Extensions to the visual predictive check to facilitate model performance evaluation.
Post, Teun M; Freijer, Jan I; Ploeger, Bart A; Danhof, Meindert
2008-04-01
The Visual Predictive Check (VPC) is a valuable and supportive instrument for evaluating model performance. However in its most commonly applied form, the method largely depends on a subjective comparison of the distribution of the simulated data with the observed data, without explicitly quantifying and relating the information in both. In recent adaptations to the VPC this drawback is taken into consideration by presenting the observed and predicted data as percentiles. In addition, in some of these adaptations the uncertainty in the predictions is represented visually. However, it is not assessed whether the expected random distribution of the observations around the predicted median trend is realised in relation to the number of observations. Moreover the influence of and the information residing in missing data at each time point is not taken into consideration. Therefore, in this investigation the VPC is extended with two methods to support a less subjective and thereby more adequate evaluation of model performance: (i) the Quantified Visual Predictive Check (QVPC) and (ii) the Bootstrap Visual Predictive Check (BVPC). The QVPC presents the distribution of the observations as a percentage, thus regardless the density of the data, above and below the predicted median at each time point, while also visualising the percentage of unavailable data. The BVPC weighs the predicted median against the 5th, 50th and 95th percentiles resulting from a bootstrap of the observed data median at each time point, while accounting for the number and the theoretical position of unavailable data. The proposed extensions to the VPC are illustrated by a pharmacokinetic simulation example and applied to a pharmacodynamic disease progression example.
Literature and Product Review of Visual Analytics for Maritime Awareness
2009-10-28
the user’s knowledge and experience. • Riveiro et al [107] provide a useful discussion of the cognitive process of anomaly detection based on...changes over time can be seen visually. • Wilkinson et al [140] suggests that we need visual analytics for three principal purposes: checking raw data...Predictions within the Current Plot • Yue et al [146] describe an AI blackboard-based agent that leverages interactive visualization and mixed
Visual Predictive Check in Models with Time-Varying Input Function.
Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio
2015-11-01
The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
Knutson, Gary A
2002-02-01
To determine the incidence of pelvic unleveling, foot rotation, and supine leg length alignment asymmetry in a nonclinical population and to examine the validity (sensitivity, specificity, positive and negative predictive values) of these visual tests and their relationship to self-reported back pain. Volunteers answered a questionnaire regarding back pain and were then examined by a chiropractor who was unaware of the status of their back pain. Seventy-four unscreened volunteers answered the questionnaire. The association of visual tests with back pain and their validity indices; Visual Analogue Scale ratings. Fifty-one percent (n = 74) of volunteers examined had supine leg length alignment asymmetry (LLA). Pain intensity on a Visual Analogue Scale was significantly higher (P <.001) for those demonstrating supine LLA than for those without LLA. Those with back pain and recurrent back pain were significantly (P <.001) more likely to have supine LLA. The validity indices of the supine leg check showed acceptable levels for sensitivity (74%), specificity (78%), and positive predictive value (82%) [corrected] in recurrent back pain. Findings also indicated a high incidence of supine LLA in volunteers with chronic back pain (85%). The results indicated that, in this group of volunteers, the supine leg length alignment check had clinical validity as a stand-alone test for recurring back pain. Further testing on a larger, statistically defined cross-section of the population is recommended.
Sun, Wan; O'Dwyer, Peter J; Finn, Richard S; Ruiz-Garcia, Ana; Shapiro, Geoffrey I; Schwartz, Gary K; DeMichele, Angela; Wang, Diane
2017-09-01
Neutropenia is the most commonly reported hematologic toxicity following treatment with palbociclib, a cyclin-dependent kinase 4/6 inhibitor approved for metastatic breast cancer. Using data from 185 advanced cancer patients receiving palbociclib in 3 clinical trials, a pharmacokinetic-pharmacodynamic model was developed to describe the time course of absolute neutrophil count (ANC) and quantify the exposure-response relationship for neutropenia. These analyses help in understanding neutropenia associated with palbociclib and its comparison with chemotherapy-induced neutropenia. In the model, palbociclib plasma concentration was related to its antiproliferative effect on precursor cells through drug-related parameters (ie, maximum estimated drug effect and concentration corresponding to 50% of the maximum effect), and neutrophil physiology was mimicked through system-related parameters (ie, mean transit time, baseline ANC, and feedback parameter). Sex and baseline albumin level were significant covariates for baseline ANC. It was demonstrated by different model evaluation approaches (eg, prediction-corrected visual predictive check and standardized visual predictive check) that the final model adequately described longitudinal ANC with good predictive capability. The established model suggested that higher palbociclib exposure was associated with lower longitudinal neutrophil counts. The ANC nadir was reached approximately 21 days after palbociclib treatment initiation. Consistent with their mechanisms of action, neutropenia associated with palbociclib (cytostatic) was rapidly reversible and noncumulative, with a notably weaker antiproliferative effect on precursor cells relative to chemotherapies (cytotoxic). This pharmacokinetic-pharmacodynamic model aids in predicting neutropenia and optimizing dosing for future palbociclib trials with different dosing regimen combinations. © 2017, The American College of Clinical Pharmacology.
Effectiveness of the GoCheck Kids Vision Screener in Detecting Amblyopia Risk Factors.
Peterseim, M Millicent W; Rhodes, Ryan S; Patel, Rupa N; Wilson, M Edward; Edmondson, Luke E; Logan, Sarah A; Cheeseman, Edward W; Shortridge, Emily; Trivedi, Rupal H
2018-03-01
The GoCheck Kids smartphone photoscreening app (Gobiquity Mobile Health, Scottsdale, Arizona, USA), introduced in 2014, is marketed to pediatricians with little published validation. We wished to evaluate the GoCheck Kids Screener for accuracy in detecting amblyopia risk factors (ARF) using 2013 American Association for Pediatric Ophthalmology and Strabismus guidelines. Validity assessment. Children 6 months to 6 years of age presenting from October 2016 to August 2017 were included. Children were screened with the GoCheck preloaded Nokia Lumia 1020, software version 4.6 with image processing version R4d, prior to undergoing a comprehensive eye examination by a pediatric ophthalmologist masked to the screener results. Determination of the presence of age-specific ARF was made based upon the examination and compared with the GoCheck recommendation. A total of 206 children were included (average age 43 months). When compared to examination, GoCheck had a sensitivity of 76.0% and specificity of 67.2% in detecting ARF. Positive predictive value was 57.0% and negative predictive value 83.0%. The screener results of 13 children were changed from "no risk factors" to "risk factors identified" based on the GoCheck remote review process. Four images remained "not gradable" and screening was unsuccessful in 3 children. In our high-risk population, this version of the Gocheck Kids smartphone app was useful in identifying ARF in children who are often not able to cooperate with visual acuity testing. This study informs pediatricians about the efficacy of this new screener as they make decisions about how to best detect vision problems in young children. Copyright © 2018 Elsevier Inc. All rights reserved.
Population pharmacodynamic modelling of midazolam induced sedation in terminally ill adult patients
de Winter, Brenda C. M.; Masman, Anniek D.; van Dijk, Monique; Baar, Frans P. M.; Tibboel, Dick; Koch, Birgit C. P.; van Gelder, Teun; Mathot, Ron A. A.
2017-01-01
Aims Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. A previous pharmacokinetic (PK) study showed that variability between patients could be partly explained by renal function and inflammatory status. The goal of this study was to combine this PK information with pharmacodynamic (PD) data, to evaluate the variability in response to midazolam and to find clinically relevant covariates that may predict PD response. Method A population PD analysis using nonlinear mixed effect models was performed with data from 43 terminally ill patients. PK profiles were predicted by a previously described PK model and depth of sedation was measured using the Ramsay sedation score. Patient and disease characteristics were evaluated as possible covariates. The final model was evaluated using a visual predictive check. Results The effect of midazolam on the sedation level was best described by a differential odds model including a baseline probability, Emax model and interindividual variability on the overall effect. The EC50 value was 68.7 μg l–1 for a Ramsay score of 3–5 and 117.1 μg l–1 for a Ramsay score of 6. Comedication with haloperidol was the only significant covariate. The visual predictive check of the final model showed good model predictability. Conclusion We were able to describe the clinical response to midazolam accurately. As expected, there was large variability in response to midazolam. The use of haloperidol was associated with a lower probability of sedation. This may be a result of confounding by indication, as haloperidol was used to treat delirium, and deliria has been linked to a more difficult sedation procedure. PMID:28960387
On the possible roles of microsaccades and drifts in visual perception.
Ahissar, Ehud; Arieli, Amos; Fried, Moshe; Bonneh, Yoram
2016-01-01
During natural viewing large saccades shift the visual gaze from one target to another every few hundreds of milliseconds. The role of microsaccades (MSs), small saccades that show up during long fixations, is still debated. A major debate is whether MSs are used to redirect the visual gaze to a new location or to encode visual information through their movement. We argue that these two functions cannot be optimized simultaneously and present several pieces of evidence suggesting that MSs redirect the visual gaze and that the visual details are sampled and encoded by ocular drifts. We show that drift movements are indeed suitable for visual encoding. Yet, it is not clear to what extent drift movements are controlled by the visual system, and to what extent they interact with saccadic movements. We analyze several possible control schemes for saccadic and drift movements and propose experiments that can discriminate between them. We present the results of preliminary analyses of existing data as a sanity check to the testability of our predictions. Copyright © 2014 Elsevier Ltd. All rights reserved.
2015-09-01
Detectability ...............................................................................................37 Figure 20. Excel VBA Codes for Checker...National Vulnerability Database OS Operating System SQL Structured Query Language VC Verification Condition VBA Visual Basic for Applications...checks each of these assertions for detectability by Daikon. The checker is an Excel Visual Basic for Applications ( VBA ) script that checks the
Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis
NASA Technical Reports Server (NTRS)
Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.
2012-01-01
Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.
Kiesel, Andrea; Kunde, Wilfried; Pohl, Carsten; Berner, Michael P; Hoffmann, Joachim
2009-01-01
Expertise in a certain stimulus domain enhances perceptual capabilities. In the present article, the authors investigate whether expertise improves perceptual processing to an extent that allows complex visual stimuli to bias behavior unconsciously. Expert chess players judged whether a target chess configuration entailed a checking configuration. These displays were preceded by masked prime configurations that either represented a checking or a nonchecking configuration. Chess experts, but not novice chess players, revealed a subliminal response priming effect, that is, faster responding when prime and target displays were congruent (both checking or both nonchecking) rather than incongruent. Priming generalized to displays that were not used as targets, ruling out simple repetition priming effects. Thus, chess experts were able to judge unconsciously presented chess configurations as checking or nonchecking. A 2nd experiment demonstrated that experts' priming does not occur for simpler but uncommon chess configurations. The authors conclude that long-term practice prompts the acquisition of visual memories of chess configurations with integrated form-location conjunctions. These perceptual chunks enable complex visual processing outside of conscious awareness.
Influence of visual angle on pattern reversal visual evoked potentials
Kothari, Ruchi; Singh, Smita; Singh, Ramji; Shukla, A. K.; Bokariya, Pradeep
2014-01-01
Purpose: The aim of this study was to find whether the visual evoked potential (VEP) latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs). Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females) in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females) in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field) on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II). The statistical analysis was done by One Way Analysis of Variance (ANOVA) using EPI INFO 6. Results: In Group I, the maximum (max.) P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle) has an effect on the PRVEP parameters. Our study found that the 120 is the appropriate (and optimal) check size that can be used for accurate interpretation of PRVEPs. This will help in better assessment of the optic nerve function and integrity of anterior visual pathways. PMID:25378875
CT114 Lap Belt Arming Key Mod - User Trial
2010-05-01
31 (97%) 30 (94%) 1. Ease of use to perform visual 30 (94%) 2. Ease of use to perform free play (push past) check 31 (97%) ’Note I - If a...positive lock of the lap belt. 10. Perform Free Play (Push Past) Check - Press mating ends of lap belt fittings together to demo ability to push beyond...the following items. I 2 3 4 5 6 7 37. Ease-of·use in performing visual check? 0 0 0 0 0 0 0 38. Ease-of·use in performing free play (push past
Population pharmacokinetic modeling and simulation of huperzine A in elderly Chinese subjects
Sheng, Lei; Qu, Yi; Yan, Jing; Liu, Gang-yi; Wang, Wei-liang; Wang, Yi-jun; Wang, Hong-yi; Zhang, Meng-qi; Lu, Chuan; Liu, Yun; Jia, Jing-yin; Hu, Chao-ying; Li, Xue-ning; Yu, Chen; Xu, Hong-rong
2016-01-01
Aim: Our preliminary results show that huperzine A, an acetylcholinesterase inhibitor used to treat Alzheimer's disease (AD) patients in China, exhibits different pharmacokinetic features in elderly and young healthy subjects. However, its pharmacokinetic data in elderly subjects remains unavailable to date. Thus, we developed a population pharmacokinetic (PPK) model of huperzine A in elderly Chinese people, and identified the covariate affecting its pharmacokinetics for optimal individual administration. Methods: A total of 341 serum huperzine A concentration records was obtained from 2 completed clinical trials (14 elderly healthy subjects in a phase I pharmacokinetic study; 35 elderly AD patients in a phase II study). Population pharmacokinetic analysis was performed using the non-linear mixed-effect modeling software Phoenix NLME1.1.1. The effects of age, gender, body weight, height, creatinine, endogenous creatinine clearance rate as well as drugs administered concomitantly were analyzed. Bootstrap and visual predictive checks were used simultaneously to validate the final population pharmacokinetics models. Results: The plasma concentration-time profile of huperzine A was best described by a one-compartment model with first-order absorption and elimination. Age was identified as the covariate having significant influence on huperzine A clearance. The final PPK model of huperzine A was: CL (L/h)=2.4649*(age/86)(−3.3856), Ka=0.6750 h−1, V (L)=104.216. The final PPK model was demonstrated to be suitable and effective by the bootstrap and visual predictive checks. Conclusion: A PPK model of huperzine A in elderly Chinese subjects is established, which can be used to predict PPK parameters of huperzine A in the treatment of elderly AD patients. PMID:27180987
ERIC Educational Resources Information Center
Nilchian, Firoozeh; Shakibaei, Fereshteh; Jarah, Zeinab Taghi
2017-01-01
This study was aimed to evaluate the impact of visual pedagogy in dental check-ups and preventive practices among children with autism aged 6-12. In this randomized double-blind clinical trial, the cooperation of 40 children with autism age 6-12. The selected children were equally divided into two groups of case and control (n = 20). The obtained…
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
The MRO Sequence Checking Tool program, mro_check, automates significant portions of the MRO (Mars Reconnaissance Orbiter) sequence checking procedure. Though MRO has similar checks to the ODY s (Mars Odyssey) Mega Check tool, the checks needed for MRO are unique to the MRO spacecraft. The MRO sequence checking tool automates the majority of the sequence validation procedure and check lists that are used to validate the sequences generated by MRO MPST (mission planning and sequencing team). The tool performs more than 50 different checks on the sequence. The automation varies from summarizing data about the sequence needed for visual verification of the sequence, to performing automated checks on the sequence and providing a report for each step. To allow for the addition of new checks as needed, this tool is built in a modular fashion.
Nuin, Maider; Alfaro, Begoña; Cruz, Ziortza; Argarate, Nerea; George, Susie; Le Marc, Yvan; Olley, June; Pin, Carmen
2008-10-31
Kinetic models were developed to predict the microbial spoilage and the sensory quality of fresh fish and to evaluate the efficiency of a commercial time-temperature integrator (TTI) label, Fresh Check(R), to monitor shelf life. Farmed turbot (Psetta maxima) samples were packaged in PVC film and stored at 0, 5, 10 and 15 degrees C. Microbial growth and sensory attributes were monitored at regular time intervals. The response of the Fresh Check device was measured at the same temperatures during the storage period. The sensory perception was quantified according to a global sensory indicator obtained by principal component analysis as well as to the Quality Index Method, QIM, as described by Rahman and Olley [Rahman, H.A., Olley, J., 1984. Assessment of sensory techniques for quality assessment of Australian fish. CSIRO Tasmanian Regional Laboratory. Occasional paper n. 8. Available from the Australian Maritime College library. Newnham. Tasmania]. Both methods were found equally valid to monitor the loss of sensory quality. The maximum specific growth rate of spoilage bacteria, the rate of change of the sensory indicators and the rate of change of the colour measurements of the TTI label were modelled as a function of temperature. The temperature had a similar effect on the bacteria, sensory and Fresh Check kinetics. At the time of sensory rejection, the bacterial load was ca. 10(5)-10(6) cfu/g. The end of shelf life indicated by the Fresh Check label was close to the sensory rejection time. The performance of the models was validated under fluctuating temperature conditions by comparing the predicted and measured values for all microbial, sensory and TTI responses. The models have been implemented in a Visual Basic add-in for Excel called "Fish Shelf Life Prediction (FSLP)". This program predicts sensory acceptability and growth of spoilage bacteria in fish and the response of the TTI at constant and fluctuating temperature conditions. The program is freely available at http://www.azti.es/muestracontenido.asp?idcontenido=980&content=15&nodo1=30&nodo2=0.
NASTRAN data generation and management using interactive graphics
NASA Technical Reports Server (NTRS)
Smootkatow, M.; Cooper, B. M.
1972-01-01
A method of using an interactive graphics device to generate a large portion of the input bulk data with visual checks of the structure and the card images is described. The generation starts from GRID and PBAR cards. The visual checks result from a three-dimensional display of the model in any rotated position. By detailing the steps, the time saving and cost effectiveness of this method may be judged, and its potential as a useful tool for the structural analyst may be established.
Langeslag-Smith, Miriam A; Vandal, Alain C; Briane, Vincent; Thompson, Benjamin; Anstice, Nicola S
2015-01-01
Objectives To assess the accuracy of preschool vision screening in a large, ethnically diverse, urban population in South Auckland, New Zealand. Design Retrospective longitudinal study. Methods B4 School Check vision screening records (n=5572) were compared with hospital eye department data for children referred from screening due to impaired acuity in one or both eyes who attended a referral appointment (n=556). False positive screens were identified by comparing screening data from the eyes that failed screening with hospital data. Estimation of false negative screening rates relied on data from eyes that passed screening. Data were analysed using logistic regression modelling accounting for the high correlation between results for the two eyes of each child. Primary outcome measure Positive predictive value of the preschool vision screening programme. Results Screening produced high numbers of false positive referrals, resulting in poor positive predictive value (PPV=31%, 95% CI 26% to 38%). High estimated negative predictive value (NPV=92%, 95% CI 88% to 95%) suggested most children with a vision disorder were identified at screening. Relaxing the referral criteria for acuity from worse than 6/9 to worse than 6/12 improved PPV without adversely affecting NPV. Conclusions The B4 School Check generated numerous false positive referrals and consequently had a low PPV. There is scope for reducing costs by altering the visual acuity criterion for referral. PMID:26614622
47 CFR 80.293 - Check bearings by authorized ship personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
....293 Section 80.293 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... comparison of simultaneous visual and radio direction finder bearings. At least one comparison bearing must... visual bearing relative to the ship's heading and the difference between the visual and radio direction...
Prediction Interval Development for Wind-Tunnel Balance Check-Loading
NASA Technical Reports Server (NTRS)
Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.
2014-01-01
Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.
Bus Maintenance is a Sound Investment.
