that the spectral sensitivity of cones in a cichlid focal species is optimally tuned to maximize the visual contrast between fish pattern and background, instead of to produce a flicker-free visual signal. The violation of its two critical assumptions substantially undermines support for the flicker theory as originally formulated. While this alone does not support the contrast theory, comparison of the contrast and flicker theories revealed that the visual system of our focal species was tuned as predicted by the contrast theory rather than by the flicker theory (or by some combination of the two). Thus, these findings challenge key assumptions of the flicker theory, leaving the contrast theory as the most parsimonious and tenable account of the evolution of multiple cone classes.

  15. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  16. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  17. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  18. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  19. Differential Roles of the Fan-Shaped Body and the Ellipsoid Body in "Drosophila" Visual Pattern Memory

    ERIC Educational Resources Information Center

    Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2009-01-01

    The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…

  20. Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism

    ERIC Educational Resources Information Center

    Kovarski, K.; Thillay, A.; Houy-Durand, E.; Roux, S.; Bidet-Caulet, A.; Bonnet-Brilhault, F.; Batty, M.

    2016-01-01

    Autism spectrum disorder (ASD) is characterized by atypical visual perception both in the social and nonsocial domain. In order to measure a reliable visual response, visual evoked potentials were recorded during a passive pattern-reversal stimulation in adolescents and adults with and without ASD. While the present results show the same…

  1. Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits

    ERIC Educational Resources Information Center

    Poynter, William; Ingram, Paul; Minor, Scott

    2010-01-01

    The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…

  2. The role of ecological factors in shaping bat cone opsin evolution.

    PubMed

    Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W

    2018-04-11

    Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).

  3. Imagery and Visual Literacy: Selected Readings from the Annual Conference of the International Visual Literacy Association (26th, Tempe, Arizona, October 12-16, 1994).

    ERIC Educational Resources Information Center

    Beauchamp, Darrell G.; And Others

    This document contains selected conference papers all relating to visual literacy. The topics include: process issues in visual literacy; interpreting visual statements; what teachers need to know; multimedia presentations; distance education materials for correctional use; visual culture; audio-visual interaction in desktop multimedia; the…

  4. En Face Optical Coherence Tomography for Visualization of the Choroid.

    PubMed

    Savastano, Maria Cristina; Rispoli, Marco; Savastano, Alfonso; Lumbroso, Bruno

    2015-05-01

    To assess posterior pole choroid patterns in healthy eyes using en face optical coherence tomography (OCT). This observational study included 154 healthy eyes of 77 patients who underwent en face OCT. The mean age of the patients was 31.2 years (standard deviation: 13 years); 40 patients were women, and 37 patients were men. En face imaging of the choroidal vasculature was assessed using an OCT Optovue RTVue (Optovue, Fremont, CA). To generate an appropriate choroid image, the best detectable vessels in Haller's layer below the retinal pigment epithelium surface parallel plane were selected. Images of diverse choroidal vessel patterns at the posterior pole were observed and recorded with en face OCT. Five different patterns of Haller's layer with different occurrences were assessed. Pattern 1 (temporal herringbone) represented 49.2%, pattern 2 (branched from below) and pattern 3 (laterally diagonal) represented 14.2%, pattern 4 (doubled arcuate) was observed in 11.9%, and pattern 5 (reticular feature) was observed in 10.5% of the reference plane. In vivo assessment of human choroid microvasculature in healthy eyes using en face OCT demonstrated five different patterns. The choroid vasculature pattern may play a role in the origin and development of neuroretinal pathologies, with potential importance in chorioretinal diseases and circulatory abnormalities. Copyright 2015, SLACK Incorporated.

  5. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  6. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes

    PubMed Central

    Epstein, Russell A.

    2018-01-01

    Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance-based responses encoded features that define the layout of the spatial environment, such as boundary-defining junctions and large extended surfaces. Together, these results map the sensory functions of the OPA onto a fully quantitative model that provides insights into its visual computations. More broadly, they advance integrative techniques for understanding visual cortex across multiple level of analysis: from the identification of cortical sensory functions to the modeling of their underlying algorithms. PMID:29684011

  7. The re-emergence of felid camouflage with the decay of predator recognition in deer under relaxed selection

    PubMed Central

    Stankowich, Theodore; Coss, Richard G

    2006-01-01

    When a previously common predator disappears owing to local extinction, the strong source of natural selection on prey to visually recognize that predator becomes relaxed. At present, we do not know the extent to which recognition of a specific predator is generalized to similar looking predators or how a specific predator-recognition cue, such as coat pattern, degrades under prolonged relaxed selection. Using predator models, we show that deer exhibit a more rapid and stronger antipredator response to their current predator, the puma, than to a leopard displaying primitive rosettes similar to a locally extinct predator, an early jaguar. Presentation of a novel tiger with a striped coat engendered an intermediate speed of predator recognition and strength of antipredator behaviour. Responses to the leopard model slightly exceeded responses to a non-threatening deer model, suggesting that thousands of years of relaxed selection have led to the loss of recognition of the spotted coat as a jaguar-recognition cue, and that the spotted coat has regained its ability to camouflage the felid form. Our results shed light on the evolutionary arms race between adoption of camouflage to facilitate hunting and the ability of prey to quickly recognize predators by their formerly camouflaging patterns. PMID:17148247

  8. Attention versus consciousness in the visual brain: differences in conception, phenomenology, behavior, neuroanatomy, and physiology.

    PubMed

    Baars, B J

    1999-07-01

    A common confound between consciousness and attention makes it difficult to think clearly about recent advances in the understanding of the visual brain. Visual consciousness involves phenomenal experience of the visual world, but visual attention is more plausibly treated as a function that selects and maintains the selection of potential conscious contents, often unconsciously. In the same sense, eye movements select conscious visual events, which are not the same as conscious visual experience. According to common sense, visual experience is consciousness, and selective processes are labeled as attention. The distinction is reflected in very different behavioral measures and in very different brain anatomy and physiology. Visual consciousness tends to be associated with the "what" stream of visual feature neurons in the ventral temporal lobe. In contrast, attentional selection and maintenance are mediated by other brain regions, ranging from superior colliculi to thalamus, prefrontal cortex, and anterior cingulate. The author applied the common-sense distinction between attention and consciousness to the theoretical positions of M. I. Posner (1992, 1994) and D. LaBerge (1997, 1998) to show how it helps to clarify the evidence. He concluded that clarity of thought is served by calling a thing by its proper name.

  9. Selective visual attention for ugly and beautiful body parts in eating disorders.

    PubMed

    Jansen, Anita; Nederkoorn, Chantal; Mulkens, Sandra

    2005-02-01

    Body image disturbance is characteristic of eating disorders, and current treatments use body exposure to reduce bad body feelings. There is however little known about the cognitive effects of body exposure. In the present study, eye movement registration (electroculography) as a direct index of selective visual attention was used while eating symptomatic and normal control participants were exposed to digitalized pictures of their own body and control bodies. The data showed a decreased focus on their own 'beautiful' body parts in the high symptomatic participants, whereas inspection of their own 'ugly' body parts was given priority. In the normal control group a self-serving cognitive bias was found: they focused more on their own 'beautiful' body parts and less on their own 'ugly' body parts. When viewing other bodies the pattern was reversed: high symptom participants allocated their attention to the beautiful parts of other bodies, whereas normal controls concentrated on the ugly parts of the other bodies. From the present findings the hypothesis follows that a change in the processing of information might be needed for body exposure to be successful.