ERIC Educational Resources Information Center
American School Board Journal, 1981
1981-01-01
Preventive school bus maintenance to reduce long-term costs should include daily visual inspections by drivers, frequent checks by mechanics, and comprehensive inspections every 5,000 miles. Mechanics recommend checking tail lights, batteries, brakes, lug nuts, leaf springs, tail pipes, and exhaust pipe hangers. (RW)
Takeuchi, Masato; Yano, Ikuko; Ito, Satoko; Sugimoto, Mitsuhiro; Yamamoto, Shota; Yonezawa, Atsushi; Ikeda, Akio; Matsubara, Kazuo
2017-04-01
Topiramate is a second-generation antiepileptic drug used as monotherapy and adjunctive therapy in adults and children with partial seizures. A population pharmacokinetic (PPK) analysis was performed to improve the topiramate dosage adjustment for individualized treatment. Patients whose steady-state serum concentration of topiramate was routinely monitored at Kyoto University Hospital from April 2012 to March 2013 were included in the model-building data. A nonlinear mixed effects modeling program was used to evaluate the influence of covariates on topiramate pharmacokinetics. The obtained PPK model was evaluated by internal model validations, including goodness-of-fit plots and prediction-corrected visual predictive checks, and was externally confirmed using the validation data from January 2015 to December 2015. A total of 177 steady-state serum concentrations from 93 patients were used for the model-building analysis. The patients' age ranged from 2 to 68 years, and body weight ranged from 8.6 to 105 kg. The median serum concentration of topiramate was 1.7 mcg/mL, and half of the patients received carbamazepine coadministration. Based on a one-compartment model with first order absorption and elimination, the apparent volume of distribution was 105 L/70 kg, and the apparent clearance was allometrically related to the body weight as 2.25 L·h·70 kg without carbamazepine or phenytoin. Combination treatment with carbamazepine or phenytoin increased the apparent clearance to 3.51 L·h·70 kg. Goodness-of-fit plots, prediction-corrected visual predictive check, and external validation using the validation data from 43 patients confirmed an appropriateness of the final model. Simulations based on the final model showed that dosage adjustments allometrically scaling to body weight can equalize the serum concentrations in children of various ages and adults. The PPK model, using the power scaling of body weight, effectively elucidated the topiramate serum concentration profile ranging from pediatric to adult patients. Dosage adjustments based on body weight and concomitant antiepileptic drug help obtain the dosage of topiramate necessary to reach an effective concentration in each individual.
40 CFR 280.62 - Initial abatement measures and site check.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Initial abatement measures and site check. 280.62 Section 280.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... to the environment; (2) Visually inspect any aboveground releases or exposed belowground releases and...
Langeslag-Smith, Miriam A; Vandal, Alain C; Briane, Vincent; Thompson, Benjamin; Anstice, Nicola S
2015-11-27
To assess the accuracy of preschool vision screening in a large, ethnically diverse, urban population in South Auckland, New Zealand. Retrospective longitudinal study. B4 School Check vision screening records (n=5572) were compared with hospital eye department data for children referred from screening due to impaired acuity in one or both eyes who attended a referral appointment (n=556). False positive screens were identified by comparing screening data from the eyes that failed screening with hospital data. Estimation of false negative screening rates relied on data from eyes that passed screening. Data were analysed using logistic regression modelling accounting for the high correlation between results for the two eyes of each child. Positive predictive value of the preschool vision screening programme. Screening produced high numbers of false positive referrals, resulting in poor positive predictive value (PPV=31%, 95% CI 26% to 38%). High estimated negative predictive value (NPV=92%, 95% CI 88% to 95%) suggested most children with a vision disorder were identified at screening. Relaxing the referral criteria for acuity from worse than 6/9 to worse than 6/12 improved PPV without adversely affecting NPV. The B4 School Check generated numerous false positive referrals and consequently had a low PPV. There is scope for reducing costs by altering the visual acuity criterion for referral. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Child behavior check list and Korean personality inventory for children with functional visual loss.
Kyung, Sung Eun; Lee, Sang Mi; Lim, Myung Ho
2014-08-01
To investigate the clinical psychiatric characteristics of children with the main complaint of functional visual loss, their behavior and personality were evaluated by the means of the Korean child behavior check list (K-CBCL), and the Korean personality inventory for children (KPI-C). The evaluation was carried out by the K-CBCL and the KPI-C, the domestically standardized tools, with 20 child subjects suspected of functional visual loss, among the patients who visited our hospital, between August, 2005 and December, 2012. The control group included 160 children in general schools of the same region. The 20 patients whose main complaint was functional visual loss were diagnosed as having a functional visual disorder. The child patient group showed a higher score for the K-CBCL and KPI-C sub-scales of somatic complaints, social problems, aggressive behavior, internalizing problems, externalizing problems, total behavioral problems, somatization and hyperactivity, than that of the control group. The results of the K-CBCL and KPI-C tests among children with functional visual loss, were significantly different from those of the normal control group. This result suggested that psychological factors may influence children with a main complaint of functional visual loss.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
The influence of social anxiety on the body checking behaviors of female college students.
White, Emily K; Warren, Cortney S
2014-09-01
Social anxiety and eating pathology frequently co-occur. However, there is limited research examining the relationship between anxiety and body checking, aside from one study in which social physique anxiety partially mediated the relationship between body checking cognitions and body checking behavior (Haase, Mountford, & Waller, 2007). In an independent sample of 567 college women, we tested the fit of Haase and colleagues' foundational model but did not find evidence of mediation. Thus we tested the fit of an expanded path model that included eating pathology and clinical impairment. In the best-fitting path model (CFI=.991; RMSEA=.083) eating pathology and social physique anxiety positively predicted body checking, and body checking positively predicted clinical impairment. Therefore, women who endorse social physique anxiety may be more likely to engage in body checking behaviors and experience impaired psychosocial functioning. Published by Elsevier Ltd.
Woodfield, John C; Sagar, Peter M; Thekkinkattil, Dinesh K; Gogu, Praveen; Plank, Lindsay D; Burke, Dermot
2017-01-01
Although the risk factors that contribute to postoperative complications are well recognized, prediction in the context of a particular patient is more difficult. We were interested in using a visual analog scale (VAS) to capture surgeons' prediction of the risk of a major complication and to examine whether this could be improved. The study was performed in 3 stages. In phase I, the surgeon assessed the risk of a major complication on a 100-mm VAS immediately before and after surgery. A quality control questionnaire was designed to check if the VAS was being scored as a linear scale. In phase II, a VAS with 6 subscales for different areas of clinical risk was introduced. In phase III, predictions were completed following the presentation of detailed feedback on the accuracy of prediction of complications. In total, 1295 predictions were made by 58 surgeons in 859 patients. Eight surgeons did not use a linear scale (6 logarithmic, 2 used 4 categories of risk). Surgeons made a meaningful prediction of major complications (preoperative median score 40 mm for complications v. 22 mm for no complication, P < 0.001; postoperative 46 mm v. 21 mm, P < 0.001). In phase I, the discrimination of prediction for preoperative (0.778), postoperative (0.810), and POSSUM (Physiological and Operative Severity Score for the Enumeration of Mortality and Morbidity) morbidity (0.750) prediction was similar. Although there was no improvement in prediction with a multidimensional VAS, there was a significant improvement in the discrimination of prediction after feedback (preoperative, 0.895; postoperative, 0.918). Awareness of different ways a VAS is scored is important when designing and interpreting studies. Clinical assessment of major complications by the surgeon was initially comparable to the prediction of the POSSUM morbidity score and improved significantly following the presentation of clinically relevant feedback. © The Author(s) 2016.
Analysis, Simulation and Prediction of Cosmetic Defects on Automotive External Panel
NASA Astrophysics Data System (ADS)
Le Port, A.; Thuillier, S.; Borot, C.; Charbonneaux, J.
2011-08-01
The first feeling of quality for a vehicle is linked to its perfect appearance. This has a major impact on the reputation of a car manufacturer. Cosmetic defects are thus more and more taken into account in the process design. Qualifying a part as good or bad from the cosmetic point of view is mainly subjective: the part aspect is considered acceptable if no defect is visible on the vehicle by the final customer. Cosmetic defects that appear during sheet metal forming are checked by visual inspection in light inspection rooms, stoning, or with optical or mechanical sensors or feelers. A lack of cosmetic defect prediction before part production leads to the need for corrective actions, production delays and generates additional costs. This paper first explores the objective description of what cosmetic defects are on a stamped part and where they come from. It then investigates the capability of software to predict these defects, and suggests the use of a cosmetic defects analysis tool developed within PAM-STAMP 2G for its qualitative and quantitative prediction.
Nilchian, Firoozeh; Shakibaei, Fereshteh; Jarah, Zeinab Taghi
2017-03-01
This study was aimed to evaluate the impact of visual pedagogy in dental check-ups and preventive practices among children with autism aged 6-12. In this randomized double-blind clinical trial, the cooperation of 40 children with autism age 6-12. The selected children were equally divided into two groups of case and control (n = 20). The obtained data were analyzed by statistical tests, including Chi square and independent t test. The results of Cochran showed a significant increase in children's cooperation with regard to fluoride therapy in the case group by repeating the visit and training sessions (p ≤ 0.001). The findings of this study demonstrated, visual pedagogy was merely effective in the case of fluoride therapy in the case group.
Chambert, Thierry; Rotella, Jay J; Higgs, Megan D
2014-01-01
The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in ecological studies. We demonstrate the application of this method on analyses dealing with the question of individual reproductive heterogeneity in a population of Antarctic pinnipeds. PMID:24834335
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Morita, Shigemichi; Takahashi, Toshiya; Yoshida, Yasushi; Yokota, Naohisa
2016-04-01
Hydroxychloroquine (HCQ) is an effective treatment for patients with cutaneous lupus erythematosus (CLE) or systemic lupus erythematosus (SLE) and has been used for these patients in more than 70 nations. However, in Japan, HCQ has not been approved for CLE or SLE. To establish an appropriate therapeutic regimen and to clarify the pharmacokinetics (PK) of HCQ in Japanese patients with CLE with or without SLE (CLE/SLE), a population pharmacokinetic (PopPK) analysis was performed. In a clinical study of Japanese patients with a diagnosis of CLE irrespective of the presence of SLE, blood and plasma drug concentration-time data receiving multiple oral doses of HCQ sulfate (200-400 mg daily) were analyzed using nonlinear mixed-effects model software. The blood and plasma concentrations of HCQ were analyzed using a high-performance liquid chromatography tandem mass spectrometry method. Model evaluation and validation were performed using goodness-of-fit (GOF) plots, visual predictive check, and a bootstrap. The PopPKs of HCQ in the blood and plasma of 90 Japanese patients with CLE/SLE were well described by a 1-compartment model with first-order absorption and absorption lag time. Body weight was a significant (P < 0.001) covariate of oral clearance of HCQ. The final model was assessed using GOF plots, a bootstrap, and visual predictive check, and this model was appropriate. Simulations based on the final model suggested that the recommended daily doses of HCQ sulfate (200-400 mg) based on the ideal body weight in Japanese patients with CLE/SLE were in the similar concentration ranges. The PopPK models derived from both blood and plasma HCQ concentrations of Japanese patients with CLE/SLE were developed and validated. Based on this study, the dosage regimens of HCQ sulfate for Japanese patients with CLE/SLE should be calculated using the individual ideal body weight.
Good health checks according to the general public; expectations and criteria: a focus group study.
Stol, Yrrah H; Asscher, Eva C A; Schermer, Maartje H N
2018-06-22
Health checks or health screenings identify (risk factors for) disease in people without a specific medical indication. So far, the perspective of (potential) health check users has remained underexposed in discussions about the ethics and regulation of health checks. In 2017, we conducted a qualitative study with lay people from the Netherlands (four focus groups). We asked what participants consider characteristics of good and bad health checks, and whether they saw a role for the Dutch government. Participants consider a good predictive value the most important characteristic of a good health check. Information before, during and after the test, knowledgeable and reliable providers, tests for treatable (risk factors for) disease, respect for privacy, no unnecessary health risks and accessibility are also mentioned as criteria for good health checks. Participants make many assumptions about health check offers. They assume health checks provide certainty about the presence or absence of disease, that health checks offer opportunities for health benefits and that the privacy of health check data is guaranteed. In their choice for provider and test they tend to rely more on heuristics than information. Participants trust physicians to put the interest of potential health check users first and expect the Dutch government to intervene if providers other than physicians failed to do so by offering tests with a low predictive value, or tests that may harm people, or by infringing the privacy of users. Assumptions of participants are not always justified, but they may influence the choice to participate. This is problematic because choices for checks with a low predictive value that do not provide health benefits may create uncertainty and may cause harm to health; an outcome diametrically opposite to the one intended. Also, this may impair the relationship of trust with physicians and the Dutch government. To further and protect autonomous choice and to maintain trust, we recommend the following measures to timely adjust false expectations: advertisements that give an accurate impression of health check offers, and the installation of a quality mark.
Posterior Predictive Checks for Conditional Independence between Response Time and Accuracy
ERIC Educational Resources Information Center
Bolsinova, Maria; Tijmstra, Jesper
2016-01-01
Conditional independence (CI) between response time and response accuracy is a fundamental assumption of many joint models for time and accuracy used in educational measurement. In this study, posterior predictive checks (PPCs) are proposed for testing this assumption. These PPCs are based on three discrepancy measures reflecting different…
40 CFR 63.163 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... handling polymerizing monomers; (B) 2,000 parts per million or greater for pumps in food/medical service... visual inspection each calendar week for indications of liquids dripping from the pump seal. If there are... pump is checked by visual inspection each calendar week for indications of liquids dripping from the...
Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F
2015-07-01
Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. © 2015 The Fisheries Society of the British Isles.
A perceptual space of local image statistics.
Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M
2015-12-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.
A perceptual space of local image statistics
Victor, Jonathan D.; Thengone, Daniel J.; Rizvi, Syed M.; Conte, Mary M.
2015-01-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4 min. In sum, local image statistics forms a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. PMID:26130606
Hashmani, Nauman; Hashmani, Sharif; Ramesh, Priyanka; Ahmed, Junaid; Kumar, Jaish; Kumar, Arun; Jamali, Munira
2017-01-01
Purpose To compare visual outcomes and satisfaction among patients of photorefractive keratectomy (PRK; Wavelight EX 500, Alcon, Ft Worth, TX, USA) and femtosecond laser-assisted in situ keratomileusis (FAL; Wavelight FS 200 laser and Wavelight EX 500, Alcon, Ft Worth, TX, USA). Methods We performed a retrospective study of 409 eyes in 207 patients that underwent either PRK (n=90) or FAL (n=117) at the two centers of Hashmanis Hospital, Karachi, Pakistan. The included refractive outcomes were sphere diopters (D), cylinder D, and spherical equivalent D. Additionally, visual acuities were included. All of these were assessed preoperatively and at the one-month postoperative check-up. Patient satisfaction was gauged at the time of chart review by contacting the patient. Results When looking at the postoperative outcomes, we found all values to be statistically significant (p<0.001) with superior outcomes in the FAL cohort. Additionally, 90% and 15% of eyes achieved a postoperative uncorrected visual acuity (UCVA) of 20/20 in FAL and PRK, respectively. Furthermore, the efficacy indexes of the FAL and PRK arms were 1.00 and 0.82, respectively. The predictability of the procedures were 92.1% and 64.9%, respectively. Lastly, 93.3% of patients were satisfied with FAL and 95.7% with PRK. Conclusion Our study shows superior visual outcomes in patients undergoing FAL. However, we found a higher satisfaction rate in those that underwent PRK, perhaps due to the higher cost of FAL. PMID:29119072
Patient-reported outcome assessment and objective evaluation of chemotherapy-induced alopecia.
Komen, Manon M C; van den Hurk, Corina J G; Nortier, Johan W R; van der Ploeg, T; Smorenburg, Carolien H; van der Hoeven, Jacobus J M
2018-04-01
Alopecia is one of the most distressing side effects of chemotherapy. Evaluating and comparing the efficacy of potential therapies to prevent chemotherapy-induced alopecia (CIA) has been complicated by the lack of a standardized measurement for hair loss. In this study we investigated the correlation between patient-reported outcome assessments and quantitative measurement with the hair check to assess CIA in clinical practice. Scalp cooling efficacy was evaluated by patients by World Health Organisation (WHO) of CIA, Visual Analogue Scale (VAS) and wig use. The Hair Check was used to determine the amount of hair (in mm 2 ) per unit of scalp skin area (in cm 2 ) (Hair Mass Index, HMI). CIA was also evaluated by doctors, nurses and hairdressers. Baseline HMI was not predictive for hair loss. HMI declined throughout all chemotherapy cycles, which was not reflected by patient-reported measures. HMI correlated with patient-reported hair quantity before the start of the therapy, but not with WHO and/or VAS during therapy. Patient's opinion correlated moderately with the opinion of doctors and nurses (ρ = 0.50-0.56 respectively), but strongly with hair dressers (ρ = 0.70). The Hair check is suitable to quantify the amount of hair loss and could complement research on refining outcome of scalp cooling, but the patient's opinion should be considered as the best method to assess hair loss in clinical practice. Trialregister.nl NTR number 3082. Copyright © 2018 Elsevier Ltd. All rights reserved.
Waterway Equipment - Boat, Barge, Motor
2012-09-25
identification and condition (new or used). b. Pretest cleaning performed, if any. c. Species of fungus grown and inoculated on the cotton control... Pretest functional check results. c. Pretest visual inspection results. d. Posttest visual inspection results. e. Repairs or maintenance...information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for information on
Coaching Method in Teaching History of Visual Arts to Students
ERIC Educational Resources Information Center
Faizrakhmanova, Aigul; Averianova, Tatiana; Aitov, Valerie; Kudinova, Gulnara; Lebedeva, Inessa
2018-01-01
Coaching method is used in sports, business, psychology, and economics as a method to increase performance. The great potential of coaching also expands its application in education, namely in teaching History of Visual Arts. The author identifies the basic stages of coaching: goal setting; reality check; courses of action and will to act. The…
Madrasi, Kumpal; Chaturvedula, Ayyappa; Haberer, Jessica E; Sale, Mark; Fossler, Michael J; Bangsberg, David; Baeten, Jared M; Celum, Connie; Hendrix, Craig W
2017-05-01
Adherence is a major factor in the effectiveness of preexposure prophylaxis (PrEP) for HIV prevention. Modeling patterns of adherence helps to identify influential covariates of different types of adherence as well as to enable clinical trial simulation so that appropriate interventions can be developed. We developed a Markov mixed-effects model to understand the covariates influencing adherence patterns to daily oral PrEP. Electronic adherence records (date and time of medication bottle cap opening) from the Partners PrEP ancillary adherence study with a total of 1147 subjects were used. This study included once-daily dosing regimens of placebo, oral tenofovir disoproxil fumarate (TDF), and TDF in combination with emtricitabine (FTC), administered to HIV-uninfected members of serodiscordant couples. One-coin and first- to third-order Markov models were fit to the data using NONMEM ® 7.2. Model selection criteria included objective function value (OFV), Akaike information criterion (AIC), visual predictive checks, and posterior predictive checks. Covariates were included based on forward addition (α = 0.05) and backward elimination (α = 0.001). Markov models better described the data than 1-coin models. A third-order Markov model gave the lowest OFV and AIC, but the simpler first-order model was used for covariate model building because no additional benefit on prediction of target measures was observed for higher-order models. Female sex and older age had a positive impact on adherence, whereas Sundays, sexual abstinence, and sex with a partner other than the study partner had a negative impact on adherence. Our findings suggest adherence interventions should consider the role of these factors. © 2016, The American College of Clinical Pharmacology.
ERIC Educational Resources Information Center
Hoijtink, Herbert; Molenaar, Ivo W.
1997-01-01
This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)
Wang, D-D; Lu, J-M; Li, Q; Li, Z-P
2018-05-15
Different population pharmacokinetics (PPK) models of tacrolimus have been established in various populations. However, the tacrolimus PPK model in paediatric systemic lupus erythematosus (PSLE) is still undefined. This study aimed to establish the tacrolimus PPK model in Chinese PSLE. A total of nineteen Chinese patients with PSLE from real-world study were characterized with nonlinear mixed-effects modelling (NONMEM). The impact of demographic features, biological characteristics, and concomitant medications was evaluated. Model validation was assessed by bootstrap and prediction-corrected visual predictive check (VPC). A one-compartment model with first-order absorption and elimination was determined to be the most suitable model in PSLE. The typical values of apparent oral clearance (CL/F) and the apparent volume of distribution (V/F) in the final model were 2.05 L/h and 309 L, respectively. Methylprednisolone and simvastatin were included as significant. The first validated tacrolimus PPK model in patients with PSLE is presented. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Steed, Chad A; Pullum, Laura L
Compartmental models in epidemiology are widely used as a means to model disease spread mechanisms and understand how one can best control the disease in case an outbreak of a widespread epidemic occurs. However, a significant challenge within the community is in the development of approaches that can be used to rigorously verify and validate these models. In this paper, we present an approach to rigorously examine and verify the behavioral properties of compartmen- tal epidemiological models under several common modeling scenarios including birth/death rates and multi-host/pathogen species. Using metamorphic testing, a novel visualization tool and model checking, we buildmore » a workflow that provides insights into the functionality of compartmental epidemiological models. Our initial results indicate that metamorphic testing can be used to verify the implementation of these models and provide insights into special conditions where these mathematical models may fail. The visualization front-end allows the end-user to scan through a variety of parameters commonly used in these models to elucidate the conditions under which an epidemic can occur. Further, specifying these models using a process algebra allows one to automatically construct behavioral properties that can be rigorously verified using model checking. Taken together, our approach allows for detecting implementation errors as well as handling conditions under which compartmental epidemiological models may fail to provide insights into disease spread dynamics.« less
Ichikawa, Daisuke; Saito, Toki; Ujita, Waka; Oyama, Hiroshi
2016-12-01
Our purpose was to develop a new machine-learning approach (a virtual health check-up) toward identification of those at high risk of hyperuricemia. Applying the system to general health check-ups is expected to reduce medical costs compared with administering an additional test. Data were collected during annual health check-ups performed in Japan between 2011 and 2013 (inclusive). We prepared training and test datasets from the health check-up data to build prediction models; these were composed of 43,524 and 17,789 persons, respectively. Gradient-boosting decision tree (GBDT), random forest (RF), and logistic regression (LR) approaches were trained using the training dataset and were then used to predict hyperuricemia in the test dataset. Undersampling was applied to build the prediction models to deal with the imbalanced class dataset. The results showed that the RF and GBDT approaches afforded the best performances in terms of sensitivity and specificity, respectively. The area under the curve (AUC) values of the models, which reflected the total discriminative ability of the classification, were 0.796 [95% confidence interval (CI): 0.766-0.825] for the GBDT, 0.784 [95% CI: 0.752-0.815] for the RF, and 0.785 [95% CI: 0.752-0.819] for the LR approaches. No significant differences were observed between pairs of each approach. Small changes occurred in the AUCs after applying undersampling to build the models. We developed a virtual health check-up that predicted the development of hyperuricemia using machine-learning methods. The GBDT, RF, and LR methods had similar predictive capability. Undersampling did not remarkably improve predictive power. Copyright © 2016 Elsevier Inc. All rights reserved.
1987-09-01
Visual Communication . Although this task is performed several times, the task is performed at different points during the mission. In addition, the...Perform visual communication Give thumbs-up signal when ready for takeoff; check lights on pri-fly B. Perform takeoff and Aircraft operating clear ship...FM c. Operate ICS 2. Perform visual communication 3. Operate IFF transponder B. Maintain mission and fuel logs C. Perform checklists 1. Perform AMCM
Bayesian model checking: A comparison of tests
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2018-06-01
Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.
Psychometric properties of the Body Checking Questionnaire in college women.
White, Emily K; Claudat, Kim; Jones, Sarah C; Barchard, Kimberly A; Warren, Cortney S
2015-03-01
While the Body Checking Questionnaire (BCQ; Reas et al., 2002) is the most commonly-used measure of body checking behaviors, findings on the factor structure in nonclinical samples are mixed. This study investigated the factor structure and psychometric properties of the BCQ among nonclinical college women. In Study 1 (n=326), an exploratory factor analysis indicated factors corresponding to (a) behavioral and (b) visual checking. In Study 2 (n=1013), a confirmatory factor analysis revealed adequate fit for these factors, better than the original or total score solutions. Scales based upon the two factors demonstrated good internal consistency, convergent validity with measures of eating pathology, and sensitivity for detecting at-risk eating pathology. Results suggest an alternate two-factor solution that differs from the original three-factor solution. Copyright © 2015. Published by Elsevier Ltd.
Wildberger, H
1984-10-31
The contrast evoked potentials (VEPs) to different check sizes were recorded in about 200 cases of discrete optic neuropathies (ON) of different origin. Differential light threshold (DLT) was tested with the computer perimeter OCTOPUS. Saturated and desaturated tests were applied to evaluate the degree of acquired color vision deficiency. Delayed VEP responses are not confined to optic neuritis (RBN) alone and the different latency times obtained from other ON are confluent. The delay may be due to demyelination, to an increasing dominance of paramacular VEP subcomponents or to an increasing dominance of the upper half-field responses. Recording with smaller check sizes has the advantage that discrete dysfunctions in the visual field (VF) center are more easily detected: a correlation between amplitudes and visual acuity is best in strabismic amblyopias, is less expressed in maculopathies of the retina and weak in ON. The absence or reduction of amplitudes to smaller check sizes, however, is an important indication of a disorder in the VF center of ON in an early or recovered stage. Acquired color vision defects of the tritan-like type are more confined to discrete ON, whereas the red/green type is reserved to more severe ON. The DLT of the VF center is reduced in a different, significant and non significant extent in discrete optic neuropathies and the correlation between DLT and visual acuity is weak. A careful numerical analysis is needed in types of discrete ON where the central DLT lies within normal statistical limits: a side difference of the DLT between the affected and the normal fellow eye is always present. Evaluation of visual fatigue effects and of the relative sensitivity loss of VF center and VF periphery may provide further diagnostic information.
Low-Density Parity-Check (LDPC) Codes Constructed from Protographs
NASA Astrophysics Data System (ADS)
Thorpe, J.
2003-08-01
We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.
46 CFR 160.176-13 - Approval Tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... thread count must be at least 400 N (90 lb.). (v) [Reserved] (w) Visual examination. One complete... check the quality of incoming lifejacket components and the production process. Test samples must come...
46 CFR 160.176-13 - Approval Tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... thread count must be at least 400 N (90 lb.). (v) [Reserved] (w) Visual examination. One complete... check the quality of incoming lifejacket components and the production process. Test samples must come...
46 CFR 160.176-13 - Approval Tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... thread count must be at least 400 N (90 lb.). (v) [Reserved] (w) Visual examination. One complete... check the quality of incoming lifejacket components and the production process. Test samples must come...
46 CFR 160.176-13 - Approval Tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... thread count must be at least 400 N (90 lb.). (v) [Reserved] (w) Visual examination. One complete... check the quality of incoming lifejacket components and the production process. Test samples must come...
... eye Scratches (abrasions) on the eye surface Severely dry eyes Severe allergic eye disease Various inflammatory disorders Wearing ... response Refraction test Slit-lamp examination Tests for dry eye Visual acuity Blood tests to check for inflammatory ...
1982-07-01
was scheduled for an end-of-phase assessment ( equivalent to the stage check for the control group on the sixth flight). If performance was to NATOPS...proficiency was demonstrated. The same procedure was used for B stage flight except that the phase check (fourth flight) was equivalent to the control ...experimental grouo did not differ from the control qroup on tasks requirinq visual cues as a primary reference for successful completion (e.g
Computational gestalts and perception thresholds.
Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel
2003-01-01
In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.
Limited sampling strategy models for estimating the AUC of gliclazide in Chinese healthy volunteers.
Huang, Ji-Han; Wang, Kun; Huang, Xiao-Hui; He, Ying-Chun; Li, Lu-Jin; Sheng, Yu-Cheng; Yang, Juan; Zheng, Qing-Shan
2013-06-01
The aim of this work is to reduce the cost of required sampling for the estimation of the area under the gliclazide plasma concentration versus time curve within 60 h (AUC0-60t ). The limited sampling strategy (LSS) models were established and validated by the multiple regression model within 4 or fewer gliclazide concentration values. Absolute prediction error (APE), root of mean square error (RMSE) and visual prediction check were used as criterion. The results of Jack-Knife validation showed that 10 (25.0 %) of the 40 LSS based on the regression analysis were not within an APE of 15 % using one concentration-time point. 90.2, 91.5 and 92.4 % of the 40 LSS models were capable of prediction using 2, 3 and 4 points, respectively. Limited sampling strategies were developed and validated for estimating AUC0-60t of gliclazide. This study indicates that the implementation of an 80 mg dosage regimen enabled accurate predictions of AUC0-60t by the LSS model. This study shows that 12, 6, 4, 2 h after administration are the key sampling times. The combination of (12, 2 h), (12, 8, 2 h) or (12, 8, 4, 2 h) can be chosen as sampling hours for predicting AUC0-60t in practical application according to requirement.
[Population pharmacokinetics applied to optimising cisplatin doses in cancer patients].
Ramón-López, A; Escudero-Ortiz, V; Carbonell, V; Pérez-Ruixo, J J; Valenzuela, B
2012-01-01
To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model's prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of 78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a priori prediction. The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatin dosing regimes accurately and precisely. Copyright © 2011 SEFH. Published by Elsevier Espana. All rights reserved.
Khomane, Kailas S; Bansal, Arvind K
2013-12-01
Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
40 CFR 51.360 - Waivers and compliance via diagnostic inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sale. (4) Repairs shall be appropriate to the cause of the test failure, and a visual check shall be... current Consumer Price Index may be obtained from the Emission Planning and Strategies Division, U.S...
Reinke, Wendy M.; Lewis-Palmer, Teri; Merrell, Kenneth
2008-01-01
School-based consultation typically focuses on individual student problems and on a small number of students rather than on changing the classroom system. The Classroom Check-up (CCU) was developed as a classwide consultation model to address the need for classroom level support while minimizing treatment integrity problems common to school-based consultation. The purpose of the study was to evaluate the effects of the CCU and Visual Performance Feedback on teacher and student behavior. Results indicated that implementation of the CCU plus Visual Performance Feedback increased teacher implementation of classroom management strategies, including increased use of praise, use of behavior specific praise, and decreased use of reprimands. Further, these changes in teacher behavior contributed to decreases in classroom disruptive behavior. The results are encouraging because they suggest that consultation at the classroom level can create meaningful teacher and student behavior change. PMID:19122805
Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya
2013-09-01
Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can implicitly strengthen automatic change detection from an early stage in a cross-sensory manner, at least in the vision to audition direction.
Vocks, Silja; Kosfelder, Joachim; Wucherer, Maike; Wächter, Alexandra
2008-07-01
The aim of the present study was to assess whether habitual body avoidance and body-checking behavior influences the decrease of negative emotions during body exposure. Twenty-one eating-disordered female participants completed the Body Image Avoidance Questionnaire and the Body Checking Questionnaire. On another day, a 40-min body exposure session was conducted under standardized conditions. Every 10 min, negative emotions were assessed. It was shown that the extent of decrease in negative emotions during the body exposure session could be predicted by a lower degree of body checking. Results indicate that habitual checking behavior seems to negatively influence the effect of body exposure. Therefore, an adaptation of body exposure to patients with a higher degree of body-checking behavior might be promising.
A visual programming environment for the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David
1988-01-01
The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.
van den Berg, Thomas J T P; Franssen, Luuk; Kruijt, Bastiaan; Coppens, Joris E
2011-08-01
The current paper describes the design and population testing of a flicker sensitivity assessment technique corresponding to the psychophysical approach for straylight measurement. The purpose is twofold: to check the subjects' capability to perform the straylight test and as a test for retinal integrity for other purposes. The test was implemented in the Oculus C-Quant straylight meter, using homemade software (MATLAB). The geometry of the visual field lay-out was identical, as was the subjects' 2AFC task. A comparable reliability criterion ("unc") was developed. Outcome measure was logTCS (temporal contrast sensitivity). The population test was performed in science fair settings on about 400 subjects. Moreover, 2 subjects underwent extensive tests to check whether optical defects, mimicked with trial lenses and scatter filters, affected the TCS outcome. Repeated measures standard deviation was 0.11 log units for the reference population. Normal values for logTCS were around 2 (threshold 1%) with some dependence on age (range 6 to 85 years). The test outcome did not change upon a tenfold (optical) deterioration in visual acuity or straylight. The test has adequate precision for checking a subject's capability to perform straylight assessment. The unc reliability criterion ensures sufficient precision, also for assessment of retinal sensitivity loss.
NASA Astrophysics Data System (ADS)
Crowe, Cassie; Lundgren, Britt; Grier, Catherine
2018-01-01
The Sloan Digital Sky Survey (SDSS) regularly publishes vast catalogs of quasars and other astronomical objects. Previously, the SDSS collaboration has used visual inspection to check quasar redshift validity and flag instances of broad absorption lines (BALs). This information helps researchers to easily single out the quasars with BAL properties and study their outflows and other intervening gas clouds. Due to the ever-growing number of new SDSS quasar observations, visual inspections are no longer possible using previous methods. Currently, BAL information is being determined entirely computationally, and the accuracy of that information is not precisely known. This project uses the Zooniverse citizen science platform to visually inspect quasar spectra for BAL properties, to check the accuracy of the current autonomous methods, and to flag multi-phase outflows and find candidates for in-falling gas into the quasar central engine. The layout and format of a Zooniverse project provides an easier way to inspect and record data on each spectrum and share the workload via crowdsourcing. Work done by the SDSS collaboration members is serving as a beta test for a public project upon the official release of the DR14 quasar catalog by SDSS.
NASA Astrophysics Data System (ADS)
Manzella, G. M. R.; Scoccimarro, E.; Pinardi, N.; Tonani, M.
2003-01-01
A "ship of opportunity" program was launched as part of the Mediterranean Forecasting System Pilot Project. During the operational period (September 1999 to May 2000), six tracks covered the Mediterranean from the northern to southern boundaries approximately every 15 days, while a long eastwest track from Haifa to Gibraltar was covered approximately every month. XBT data were collected, sub-sampled at 15 inflection points and transmitted through a satellite communication system to a regional data centre. It was found that this data transmission system has limitations in terms of quality of the temperature profiles and quantity of data successfully transmitted. At the end of the MFSPP operational period, a new strategy for data transmission and management was developed. First of all, VOS-XBT data are transmitted with full resolution. Secondly, a new data management system, called Near Real Time Quality Control for XBT (NRT.QC.XBT), was defined to produce a parallel stream of high quality XBT data for further scientific analysis. The procedure includes: (1) Position control; (2) Elimination of spikes; (3) Re-sampling at a 1 metre vertical interval; (4) Filtering; (5) General malfunctioning check; (6) Comparison with climatology (and distance from this in terms of standard deviations); (7) Visual check; and (8) Data consistency check. The first six steps of the new procedure are completely automated; they are also performed using a new climatology developed as part of the project. The visual checks are finally done with a free-market software that allows NRT final data assessment.
Cognitive tunneling: use of visual information under stress.
Dirkin, G R
1983-02-01
References to "tunnel vision" under stress are considered to describe a process of attentional, rather than visual, narrowing. The hypothesis of Easterbrook that the range of cue utilization is reduced under stress was tested with a primary task located in the visual periphery. High school volunteers performed a visual discrimination task with choice reaction time (RT) as the dependent variable. A 2 X 3 order of presentation by practice design, with repeated measures on the last factor, was employed. Two levels of stress, high and low, were operationalized by the subject's performing in the presence of an evaluative audience or alone. Pulse rate was employed as a manipulation check on arousal. The results partially supported the hypothesis that a peripherally visual primary task could be attended to under stress without decrement in performance.
Richter, Michael
2010-05-01
Two experiments assessed the moderating impact of task context on the relationship between reward and cardiovascular response. Randomly assigned to the cells of a 2 (task context: reward vs. demand) x 2 (reward value: low vs. high) between-persons design, participants performed either a memory task with an unclear performance standard (Experiment 1) or a visual scanning task with an unfixed performance standard (Experiment 2). Before performing the task--where participants could earn either a low or a high reward--participants responded to questions about either task reward or task demand. In accordance with the theoretical predictions derived from Wright's (1996) integrative model, reactivity of pre-ejection period increased with reward value if participants had rated aspects of task reward before performing the task. If they had rated task demand, pre-ejection period did not differ as a function of reward. Copyright 2010 Elsevier B.V. All rights reserved.
Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer
2015-10-01
A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.
Visual form predictions facilitate auditory processing at the N1.
Paris, Tim; Kim, Jeesun; Davis, Chris
2017-02-20
Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.
SeqTU: A web server for identification of bacterial transcription units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xin; Chou, Wen -Chi; Ma, Qin
A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less
SeqTU: A web server for identification of bacterial transcription units
Chen, Xin; Chou, Wen -Chi; Ma, Qin; ...
2017-03-07
A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less
ERIC Educational Resources Information Center
Kiesel, Andrea; Kunde, Wilfried; Pohl, Carsten; Berner, Michael P.; Hoffmann, Joachim
2009-01-01
Expertise in a certain stimulus domain enhances perceptual capabilities. In the present article, the authors investigate whether expertise improves perceptual processing to an extent that allows complex visual stimuli to bias behavior unconsciously. Expert chess players judged whether a target chess configuration entailed a checking configuration.…
Static Verification for Code Contracts
NASA Astrophysics Data System (ADS)
Fähndrich, Manuel
The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.
ERIC Educational Resources Information Center
Schilling, Tim
Thirty years ago a cashless society was predicted for the near future; paper currency and checks would be an antiquated symbol of the past. Consumers would embrace a new alternative for making payments: electronic money. But currency is still used for 87% of payments, mainly for "nickel and dime" purchases. And checks are the payment…
Model Diagnostics for Bayesian Networks
ERIC Educational Resources Information Center
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
Review of fluorescence guided surgery visualization and overlay techniques
Elliott, Jonathan T.; Dsouza, Alisha V.; Davis, Scott C.; Olson, Jonathan D.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.
2015-01-01
In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check. PMID:26504628
Automatic Rail Extraction and Celarance Check with a Point Cloud Captured by Mls in a Railway
NASA Astrophysics Data System (ADS)
Niina, Y.; Honma, R.; Honma, Y.; Kondo, K.; Tsuji, K.; Hiramatsu, T.; Oketani, E.
2018-05-01
Recently, MLS (Mobile Laser Scanning) has been successfully used in a road maintenance. In this paper, we present the application of MLS for the inspection of clearance along railway tracks of West Japan Railway Company. Point clouds around the track are captured by MLS mounted on a bogie and rail position can be determined by matching the shape of the ideal rail head with respect to the point cloud by ICP algorithm. A clearance check is executed automatically with virtual clearance model laid along the extracted rail. As a result of evaluation, the accuracy of extracting rail positions is less than 3 mm. With respect to the automatic clearance check, the objects inside the clearance and the ones related to a contact line is successfully detected by visual confirmation.