  10. CheS-Mapper - Chemical Space Mapping and Visualization in 3D.

    PubMed

    Gütlein, Martin; Karwath, Andreas; Kramer, Stefan

    2012-03-17

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis.

  11. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  12. Comparison of animated jet stream visualizations

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  13. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets.

    PubMed

    Töllner, Thomas; Conci, Markus; Müller, Hermann J

    2015-03-01

    It is well established that we can focally attend to a specific region in visual space without shifting our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however, remain controversial. One dominant view advocated by perceptual decision-making models holds that the times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding and selection decisions exclusively through target-defining feature coding. This notion directly predicts that search times remain unaffected whether or not participants can anticipate the upcoming distractor context. Here we tested this hypothesis by employing an illusory-figure localization task that required participants to search for an invariant target amongst a variable distractor context, which gradually changed--either randomly or predictably--as a function of distractor-target similarity. We observed a graded decrease in internal focal-attentional selection times--correlated with external behavioral latencies--for distractor contexts of higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-target similarity, these context-driven effects were cortically and behaviorally amplified when participants could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance signals can integrate information about distractor, in addition to target, identities to optimize distractor-target competition for focal-attentional selection. © 2014 Wiley Periodicals, Inc.

  14. The responsiveness of biological motion processing areas to selective attention towards goals.

    PubMed

    Herrington, John; Nymberg, Charlotte; Faja, Susan; Price, Elinora; Schultz, Robert

    2012-10-15

    A growing literature indicates that visual cortex areas viewed as primarily responsive to exogenous stimuli are susceptible to top-down modulation by selective attention. The present study examines whether brain areas involved in biological motion perception are among these areas-particularly with respect to selective attention towards human movement goals. Fifteen participants completed a point-light biological motion study following a two-by-two factorial design, with one factor representing an exogenous manipulation of human movement goals (goal-directed versus random movement), and the other an endogenous manipulation (a goal identification task versus an ancillary color-change task). Both manipulations yielded increased activation in the human homologue of motion-sensitive area MT+ (hMT+) as well as the extrastriate body area (EBA). The endogenous manipulation was associated with increased right posterior superior temporal sulcus (STS) activation, whereas the exogenous manipulation was associated with increased activation in left posterior STS. Selective attention towards goals activated a portion of left hMT+/EBA only during the perception of purposeful movement-consistent with emerging theories associating this area with the matching of visual motion input to known goal-directed actions. The overall pattern of results indicates that attention towards the goals of human movement activates biological motion areas. Ultimately, selective attention may explain why some studies examining biological motion show activation in hMT+ and EBA, even when using control stimuli with comparable motion properties. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cholinergic modulation of visual and attentional brain responses in Alzheimer's disease and in health

    PubMed Central

    Bentley, P.; Driver, J.; Dolan, R.J.

    2008-01-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of the effects of physostigmine on stimulus- and attention-related brain activations, and to allow between-group comparisons for these. Subjects viewed stimuli comprising faces or buildings while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed poorer than controls in both tasks, while physostigmine benefited AD patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in AD relative to controls but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed enhanced stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. Our results demonstrate cholinergic-mediated improvements for both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions for AD. We also show that normal stimulus- and task-dependent activity patterns can be perturbed in the healthy brain by cholinergic stimulation. PMID:18077465

  16. Beauty and the beholder: the role of visual sensitivity in visual preference

    PubMed Central

    Spehar, Branka; Wong, Solomon; van de Klundert, Sarah; Lui, Jessie; Clifford, Colin W. G.; Taylor, Richard P.

    2015-01-01

    For centuries, the essence of aesthetic experience has remained one of the most intriguing mysteries for philosophers, artists, art historians and scientists alike. Recently, views emphasizing the link between aesthetics, perception and brain function have become increasingly prevalent (Ramachandran and Hirstein, 1999; Zeki, 1999; Livingstone, 2002; Ishizu and Zeki, 2013). The link between art and the fractal-like structure of natural images has also been highlighted (Spehar et al., 2003; Graham and Field, 2007; Graham and Redies, 2010). Motivated by these claims and our previous findings that humans display a consistent preference across various images with fractal-like statistics, here we explore the possibility that observers’ preference for visual patterns might be related to their sensitivity for such patterns. We measure sensitivity to simple visual patterns (sine-wave gratings varying in spatial frequency and random textures with varying scaling exponent) and find that they are highly correlated with visual preferences exhibited by the same observers. Although we do not attempt to offer a comprehensive neural model of aesthetic experience, we demonstrate a strong relationship between visual sensitivity and preference for simple visual patterns. Broadly speaking, our results support assertions that there is a close relationship between aesthetic experience and the sensory coding of natural stimuli. PMID:26441611

  17. Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314

  18. Fractal Analysis of Radiologists Visual Scanning Pattern in Screening Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamudun, Folami T; Yoon, Hong-Jun; Hudson, Kathy

    2015-01-01

    Several investigators have investigated radiologists visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then,more » fractal analysis was applied on the derived scanpaths using the box counting method. For each case, the complexity of each radiologist s scanpath was estimated using fractal dimension. The association between gaze complexity, case pathology, case density, and radiologist experience was evaluated using 3 factor fixed effects ANOVA. ANOVA showed that case pathology, breast density, and experience level are all independent predictors of the visual scanning pattern complexity. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases as well as when breast parenchyma density changes.« less

  19. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina

    PubMed Central

    Venkataramani, Sowmya

    2016-01-01

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041

  20. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.

    PubMed

    Venkataramani, Sowmya; Taylor, W Rowland

    2016-03-16

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.

  1. The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex

    PubMed Central

    Gonzalo Cogno, Soledad; Mato, Germán

    2015-01-01

    Orientation selectivity is ubiquitous in the primary visual cortex (V1) of mammals. In cats and monkeys, V1 displays spatially ordered maps of orientation preference. Instead, in mice, squirrels, and rats, orientation selective neurons in V1 are not spatially organized, giving rise to a seemingly random pattern usually referred to as a salt-and-pepper layout. The fact that such different organizations can sharpen orientation tuning leads to question the structural role of the intracortical connections; specifically the influence of plasticity and the generation of functional connectivity. In this work, we analyze the effect of plasticity processes on orientation selectivity for both scenarios. We study a computational model of layer 2/3 and a reduced one-dimensional model of orientation selective neurons, both in the balanced state. We analyze two plasticity mechanisms. The first one involves spike-timing dependent plasticity (STDP), while the second one considers the reconnection of the interactions according to the preferred orientations of the neurons. We find that under certain conditions STDP can indeed improve selectivity but it works in a somehow unexpected way, that is, effectively decreasing the modulated part of the intracortical connectivity as compared to the non-modulated part of it. For the reconnection mechanism we find that increasing functional connectivity leads, in fact, to a decrease in orientation selectivity if the network is in a stable balanced state. Both counterintuitive results are a consequence of the dynamics of the balanced state. We also find that selectivity can increase due to a reconnection process if the resulting connections give rise to an unstable balanced state. We compare these findings with recent experimental results. PMID:26347615