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to....7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.
Klarner, Hannes; Streck, Adam; Siebert, Heike
2017-03-01
The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration
NASA Astrophysics Data System (ADS)
Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola
In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.
Analyzing and Detecting Problems in Systems of Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.
2014-07-28
2009.12.1 2010.1.1 V N E -O p a 2009.9.1 2009.10.1 2009.11.1 2009.12.1 2010.1.1 Blue Bottle Coffee 2009.9.1 2009.10.1 2009.11.1 2009.12.1 2010.1.1 Blue...Bottle Coffee Golden Gate Park FarmerBrowns Little Skillet Blue Bottle Coffee We treat the check-ins in LBSN as a marked point process in time, where...minuscule, compared to significant differences ob - served for large β. 4.2 Predicting Venue attendance In this experiment, we predict the number of
Body checking behaviors in men.
Walker, D Catherine; Anderson, Drew A; Hildebrandt, Thomas
2009-06-01
Males have been facing increasing pressure from the media to attain a lean, muscular physique, and are at risk for body dissatisfaction, disturbed eating and exercise behaviors, and abuse of appearance- and performance-enhancing drugs (APEDs). The aim of the current study was to examine the relationship between body checking and mood, symptoms of muscle dysmorphia, importance of shape and weight, and APED use in undergraduate males. Body checking in males was correlated with weight and shape concern, symptoms of muscle dysmorphia, depression, negative affect, and APED use. Body checking predicted APED use and uniquely accounted for the largest amount of variance in Muscle Dysmorphic Disorder Inventory (MDDI) scores (16%). Findings support the view that body checking is an important construct in male body image, muscle dysmorphia, and body change strategies and suggest a need for further research.
External Evaluation of Two Fluconazole Infant Population Pharmacokinetic Models
Hwang, Michael F.; Beechinor, Ryan J.; Wade, Kelly C.; Benjamin, Daniel K.; Smith, P. Brian; Hornik, Christoph P.; Capparelli, Edmund V.; Duara, Shahnaz; Kennedy, Kathleen A.; Cohen-Wolkowiez, Michael
2017-01-01
ABSTRACT Fluconazole is an antifungal agent used for the treatment of invasive candidiasis, a leading cause of morbidity and mortality in premature infants. Population pharmacokinetic (PK) models of fluconazole in infants have been previously published by Wade et al. (Antimicrob Agents Chemother 52:4043–4049, 2008, https://doi.org/10.1128/AAC.00569-08) and Momper et al. (Antimicrob Agents Chemother 60:5539–5545, 2016, https://doi.org/10.1128/AAC.00963-16). Here we report the results of the first external evaluation of the predictive performance of both models. We used patient-level data from both studies to externally evaluate both PK models. The predictive performance of each model was evaluated using the model prediction error (PE), mean prediction error (MPE), mean absolute prediction error (MAPE), prediction-corrected visual predictive check (pcVPC), and normalized prediction distribution errors (NPDE). The values of the parameters of each model were reestimated using both the external and merged data sets. When evaluated with the external data set, the model proposed by Wade et al. showed lower median PE, MPE, and MAPE (0.429 μg/ml, 41.9%, and 57.6%, respectively) than the model proposed by Momper et al. (2.45 μg/ml, 188%, and 195%, respectively). The values of the majority of reestimated parameters were within 20% of their respective original parameter values for all model evaluations. Our analysis determined that though both models are robust, the model proposed by Wade et al. had greater accuracy and precision than the model proposed by Momper et al., likely because it was derived from a patient population with a wider age range. This study highlights the importance of the external evaluation of infant population PK models. PMID:28893774
Marsot, Amélie; Michel, Fabrice; Chasseloup, Estelle; Paut, Olivier; Guilhaumou, Romain; Blin, Olivier
2017-10-01
An external evaluation of phenobarbital population pharmacokinetic model described by Marsot et al. was performed in pediatric intensive care unit. Model evaluation is an important issue for dose adjustment. This external evaluation should allow confirming the proposed dosage adaptation and extending these recommendations to the entire intensive care pediatric population. External evaluation of phenobarbital published population pharmacokinetic model of Marsot et al. was realized in a new retrospective dataset of 35 patients hospitalized in a pediatric intensive care unit. The published population pharmacokinetic model was implemented in nonmem 7.3. Predictive performance was assessed by quantifying bias and inaccuracy of model prediction. Normalized prediction distribution errors (NPDE) and visual predictive check (VPC) were also evaluated. A total of 35 infants were studied with a mean age of 33.5 weeks (range: 12 days-16 years) and a mean weight of 12.6 kg (range: 2.7-70.0 kg). The model predicted the observed phenobarbital concentrations with a reasonable bias and inaccuracy. The median prediction error was 3.03% (95% CI: -8.52 to 58.12%), and the median absolute prediction error was 26.20% (95% CI: 13.07-75.59%). No trends in NPDE and VPC were observed. The model previously proposed by Marsot et al. in neonates hospitalized in intensive care unit was externally validated for IV infusion administration. The model-based dosing regimen was extended in all pediatric intensive care unit to optimize treatment. Due to inter- and intravariability in pharmacokinetic model, this dosing regimen should be combined with therapeutic drug monitoring. © 2017 Société Française de Pharmacologie et de Thérapeutique.
Björnsson, Marcus A; Simonsson, Ulrika S H
2011-01-01
AIMS To describe pain intensity (PI) measured on a visual analogue scale (VAS) and dropout due to request for rescue medication after administration of naproxcinod, naproxen or placebo in 242 patients after wisdom tooth removal. METHODS Non-linear mixed effects modelling was used to describe the plasma concentrations of naproxen, either formed from naproxcinod or from naproxen itself, and their relationship to PI and dropout. Goodness of fit was assessed by simultaneous simulations of PI and dropout. RESULTS Baseline PI for the typical patient was 52.7 mm. The PI was influenced by placebo effects, using an exponential model, and by naproxen concentrations using a sigmoid Emax model. Typical maximal placebo effect was a decrease in PI by 20.2%, with an onset rate constant of 0.237 h−1. EC50 was 0.135 µmol l−1. A Weibull time-to-event model was used for the dropout, where the hazard was dependent on the predicted PI and by the PI at baseline. Since the dropout was not at random, it was necessary to include the simulated dropout in visual predictive checks (VPC) of PI. CONCLUSIONS This model describes the relationship between drug effects, PI and the likelihood of dropout after naproxcinod, naproxen and placebo administration. The model provides an opportunity to describe the effects of other doses or formulations, after dental extraction. VPC created by simultaneous simulations of PI and dropout provides a good way of assessing the goodness of fit when there is informative dropout. PMID:21272053
Murray, Jennifer; Williams, Brian; Hoskins, Gaylor; Skar, Silje; McGhee, John; Treweek, Shaun; Sniehotta, Falko F; Sheikh, Aziz; Brown, Gordon; Hagen, Suzanne; Cameron, Linda; Jones, Claire; Gauld, Dylan
2016-01-01
Visualisation techniques are used in a range of healthcare interventions. However, these frequently lack a coherent rationale or clear theoretical basis. This lack of definition and explicit targeting of the underlying mechanisms may impede the success of and evaluation of the intervention. We describe the theoretical development, deployment, and pilot evaluation, of a complex visually mediated behavioural intervention. The exemplar intervention focused on increasing physical activity among young people with asthma. We employed an explicit five-stage development model, which was actively supported by a consultative user group. The developmental stages involved establishing the theoretical basis, establishing a narrative structure, visual rendering, checking interpretation, and pilot testing. We conducted in-depth interviews and focus groups during early development and checking, followed by an online experiment for pilot testing. A total of 91 individuals, including young people with asthma, parents, teachers, and health professionals, were involved in development and testing. Our final intervention consisted of two components: (1) an interactive 3D computer animation to create intentions and (2) an action plan and volitional help sheet to promote the translation of intentions to behaviour. Theory was mediated throughout by visual and audio forms. The intervention was regarded as highly acceptable, engaging, and meaningful by all stakeholders. The perceived impact on asthma understanding and intentions was reported positively, with most individuals saying that the 3D computer animation had either clarified a range of issues or made them more real. Our five-stage model underpinned by extensive consultation worked well and is presented as a framework to support explicit decision-making for others developing theory informed visually mediated interventions. We have demonstrated the ability to develop theory-based visually mediated behavioural interventions. However, attention needs to be paid to the potential ambiguity associated with images and thus the concept of visual literacy among patients. Our revised model may be helpful as a guide to aid development, acceptability, and ultimately effectiveness.
Statistical Anomalies of Bitflips in SRAMs to Discriminate SBUs From MCUs
NASA Astrophysics Data System (ADS)
Clemente, Juan Antonio; Franco, Francisco J.; Villa, Francesca; Baylac, Maud; Rey, Solenne; Mecha, Hortensia; Agapito, Juan A.; Puchner, Helmut; Hubert, Guillaume; Velazco, Raoul
2016-08-01
Recently, the occurrence of multiple events in static tests has been investigated by checking the statistical distribution of the difference between the addresses of the words containing bitflips. That method has been successfully applied to Field Programmable Gate Arrays (FPGAs) and the original authors indicate that it is also valid for SRAMs. This paper presents a modified methodology that is based on checking the XORed addresses with bitflips, rather than on the difference. Irradiation tests on CMOS 130 & 90 nm SRAMs with 14-MeV neutrons have been performed to validate this methodology. Results in high-altitude environments are also presented and cross-checked with theoretical predictions. In addition, this methodology has also been used to detect modifications in the organization of said memories. Theoretical predictions have been validated with actual data provided by the manufacturer.
Stereo chromatic contrast sensitivity model to blue-yellow gratings.
Yang, Jiachen; Lin, Yancong; Liu, Yun
2016-03-07
As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.
40 CFR 63.9631 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintain a bag leak detection system to monitor the relative change in particulate matter loadings... of ensuring the proper functioning of removal mechanisms. (3) Check the compressed air supply of... interior for air leaks. (8) Inspect fans for wear, material buildup, and corrosion through quarterly visual...
Guidelines and Recommendations for New Hampshire Public Elementary Schools, Kindergarten--Grade 6.
ERIC Educational Resources Information Center
New Hampshire State Dept. of Education, Concord.
Sections concerned with facilities deal with library services, equipment and facilities for science and physical education, and the school building. Recommendations for library service include check lists and standards pertaining to objectives, basic equipment and supplies, individual classroom collections, audio visual collections, library…
Tong, Seng Fah; Low, Wah Yun; Ismail, Shaiful Bahari; Trevena, Lyndal; Wilcock, Simon
2013-12-01
Perceptions of how receptive men are to sexual health inquiry may affect Malaysian primary care doctors' decisions to initiate such a discussion with their male patients. This paper quantifies the impact of doctors' perceptions of men's receptivity on male sexual health inquiry. Sexual health inquiry is one of the five areas in a study on determinants of offering preventive health checks to Malaysian men. This was a cross sectional survey among primary care doctors in Malaysia. The questionnaire was based on an empirical model defining the determinants of primary care doctors' intention to offer health checks. The questionnaire measured: (I) perceived receptivity of male patients to sexual health inquiry; (II) doctors' attitudes towards the importance of sexual health inquiries; (III) perceived competence and, (IV) perceived external barriers. The outcome variable was doctors' intention in asking about sexual dysfunction in three different contexts (minor complaints visits, follow-up visits and health checks visits). All items were measured on the Likert scale of 1 to 5 (strongly disagree/unlikely to strongly agree/likely) and internally validated. 198 doctors participated (response rate 70.4%). Female primary care doctors constituted 54.5%. 78% of respondents were unlikely to ask about sexual dysfunction in visits for minor complaints to their male patients, 43.6% in follow up visits and 28.2% in health checks visits. In ordinal regression analysis, positive perception of men's receptivity to sexual health inquiry significantly predicted the doctors' intention in asking sexual dysfunction in all three contexts; i.e., minor complaints visits (P=0.013), follow-up visits (P<0.0001) and health checks visits (P=0.002). Perceived competence in sexual health inquiry predicted their intention in the follow-up visits (P=0.006) and health checks visits (P<0.001). Lower cost to health checks only predicted their intention in the follow-up visits (P=0.010). Whilst sexual health inquiry should be initiated in an appropriate context, 'perceived receptivity' to sexual health inquiry significantly affected doctors' intention in initiating sexual health inquiry to their male patients. Malaysian men's health may be substantially improved by strategies that assist doctors to identify patient 'receptivity'.
Predictive and postdictive mechanisms jointly contribute to visual awareness.
Soga, Ryosuke; Akaishi, Rei; Sakai, Katsuyuki
2009-09-01
One of the fundamental issues in visual awareness is how we are able to perceive the scene in front of our eyes on time despite the delay in processing visual information. The prediction theory postulates that our visual system predicts the future to compensate for such delays. On the other hand, the postdiction theory postulates that our visual awareness is inevitably a delayed product. In the present study we used flash-lag paradigms in motion and color domains and examined how the perception of visual information at the time of flash is influenced by prior and subsequent visual events. We found that both types of event additively influence the perception of the present visual image, suggesting that our visual awareness results from joint contribution of predictive and postdictive mechanisms.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
Code of Federal Regulations, 2013 CFR
2013-01-01
... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present. Survey...
Code of Federal Regulations, 2011 CFR
2011-01-01
... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present. Survey...
Code of Federal Regulations, 2014 CFR
2014-01-01
... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present. Survey...
Code of Federal Regulations, 2012 CFR
2012-01-01
... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present. Survey...
Code of Federal Regulations, 2010 CFR
2010-01-01
... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present. Survey...
10 CFR 36.61 - Inspection and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for radioactive contamination in pool water required by § 36.59(b) using a radiation check source, if... emergency source return control required by § 36.31(c). (7) Leak-tightness of systems through which pool water circulates (visual inspection). (8) Operability of the heat and smoke detectors and extinguisher...
ERIC Educational Resources Information Center
Langstaff, Nancy
This book, intended for use by inservice teachers, preservice teachers, and parents interested in open classrooms, contains three chapters. "Beginning Reading in an Open Classroom" discusses language development, sight vocabulary, visual discrimination, auditory discrimination, directional concepts, small muscle control, and measurement of…
40 CFR 63.7740 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... a bag leak detection system according to the requirements in § 63.7741(b). (c) For each baghouse... the proper functioning of removal mechanisms. (3) Check the compressed air supply for pulse-jet... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks. (8...
Creating visual explanations improves learning.
Bobek, Eliza; Tversky, Barbara
2016-01-01
Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.
Can items used in 4-year-old well-child visits predict children's health and school outcomes?
Smithers, Lisa G; Chittleborough, Catherine R; Stocks, Nigel; Sawyer, Michael G; Lynch, John W
2014-08-01
To examine whether items comprising a preschool well-child check for use by family doctors in Australia with 4-5-year old children predicts health and academic outcomes at 6-7 years. The well-child check includes mandatory (anthropometry, eye/vision, ear/hearing, dental, toileting, allergy problems) and non-mandatory (processed food consumption, low physical activity, motor, behaviour/mood problems) items. The predictive validity of mandatory and non-mandatory items measured at 4-5 years was examined using data from the Longitudinal Study of Australian Children. Outcomes at 6-7 years included overweight/obesity, asthma, health care/medication needs, general health, mental health problems, quality of life, teacher-reported mathematics and literacy ability (n = 2,280-2,787). Weight or height >90th centile at 4-5 years predicted overweight/obesity at 6-7 years with 60% sensitivity, 79% specificity and 40% positive predictive value (PPV). Mood/behaviour problems at 4-5 predicted mental health problems at 6-7 years with 86% sensitivity, 40% specificity and 8% PPV. Non-mandatory items improved the discrimination between children with and without mental health problems at 6-7 years (area under the receiver operating characteristic curve 0.75 compared with 0.69 for mandatory items only), but was weak for most outcomes. Items used in a well-child health check were moderate predictors of overweight/obesity and mental health problems at 6-7 years, but poor predictors of other health and academic outcomes.
Jonckheere Double Star Photometry – Part X: Hercules
NASA Astrophysics Data System (ADS)
Knapp, Wilfried
2018-04-01
If any double star discoverer is in urgent need of photometry then it is Jonckheere. There are over 3000 Jonckheere objects listed in the WDS catalog and a good part of them with magnitudes obviously far too bright. This report covers 28 of the in total 82 Jonckheere objects in the constellation Hercules selected by a quick WDS data check for being potentially listed with questionable magnitudes. At least one image per object was taken with V-filter to allow for visual magnitude measurement by differential photometry. All objects were additionally checked for common proper motion and two qualify indeed as potential CPM pairs.
RealSurf - A Tool for the Interactive Visualization of Mathematical Models
NASA Astrophysics Data System (ADS)
Stussak, Christian; Schenzel, Peter
For applications in fine art, architecture and engineering it is often important to visualize and to explore complex mathematical models. In former times there were static models of them collected in museums respectively in mathematical institutes. In order to check their properties for esthetical reasons it could be helpful to explore them interactively in 3D in real time. For the class of implicitly given algebraic surfaces we developed the tool RealSurf. Here we give an introduction to the program and some hints for the design of interesting surfaces.
Methods of scaling threshold color difference using printed samples
NASA Astrophysics Data System (ADS)
Huang, Min; Cui, Guihua; Liu, Haoxue; Luo, M. Ronnier
2012-01-01
A series of printed samples on substrate of semi-gloss paper and with the magnitude of threshold color difference were prepared for scaling the visual color difference and to evaluate the performance of different method. The probabilities of perceptibly was used to normalized to Z-score and different color differences were scaled to the Z-score. The visual color difference was got, and checked with the STRESS factor. The results indicated that only the scales have been changed but the relative scales between pairs in the data are preserved.
Beyond Compliance Checking: A Situated Approach to Visual Research Ethics.
Lenette, Caroline; Botfield, Jessica R; Boydell, Katherine; Haire, Bridget; Newman, Christy E; Zwi, Anthony B
2018-03-19
Visual research methods like photography and digital storytelling are increasingly used in health and social sciences research as participatory approaches that benefit participants, researchers, and audiences. Visual methods involve a number of additional ethical considerations such as using identifiable content and ownership of creative outputs. As such, ethics committees should use different assessment frameworks to consider research protocols with visual methods. Here, we outline the limitations of ethics committees in assessing projects with a visual focus and highlight the sparse knowledge on how researchers respond when they encounter ethical challenges in the practice of visual research. We propose a situated approach in relation to visual methodologies that encompasses a negotiated, flexible approach, given that ethical issues usually emerge in relation to the specific contexts of individual research projects. Drawing on available literature and two case studies, we identify and reflect on nuanced ethical implications in visual research, like tensions between aesthetics and research validity. The case studies highlight strategies developed in-situ to address the challenges two researchers encountered when using visual research methods, illustrating that some practice implications are not necessarily addressed using established ethical clearance procedures. A situated approach can ensure that visual research remains ethical, engaging, and rigorous.
Zheng, Jenny; van Schaick, Erno; Wu, Liviawati Sutjandra; Jacqmin, Philippe; Perez Ruixo, Juan Jose
2015-08-01
Osteoporosis is a chronic skeletal disease characterized by low bone strength resulting in increased fracture risk. New treatments for osteoporosis are still an unmet medical need because current available treatments have various limitations. Bone mineral density (BMD) is an important endpoint for evaluating new osteoporosis treatments; however, the BMD response is often slower and less profound than that of bone turnover markers (BTMs). If the relationship between BTMs and BMD can be quantified, the BMD response can be predicted by the changes in BTM after a single dose; therefore, a decision based on BMD changes can be informed early. We have applied a bone cycle model to a phase 2 denosumab dose-ranging study in osteopenic women to quantitatively link serum denosumab pharmacokinetics, BTMs, and lumbar spine (LS) BMD. The data from two phase 3 denosumab studies in patients with low bone mass, FREEDOM and DEFEND, were used for external validation. Both internal and external visual predictive checks demonstrated that the model was capable of predicting LS BMD at the denosumab regimen of 60 mg every 6 months. It has been demonstrated that the model, in combination with the changes in BTMs observed from a single-dose study in men, is capable of predicting long-term BMD outcomes (e.g., LS BMD response in men after 1 year of treatment) in different populations. We propose that this model can be used to inform drug development decisions for osteoporosis treatment early via evaluating LS BMD response when BTM data become available in early trials.
Before the N400: effects of lexical-semantic violations in visual cortex.
Dikker, Suzanne; Pylkkanen, Liina
2011-07-01
There exists an increasing body of research demonstrating that language processing is aided by context-based predictions. Recent findings suggest that the brain generates estimates about the likely physical appearance of upcoming words based on syntactic predictions: words that do not physically look like the expected syntactic category show increased amplitudes in the visual M100 component, the first salient MEG response to visual stimulation. This research asks whether violations of predictions based on lexical-semantic information might similarly generate early visual effects. In a picture-noun matching task, we found early visual effects for words that did not accurately describe the preceding pictures. These results demonstrate that, just like syntactic predictions, lexical-semantic predictions can affect early visual processing around ∼100ms, suggesting that the M100 response is not exclusively tuned to recognizing visual features relevant to syntactic category analysis. Rather, the brain might generate predictions about upcoming visual input whenever it can. However, visual effects of lexical-semantic violations only occurred when a single lexical item could be predicted. We argue that this may be due to the fact that in natural language processing, there is typically no straightforward mapping between lexical-semantic fields (e.g., flowers) and visual or auditory forms (e.g., tulip, rose, magnolia). For syntactic categories, in contrast, certain form features do reliably correlate with category membership. This difference may, in part, explain why certain syntactic effects typically occur much earlier than lexical-semantic effects. Copyright © 2011 Elsevier Inc. All rights reserved.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
Center for Advanced Modeling and Simulation Intern
Gertman, Vanessa
2017-12-13
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Center for Advanced Modeling and Simulation Intern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertman, Vanessa
Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with a unique identification number and maximum working pressure. (c) Post-delivery hose check. After... during the unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each... operator must actuate all emergency discharge control devices designed to close the internal self-closing...
Code of Federal Regulations, 2011 CFR
2011-10-01
... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...
Code of Federal Regulations, 2014 CFR
2014-10-01
... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...
Code of Federal Regulations, 2012 CFR
2012-10-01
... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...
Project CHECO Southeast Asia Report. Khmer Air Operations, Nov 70 - Nov 71
1972-06-15
such actions were small-scale engagements or skirmishes inv~ lving battalion-sized units or smaller. For this reason, few specific examples could be...ground commander. The FAC checked the grid on his own maps, and if there were no prohibited areas evident either on the maps or through visual recon
7 CFR 319.56-55 - Fresh pitaya from certain Central American countries.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (iii) The NPPO must maintain records of fruit fly detections for each trap, update the records each time the traps are checked, and make the records available to APHIS upon request. The records must be... exporting country must visually inspect a biometric sample of pitaya fruit, jointly approved by APHIS and...
7 CFR 319.56-55 - Fresh pitaya from certain Central American countries.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (iii) The NPPO must maintain records of fruit fly detections for each trap, update the records each time the traps are checked, and make the records available to APHIS upon request. The records must be... exporting country must visually inspect a biometric sample of pitaya fruit, jointly approved by APHIS and...
Predicting prescribed magnification.
Wolffsohn, James S; Eperjesi, Frank
2004-07-01
To determine the best method of estimating the optimum magnification needed by visually impaired patients. The magnification of low vision aids prescribed to 187 presbyopic visually impaired patients for reading newspapers or books was compared with logMAR distance and near acuity (at 25 cm) and magnification predicted by +4 D step near additions. Distance letter (r = 0.58) and near word visual acuity (r = 0.67) were strongly correlated to the prescribed magnification as were predictive formulae based on these measures. Prediction using the effect of proximal magnification resulted in a similar correlation (r = 0.67) and prediction was poorer in those who did not benefit from proximal magnification. The difference between prescribed and predicted magnification was found to be unrelated to the condition causing visual impairment (F = 2.57, p = 0.08), the central visual field status (F = 0.57, p = 0.57) and patient psychology (F = 0.44, p = 0.51), but was higher in those prescribed stand magnifiers than high near additions (F = 5.99, p < 0.01). The magnification necessary to perform normal visual tasks can be predicted in the majority of cases using visual acuity measures, although measuring the effect of proximal magnification demonstrates the effect of stronger glasses and identifies those in whom prescribed magnification is more difficult to predict.
Holz, Frank G; Korobelnik, Jean-François; Lanzetta, Paolo; Mitchell, Paul; Schmidt-Erfurth, Ursula; Wolf, Sebastian; Markabi, Sabri; Schmidli, Heinz; Weichselberger, Andreas
2010-01-01
Differences in treatment responses to ranibizumab injections observed within trials involving monthly (MARINA and ANCHOR studies) and quarterly (PIER study) treatment suggest that an individualized treatment regimen may be effective in neovascular age-related macular degeneration. In the present study, a drug and disease model was used to evaluate the impact of an individualized, flexible treatment regimen on disease progression. For visual acuity (VA), a model was developed on the 12-month data from ANCHOR, MARINA, and PIER. Data from untreated patients were used to model patient-specific disease progression in terms of VA loss. Data from treated patients from the period after the three initial injections were used to model the effect of predicted ranibizumab vitreous concentration on VA loss. The model was checked by comparing simulations of VA outcomes after monthly and quarterly injections during this period with trial data. A flexible VA-guided regimen (after the three initial injections) in which treatment is initiated by loss of >5 letters from best previously observed VA scores was simulated. Simulated monthly and quarterly VA-guided regimens showed good agreement with trial data. Simulation of VA-driven individualized treatment suggests that this regimen, on average, sustains the initial gains in VA seen in clinical trials at month 3. The model predicted that, on average, to maintain initial VA gains, an estimated 5.1 ranibizumab injections are needed during the 9 months after the three initial monthly injections, which amounts to a total of 8.1 injections during the first year. A flexible, individualized VA-guided regimen after the three initial injections may sustain vision improvement with ranibizumab and could improve cost-effectiveness and convenience and reduce drug administration-associated risks.
Transfer of contextual cueing in full-icon display remapping.
Shi, Zhuanghua; Zang, Xuelian; Jia, Lina; Geyer, Thomas; Müller, Hermann J
2013-02-25
Invariant spatial context can expedite visual search, an effect that is known as contextual cueing (e.g., Chun & Jiang, 1998). However, disrupting learned display configurations abolishes the effect. In current touch-based mobile devices, such as the iPad, icons are shuffled and remapped when the display mode is changed. However, such remapping also disrupts the spatial relationships between icons. This may hamper usability. In the present study, we examined the transfer of contextual cueing in four different methods of display remapping: position-order invariant, global rotation, local invariant, and central invariant. We used full-icon landscape mode for training and both landscape and portrait modes for testing, to check whether the cueing transfers to portrait mode. The results showed transfer of contextual cueing but only with the local invariant and the central invariant remapping methods. We take the results to mean that the predictability of target locations is a crucial factor for the transfer of contextual cueing and thus icon remapping design for mobile devices.
Increasing Hand Washing Compliance With a Simple Visual Cue
Boyer, Brian T.; Menachemi, Nir; Huerta, Timothy R.
2014-01-01
We tested the efficacy of a simple, visual cue to increase hand washing with soap and water. Automated towel dispensers in 8 public bathrooms were set to present a towel either with or without activation by users. We set the 2 modes to operate alternately for 10 weeks. Wireless sensors were used to record entry into bathrooms. Towel and soap consumption rates were checked weekly. There were 97 351 hand-washing opportunities across all restrooms. Towel use was 22.6% higher (P = .05) and soap use was 13.3% higher (P = .003) when the dispenser presented the towel without user activation than when activation was required. Results showed that a visual cue can increase hand-washing compliance in public facilities. PMID:24228670
Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio
2011-12-01
The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.
Outage maintenance checks on large generator windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nindra, B.; Jeney, S.I.; Slobodinsky, Y.
In the present days of austerity, more constraints and pressures are being brought on the maintenance engineers to certify the generators for their reliability and life extension. The outages are shorter and intervals between the outages are becoming longer. The annual outages were very common when utilities had no regulatory constraints and also had standby capacities. Furthermore, due to lean and mean budgets, outage maintenance programs are being pursued more aggressively, so that longer interval outages can be achieved to ensure peak generator performance. This paper will discuss various visual checks, electrical tests and recommended fixes to achieve the abovemore » mentioned objectives, in case any deficiencies are found.« less
A novel cognitive intervention for compulsive checking: Targeting maladaptive beliefs about memory.
Alcolado, Gillian M; Radomsky, Adam S
2016-12-01
Compulsive checking is one of the most common symptoms of obsessive-compulsive disorder (OCD). Recently it has been proposed that those who check compulsively may believe their memory is poor, rather than having an actual memory impairment. The current study sought to develop and assess a brief cognitive intervention focused on improving maladaptive beliefs about memory, as they pertain to both checking symptoms and memory performance. Participants (N = 24) with a diagnosis of OCD and clinical levels of checking symptomatology were randomly assigned either to receive two weekly 1-hour therapy sessions or to self-monitor during a similar waitlist period. Time spent checking, checking symptoms, maladaptive beliefs about memory, and visuospatial memory were assessed both pre- and post-treatment/waitlist. Results showed that compared to the waitlist condition, individuals in the treatment condition displayed significant decreases in their maladaptive beliefs about memory and checking symptoms from pre- to post-intervention. They also exhibited increased recall performance on a measure of visuospatial memory. Changes in beliefs about memory were predictors of reduced post-intervention checking, but were not predictive of increased post-intervention memory scores. The lack of long term follow-up data and use of a waitlist control leave questions about the stability and specificity of the intervention. Findings provide preliminary evidence that strategies targeting beliefs about memory may be worthy of inclusion in cognitive-behavioural approaches to treating compulsive checking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variations in the organization and delivery of the 'NHS health check' in primary care.
Nicholas, Jennifer M; Burgess, Caroline; Dodhia, Hiten; Miller, Jane; Fuller, Frances; Cajeat, Eric; Gulliford, Martin C
2013-03-01
To evaluate the organization of the new cardiovascular risk assessment programme, NHS Health Checks, in general practices. All 99 general practices in two inner London boroughs were invited to participate in a cross-sectional survey by completing an online questionnaire. Data were analysed for 66/99 (67%) eligible practices. Training attended for delivering the Health Check included measurement methods (43%), delivering risk information (65%) and advising on lifestyle change (62%). The Framingham risk score was used by 66% of practices, the QRisk score by 12% and both by 8%. Advice given to patients identified as high risk was 'usually' brief at 26% of practices, advice was given verbally at 92% of practices, in written form at 74% and through interactive visual materials at 29%. Statins were 'usually' prescribed to high-risk patients by 34% of practices and antihypertensive drugs by 22%. The follow-up of high-risk patients was by means of a register with regular recall at 51% of general practices. There is considerable diversity in general practices' implementation of the NHS Health Check. A formal quality assurance process may be required in order to optimize the implementation of the NHS cardiovascular risk assessment programme.
The Role of Visual Processing Speed in Reading Speed Development
Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane
2013-01-01
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children. PMID:23593117
The role of visual processing speed in reading speed development.
Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane
2013-01-01
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.
Visplause: Visual Data Quality Assessment of Many Time Series Using Plausibility Checks.
Arbesser, Clemens; Spechtenhauser, Florian; Muhlbacher, Thomas; Piringer, Harald
2017-01-01
Trends like decentralized energy production lead to an exploding number of time series from sensors and other sources that need to be assessed regarding their data quality (DQ). While the identification of DQ problems for such routinely collected data is typically based on existing automated plausibility checks, an efficient inspection and validation of check results for hundreds or thousands of time series is challenging. The main contribution of this paper is the validated design of Visplause, a system to support an efficient inspection of DQ problems for many time series. The key idea of Visplause is to utilize meta-information concerning the semantics of both the time series and the plausibility checks for structuring and summarizing results of DQ checks in a flexible way. Linked views enable users to inspect anomalies in detail and to generate hypotheses about possible causes. The design of Visplause was guided by goals derived from a comprehensive task analysis with domain experts in the energy sector. We reflect on the design process by discussing design decisions at four stages and we identify lessons learned. We also report feedback from domain experts after using Visplause for a period of one month. This feedback suggests significant efficiency gains for DQ assessment, increased confidence in the DQ, and the applicability of Visplause to summarize indicators also outside the context of DQ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Like; Kang, Jian, E-mail: j.kang@sheffield.ac.uk; Schroth, Olaf
Large scale transportation projects can adversely affect the visual perception of environmental quality and require adequate visual impact assessment. In this study, we investigated the effects of the characteristics of the road project and the character of the existing landscape on the perceived visual impact of motorways, and developed a GIS-based prediction model based on the findings. An online survey using computer-visualised scenes of different motorway and landscape scenarios was carried out to obtain perception-based judgements on the visual impact. Motorway scenarios simulated included the baseline scenario without road, original motorway, motorways with timber noise barriers, transparent noise barriers andmore » tree screen; different landscape scenarios were created by changing land cover of buildings and trees in three distance zones. The landscape content of each scene was measured in GIS. The result shows that presence of a motorway especially with the timber barrier significantly decreases the visual quality of the view. The resulted visual impact tends to be lower where it is less visually pleasant with more buildings in the view, and can be slightly reduced by the visual absorption effect of the scattered trees between the motorway and the viewpoint. Based on the survey result, eleven predictors were identified for the visual impact prediction model which was applied in GIS to generate maps of visual impact of motorways in different scenarios. The proposed prediction model can be used to achieve efficient and reliable assessment of visual impact of motorways. - Highlights: • Motorways induce significant visual impact especially with timber noise barriers. • Visual impact is negatively correlated with amount of buildings in the view. • Visual impact is positively correlated with percentage of trees in the view. • Perception-based motorway visual impact prediction model using mapped predictors • Predicted visual impacts in different scenarios are mapped in GIS.« less
Methods of verifying net carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClung, M.
1996-10-01
Problems currently exist with using net carbon as an industrial standard to gauge smelter performance. First, throughout the industry there are a number of different methods used for determining net carbon. Also, until recently there has not been a viable method to cross check or predict change in net carbon. This inherently leads to differences and most likely inaccuracies when comparing performances of different plants using a net carbon number. Ravenswood uses specific methods when calculating the net carbon balance. The R and D Carbon, Ltd. formula developed by Verner Fisher, et al, to predict and cross check net carbonmore » based on baked carbon core analysis has been successfully used. Another method is used, as a cross check, which is based on the raw materials (cokes and pitch) usage as related to the metal produced. The combination of these methods gives a definitive representation of the carbon performance in the reduction cell. This report details the methods Ravenswood Aluminum uses and the information derived from it.« less
Model selection and assessment for multi-species occupancy models
Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.
2016-01-01
While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.
NASA Technical Reports Server (NTRS)
Hyle, C. T.; Lunde, A. N.
1972-01-01
The development of a computerized capability to depict views from the Apollo spacecraft during a lunar mission was undertaken before the Apollo 8 mission. Such views were considered valuable because of the difficulties in visualizing the complex geometry of the Earth, Moon, Sun, and spacecraft. Such visualization capability originally was desired for spacecraft attitude verification and contingency situations. Improvements were added for later Apollo flights, and results were adopted for several real time and preflight applications. Some specific applications have included crewmember and ground control personnel familiarization, nominal and contingency mission planning, definition of secondary attitude checks for all major thrust maneuvers, and preflight star selection for navigation and for platform alinement. The use of this computerized visualization capability should prove valuable for any future space program as an aid to understanding the geometrical relationships between the spacecraft and the celestial surroundings.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
1988-10-01
agent areas and paints, causing the paint to peel , dissolve, or nel who do the visual inspections or place operations discolor, which may indicate...operated by licensed personnel. (6) Ensure that all downrange personnel have had their protective masks fit checked with amyl acetate ( banana oil). (7
Vehicular traffic noise prediction using soft computing approach.
Singh, Daljeet; Nigam, S P; Agrawal, V P; Kumar, Maneek
2016-12-01
A new approach for the development of vehicular traffic noise prediction models is presented. Four different soft computing methods, namely, Generalized Linear Model, Decision Trees, Random Forests and Neural Networks, have been used to develop models to predict the hourly equivalent continuous sound pressure level, Leq, at different locations in the Patiala city in India. The input variables include the traffic volume per hour, percentage of heavy vehicles and average speed of vehicles. The performance of the four models is compared on the basis of performance criteria of coefficient of determination, mean square error and accuracy. 10-fold cross validation is done to check the stability of the Random Forest model, which gave the best results. A t-test is performed to check the fit of the model with the field data. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Therapeutic schedule in ambliopia--experience of Eye Clinic Cluj].
Vladuţiu, Cristina; Sevan, Simona; Popoviciu, Sarmisa
2009-01-01
To establlsh a protocol for the treatment of amblyopia and the methods used to maintain the results (visual acuity). Fifty children with amblyopia were treated in the Pediatric Ophthalmology Department of the Ophthalmological Cllnic in Cluj. Full time occlusion was used in all children. Pleoptic methods (Haidinger procedure, anti crowding fenomenon exercices and visual attention exercices) were done in the amblyopic children. The study analyzed the correlation of the visual acuity and the type of amblyopia (strabismic, anysometropic), the age of the patients and the age at the initiation of the treatment, the compliance. The visual acuity was followed up by check outs every 4-6 months. The study concluded that the treatment of choice in amblyopia is the full time occlusion. The partial occlusion and the optical penalization is reserved for the maintenance of the result (visual acuity) until the children reach the age of 7-8, when the sensitive period of visual development ends. The compliance of the children and parents is important. The hospitalization and the pleoptics used in a amlyopic children collectivity improve the children cooperation and the therapeutical results.
Xue, Ling; Holford, Nick; Ding, Xiao-Liang; Shen, Zhen-Ya; Huang, Chen-Rong; Zhang, Hua; Zhang, Jing-Jing; Guo, Zhe-Ning; Xie, Cheng; Zhou, Ling; Chen, Zhi-Yao; Liu, Lin-Sheng; Miao, Li-Yan
2017-04-01
The aims of this study are to apply a theory-based mechanistic model to describe the pharmacokinetics (PK) and pharmacodynamics (PD) of S- and R-warfarin. Clinical data were obtained from 264 patients. Total concentrations for S- and R-warfarin were measured by ultra-high performance liquid tandem mass spectrometry. Genotypes were measured using pyrosequencing. A sequential population PK parameter with data method was used to describe the international normalized ratio (INR) time course. Data were analyzed with NONMEM. Model evaluation was based on parameter plausibility and prediction-corrected visual predictive checks. Warfarin PK was described using a one-compartment model. CYP2C9 *1/*3 genotype had reduced clearance for S-warfarin, but increased clearance for R-warfarin. The in vitro parameters for the relationship between prothrombin complex activity (PCA) and INR were markedly different (A = 0.560, B = 0.386) from the theory-based values (A = 1, B = 0). There was a small difference between healthy subjects and patients. A sigmoid E max PD model inhibiting PCA synthesis as a function of S-warfarin concentration predicted INR. Small R-warfarin effects was described by competitive antagonism of S-warfarin inhibition. Patients with VKORC1 AA and CYP4F2 CC or CT genotypes had lower C50 for S-warfarin. A theory-based PKPD model describes warfarin concentrations and clinical response. Expected PK and PD genotype effects were confirmed. The role of predicted fat free mass with theory-based allometric scaling of PK parameters was identified. R-warfarin had a minor effect compared with S-warfarin on PCA synthesis. INR is predictable from 1/PCA in vivo. © 2016 The British Pharmacological Society.