  2. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. A Generalization Strategy for Discrete Area Feature by Using Stroke Grouping and Polarization Transportation Selection

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Burghardt, Dirk

    2018-05-01

    This paper presents a new strategy for the generalization of discrete area features by using stroke grouping method and polarization transportation selection. The mentioned stroke is constructed on derive of the refined proximity graph of area features, and the refinement is under the control of four constraints to meet different grouping requirements. The area features which belong to the same stroke are detected into the same group. The stroke-based strategy decomposes the generalization process into two sub-processes by judging whether the area features related to strokes or not. For the area features which belong to the same one stroke, they normally present a linear like pat-tern, and in order to preserve this kind of pattern, typification is chosen as the operator to implement the generalization work. For the remaining area features which are not related by strokes, they are still distributed randomly and discretely, and the selection is chosen to conduct the generalization operation. For the purpose of retaining their original distribution characteristic, a Polarization Transportation (PT) method is introduced to implement the selection operation. Buildings and lakes are selected as the representatives of artificial area feature and natural area feature respectively to take the experiments. The generalized results indicate that by adopting this proposed strategy, the original distribution characteristics of building and lake data can be preserved, and the visual perception is pre-served as before.

  4. Sunflower (Helianthus annuus L.).

    PubMed

    Radonic, Laura M; Lewi, Dalia M; López, Nilda E; Hopp, H Esteban; Escandón, Alejandro S; Bilbao, Marisa López

    2015-01-01

    Sunflower (Helianthus annuus L.) is still considered as a recalcitrant species to in vitro culture and transformation in spite of the publication of different protocols. Here we describe a routine transformation system of this crop which requires mature HA89 genotype seeds and Agrobacterium tumefaciens EHA105 strain for gene delivery, being both easily available. Selection of transformed shoots depends on root development in kanamycin-selective media, instead of shoot color, avoiding selection of escapes. The establishment of this protocol proved successful for the incorporation of both reporter and agronomic important genes and also for the evaluation of the specific expression patterns of different promoters in transgenic sunflower plants. Stable expression of the incorporated transgenes was confirmed by RT-PCR and GUS reporter gene visualization. Stable inheritance of transgenes was successfully followed until T2 generation in several independent lines.

  5. Hemispheric specialization in quantification processes.

    PubMed

    Pasini, M; Tessari, A

    2001-01-01

    Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range.

  6. Common neural substrates for visual working memory and attention.

    PubMed

    Mayer, Jutta S; Bittner, Robert A; Nikolić, Danko; Bledowski, Christoph; Goebel, Rainer; Linden, David E J

    2007-06-01

    Humans are severely limited in their ability to memorize visual information over short periods of time. Selective attention has been implicated as a limiting factor. Here we used functional magnetic resonance imaging to test the hypothesis that this limitation is due to common neural resources shared by visual working memory (WM) and selective attention. We combined visual search and delayed discrimination of complex objects and independently modulated the demands on selective attention and WM encoding. Participants were presented with a search array and performed easy or difficult visual search in order to encode one or three complex objects into visual WM. Overlapping activation for attention-demanding visual search and WM encoding was observed in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula blood oxygen-level-dependent activation additively increased with increased WM load and attentional demand. Conversely, several visual, parietal and premotor areas showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. Regions in the left prefrontal cortex were selectively responsive to WM load. Areas selectively responsive to high attentional demand were found within the right prefrontal and bilateral occipital cortex. These results indicate that encoding into visual WM and visual selective attention require to a high degree access to common neural resources. We propose that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions.

  7. Implications of Sustained and Transient Channels for Theories of Visual Pattern Masking, Saccadic Suppression, and Information Processing

    ERIC Educational Resources Information Center

    Breitmeyer, Bruno G.; Ganz, Leo

    1976-01-01

    This paper reviewed briefly the major types of masking effects obtained with various methods and the major theories or models that have been proposed to account for these effects, and outlined a three-mechanism model of visual pattern masking based on psychophysical and neurophysiological properties of the visual system. (Author/RK)

  8. Why Do We Move Our Eyes while Trying to Remember? The Relationship between Non-Visual Gaze Patterns and Memory

    ERIC Educational Resources Information Center

    Micic, Dragana; Ehrlichman, Howard; Chen, Rebecca

    2010-01-01

    Non-visual gaze patterns (NVGPs) involve saccades and fixations that spontaneously occur in cognitive activities that are not ostensibly visual. While reasons for their appearance remain obscure, convergent empirical evidence suggests that NVGPs change according to processing requirements of tasks. We examined NVGPs in tasks with long-term memory…

  9. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.

    PubMed

    Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G

    2017-11-01

    Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements. Copyright © 2017. Published by Elsevier Ltd.

  10. Functional organization of area V2 in the alert macaque.

    PubMed

    Peterhans, E; von der Heydt, R

    1993-05-01

    We studied the relation between anatomical structure and functional properties of cells in area V2 of the macaque. Visual function was assessed in the alert animal during fixation of gaze. Recording sites were reconstructed with respect to cortical lamination and the cytochrome oxidase pattern. We measured orientation and direction selectivity, end-stopping, sensitivity to binocular disparity and ocular dominance, and determined more complex functions like sensitivity to anomalous contours and lines defined by coherent motion. Orientation selectivity was found in all parts of area V2, with high frequencies in the pale and thick stripes of the cytochrome oxidase pattern, and with lower frequency in the thin stripes. Representations of anomalous contours were found in the pale and thick stripes with similar frequencies, but generally not in the thin stripes, which have been thought to process colour. Lines defined by coherent motion were most frequently represented in the thick stripes; they were less frequent in the pale stripes, and (as with anomalous contours) were not found in the thin stripes. Sensitivity to binocular disparity was found in all types of stripes, but more frequently in the thick stripes, where the exclusively binocular neurons were also concentrated. By contrast, no segregation was found for direction selectivity and end-stopping. All neuronal properties were distributed evenly across cortical laminae. We conclude that mechanisms for figure-ground segregation involve the pale and the thick stripes of the cytochrome oxidase pattern, perhaps with greater emphasis on 'shape from motion' and 'stereoscopic depth' in the thick stripes, while more elementary neuronal properties are distributed almost evenly across the stripe pattern.

  11. A probabilistic model for analysing the effect of performance levels on visual behaviour patterns of young sailors in simulated navigation.

    PubMed

    Manzanares, Aarón; Menayo, Ruperto; Segado, Francisco; Salmerón, Diego; Cano, Juan Antonio

    2015-01-01

    The visual behaviour is a determining factor in sailing due to the influence of the environmental conditions. The aim of this research was to determine the visual behaviour pattern in sailors with different practice time in one star race, applying a probabilistic model based on Markov chains. The sample of this study consisted of 20 sailors, distributed in two groups, top ranking (n = 10) and bottom ranking (n = 10), all of them competed in the Optimist Class. An automated system of measurement, which integrates the VSail-Trainer sail simulator and the Eye Tracking System(TM) was used. The variables under consideration were the sequence of fixations and the fixation recurrence time performed on each location by the sailors. The event consisted of one of simulated regatta start, with stable conditions of wind, competitor and sea. Results show that top ranking sailors perform a low recurrence time on relevant locations and higher on irrelevant locations while bottom ranking sailors make a low recurrence time in most of the locations. The visual pattern performed by bottom ranking sailors is focused around two visual pivots, which does not happen in the top ranking sailor's pattern. In conclusion, the Markov chains analysis has allowed knowing the visual behaviour pattern of the top and bottom ranking sailors and its comparison.