Zhao, Wei; Kaguelidou, Florentia; Biran, Valérie; Zhang, Daolun; Allegaert, Karel; Capparelli, Edmund V; Holford, Nick; Kimura, Toshimi; Lo, Yoke-Lin; Peris, José-Esteban; Thomson, Alison; Anker, John N; Fakhoury, May; Jacqz-Aigrain, Evelyne
2013-01-01
Aims Vancomycin is one of the most evaluated antibiotics in neonates using modeling and simulation approaches. However no clear consensus on optimal dosing has been achieved. The objective of the present study was to perform an external evaluation of published models, in order to test their predictive performances in an independent dataset and to identify the possible study-related factors influencing the transferability of pharmacokinetic models to different clinical settings. Method Published neonatal vancomycin pharmacokinetic models were screened from the literature. The predictive performance of six models was evaluated using an independent dataset (112 concentrations from 78 neonates). The evaluation procedures used simulation-based diagnostics [visual predictive check (VPC) and normalized prediction distribution errors (NPDE)]. Results Differences in predictive performances of models for vancomycin pharmacokinetics in neonates were found. The mean of NPDE for six evaluated models were 1.35, −0.22, −0.36, 0.24, 0.66 and 0.48, respectively. These differences were explained, at least partly, by taking into account the method used to measure serum creatinine concentrations. The adult conversion factor of 1.3 (enzymatic to Jaffé) was tested with an improvement in the VPC and NPDE, but it still needs to be evaluated and validated in neonates. Differences were also identified between analytical methods for vancomycin. Conclusion The importance of analytical techniques for serum creatinine concentrations and vancomycin as predictors of vancomycin concentrations in neonates have been confirmed. Dosage individualization of vancomycin in neonates should consider not only patients' characteristics and clinical conditions, but also the methods used to measure serum creatinine and vancomycin. PMID:23148919
Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters
Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.
2014-01-01
The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.
NASA Technical Reports Server (NTRS)
Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Amador, Arthur V.; Spitale, Joseph N.
1993-01-01
Robotic spacecraft are controlled by sets of commands called 'sequences.' These sequences must be checked against mission constraints. Making our existing constraint checking program faster would enable new capabilities in our uplink process. Therefore, we are rewriting this program to run on a parallel computer. To do so, we had to determine how to run constraint-checking algorithms in parallel and create a new method of specifying spacecraft models and constraints. This new specification gives us a means of representing flight systems and their predicted response to commands which could be used in a variety of applications throughout the command process, particularly during anomaly or high-activity operations. This commonality could reduce operations cost and risk for future complex missions. Lessons learned in applying some parts of this system to the TOPEX/Poseidon mission will be described.
Kinesthesis can make an invisible hand visible
Dieter, Kevin C.; Hu, Bo; Knill, David C.; Blake, Randolph; Tadin, Duje
2014-01-01
Self-generated body movements have reliable visual consequences. This predictive association between vision and action likely underlies modulatory effects of action on visual processing. However, it is unknown if our own actions can have generative effects on visual perception. We asked whether, in total darkness, self-generated body movements are sufficient to evoke normally concomitant visual perceptions. Using a deceptive experimental design, we discovered that waving one’s own hand in front of one’s covered eyes can cause visual sensations of motion. Conjecturing that these visual sensations arise from multisensory connectivity, we showed that individuals with synesthesia experience substantially stronger kinesthesis-induced visual sensations. Finally, we found that the perceived vividness of kinesthesis-induced visual sensations predicted participants’ ability to smoothly eye-track self-generated hand movements in darkness, indicating that these sensations function like typical retinally-driven visual sensations. Evidently, even in the complete absence of external visual input, our brains predict visual consequences of our actions. PMID:24171930
Predictive and tempo-flexible synchronization to a visual metronome in monkeys.
Takeya, Ryuji; Kameda, Masashi; Patel, Aniruddh D; Tanaka, Masaki
2017-07-21
Predictive and tempo-flexible synchronization to an auditory beat is a fundamental component of human music. To date, only certain vocal learning species show this behaviour spontaneously. Prior research training macaques (vocal non-learners) to tap to an auditory or visual metronome found their movements to be largely reactive, not predictive. Does this reflect the lack of capacity for predictive synchronization in monkeys, or lack of motivation to exhibit this behaviour? To discriminate these possibilities, we trained monkeys to make synchronized eye movements to a visual metronome. We found that monkeys could generate predictive saccades synchronized to periodic visual stimuli when an immediate reward was given for every predictive movement. This behaviour generalized to novel tempi, and the monkeys could maintain the tempo internally. Furthermore, monkeys could flexibly switch from predictive to reactive saccades when a reward was given for each reactive response. In contrast, when humans were asked to make a sequence of reactive saccades to a visual metronome, they often unintentionally generated predictive movements. These results suggest that even vocal non-learners may have the capacity for predictive and tempo-flexible synchronization to a beat, but that only certain vocal learning species are intrinsically motivated to do it.
Guo, Chao; Wang, Zhenjie; He, Ping; Chen, Gong; Zheng, Xiaoying
2017-09-08
Visual impairment has become a global challenge, especially for developing countries. This study aims to estimate the prevalence, causes and social factors of visual impairment among Chinese adults. Data were from a nationally representative population-based cross-sectional study. The study population were 1,909,199 non-institutionalized adults aged 18 years and older in mainland China. In the survey, low vision and blindness were checked by ophthalmologists according to the WHO best-corrected visual acuity (BCVA) criteria. Population weighted numbers and prevalence of low vision and blindness with 95% confidence intervals (CIs) were estimated where appropriate. Multivariable logistic regression analysis was used to identify the social factors of visual impairment. The weighted prevalence of visual impairment was 17.17 (95% CI, 16.84-17.50) per 1000 Chinese adults aged 18 years and older. Cataract (57.35%), disorders of choroid and retina (9.80%), and disorders of cornea (6.49%) contributed more than 70 percent to the visual impairment in Chinese adults. Older age groups, young or middle-aged male adults, female elders, illiterate, rural dwellers, non-eastern residents, singles, unemployment, and from family with lower income were associated with visual impairment. More efforts are warranted to enhance treatment and rehabilitation among people with eye disorders to prevent visual impairment.
Wang, Zhenjie; He, Ping; Chen, Gong; Zheng, Xiaoying
2017-01-01
Visual impairment has become a global challenge, especially for developing countries. This study aims to estimate the prevalence, causes and social factors of visual impairment among Chinese adults. Data were from a nationally representative population-based cross-sectional study. The study population were 1,909,199 non-institutionalized adults aged 18 years and older in mainland China. In the survey, low vision and blindness were checked by ophthalmologists according to the WHO best-corrected visual acuity (BCVA) criteria. Population weighted numbers and prevalence of low vision and blindness with 95% confidence intervals (CIs) were estimated where appropriate. Multivariable logistic regression analysis was used to identify the social factors of visual impairment. The weighted prevalence of visual impairment was 17.17 (95% CI, 16.84–17.50) per 1000 Chinese adults aged 18 years and older. Cataract (57.35%), disorders of choroid and retina (9.80%), and disorders of cornea (6.49%) contributed more than 70 percent to the visual impairment in Chinese adults. Older age groups, young or middle-aged male adults, female elders, illiterate, rural dwellers, non-eastern residents, singles, unemployment, and from family with lower income were associated with visual impairment. More efforts are warranted to enhance treatment and rehabilitation among people with eye disorders to prevent visual impairment. PMID:28885571
Predictive modeling of addiction lapses in a mobile health application.
Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M; Isham, Andrew J; Judkins-Fisher, Chris L; Atwood, Amy K; Gustafson, David H
2014-01-01
The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-comprehensive health enhancement support system (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients' recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support. © 2013.
Predictive Modeling of Addiction Lapses in a Mobile Health Application
Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M.; Isham, Andrew; Judkins-Fisher, Chris L.; Atwood, Amy K.; Gustafson, David H.
2013-01-01
The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-Comprehensive Health Enhancement Support System (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients’ recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support. PMID:24035143
Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.
Chang, Acer Y C; Kanai, Ryota; Seth, Anil K
2015-01-01
Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.
Alvarez, George A.; Nakayama, Ken; Konkle, Talia
2016-01-01
Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing. PMID:27832600
Predictions penetrate perception: Converging insights from brain, behaviour and disorder
O’Callaghan, Claire; Kveraga, Kestutis; Shine, James M; Adams, Reginald B.; Bar, Moshe
2018-01-01
It is argued that during ongoing visual perception, the brain is generating top-down predictions to facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that these predictions are drawn from a diverse range of cognitive processes, in order to generate the richest and most informative prediction signals. This is consistent with a central role for cognitive penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a wide spectrum of domains—including object recognition, contextual associations, cognitive biases and affective state—that can directly influence visual perception. We combine these insights from the healthy brain with novel observations from neuropsychiatric disorders involving visual hallucinations, which highlight the consequences of imbalance between top-down signals and incoming sensory information. Together, these lines of evidence converge to indicate that predictive penetration, be it cognitive, social or emotional, should be considered a fundamental framework that supports visual perception. PMID:27222169
González, Jorge Ernesto; Radl, Analía; Romero, Ivonne; Barquinero, Joan Francesc; García, Omar; Di Giorgio, Marina
2016-12-01
Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Luo, Victor; Khanampornpan, Teerapat; Boehmer, Rudy A.; Kim, Rachel Y.
2011-01-01
This software graphically displays all pertinent information from a Predicted Events File (PEF) using the Java Swing framework, which allows for multi-platform support. The PEF is hard to weed through when looking for specific information and it is a desire for the MRO (Mars Reconn aissance Orbiter) Mission Planning & Sequencing Team (MPST) to have a different way to visualize the data. This tool will provide the team with a visual way of reviewing and error-checking the sequence product. The front end of the tool contains much of the aesthetically appealing material for viewing. The time stamp is displayed in the top left corner, and highlighted details are displayed in the bottom left corner. The time bar stretches along the top of the window, and the rest of the space is allotted for blocks and step functions. A preferences window is used to control the layout of the sections along with the ability to choose color and size of the blocks. Double-clicking on a block will show information contained within the block. Zooming into a certain level will graphically display that information as an overlay on the block itself. Other functions include using hotkeys to navigate, an option to jump to a specific time, enabling a vertical line, and double-clicking to zoom in/out. The back end involves a configuration file that allows a more experienced user to pre-define the structure of a block, a single event, or a step function. The individual will have to determine what information is important within each block and what actually defines the beginning and end of a block. This gives the user much more flexibility in terms of what the tool is searching for. In addition to the configurability, all the settings in the preferences window are saved in the configuration file as well
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
2002-11-14
KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A perform checks on Endeavour's oxygen flex hose fitting through manual inspection and using helium detectors. Visual inspection found a deformity in the flex line braid where it connects to rigid tubing. The entire flex hose assembly and bulkhead fitting were removed early today, and work is under way to complete the installation of a replacement.
Hovick, Shelly R; Bevers, Therese B; Vidrine, Jennifer Irvin; Kim, Stephanie; Dailey, Phokeng M; Jones, Lovell A; Peterson, Susan K
2017-03-01
Online cancer risk assessment tools, which provide personalized cancer information and recommendations based on personal data input by users, are a promising cancer education approach; however, few tools have been evaluated. A randomized controlled study was conducted to compare user impressions of one tool, Cancer Risk Check (CRC), to non-personalized educational information delivered online as series of self-advancing slides (the control). CRC users (N = 1452) rated the tool to be as interesting as the control (p > .05), but users were more likely to report that the information was difficult to understand and not applicable to them (p < .05). Information seeking and sharing also were lower among CRC users; thus, although impressions of CRC were favorable, it was not shown to be superior to existing approaches. We hypothesized CRC was less effective because it contained few visual and graphical elements; therefore, CRC was compared to a text-based control (online PDF file) post hoc. CRC users rated the information to be more interesting, less difficult to understand, and better able to hold their attention (p < .05). Post hoc results suggest the visual presentation of risk is critical to tool success.
Probability calculations for three-part mineral resource assessments
Ellefsen, Karl J.
2017-06-27
Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.
Lieberman, Amy M; Borovsky, Arielle; Mayberry, Rachel I
2018-01-01
Prediction during sign language comprehension may enable signers to integrate linguistic and non-linguistic information within the visual modality. In two eyetracking experiments, we investigated American Sign language (ASL) semantic prediction in deaf adults and children (aged 4-8 years). Participants viewed ASL sentences in a visual world paradigm in which the sentence-initial verb was either neutral or constrained relative to the sentence-final target noun. Adults and children made anticipatory looks to the target picture before the onset of the target noun in the constrained condition only, showing evidence for semantic prediction. Crucially, signers alternated gaze between the stimulus sign and the target picture only when the sentential object could be predicted from the verb. Signers therefore engage in prediction by optimizing visual attention between divided linguistic and referential signals. These patterns suggest that prediction is a modality-independent process, and theoretical implications are discussed.
Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery
NASA Astrophysics Data System (ADS)
Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla
2016-06-01
Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm). The comparison test is carried out in Bentley environment to check the best possible results obtained through operating different batch processes.
Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry
O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte
2013-01-01
Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
GlastCam: A Telemetry-Driven Spacecraft Visualization Tool
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Tsai, Dean
2009-01-01
Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts
Image Feature Types and Their Predictions of Aesthetic Preference and Naturalness
Ibarra, Frank F.; Kardan, Omid; Hunter, MaryCarol R.; Kotabe, Hiroki P.; Meyer, Francisco A. C.; Berman, Marc G.
2017-01-01
Previous research has investigated ways to quantify visual information of a scene in terms of a visual processing hierarchy, i.e., making sense of visual environment by segmentation and integration of elementary sensory input. Guided by this research, studies have developed categories for low-level visual features (e.g., edges, colors), high-level visual features (scene-level entities that convey semantic information such as objects), and how models of those features predict aesthetic preference and naturalness. For example, in Kardan et al. (2015a), 52 participants provided aesthetic preference and naturalness ratings, which are used in the current study, for 307 images of mixed natural and urban content. Kardan et al. (2015a) then developed a model using low-level features to predict aesthetic preference and naturalness and could do so with high accuracy. What has yet to be explored is the ability of higher-level visual features (e.g., horizon line position relative to viewer, geometry of building distribution relative to visual access) to predict aesthetic preference and naturalness of scenes, and whether higher-level features mediate some of the association between the low-level features and aesthetic preference or naturalness. In this study we investigated these relationships and found that low- and high- level features explain 68.4% of the variance in aesthetic preference ratings and 88.7% of the variance in naturalness ratings. Additionally, several high-level features mediated the relationship between the low-level visual features and aaesthetic preference. In a multiple mediation analysis, the high-level feature mediators accounted for over 50% of the variance in predicting aesthetic preference. These results show that high-level visual features play a prominent role predicting aesthetic preference, but do not completely eliminate the predictive power of the low-level visual features. These strong predictors provide powerful insights for future research relating to landscape and urban design with the aim of maximizing subjective well-being, which could lead to improved health outcomes on a larger scale. PMID:28503158
Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data
Zhaoping, Li; Zhe, Li
2015-01-01
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341
Development and testing of a passive check valve for cryogenic applications
NASA Astrophysics Data System (ADS)
Moore, B. D.; Maddocks, J. R.; Miller, F. K.
2014-11-01
Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.
Piha, Kustaa; Sumanen, Hilla; Lahelma, Eero; Rahkonen, Ossi
2017-04-01
There is contradictory evidence on the association between health check-ups and future morbidity. Among the general population, those with high socioeconomic position participate more often in health check-ups. The main aims of this study were to analyse if attendance to health check-ups are socioeconomically patterned and affect sickness absence over a 10-year follow-up. This register-based follow-up study included municipal employees of the City of Helsinki. 13 037 employees were invited to age-based health check-up during 2000-2002, with a 62% attendance rate. Education, occupational class and individual income were used to measure socioeconomic position. Medically certified sickness absence of 4 days or more was measured and controlled for at the baseline and used as an outcome over follow-up. The mean follow-up time was 7.5 years. Poisson regression was used. Men and employees with lower socioeconomic position participated more actively in health check-ups. Among women, non-attendance to health check-up predicted higher sickness absence during follow-up (relative risk =1.26, 95% CI 1.17 to 1.37) in the fully adjusted model. Health check-ups were not effective in reducing socioeconomic differences in sickness absence. Age-based health check-ups reduced subsequent sickness absence and should be promoted. Attendance to health check-ups should be as high as possible. Contextual factors need to be taken into account when applying the results in interventions in other settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol
NASA Technical Reports Server (NTRS)
Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.
2014-01-01
This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.
Problem solving of student with visual impairment related to mathematical literacy problem
NASA Astrophysics Data System (ADS)
Pratama, A. R.; Saputro, D. R. S.; Riyadi
2018-04-01
The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.
EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.
Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E
2016-03-01
This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.
Hirata, Y; Highstein, S M
2001-05-01
The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys before and during the gain change training. Our goal was to evaluate the site(s) of learning of the gain change. To aid in the evaluation, a model of the vertical optokinetic reflex (VOKR) and VVOR was constructed consisting of floccular and nonfloccular systems divided into subsystems based on the known anatomy and input and output parameters. Three kinds of input to floccular Purkinje cells via mossy fibers were explicitly described, namely vestibular, visual (retinal slip), and efference copy of eye movement. The characteristics of each subsystem (gain and phase) were identified at different VOR gains by reconstructing single-unit activity of Purkinje cells during VOKR and VVOR with multiple linear regression models consisting of sensory input and motor output signals. Model adequacy was checked by evaluating the residual following the regressions and by predicting Purkinje cells' activity during visual-vestibular mismatch paradigms. As a result, parallel changes in identified characteristics with VVOR adaptation were found in the prefloccular/floccular subsystem that conveys vestibular signals and in the nonfloccular subsystem that conveys vestibular signals, while no change was found in other subsystems, namely prefloccular/floccular subsystems conveying efference copy or visual signals, nonfloccular subsystem conveying visual signals, and postfloccular subsystem transforming Purkinje cell activity to eye movements. The result suggests multiple sites for VVOR motor learning including both flocculus and nonflocculus pathways. The gain change in the nonfloccular vestibular subsystem was in the correct direction to cause VOR gain adaptation while the change in the prefloccular/floccular vestibular subsystem was incorrect (anti-compensatory). This apparent incorrect directional change might serve to prevent instability of the VOR caused by positive feedback via the efference copy pathway.
Orbital Signature Analyzer (OSA): A spacecraft health/safety monitoring and analysis tool
NASA Technical Reports Server (NTRS)
Weaver, Steven; Degeorges, Charles; Bush, Joy; Shendock, Robert; Mandl, Daniel
1993-01-01
Fixed or static limit sensing is employed in control centers to ensure that spacecraft parameters remain within a nominal range. However, many critical parameters, such as power system telemetry, are time-varying and, as such, their 'nominal' range is necessarily time-varying as well. Predicted data, manual limits checking, and widened limit-checking ranges are often employed in an attempt to monitor these parameters without generating excessive limits violations. Generating predicted data and manual limits checking are both resource intensive, while broadening limit ranges for time-varying parameters is clearly inadequate to detect all but catastrophic problems. OSA provides a low-cost solution by using analytically selected data as a reference upon which to base its limits. These limits are always defined relative to the time-varying reference data, rather than as fixed upper and lower limits. In effect, OSA provides individual limits tailored to each value throughout all the data. A side benefit of using relative limits is that they automatically adjust to new reference data. In addition, OSA provides a wealth of analytical by-products in its execution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, M; Schmidt, M; Knutson, N
Purpose: Physics second-checks for external beam radiation therapy are performed, in-part, to verify that the machine parameters in the Record-and-Verify (R&V) system that will ultimately be sent to the LINAC exactly match the values initially calculated by the Treatment Planning System (TPS). While performing the second-check, a large portion of the physicists’ time is spent navigating and arranging display windows to locate and compare the relevant numerical values (MLC position, collimator rotation, field size, MU, etc.). Here, we describe the development of a software tool that guides the physicist by aggregating and succinctly displaying machine parameter data relevant to themore » physics second-check process. Methods: A data retrieval software tool was developed using Python to aggregate data and generate a list of machine parameters that are commonly verified during the physics second-check process. This software tool imported values from (i) the TPS RT Plan DICOM file and (ii) the MOSAIQ (R&V) Structured Query Language (SQL) database. The machine parameters aggregated for this study included: MLC positions, X&Y jaw positions, collimator rotation, gantry rotation, MU, dose rate, wedges and accessories, cumulative dose, energy, machine name, couch angle, and more. Results: A GUI interface was developed to generate a side-by-side display of the aggregated machine parameter values for each field, and presented to the physicist for direct visual comparison. This software tool was tested for 3D conformal, static IMRT, sliding window IMRT, and VMAT treatment plans. Conclusion: This software tool facilitated the data collection process needed in order for the physicist to conduct a second-check, thus yielding an optimized second-check workflow that was both more user friendly and time-efficient. Utilizing this software tool, the physicist was able to spend less time searching through the TPS PDF plan document and the R&V system and focus the second-check efforts on assessing the patient-specific plan-quality.« less
Gonçalves, Luciana Lofego; Farias, Alberto Queiroz; Gonçalves, Patrícia Lofego; D’Amico, Elbio Antonio; Carrilho, Flair José
2006-01-01
Ophthalmological complications with interferon therapy are usually mild and reversible, not requiring the withdrawal of the treatment. We report a case of a patient who had visual loss probably associated with interferon therapy. Chronic hepatitis C virus infection (genotype 1a) was diagnosed in a 33-year old asymptomatic man. His past medical history was unremarkable and previous routine ophthalmologic check-up was normal. Pegylated interferon alpha and ribavirin were started. Three weeks later he reported painless reduction of vision. Ophthalmologic examination showed extensive intraretinal hemorrhages and cotton-wool spots, associated with inferior branch retinal vein thrombosis. Antiviral therapy was immediately discontinued, but one year later he persists with severely decreased visual acuity. This case illustrates the possibility of unpredictable and severe complications during pegylated interferon therapy. PMID:16874884
Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary
2013-01-16
Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.
Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary
2013-01-01
Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347
ERIC Educational Resources Information Center
Tam, Cynthia; Wells, David
2009-01-01
Visual-cognitive loads influence the effectiveness of word prediction technology. Adjusting parameters of word prediction programs can lessen visual-cognitive loads. This study evaluated the benefits of WordQ word prediction software for users' performance when the prediction window was moved to a personal digital assistant (PDA) device placed at…
[Instruments for quantitative methods of nursing research].
Vellone, E
2000-01-01
Instruments for quantitative nursing research are a mean to objectify and measure a variable or a phenomenon in the scientific research. There are direct instruments to measure concrete variables and indirect instruments to measure abstract concepts (Burns, Grove, 1997). Indirect instruments measure the attributes by which a concept is made of. Furthermore, there are instruments for physiologic variables (e.g. for the weight), observational instruments (Check-lists e Rating Scales), interviews, questionnaires, diaries and the scales (Check-lists, Rating Scales, Likert Scales, Semantic Differential Scales e Visual Anologue Scales). The choice to select an instrument or another one depends on the research question and design. Instruments research are very useful in research both to describe the variables and to see statistical significant relationships. Very carefully should be their use in the clinical practice for diagnostic assessment.
NASA Astrophysics Data System (ADS)
Youn, J.; Kim, T.
2016-06-01
Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
Refractive Errors Affect the Vividness of Visual Mental Images
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186
Refractive errors affect the vividness of visual mental images.
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.
Piyavhatkul, Nawanant; Aroonpongpaisal, Suwanna; Patjanasoontorn, Niramol; Rongbutsri, Somchit; Maneeganondh, Somchit; Pimpanit, Wijitra
2011-07-01
To compare the validity and reliability of the Thai version of the Rosenberg Self-Esteem Scale with the Self-Esteem Visual Analog Scale. The Rosenberg Self-Esteem Scale was translated into Thai and its content-validity checked by bacA translation. The reliability of the Rosenberg Self-Esteem Scale compared with the Self-Esteem Visual Analog Scale was ther tested between February and March 2008 on 270 volunteers, including 135 patients with psychiatric illness and 135 normal volunteers. The authors analyzed the internal consistency and factor structure of the Rosenberg Self-Esteem Scale-Thai version and the correlation between it and the Visual Analog Scale. The Cronbach's Alpha for the Rosenberg Self-Esteem scale-Thai version was 0.849 and the Pearson's correlation between it and the Self-Esteem Visual Analog Scale 0.618 (p = 0.01). Two factors, viz, the positively and negatively framea items, from the Rosenberg Self-Esteem Scale-Thai version accounted for 44.04% and 12.10% of the variance, respectively. The Rosenberg Self-Esteem Scale-Thai version has acceptable reliability. The Self-Esteem Visual Analog Scale provides an effective measure of self-esteem.
Alimovic, S
2013-02-01
Children with multiple impairments have more complex developmental problems than children with a single impairment. We compared children, aged 4 to 11 years, with intellectual disability (ID) and visual impairment to children with single ID, single visual impairment and typical development on 'Child Behavior Check List/4-18' (CBCL/4-18), Parent Report. Children with ID and visual impairment had more emotional and behavioural problems than other groups of children: with single impairment and with typical development (F = 23.81; d.f.1/d.f.2 = 3/156; P < 0.001). All children with special needs had more emotional and behavioural problems than children with typical development. The highest difference was found in attention problems syndrome (F = 30.45; d.f.1/d.f.2 = 3/156; P < 0.001) where all groups of children with impairments had more problems. Children with visual impairment, with and without ID, had more somatic complaints than children with normal vision. Intellectual disability had greater influence on prevalence and kind of emotional and behavioural problems in children than visual impairment. © 2012 The Author. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.
JOHN, KEVIN K.; JENSEN, JAKOB D.; KING, ANDY J.; RATCLIFF, CHELSEA L.; GROSSMAN, DOUGLAS
2017-01-01
Skin self-examination (SSE) consists of routinely checking the body for atypical moles that might be cancerous. Identifying atypical moles is a visual task; thus, SSE training materials utilize pattern-focused visuals to cultivate this skill. Despite widespread use, researchers have yet to explicate how pattern-focused visuals cultivate visual skill. Using eye tracking to capture the visual scanpaths of a sample of laypersons (N = 92), the current study employed a 2 (pattern: ABCDE vs. ugly duckling sign [UDS]) × 2 (presentation: photorealistic images vs. illustrations) factorial design to assess whether and how pattern-focused visuals can increase layperson accuracy in identifying atypical moles. Overall, illustrations resulted in greater sensitivity, while photos resulted in greater specificity. The UDS × photorealistic condition showed greatest specificity. For those in the photo condition with high self-efficacy, UDS increased specificity directly. For those in the photo condition with self-efficacy levels at the mean or lower, there was a conditional indirect effect such that these individuals spent a larger amount of their viewing time observing the atypical moles, and time on target was positively related to specificity. Illustrations provided significant gains in specificity for those with low-to-moderate self-efficacy by increasing total fixation time on the atypical moles. Findings suggest that maximizing visual processing efficiency could enhance existing SSE training techniques. PMID:28759333
Zorina, Olesya I; Haueis, Patrick; Semmler, Alexander; Marti, Isabelle; Gonzenbach, Roman R; Guzek, Markus; Kullak-Ublick, Gerd A; Weller, Michael; Russmann, Stefan
2012-08-01
The comparative evaluation of clinical decision support software (CDSS) programs regarding their sensitivity and positive predictive value for the identification of clinically relevant drug interactions. In this research, we used a cross-sectional study that identified potential drug interactions using the CDSS MediQ and the ID PHARMA CHECK in 484 neurological inpatients. Interactions were reclassified according to the Zurich Interaction System, a multidimensional classification that incorporates the Operational Classification of Drug Interactions. In 484 patients with 2812 prescriptions, MediQ and ID PHARMA CHECK generated a total of 1759 and 1082 alerts, respectively. MediQ identified 658 unique potentially interacting combinations, 8 classified as "high danger," 164 as "average danger," and 486 as "low danger." ID PHARMA CHECK detected 336 combinations assigned to one or several of 12 risk and management categories. Altogether, both CDSS issued alerts relating to 808 unique potentially interacting combinations. According to the Zurich Interaction System, 6 of these were contraindicated, 25 were provisionally contraindicated, 190 carried a conditional risk, and 587 had a minimal risk of adverse events. The positive predictive value for alerts having at least a conditional risk was 0.24 for MediQ and 0.48 for ID PHARMA CHECK. CDSS showed major differences in the identification and grading of interactions, and many interactions were only identified by one of the two CDSS. For both programs, only a small proportion of all identified interactions appeared clinically relevant, and the selected display of alerts that imply management changes is a key issue in the further development and local setup of such programs. Copyright © 2012 John Wiley & Sons, Ltd.
Xue, Ling; Holford, Nick; Ding, Xiao‐liang; Shen, Zhen‐ya; Huang, Chen‐rong; Zhang, Hua; Zhang, Jing‐jing; Guo, Zhe‐ning; Xie, Cheng; Zhou, Ling; Chen, Zhi‐yao; Liu, Lin‐sheng
2016-01-01
Aims The aims of this study are to apply a theory‐based mechanistic model to describe the pharmacokinetics (PK) and pharmacodynamics (PD) of S‐ and R‐warfarin. Methods Clinical data were obtained from 264 patients. Total concentrations for S‐ and R‐warfarin were measured by ultra‐high performance liquid tandem mass spectrometry. Genotypes were measured using pyrosequencing. A sequential population PK parameter with data method was used to describe the international normalized ratio (INR) time course. Data were analyzed with NONMEM. Model evaluation was based on parameter plausibility and prediction‐corrected visual predictive checks. Results Warfarin PK was described using a one‐compartment model. CYP2C9 *1/*3 genotype had reduced clearance for S‐warfarin, but increased clearance for R‐warfarin. The in vitro parameters for the relationship between prothrombin complex activity (PCA) and INR were markedly different (A = 0.560, B = 0.386) from the theory‐based values (A = 1, B = 0). There was a small difference between healthy subjects and patients. A sigmoid Emax PD model inhibiting PCA synthesis as a function of S‐warfarin concentration predicted INR. Small R‐warfarin effects was described by competitive antagonism of S‐warfarin inhibition. Patients with VKORC1 AA and CYP4F2 CC or CT genotypes had lower C50 for S‐warfarin. Conclusion A theory‐based PKPD model describes warfarin concentrations and clinical response. Expected PK and PD genotype effects were confirmed. The role of predicted fat free mass with theory‐based allometric scaling of PK parameters was identified. R‐warfarin had a minor effect compared with S‐warfarin on PCA synthesis. INR is predictable from 1/PCA in vivo. PMID:27763679
NASA Astrophysics Data System (ADS)
Kolyaie, S.; Yaghooti, M.; Majidi, G.
2011-12-01
This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.
Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X
2016-09-01
The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.
The effect of search condition and advertising type on visual attention to Internet advertising.
Kim, Gho; Lee, Jang-Han
2011-05-01
This research was conducted to examine the level of consumers' visual attention to Internet advertising. It was predicted that consumers' search type would influence visual attention to advertising. Specifically, it was predicted that more attention to advertising would be attracted in the exploratory search condition than in the goal-directed search condition. It was also predicted that there would be a difference in visual attention depending on the advertisement type (advertising type: text vs. pictorial advertising). An eye tracker was used for measurement. Results revealed that search condition and advertising type influenced advertising effectiveness.
CrossCheck: an open-source web tool for high-throughput screen data analysis.
Najafov, Jamil; Najafov, Ayaz
2017-07-19
Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.
Visual fatigue modeling for stereoscopic video shot based on camera motion
NASA Astrophysics Data System (ADS)
Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing
2014-11-01
As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.
SU-E-J-199: A Software Tool for Quality Assurance of Online Replanning with MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Ahunbay, E; Li, X
2015-06-15
Purpose: To develop a quality assurance software tool, ArtQA, capable of automatically checking radiation treatment plan parameters, verifying plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary MU calculation considering the effect of magnetic field from MR-Linac, and verifying the delivery and plan consistency, for online replanning. Methods: ArtQA was developed by creating interfaces to TPS (e.g., Monaco, Elekta), R&V system (Mosaiq, Elekta), and secondary MU calculation system. The tool obtains plan parameters from the TPS via direct file reading, and retrieves plan data both transferred from TPS and recorded during themore » actual delivery in the R&V system database via open database connectivity and structured query language. By comparing beam/plan datasets in different systems, ArtQA detects and outputs discrepancies between TPS, R&V system and secondary MU calculation system, and delivery. To consider the effect of 1.5T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA is capable of automatically checking plan integrity and logic consistency, detecting plan data transfer errors, performing secondary MU calculations with or without a transverse magnetic field, and verifying treatment delivery. The tool is efficient and effective for pre- and post-treatment QA checks of all available treatment parameters that may be impractical with the commonly-used visual inspection. Conclusion: The software tool ArtQA can be used for quick and automatic pre- and post-treatment QA check, eliminating human error associated with visual inspection. While this tool is developed for online replanning to be used on MR-Linac, where the QA needs to be performed rapidly as the patient is lying on the table waiting for the treatment, ArtQA can be used as a general QA tool in radiation oncology practice. This work is partially supported by Elekta Inc.« less
NASA Astrophysics Data System (ADS)
Pastorello, G.; Agarwal, D.; Poindexter, C.; Papale, D.; Trotta, C.; Ribeca, A.; Canfora, E.; Faybishenko, B.; Gunter, D.; Chu, H.
2015-12-01
The fluxes-measuring sites that are part of AmeriFlux are operated and maintained in a fairly independent fashion, both in terms of scientific goals and operational practices. This is also the case for most sites from other networks in FLUXNET. This independence leads to a degree of heterogeneity in the data sets collected at the sites, which is also reflected in data quality levels. The generation of derived data products and data synthesis efforts, two of the main goals of these networks, are directly affected by the heterogeneity in data quality. In a collaborative effort between AmeriFlux and ICOS, a series of quality checks are being conducted for the data sets before any network-level data processing and product generation take place. From these checks, a set of common data issues were identified, and are being cataloged and classified into data quality patterns. These patterns are now being used as a basis for implementing automation for certain data quality checks, speeding up the process of applying the checks and evaluating the data. Currently, most data checks are performed individually in each data set, requiring visual inspection and inputs from a data curator. This manual process makes it difficult to scale the quality checks, creating a bottleneck for the data processing. One goal of the automated checks is to free up time of data curators so they can focus on new or less common issues. As new issues are identified, they can also be cataloged and classified, extending the coverage of existing patterns or potentially generating new patterns, helping both improve existing automated checks and create new ones. This approach is helping make data quality evaluation faster, more systematic, and reproducible. Furthermore, these patterns are also helping with documenting common causes and solutions for data problems. This can help tower teams with diagnosing problems in data collection and processing, and also in correcting historical data sets. In this presentation, using AmeriFlux fluxes and micrometeorological data, we discuss our approach to creating observational data patterns, and how we are using them to implement new automated checks. We also detail examples of these observational data patterns, illustrating how they are being used.
The pharmacokinetics of propofol in ICU patients undergoing long-term sedation.
Smuszkiewicz, Piotr; Wiczling, Paweł; Przybyłowski, Krzysztof; Borsuk, Agnieszka; Trojanowska, Iwona; Paterska, Marta; Matysiak, Jan; Kokot, Zenon; Grześkowiak, Edmund; Bienert, Agnieszka
2016-11-01
The aim of this study was to characterize the pharmacokinetics (PK) of propofol in ICU patients undergoing long-term sedation and to assess the influence of routinely collected covariates on the PK parameters. Propofol concentration-time profiles were collected from 29 patients. Non-linear mixed-effects modelling in NONMEM 7.2 was used to analyse the observed data. The propofol pharmacokinetics was best described with a three-compartment disposition model. Non-parametric bootstrap and a visual predictive check were used to evaluate the adequacy of the developed model to describe the observations. The typical value of the propofol clearance (1.46 l/min) approximated the hepatic blood flow. The volume of distribution at steady state was high and was equal to 955.1 l, which is consistent with other studies involving propofol in ICU patients. There was no statistically significant covariate relationship between PK parameters and opioid type, SOFA score on the day of admission, APACHE II, predicted death rate, reason for ICU admission (sepsis, trauma or surgery), gender, body weight, age, infusion duration and C-reactive protein concentration. The population PK model was developed successfully to describe the time-course of propofol concentration in ICU patients undergoing prolonged sedation. Despite a very heterogeneous group of patients, consistent PK profiles were observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Temporal and spatial localization of prediction-error signals in the visual brain.
Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W
2017-04-01
It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Xu, Yang; D'Lauro, Christopher; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.
2013-01-01
Humans are remarkably proficient at categorizing visually-similar objects. To better understand the cortical basis of this categorization process, we used magnetoencephalography (MEG) to record neural activity while participants learned–with feedback–to discriminate two highly-similar, novel visual categories. We hypothesized that although prefrontal regions would mediate early category learning, this role would diminish with increasing category familiarity and that regions within the ventral visual pathway would come to play a more prominent role in encoding category-relevant information as learning progressed. Early in learning we observed some degree of categorical discriminability and predictability in both prefrontal cortex and the ventral visual pathway. Predictability improved significantly above chance in the ventral visual pathway over the course of learning with the left inferior temporal and fusiform gyri showing the greatest improvement in predictability between 150 and 250 ms (M200) during category learning. In contrast, there was no comparable increase in discriminability in prefrontal cortex with the only significant post-learning effect being a decrease in predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the ventral visual pathway appears to encode learned visual categories over the long term. At the same time these results add to our understanding of the cortical origins of previously reported signature temporal components associated with perceptual learning. PMID:24146656
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
Predicting Visual Distraction Using Driving Performance Data
Kircher, Katja; Ahlstrom, Christer
2010-01-01
Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive. For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 – 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %). The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust. PMID:21050615
WORDGRAPH: Keyword-in-Context Visualization for NETSPEAK's Wildcard Search.