  12. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat.

    PubMed

    Laskowska-Macios, Karolina; Zapasnik, Monika; Hu, Tjing-Tjing; Kossut, Malgorzata; Arckens, Lutgarde; Burnat, Kalina

    2015-10-01

    Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD. © The Author 2014. Published by Oxford University Press.

  13. Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1)

    PubMed Central

    Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.

    2012-01-01

    Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381

  14. A physiologically based nonhomogeneous Poisson counter model of visual identification.

    PubMed

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

    2018-04-30

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    PubMed Central

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hong-Jun; Carmichael, Tandy; Tourassi, Georgia

    Previously, we have shown the potential of using an individual s visual search pattern as a possible biometric. That study focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of two dot patterns repeated twice. One dot pattern displayed concentric circlesmore » shifted to the left or right side of the screen overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test questions (200 total tracked questions per participant). To create each participant s "fingerprint", we constructed a Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, fairly stable personalized fingerprint of perceptual organization.« less

  17. How do expert soccer players encode visual information to make decisions in simulated game situations?

    PubMed

    Poplu, Gérald; Ripoll, Hubert; Mavromatis, Sébastien; Baratgin, Jean

    2008-09-01

    The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants were given either realistic (digital photos) or abstract (three-dimensional schematic representations) soccer game patterns. The results showed that the experts benefited from priming effects regardless of how abstract the stimuli were. This suggests that an abstract representation of a realistic pattern (i.e., one that does not include visual information related to the players'physical characteristics) is sufficient to activate experts'specific knowledge during decision making. These results seem to show that expert soccer players encode and store abstract representations of visual patterns in memory.

  18. Selective attention and avoidance on a pictorial cueing task during stress in clinically anxious and depressed participants.

    PubMed

    Ellenbogen, Mark A; Schwartzman, Alex E

    2009-02-01

    Although it is well established that attentional biases exist in anxious populations, the specific components of visual orienting towards and away from emotional stimuli are not well delineated. The present study was designed to examine these processes. We used a modified spatial cueing task to assess the speed of engagement and disengagement from supraliminal and masked pictorial cues depicting threat, dysphoria, or neutral content in 36 clinically anxious, 41 depressed and 41 control participants. Participants were randomly assigned to a stress or neutral condition. During stress, anxious participants were slow to disengage from masked left hemifield pictures depicting threat or dysphoria, but were quick to disengage from supraliminal threat pictures. Information processing in anxious participants during stress was characterized by early selective attention of emotional stimuli, occurring prior to full conscious awareness, followed by effortful avoidance of threat. Depressed participants were distinct from the anxious group, displaying selective attention for stimuli depicting dysphoria, but not threat, during the neutral condition. In sum, attentional biases in clinical populations are associated with difficulties in the disengagement component of visual orienting. Further, a vigilant-avoidant pattern of attentional bias may represent a strategic attempt to compensate for the early activation of a fear response.

  19. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics

    PubMed Central

    Gupta, Priti; Markan, C. M.

    2014-01-01

    The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062

  20. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  1. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  2. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  3. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  4. Halftone visual cryptography.

    PubMed

    Zhou, Zhi; Arce, Gonzalo R; Di Crescenzo, Giovanni

    2006-08-01

    Visual cryptography encodes a secret binary image (SI) into n shares of random binary patterns. If the shares are xeroxed onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the n shares, however, have no visual meaning and hinder the objectives of visual cryptography. Extended visual cryptography [1] was proposed recently to construct meaningful binary images as shares using hypergraph colourings, but the visual quality is poor. In this paper, a novel technique named halftone visual cryptography is proposed to achieve visual cryptography via halftoning. Based on the blue-noise dithering principles, the proposed method utilizes the void and cluster algorithm [2] to encode a secret binary image into n halftone shares (images) carrying significant visual information. The simulation shows that the visual quality of the obtained halftone shares are observably better than that attained by any available visual cryptography method known to date.

  5. Phonological Concept Learning.

    PubMed

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  6. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  7. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    PubMed

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  8. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    PubMed

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  9. Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.

    PubMed

    Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J

    2012-10-01

    Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.

  10. Retinal vessel caliber among people with acquired immunodeficiency syndrome: relationships with visual function.

    PubMed

    Kalyani, Partho S; Fawzi, Amani A; Gangaputra, Sapna; van Natta, Mark L; Hubbard, Larry D; Danis, Ronald P; Thorne, Jennifer E; Holland, Gary N

    2012-03-01

    To evaluate relationships between retinal vessel caliber and tests of visual function among people with AIDS. Longitudinal, observational cohort study. We evaluated data for participants without ocular opportunistic infections at initial examination (baseline) in the Longitudinal Studies of the Ocular Complications of AIDS (1998-2008). Visual function was evaluated with best-corrected visual acuity, Goldmann perimetry, automated perimetry (Humphrey Field Analyzer), and contrast sensitivity (CS) testing. Semi-automated grading of fundus photographs (1 eye/participant) determined central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) at baseline. Multiple linear regression models, using forward selection, sought independent relationships between indices and visual function variables. Included were 1250 participants. Smaller AVR was associated with reduced visual field by Goldmann perimetry (P = .003) and worse mean deviation (P = .02) on automated perimetry and possibly with worse pattern standard deviation (PSD) on automated perimetry (P = .06). There was a weak association between smaller AVR and worse CS (P = .07). Relationships were independent of antiretroviral therapy and level of immunodeficiency (CD4+ T lymphocyte count, human immunodeficiency virus [HIV] RNA blood level). On longitudinal analysis, retinal vascular indices at baseline did not predict changes in visual function. Variation in retinal vascular indices is associated with abnormal visual function in people with AIDS, manifested by visual field loss and possibly by reduced CS. Relationships are consistent with the hypothesis that HIV-related retinal vasculopathy is a contributing factor to vision dysfunction among HIV-infected individuals. Longitudinal studies are needed to determine whether changes in indices predict change in visual function. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex.

    PubMed

    Weiner, Kevin S; Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A; Grill-Spector, Kalanit; Rossion, Bruno

    2016-08-10

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. Copyright © 2016 the authors 0270-6474/16/368426-16$15.00/0.

  12. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.

    PubMed

    Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion

    2015-12-21

    Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spatial and temporal coherence in perceptual binding

    PubMed Central

    Blake, Randolph; Yang, Yuede

    1997-01-01

    Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701

  14. Sleep deprivation accelerates delay-related loss of visual short-term memories without affecting precision.

    PubMed

    Wee, Natalie; Asplund, Christopher L; Chee, Michael W L

    2013-06-01

    Visual short-term memory (VSTM) is an important measure of information processing capacity and supports many higher-order cognitive processes. We examined how sleep deprivation (SD) and maintenance duration interact to influence the number and precision of items in VSTM using an experimental design that limits the contribution of lapses at encoding. For each trial, participants attempted to maintain the location and color of three stimuli over a delay. After a retention interval of either 1 or 10 seconds, participants reported the color of the item at the cued location by selecting it on a color wheel. The probability of reporting the probed item, the precision of report, and the probability of reporting a nonprobed item were determined using a mixture-modeling analysis. Participants were studied twice in counterbalanced order, once after a night of normal sleep and once following a night of sleep deprivation. Sleep laboratory. Nineteen healthy college age volunteers (seven females) with regular sleep patterns. Approximately 24 hours of total SD. SD selectively reduced the number of integrated representations that can be retrieved after a delay, while leaving the precision of object information in the stored representations intact. Delay interacted with SD to lower the rate of successful recall. Visual short-term memory is compromised during sleep deprivation, an effect compounded by delay. However, when memories are retrieved, they tend to be intact.

  15. Development of Visual Selection in 3- to 9-Month-Olds: Evidence from Saccades to Previously Ignored Locations

    ERIC Educational Resources Information Center

    Amso, Dima; Johnson, Scott P.

    2008-01-01

    We examined changes in the efficiency of visual selection over the first postnatal year with an adapted version of a "spatial negative priming" paradigm. In this task, when a previously ignored location becomes the target to be selected, responses to it are impaired, providing a measure of visual selection. Oculomotor latencies to target selection…

  16. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different decoding models. It shows better robustness of identifying the important neurons with noisy signals presented. The low demand of computational resources which, reflected by the fast convergence, indicates the feasibility of the method applied in portable BMI systems. The ascertainment of the important neurons helps to inspect neural patterns visually associated with the movement task. The elimination of irrelevant neurons greatly reduces the computational burden of mBMI systems and maintains the performance with better robustness.

  17. Coherent Doppler lidar for measurements of wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hardesty, R. Michael

    1989-01-01

    The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.

  18. Gestalt Effects in Visual Working Memory.

    PubMed

    Kałamała, Patrycja; Sadowska, Aleksandra; Ordziniak, Wawrzyniec; Chuderski, Adam

    2017-01-01

    Four experiments investigated whether conforming to Gestalt principles, well known to drive visual perception, also facilitates the active maintenance of information in visual working memory (VWM). We used the change detection task, which required the memorization of visual patterns composed of several shapes. We observed no effects of symmetry of visual patterns on VWM performance. However, there was a moderate positive effect when a particular shape that was probed matched the shape of the whole pattern (the whole-part similarity effect). Data support the models assuming that VWM encodes not only particular objects of the perceptual scene but also the spatial relations between them (the ensemble representation). The ensemble representation may prime objects similar to its shape and thereby boost access to them. In contrast, the null effect of symmetry relates the fact that this very feature of an ensemble does not yield any useful additional information for VWM.

  19. Patterns of thought: Population variation in the associations between large-scale network organisation and self-reported experiences at rest.

    PubMed

    Wang, Hao-Ting; Bzdok, Danilo; Margulies, Daniel; Craddock, Cameron; Milham, Michael; Jefferies, Elizabeth; Smallwood, Jonathan

    2018-08-01

    Contemporary cognitive neuroscience recognises unconstrained processing varies across individuals, describing variation in meaningful attributes, such as intelligence. It may also have links to patterns of on-going experience. This study examined whether dimensions of population variation in different modes of unconstrained processing can be described by the associations between patterns of neural activity and self-reports of experience during the same period. We selected 258 individuals from a publicly available data set who had measures of resting-state functional magnetic resonance imaging, and self-reports of experience during the scan. We used machine learning to determine patterns of association between the neural and self-reported data, finding variation along four dimensions. 'Purposeful' experiences were associated with lower connectivity - in particular default mode and limbic networks were less correlated with attention and sensorimotor networks. 'Emotional' experiences were associated with higher connectivity, especially between limbic and ventral attention networks. Experiences focused on themes of 'personal importance' were associated with reduced functional connectivity within attention and control systems. Finally, visual experiences were associated with stronger connectivity between visual and other networks, in particular the limbic system. Some of these patterns had contrasting links with cognitive function as assessed in a separate laboratory session - purposeful thinking was linked to greater intelligence and better abstract reasoning, while a focus on personal importance had the opposite relationship. Together these findings are consistent with an emerging literature on unconstrained states and also underlines that these states are heterogeneous, with distinct modes of population variation reflecting the interplay of different large-scale networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Simultaneous selection by object-based attention in visual and frontal cortex

    PubMed Central

    Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.

    2014-01-01

    Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379

  1. Emotional Devaluation of Distracting Patterns and Faces: A Consequence of Attentional Inhibition during Visual Search?

    ERIC Educational Resources Information Center

    Raymond, Jane E.; Fenske, Mark J.; Westoby, Nikki

    2005-01-01

    Visual search has been studied extensively, yet little is known about how its constituent processes affect subsequent emotional evaluation of searched-for and searched-through items. In 3 experiments, the authors asked observers to locate a colored pattern or tinted face in an array of other patterns or faces. Shortly thereafter, either the target…

  2. Independent voluntary correction and savings in locomotor learning.

    PubMed

    Leech, Kristan A; Roemmich, Ryan T

    2018-06-14

    People can acquire new walking patterns in many different ways. For example, we can change our gait voluntarily in response to instruction or adapt by sensing our movement errors. Here we investigated how acquisition of a new walking pattern through simultaneous voluntary correction and adaptive learning affected the resulting motor memory of the learned pattern. We studied adaptation to split-belt treadmill walking with and without visual feedback of stepping patterns. As expected, visual feedback enabled faster acquisition of the new walking pattern. However, upon later re-exposure to the same split-belt perturbation, participants exhibited similar motor memories whether they had learned with or without visual feedback. Participants who received feedback did not re-engage the mechanism used to accelerate initial acquisition of the new walking pattern to similarly accelerate subsequent relearning. These findings reveal that voluntary correction neither benefits nor interferes with the ability to save a new walking pattern over time. © 2018. Published by The Company of Biologists Ltd.

  3. Sequential sampling of visual objects during sustained attention.

    PubMed

    Jia, Jianrong; Liu, Ling; Fang, Fang; Luo, Huan

    2017-06-01

    In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional "focus," involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time.

  4. Sequential sampling of visual objects during sustained attention

    PubMed Central

    Jia, Jianrong; Liu, Ling; Fang, Fang

    2017-01-01

    In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional “focus,” involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time. PMID:28658261

  5. Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    PubMed Central

    Bai, Jian'e; Shi, Jinfu; Jiang, Yi; He, Sheng; Weng, Xuchu

    2011-01-01

    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals. PMID:21818386

  6. A systematic review of controlled trials on visual stress using Intuitive Overlays or the Intuitive Colorimeter.

    PubMed

    Evans, Bruce J W; Allen, Peter M

    2016-01-01

    Claims that coloured filters aid reading date back 200 years and remain controversial. Some claims, for example, that more than 10% of the general population and 50% of people with dyslexia would benefit from coloured filters lack sound evidence and face validity. Publications with such claims typically cite research using methods that have not been described in the scientific literature and lack a sound aetiological framework. Notwithstanding these criticisms, some researchers have used more rigorous selection criteria and methods of prescribing coloured filters that were developed at a UK Medical Research Council unit and which have been fully described in the scientific literature. We review this research and disconfirm many of the more extreme claims surrounding this topic. This literature indicates that a minority subset of dyslexics (circa 20%) may have a condition described as visual stress which most likely results from a hyperexcitability of the visual cortex. Visual stress is characterised by symptoms of visual perceptual distortions, headaches, and eyestrain when viewing repetitive patterns, including lines of text. This review indicates that visual stress is distinct from, although sometimes co-occurs with, dyslexia. Individually prescribed coloured filters have been shown to improve reading performance in people with visual stress, but are unlikely to influence the phonological and memory deficits associated with dyslexia and therefore are not a treatment for dyslexia. This review concludes that larger and rigorous randomised controlled trials of interventions for visual stress are required. Improvements in the diagnosis of the condition are also a priority. Copyright © 2016. Published by Elsevier España, S.L.U.

  7. Visual perceptual load reduces auditory detection in typically developing individuals but not in individuals with autism spectrum disorders.

    PubMed

    Tillmann, Julian; Swettenham, John

    2017-02-01

    Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. The Influence of Selective and Divided Attention on Audiovisual Integration in Children.

    PubMed

    Yang, Weiping; Ren, Yanna; Yang, Dan Ou; Yuan, Xue; Wu, Jinglong

    2016-01-24

    This article aims to investigate whether there is a difference in audiovisual integration in school-aged children (aged 6 to 13 years; mean age = 9.9 years) between the selective attention condition and divided attention condition. We designed a visual and/or auditory detection task that included three blocks (divided attention, visual-selective attention, and auditory-selective attention). The results showed that the response to bimodal audiovisual stimuli was faster than to unimodal auditory or visual stimuli under both divided attention and auditory-selective attention conditions. However, in the visual-selective attention condition, no significant difference was found between the unimodal visual and bimodal audiovisual stimuli in response speed. Moreover, audiovisual behavioral facilitation effects were compared between divided attention and selective attention (auditory or visual attention). In doing so, we found that audiovisual behavioral facilitation was significantly difference between divided attention and selective attention. The results indicated that audiovisual integration was stronger in the divided attention condition than that in the selective attention condition in children. Our findings objectively support the notion that attention can modulate audiovisual integration in school-aged children. Our study might offer a new perspective for identifying children with conditions that are associated with sustained attention deficit, such as attention-deficit hyperactivity disorder. © The Author(s) 2016.

  9. Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study

    PubMed Central

    Yang, Pei-Ching; Chang, Chia-Chi; Chiang, Jung-Hsien; Chen, Ying-Yeh

    2016-01-01

    Background Prompt recognition and intervention of negative emotions is crucial for patients with depression. Mobile phones and mobile apps are suitable technologies that can be used to recognize negative emotions and intervene if necessary. Objective Mobile phone usage patterns can be associated with concurrent emotional states. The objective of this study is to adapt machine-learning methods to analyze such patterns for the prediction of negative emotion. Methods We developed an Android-based app to capture emotional states and mobile phone usage patterns, which included call logs (and use of apps). Visual analog scales (VASs) were used to report negative emotions in dimensions of depression, anxiety, and stress. In the system-training phase, participants were requested to tag their emotions for 14 consecutive days. Five feature-selection methods were used to determine individual usage patterns and four machine-learning methods were tested. Finally, rank product scoring was used to select the best combination to construct the prediction model. In the system evaluation phase, participants were then requested to verify the predicted negative emotions for at least 5 days. Results Out of 40 enrolled healthy participants, we analyzed data from 28 participants, including 30% (9/28) women with a mean (SD) age of 29.2 (5.1) years with sufficient emotion tags. The combination of time slots of 2 hours, greedy forward selection, and Naïve Bayes method was chosen for the prediction model. We further validated the personalized models in 18 participants who performed at least 5 days of model evaluation. Overall, the predictive accuracy for negative emotions was 86.17%. Conclusion We developed a system capable of predicting negative emotions based on mobile phone usage patterns. This system has potential for ecological momentary intervention (EMI) for depressive disorders by automatically recognizing negative emotions and providing people with preventive treatments before it escalates to clinical depression. PMID:27511748

  10. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  11. Splitting Attention across the Two Visual Fields in Visual Short-Term Memory

    ERIC Educational Resources Information Center

    Delvenne, Jean-Francois; Holt, Jessica L.

    2012-01-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…

  12. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  13. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D. (Principal Investigator); Breed, C. S.

    1973-01-01

    The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled the project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery of selected sites, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya and other areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.

  14. Human listening studies reveal insights into object features extracted by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Delong, Caroline M.; Au, Whitlow W. L.; Roitblat, Herbert L.

    2004-05-01

    Echolocating dolphins extract object feature information from the acoustic parameters of object echoes. However, little is known about which object features are salient to dolphins or how they extract those features. To gain insight into how dolphins might be extracting feature information, human listeners were presented with echoes from objects used in a dolphin echoic-visual cross-modal matching task. Human participants performed a task similar to the one the dolphin had performed; however, echoic samples consisting of 23-echo trains were presented via headphones. The participants listened to the echoic sample and then visually selected the correct object from among three alternatives. The participants performed as well as or better than the dolphin (M=88.0% correct), and reported using a combination of acoustic cues to extract object features (e.g., loudness, pitch, timbre). Participants frequently reported using the pattern of aural changes in the echoes across the echo train to identify the shape and structure of the objects (e.g., peaks in loudness or pitch). It is likely that dolphins also attend to the pattern of changes across echoes as objects are echolocated from different angles.

  15. Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    PubMed Central

    Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.

    2011-01-01

    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications. PMID:21779341

  16. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  17. The uncertain response in humans and animals

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Schull, J.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1997-01-01

    There has been no comparative psychological study of uncertainty processes. Accordingly, the present experiments asked whether animals, like humans, escape adaptively when they are uncertain. Human and animal observers were given two primary responses in a visual discrimination task, and the opportunity to escape from some trials into easier ones. In one psychophysical task (using a threshold paradigm), humans escaped selectively the difficult trials that left them uncertain of the stimulus. Two rhesus monkeys (Macaca mulatta) also showed this pattern. In a second psychophysical task (using the method of constant stimuli), some humans showed this pattern but one escaped infrequently and nonoptimally. Monkeys showed equivalent individual differences. The data suggest that escapes by humans and monkeys are interesting cognitive analogs and may reflect controlled decisional processes prompted by the perceptual ambiguity at threshold.

  18. fMRI-based Multivariate Pattern Analyses Reveal Imagery Modality and Imagery Content Specific Representations in Primary Somatosensory, Motor and Auditory Cortices.

    PubMed

    de Borst, Aline W; de Gelder, Beatrice

    2017-08-01

    Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.

  20. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  1. Memory and mood during MDMA intoxication, with and without memantine pretreatment.

    PubMed

    de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G

    2014-12-01

    Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Delphi study to develop practical diagnostic guidelines for visual stress (pattern-related visual stress).

    PubMed

    Evans, Bruce J W; Allen, Peter M; Wilkins, Arnold J

    Visual stress (VS) is characterised by symptoms of visual perceptual distortions and eyestrain when viewing text, symptoms that are alleviated by individually prescribed coloured filters. A recent review supports the existence of VS and its treatment, but noted that controversy remains, in part due to inconsistencies in the diagnosis of the condition. The present paper reviews the diagnostic criteria for VS in the literature and reports a Delphi analysis of the criteria currently used in clinical practice. Twenty-six eyecare practitioners were invited to participate in a Delphi study. They were selected because they were frequent prescribers of precision tinted lenses. In the first round they were sent a list of the indicators for which there is literature to suggest a relevance in the diagnosis of VS. The practitioners were invited to rank the indicators and add any additional criteria they use in diagnosis. In the second round a revised list was circulated, including items added from the responses in the first round. The respondents included optometrists, orthoptists and opticians. In the first round the response rate was 85%. Ninety-one percent of those who participated in the first round also responded in the second round. Strong indicators in the second round included the symptom of words moving when reading, voluntary use of an overlay for a prolonged period, improved performance of ≥15% with an overlay on the Wilkins Rate of Reading test, and an abnormally high score on the Pattern Glare Test. The strongest diagnostic criteria are combined in a diagnostic tool. This is proposed as a guide for clinical practice and further research. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  3. Intrastromal femtosecond laser surgical compensation of presbyopia with six intrastromal ring cuts: 3-year results.

    PubMed

    Khoramnia, Ramin; Fitting, Anna; Rabsilber, Tanja M; Thomas, Bettina C; Auffarth, Gerd U; Holzer, Mike P

    2015-02-01

    To assess over a 36-month period functional results of the modified INTRACOR femtosecond laser-based intrastromal procedure to treat presbyopia. 20 eyes of 20 presbyopic patients with mild hyperopia were included. The INTRACOR procedure with a modified pattern (six concentric intrastromal ring cuts) was performed using the FEMTEC femtosecond laser (Bausch+Lomb/Technolas Perfect Vision, Munich, Germany). Patients were also randomly divided into three subgroups to compare the effect of three different small inner ring diameters (1.8/2.0/2.2 mm (Groups A/B/C)). Follow-up examinations were performed at 1, 3, 6, 12, 24 and 36 months, and included near and distance visual acuity tests, slit-lamp examinations and corneal topography. Median uncorrected near visual acuity (UNVA) increased from 0.7/0.7/0.7 logMAR (Groups A/B/C) to -0.1/0.1/0.1 logMAR 36 months after surgery. Uncorrected distance visual acuity changed slightly from 0.1/0.2/0.1 logMAR to 0.2/0.3/0.1 logMAR. Losses of two lines of binocular corrected distance visual acuity (CDVA) were noted in 0/25/0% of eyes. Median spherical equivalent changed from 0.75/0.75/0.75 dioptres to -0.19/0.13/-0.19 dioptres. Overall patient satisfaction with the procedure was 80%. INTRACOR with a modified pattern improved UNVA in all patients over a 36-month follow-up period. The possibility of reduced CDVA underlines the need for careful patient selection. NCT00928122. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Influence of habitat degradation on fish replenishment

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  5. Storyline Visualization: A Compelling Way to Understand Patterns over Time and Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-10-16

    Storyline visualization is a compelling way to understand patterns over time and space. Much effort has been spent developing efficient and aesthetically pleasing layout optimization algorithms. But what if those algorithms are optimizing the wrong things? To answer this question, we conducted a design study with different storyline layout algorithms. We found that users with our new design principles for storyline visualization outperform existing methods.

  6. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  7. Comparative analysis of lip with thumbprints: An identification tool in personal authentication.

    PubMed

    Naik, Rashmi; Ahmed Mujib, B R; Telagi, Neethu; Hallur, Jaydeva

    2017-01-01

    Identification of person living or dead using diverse characteristics is the basis in forensic science. The uniqueness of lip and fingerprints and further, association between them can be useful in establishing facts in legal issues. The present study was carried out to determine the distribution of different lip print patterns among subjects having different thumbprint patterns and to determine the correlation between lip print patterns and thumbprint patterns. The study sample comprised 100 students randomly selected from Bapuji Dental College Hospital, Davangere, Karnataka, 50 males and 50 females aged between 18 and 20 years. Red colored lipstick was applied on the lips by a lipstick applicator brush. Lip and thumb impressions were made on No. 1 Whatman filter paper and visualized using magnifying lens. Three main types of fingerprints (loop, whorl and arch) were identified; Tsuchihashi Y classification of lip print patterns was followed in the study. Chi-square test was used to see the association between lip and thumbprints. The correlation between lip and left thumb print patterns for gender identification was statistically significant. In both males and females, Type II lip pattern associated with loop finger pattern were most significant and in males, Type III lip pattern with whorl type of finger pattern showed statistical significance. We conclude that the correlation found between lip print and thumbprint can be utilized in the field of forensic science for gender identification.

  8. Toward a New Theory for Selecting Instructional Visuals.

    ERIC Educational Resources Information Center

    Croft, Richard S.; Burton, John K.

    This paper provides a rationale for the selection of illustrations and visual aids for the classroom. The theories that describe the processing of visuals are dual coding theory and cue summation theory. Concept attainment theory offers a basis for selecting which cues are relevant for any learning task which includes a component of identification…

  9. [Effect of acupuncture on pattern-visual evoked potential in rats with monocular visual deprivation].

    PubMed

    Yan, Xing-Ke; Dong, Li-Li; Liu, An-Guo; Wang, Jun-Yan; Ma, Chong-Bing; Zhu, Tian-Tian

    2013-08-01

    To explore electrophysiology mechanism of acupuncture for treatment and prevention of visual deprivation effect. Eighteen healthy 15-day Evans rats were randomly divided into a normal group, a model group and an acupuncture group, 6 rats in each one. Deprivation amblyopia model was established by monocular eyelid suture in the model group and acupuncture group. Acupuncture was applied at "Jingming" (BL 1), "Chengqi" (ST 1), "Qiuhou" (EX-HN 7) and "Cuanzhu" (BL 2) in the acupuncture group. The bilateral acupoints were selected alternately, one side for a day, and totally 14 days were required. The effect of acupuncture on visual evoked potential in different spatial frequencies was observed. Under three different kinds of spatial frequencies of 2 X 2, 4 X 4 and 8 X 8, compared with normal group, there was obvious visual deprivation effect in the model group where P1 peak latency was delayed (P<0.01) while N1 -P1 amplitude value was decreased (P<0.01). Compared with model group, P1 peak latency was obviously ahead of time (P<0.01) while N1-P1 amplitude value was increased (P<0.01) in the acupuncture group, there was no statistical significance compared with normal group (P>0.05). Under spatial frequency of 4 X 4, N1-P1 amplitude value was maximum in the normal group and acupuncture group. With this spatial frequency the rat's eye had best resolving ability, indicating it could be the best spatial frequency for rat visual system. The visual system has obvious electrophysiology plasticity in sensitive period. Acupuncture treatment could adjust visual deprivation-induced suppression and slow of visual response in order to antagonism deprivation effect.

  10. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    PubMed Central

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  11. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.

  12. Distributed and Dynamic Storage of Working Memory Stimulus Information in Extrastriate Cortex

    PubMed Central

    Sreenivasan, Kartik K.; Vytlacil, Jason; D'Esposito, Mark

    2015-01-01

    The predominant neurobiological model of working memory (WM) posits that stimulus information is stored via stable elevated activity within highly selective neurons. Based on this model, which we refer to as the canonical model, the storage of stimulus information is largely associated with lateral prefrontal cortex (lPFC). A growing number of studies describe results that cannot be fully explained by the canonical model, suggesting that it is in need of revision. In the present study, we directly test key elements of the canonical model. We analyzed functional MRI data collected as participants performed a task requiring WM for faces and scenes. Multivariate decoding procedures identified patterns of activity containing information about the items maintained in WM (faces, scenes, or both). While information about WM items was identified in extrastriate visual cortex (EC) and lPFC, only EC exhibited a pattern of results consistent with a sensory representation. Information in both regions persisted even in the absence of elevated activity, suggesting that elevated population activity may not represent the storage of information in WM. Additionally, we observed that WM information was distributed across EC neural populations that exhibited a broad range of selectivity for the WM items rather than restricted to highly selective EC populations. Finally, we determined that activity patterns coding for WM information were not stable, but instead varied over the course of a trial, indicating that the neural code for WM information is dynamic rather than static. Together, these findings challenge the canonical model of WM. PMID:24392897

  13. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  14. Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets

    PubMed Central

    Pietersen, Alexander N.J.; Cheong, Soon Keen; Munn, Brandon; Gong, Pulin; Solomon, Samuel G.

    2017-01-01

    Key points How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1).In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta‐band EEG power.We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN.Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. Abstract The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil‐anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta‐band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1–3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase‐locked to delta waves in the cortical LFP, and more cells are phase‐locked during synchronous cortical states than during asynchronous cortical states. The switch from low‐to‐high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta‐frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets. PMID:28116750

  15. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    PubMed

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  16. Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders.

    PubMed

    Robotham, Ro J; Starrfelt, Randi

    2017-01-01

    Face and word recognition have traditionally been thought to rely on highly specialised and relatively independent cognitive processes. Some of the strongest evidence for this has come from patients with seemingly category-specific visual perceptual deficits such as pure prosopagnosia, a selective face recognition deficit, and pure alexia, a selective word recognition deficit. Together, the patterns of impaired reading with preserved face recognition and impaired face recognition with preserved reading constitute a double dissociation. The existence of these selective deficits has been questioned over the past decade. It has been suggested that studies describing patients with these pure deficits have failed to measure the supposedly preserved functions using sensitive enough measures, and that if tested using sensitive measurements, all patients with deficits in one visual category would also have deficits in the other. The implications of this would be immense, with most textbooks in cognitive neuropsychology requiring drastic revisions. In order to evaluate the evidence for dissociations, we review studies that specifically investigate whether face or word recognition can be selectively affected by acquired brain injury or developmental disorders. We only include studies published since 2004, as comprehensive reviews of earlier studies are available. Most of the studies assess the supposedly preserved functions using sensitive measurements. We found convincing evidence that reading can be preserved in acquired and developmental prosopagnosia and also evidence (though weaker) that face recognition can be preserved in acquired or developmental dyslexia, suggesting that face and word recognition are at least in part supported by independent processes.

  17. The Pattern Glare Test: a review and determination of normative values.

    PubMed

    Evans, B J W; Stevenson, S J

    2008-07-01

    Pattern glare is characterised by symptoms of visual perceptual distortions and visual stress on viewing striped patterns. People with migraine or Meares-Irlen syndrome (visual stress) are especially prone to pattern glare. The literature on pattern glare is reviewed, and the goal of this study was to develop clinical norms for the Wilkins and Evans Pattern Glare Test. This comprises three test plates of square wave patterns of spatial frequency 0.5, 3 and 12 cycles per degree (cpd). Patients are shown the 0.5 cpd grating and the number of distortions that are reported in response to a list of questions is recorded. This is repeated for the other patterns. People who are prone to pattern glare experience visual perceptual distortions on viewing the 3 cpd grating, and pattern glare can be quantified as either the sum of distortions reported with the 3 cpd pattern or as the difference between the number of distortions with the 3 and 12 cpd gratings, the '3-12 cpd difference'. In study 1, 100 patients consulting an optometrist performed the Pattern Glare Test and the 95th percentile of responses was calculated as the limit of the normal range. The normal range for the number of distortions was found to be <4 on the 3 cpd grating and <2 for the 3-12 cpd difference. Pattern glare was similar in both genders but decreased with age. In study 2, 30 additional participants were given the test in the reverse of the usual testing order and were compared with a sub-group from study 1, matched for age and gender. Participants experienced more distortions with the 12 cpd grating if it was presented after the 3 cpd grating. However, the order did not influence the two key measures of pattern glare. In study 3, 30 further participants who reported a medical diagnosis of migraine were compared with a sub-group of the participants in study 1 who did not report migraine or frequent headaches, matched for age and gender. The migraine group reported more symptoms on viewing all gratings, particularly the 3 cpd grating. The only variable to be significantly different between the groups was the 3-12 cpd difference. In conclusion, people have an abnormal degree of pattern glare if they have a Pattern Glare Test score of >3 on the 3 cpd grating or a score of >1 on the 3-12 cpd difference. The literature suggests that these people are likely to have visual stress in everyday life and may therefore benefit from interventions designed to alleviate visual stress, such as precision tinted lenses.

  18. A Case-Control Study to Assess the Relationship between Poverty and Visual Impairment from Cataract in Kenya, the Philippines, and Bangladesh

    PubMed Central

    Kuper, Hannah; Polack, Sarah; Eusebio, Cristina; Mathenge, Wanjiku; Wadud, Zakia; Foster, Allen

    2008-01-01

    Background The link between poverty and health is central to the Millennium Development Goals (MDGs). Poverty can be both a cause and consequence of poor health, but there are few epidemiological studies exploring this complex relationship. The aim of this study was to examine the association between visual impairment from cataract and poverty in adults in Kenya, Bangladesh, and the Philippines. Methods and Findings A population-based case–control study was conducted in three countries during 2005–2006. Cases were persons aged 50 y or older and visually impaired due to cataract (visual acuity < 6/24 in the better eye). Controls were persons age- and sex-matched to the case participants with normal vision selected from the same cluster. Household expenditure was assessed through the collection of detailed consumption data, and asset ownership and self-rated wealth were also measured. In total, 596 cases and 535 controls were included in these analyses (Kenya 142 cases, 75 controls; Bangladesh 216 cases, 279 controls; Philippines 238 cases, 180 controls). Case participants were more likely to be in the lowest quartile of per capita expenditure (PCE) compared to controls in Kenya (odds ratio = 2.3, 95% confidence interval 0.9–5.5), Bangladesh (1.9, 1.1–3.2), and the Philippines (3.1, 1.7–5.7), and there was significant dose–response relationship across quartiles of PCE. These associations persisted after adjustment for self-rated health and social support indicators. A similar pattern was observed for the relationship between cataract visual impairment with asset ownership and self-rated wealth. There was no consistent pattern of association between PCE and level of visual impairment due to cataract, sex, or age among the three countries. Conclusions Our data show that people with visual impairment due to cataract were poorer than those with normal sight in all three low-income countries studied. The MDGs are committed to the eradication of extreme poverty and provision of health care to poor people, and this study highlights the need for increased provision of cataract surgery to poor people, as they are particularly vulnerable to visual impairment from cataract. PMID:19090614

  19. Properties of visual evoked potentials to onset of movement on a television screen.

    PubMed

    Kubová, Z; Kuba, M; Hubacek, J; Vít, F

    1990-08-01

    In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).

  20. Magnifying visual target information and the role of eye movements in motor sequence learning.

    PubMed

    Massing, Matthias; Blandin, Yannick; Panzer, Stefan

    2016-01-01

    An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.

Top