Riehmann, Patrick; Gruendl, Henning; Potthast, Martin; Trenkmann, Martin; Stein, Benno; Froehlich, Benno
2012-09-01
The WORDGRAPH helps writers in visually choosing phrases while writing a text. It checks for the commonness of phrases and allows for the retrieval of alternatives by means of wildcard queries. To support such queries, we implement a scalable retrieval engine, which returns high-quality results within milliseconds using a probabilistic retrieval strategy. The results are displayed as WORDGRAPH visualization or as a textual list. The graphical interface provides an effective means for interactive exploration of search results using filter techniques, query expansion, and navigation. Our observations indicate that, of three investigated retrieval tasks, the textual interface is sufficient for the phrase verification task, wherein both interfaces support context-sensitive word choice, and the WORDGRAPH best supports the exploration of a phrase's context or the underlying corpus. Our user study confirms these observations and shows that WORDGRAPH is generally the preferred interface over the textual result list for queries containing multiple wildcards.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto
2017-09-19
Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.
Next Generation Monitoring: Tier 2 Experience
NASA Astrophysics Data System (ADS)
Fay, R.; Bland, J.; Jones, S.
2017-10-01
Monitoring IT infrastructure is essential for maximizing availability and minimizing disruption by detecting failures and developing issues. The HEP group at Liverpool have recently updated our monitoring infrastructure with the goal of increasing coverage, improving visualization capabilities, and streamlining configuration and maintenance. Here we present a summary of Liverpool’s experience, the monitoring infrastructure, and the tools used to build it. In brief, system checks are configured in Puppet using Hiera, and managed by Sensu, replacing Nagios. Centralised logging is managed with Elasticsearch, together with Logstash and Filebeat. Kibana provides an interface for interactive analysis, including visualization and dashboards. Metric collection is also configured in Puppet, managed by collectd and stored in Graphite, with Grafana providing a visualization and dashboard tool. The Uchiwa dashboard for Sensu provides a web interface for viewing infrastructure status. Alert capabilities are provided via external handlers. A custom alert handler is in development to provide an easily configurable, extensible and maintainable alert facility.
Explaining neural signals in human visual cortex with an associative learning model.
Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias
2012-08-01
"Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.
2015-12-01
markings are indicated, follow agency authorization procedures , e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information. 13. SUPPLEMENTARY...Contamination in Distillate Fuels (Visual Inspection Procedures ), as a final check of fuel to ensure aviation fuel is clear and bright before flight...Laboratories at the Detroit Arsenal. The online procedure for evaluating the light obscuration particle counters was modified from the concepts found
On condition evaluation of axle unit bearings of wheel pair
NASA Astrophysics Data System (ADS)
Glotov, V. V.; Romashchenko, M. A.; Ostroumov, I. V.; Kondratiev, Il V.
2018-03-01
At present, axle units of freight cars undergo a complete checkup with disassembling and visual inspection of the bearing parts every five years. During an annual interim checkup, external inspection of an axle box with removed cap is carried out and the lubricant condition is checked. The state of the rolling surfaces of bearings during an interim checkup should be assessed using the known methods of nondestructive testing.
STS-113 workers work on oxygen leak in Endeavor's mid-body
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers on Launch Pad 39A perform checks on Endeavour?s oxygen flex hose fitting through manual inspection and using helium detectors. Visual inspection found a deformity in the flex line braid where it connects to rigid tubing. The entire flex hose assembly and bulkhead fitting were removed early today, and work is under way to complete the installation of a replacement.
Realization of ActiveX control based on ATL in VC 2008
NASA Astrophysics Data System (ADS)
Li, Shuhua; Tie, Yong
2011-10-01
ActiveX has a key role in web development, this paper realizes the classical program Polygon in the newest Visual C++ environment 2008 and tests each function of control in ActiveX Control Test Container. After that web code is created rapidly via ActiveX Control Pad and it is checked in HTML. Development process and key point attention are summarized systematically which can guide the related developers.
Check Firing of Master and Reference Propellants
2014-12-08
estimate amount and color of smoke generated. s. Visually estimate amount and color of muzzle flash generated. TOP 04-2-607A 8 December 2014 10...Stargauge. TOP 04-2-607A 8 December 2014 3 e. Pressure gauge (piezoelectric preferred, and/or crusher). f. Muzzle velocity radar unit...firing: a. Provide electronics personnel with the weapon caliber and type, the weight and model of projectile, and expected muzzle velocities. b
Dhawangale, R M; Kawale, S M; Waghmare, Maya; Pandya, G H; Kondawar, V K
2006-01-01
Environmental laboratories carry out measurement and analysis of a number of physical, chemical and biological parameters. Each parameter requires some sort of instrument for its determination. Providing efficient instrumentation services to various departments of the Institute is an stupendous task. Instrumentation services in the form of installation, operation, repair and maintenanace of electro-mechanical equipment requires an in-depth experience and knowledge of the working, fabrication, design and repair of similar type of instruments so that the need of space, installation pre-requisites, budget constraints, availability of essential spares parts could be assessed. The paper discusses the operation of an environmental instrument repairs and maintenance, and audio-visual facilities. Suggestions for drafting of the proper specifications for procurement of laboratory equipments, such as ovens, furnaces, refrigerators, blowers, audio visual aids, and spares and accessories are given in this paper. The paper also gives the detailed information on various aspects that are needed for checking and testing of the equipment against specification before putting it in operational use. Development of a preventive maintenance program involving QC checks and keeping an inventory of essential spares required are also discussed in this paper. It is felt that such services are essential in providing smooth support to carry out research and development activities of the Institute.
Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
Ramsey, Lenny E.; Metcalf, Nicholas V.; Chacko, Ravi V.; Weinberger, Kilian; Baldassarre, Antonello; Hacker, Carl D.; Shulman, Gordon L.; Corbetta, Maurizio
2016-01-01
Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-learning models to predict neurological impairment in individual subjects. We found that visual memory and verbal memory were better predicted by FC, whereas visual and motor impairments were better predicted by lesion topography. Attention and language deficits were well predicted by both. Next, we identified a general pattern of physiological network dysfunction consisting of decrease of interhemispheric integration and intrahemispheric segregation, which strongly related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction predicted specific behavioral deficits, and loss of interhemispheric communication across a set of regions was associated with impairment across multiple behavioral domains. These results link key organizational features of brain networks to brain–behavior relationships in stroke. PMID:27402738
Wolfger, B; Schwartzkopf-Genswein, K S; Barkema, H W; Pajor, E A; Levy, M; Orsel, K
2015-01-01
Bovine respiratory disease (BRD), which can cause substantial losses for feedlot operations, is often difficult to detect based solely on visual observations. The objectives of the current study were to determine a BRD case identification based on clinical and laboratory parameters and assess the value of feeding behavior for early detection of BRD. Auction-derived, mixed-breed beef steers (n = 213) with an average arrival weight of 294 kg were placed at a southern Alberta commercial feedlot equipped with an automated feed bunk monitoring system. Feeding behavior was recorded continuously (1-s intervals) for 5 wk after arrival and summarized into meals. Meals were defined as feeding events that were interrupted by less than 300 s nonfeeding. Meal intake (g) and meal time (min) were further summarized into daily mean, minimum, maximum, and sum and, together with frequency of meals per day, were fit into a discrete survival time analysis with a conditional log-log link. Feedlot staff visually evaluated (pen-checked) health status twice daily. Within 35 d after arrival, 76% (n = 165) of the steers had 1 or more clinical signs of BRD (reluctance to move, crusted nose, nasal or ocular discharge, drooped ears or head, and gaunt appearance). Whereas 41 blood samples could not be processed due to immediate freezing, for 124 of these steers, complete and differential blood cell count, total serum protein, plasma fibrinogen, serum concentration of haptoglobin (HP), and serum amyloid A (SAA) were determined. The disease definition for BRD was a rectal temperature ≥ 40.0°C, at least 2 clinical signs of BRD, and HP > 0.15 mg/mL. It was noteworthy that 94% of the 124 steers identified by the feedlot staff with clinical signs of BRD had HP > 0.15 mg/mL. An increase in mean meal intake, frequency, and mean inter-meal interval was associated with a decreased hazard for developing BRD 7 d before visual identification (P < 0.001). Furthermore, increased mean mealtime, frequency, and mean inter-meal interval were associated with a decreased BRD hazard up to 7 d before feedlot staff noticed clinical symptoms (P < 0.001). In conclusion, mean intake per meal as well as mean meal time and frequency of meals could be used to predict the hazard of BRD in feedlot cattle 7 d before visual detection and could be considered in commercial feedlot settings once a predictive algorithm has been developed.
Rubin, David C.
2013-01-01
Research on future episodic thought has produced compelling theories and results in cognitive psychology, cognitive neuroscience, and clinical psychology. To integrate these using basic concepts and methods from autobiographical memory research, 76 undergraduates remembered past and imagined future positive and negative events that had or would have a major impact on them. Correlations of the online ratings of visual and auditory imagery, emotion, and other measures demonstrated that individuals used the same processes to the same extent to remember past and construct future events. These measures predicted the theoretically important metacognitive judgment of past reliving and future ‘preliving’ in similar ways. Future negative events had much higher scores than past negative events on standardized tests of reactions to traumatic events, scores in the range that would qualify for a diagnosis of posttraumatic stress disorder (PTSD), which was replicated (n = 52) to check for order effects. Consistent with earlier work, future events had less sensory vividness. Thus, the imagined symptoms of future events were unlikely to be caused by sensory vividness. To confirm this, 63 undergraduates produced numerous added details between two constructions of the same negative future events, removing deficits in rated vividness with no increase in the standardized tests of reactions to traumatic events. Neuroticism predicted individuals’ reactions to negative past events but did not predict imagined reactions to future events. This set of novel methods and findings are interpreted in the contexts of the literatures of episodic future thought, autobiographical memory, PTSD, and classic schema theory. PMID:23607632
Predicting Hurricanes with Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh
2009-01-01
Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks. PMID:20042075
Evaluation of supercapacitors for space applications under thermal vacuum conditions
NASA Astrophysics Data System (ADS)
Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.
2018-03-01
Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.
SimCheck: An Expressive Type System for Simulink
NASA Technical Reports Server (NTRS)
Roy, Pritam; Shankar, Natarajan
2010-01-01
MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Using geographic information systems to identify prospective marketing areas for a special library.
McConnaughy, Rozalynd P; Wilson, Steven P
2006-05-04
The Center for Disability Resources (CDR) Library is the largest collection of its kind in the Southeastern United States, consisting of over 5,200 books, videos/DVDs, brochures, and audiotapes covering a variety of disability-related topics, from autism to transition resources. The purpose of the library is to support the information needs of families, faculty, students, staff, and other professionals in South Carolina working with individuals with disabilities. The CDR Library is funded on a yearly basis; therefore, maintaining high usage is crucial. A variety of promotional efforts have been used to attract new patrons to the library. Anyone in South Carolina can check out materials from the library, and most of the patrons use the library remotely by requesting materials, which are then mailed to them. The goal of this project was to identify areas of low geographic usage as a means of identifying locations for future library marketing efforts. Nearly four years worth of library statistics were compiled in a spreadsheet that provided information per county on the number of checkouts, the number of renewals, and the population. Five maps were created using ArcView GIS software to create visual representations of patron checkout and renewal behavior per county. Out of the 46 counties in South Carolina, eight counties never checked out materials from the library. As expected urban areas and counties near the library's physical location have high usage totals. The visual representation of the data made identification of low usage regions easier than using a standalone database with no visual-spatial component. The low usage counties will be the focus of future Center for Disability Resources Library marketing efforts. Due to the impressive visual-spatial representations created with Geographic Information Systems, which more efficiently communicate information than stand-alone database information can, librarians may benefit from the software's use as a supplemental tool for tracking library usage and planning promotional efforts.
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
Hu, Jian-Yan; Yan, Liang; Chen, Yong-Dong; Du, Xin-Hua; Li, Ting-Ting; Liu, De-An; Xu, Dong-Hong; Huang, Yi-Min; Wu, Qiang
2017-01-01
AIM To assess the prevalence, causes, and risk factors for blindness and visual impairment among elderly (≥60 years of age) Chinese people in a metropolitan area of Shanghai, China. METHODS Random cluster sampling was conducted to identify participants among residents ≥60 years of age living in the Xietu Block, Xuhui District, Shanghai, China. Presenting visual acuity (PVA) and best-corrected visual acuity (BCVA) were checked by the Early Treatment Diabetic Retinopathy Study (ETDRS) visual chart. All eligible participants underwent a comprehensive eye examination. Blindness and visual impairment were defined according to World Health Organization (WHO) criteria. RESULTS A total of 4190 persons (1688 men and 2502 women) participated in the study, and the response rate was 91.1%. Based on PVA, the prevalence of blindness was 1.1% and that of visual impairment was 7.6%. Based on BCVA, the prevalence of blindness and visual impairment decreased to 0.9% and 3.9%, respectively. Older (≥80 years of age) women, with low educational levels and smoking habits, exhibited a significantly greater chance for blindness and visual impairment than did those with high educational levels and no smoking habits (P<0.05). Based on PVA and BCVA, the main causes of blindness were cataract, myopic maculopathy, and age-related macular degeneration (AMD). CONCLUSION Our findings help to identify the population in need of intervention, to highlight the need for additional eye healthcare services in urban China. PMID:28149791
Hu, Jian-Yan; Yan, Liang; Chen, Yong-Dong; Du, Xin-Hua; Li, Ting-Ting; Liu, De-An; Xu, Dong-Hong; Huang, Yi-Min; Wu, Qiang
2017-01-01
To assess the prevalence, causes, and risk factors for blindness and visual impairment among elderly (≥60 years of age) Chinese people in a metropolitan area of Shanghai, China. Random cluster sampling was conducted to identify participants among residents ≥60 years of age living in the Xietu Block, Xuhui District, Shanghai, China. Presenting visual acuity (PVA) and best-corrected visual acuity (BCVA) were checked by the Early Treatment Diabetic Retinopathy Study (ETDRS) visual chart. All eligible participants underwent a comprehensive eye examination. Blindness and visual impairment were defined according to World Health Organization (WHO) criteria. A total of 4190 persons (1688 men and 2502 women) participated in the study, and the response rate was 91.1%. Based on PVA, the prevalence of blindness was 1.1% and that of visual impairment was 7.6%. Based on BCVA, the prevalence of blindness and visual impairment decreased to 0.9% and 3.9%, respectively. Older (≥80 years of age) women, with low educational levels and smoking habits, exhibited a significantly greater chance for blindness and visual impairment than did those with high educational levels and no smoking habits ( P <0.05). Based on PVA and BCVA, the main causes of blindness were cataract, myopic maculopathy, and age-related macular degeneration (AMD). Our findings help to identify the population in need of intervention, to highlight the need for additional eye healthcare services in urban China.
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath
2018-05-24
Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Design of an aid to visual inspection workstation
NASA Astrophysics Data System (ADS)
Tait, Robert; Harding, Kevin
2016-05-01
Visual Inspection is the most common means for inspecting manufactured parts for random defects such as pits, scratches, breaks, corrosion or general wear. The reason for the need for visual inspection is the very random nature of what might be a defect. Some defects may be very rare, being seen once or twice a year, but May still be critical to part performance. Because of this random and rare nature, even the most sophisticated image analysis programs have not been able to recognize all possible defects. Key to any future automation of inspection is obtaining good sample images of what might be a defect. However, most visual check take no images and consequently generate no digital data or historical record beyond a simple count. Any additional tool to captures such images must be able to do so without taking addition time. This paper outlines the design of a potential visual inspection station that would be compatible with current visual inspection methods, but afford the means for reliable digital imaging and in many cases augmented capabilities to assist the inspection. Considerations in this study included: resolution, depth of field, feature highlighting, and ease of digital capture, annotations and inspection augmentation for repeatable registration as well as operator assistance and training.
Position Information Encoded by Population Activity in Hierarchical Visual Areas
Majima, Kei; Horikawa, Tomoyasu
2017-01-01
Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634
NASA Astrophysics Data System (ADS)
2018-01-01
The test dataset was also useful to compare visual range estimates carried out by the Koschmieder equation and visibility measured at the Milano-Linate airport. It is worthy to note that in this work the test dataset was used primarily for checking the proposed methodology and it was not meant to give an assessment of bext and VR in Milan for a wintertime period as done by Vecchi et al., [in press], who applied the tailored equation to a larger aerosol dataset.
Factors associated with tobacco sales to minors: lessons learned from the FDA compliance checks.
Clark, P I; Natanblut, S L; Schmitt, C L; Wolters, C; Iachan, R
2000-08-09
Tobacco products continue to be widely accessible to minors. Between 1997 and 1999, the US Food and Drug Administration (FDA) conducted more than 150,000 tobacco sales age-restriction compliance checks. Data obtained from these checks provide important guidance for curbing illegal sales. To determine which elements of the compliance checks were most highly associated with illegal sales and thereby inform best practices for conducting efficient compliance check programs. Cross-sectional analysis of FDA compliance checks in 110,062 unique establishments in 36 US states and the District of Columbia. Illegal sales of tobacco to minors at compliance checks; association of illegal sales with variables such as age and sex of the minor. The rate of illegal sales for all first compliance checks in unique stores was 26.6%. Clerk failure to request proof of age was strongly associated with illegal sales (uncorrected sales rate, 10.5% compared with 89.5% sales when proof was not requested; multivariate-adjusted odds ratio [OR], 0.03; 95% confidence interval [CI], 0.03-0.04). Other factors associated with increased illegal sales were employment of older minors to make the purchase attempt (adjusted ORs for 16- and 17-year-old minors compared with 15-year-olds were 1.52 [95% CI, 1.46-1.63] and 2.43 [95% CI, 2.31-2. 59], respectively), attempt to purchase smokeless tobacco (adjusted OR, 2.16 [95% CI, 1.90-2.45] vs cigarette purchase attempts), and performing checks at or after 5 PM (adjusted OR, 1.28 [95% CI, 1. 21-1.35] vs before 5 PM). Female sex of clerk and minor, Saturday checks, type of store (convenience store selling gas, gas station, drugstore, supermarket and general merchandise), and rural store locations also were associated with increased illegal sales. This analysis found that a request for age verification strongly predicted compliance with the law. The results suggest several ways in which the process of compliance checks might be optimized. JAMA. 2000;284:729-734
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
Wu, Hua'an; Zeng, Bo; Zhou, Meng
2017-11-15
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.
A study of applications scribe frame data verifications using design rule check
NASA Astrophysics Data System (ADS)
Saito, Shoko; Miyazaki, Masaru; Sakurai, Mitsuo; Itoh, Takahisa; Doi, Kazumasa; Sakurai, Norioko; Okada, Tomoyuki
2013-06-01
In semiconductor manufacturing, scribe frame data generally is generated for each LSI product according to its specific process design. Scribe frame data is designed based on definition tables of scanner alignment, wafer inspection and customers specified marks. We check that scribe frame design is conforming to specification of alignment and inspection marks at the end. Recently, in COT (customer owned tooling) business or new technology development, there is no effective verification method for the scribe frame data, and we take a lot of time to work on verification. Therefore, we tried to establish new verification method of scribe frame data by applying pattern matching and DRC (Design Rule Check) which is used in device verification. We would like to show scheme of the scribe frame data verification using DRC which we tried to apply. First, verification rules are created based on specifications of scanner, inspection and others, and a mark library is also created for pattern matching. Next, DRC verification is performed to scribe frame data. Then the DRC verification includes pattern matching using mark library. As a result, our experiments demonstrated that by use of pattern matching and DRC verification our new method can yield speed improvements of more than 12 percent compared to the conventional mark checks by visual inspection and the inspection time can be reduced to less than 5 percent if multi-CPU processing is used. Our method delivers both short processing time and excellent accuracy when checking many marks. It is easy to maintain and provides an easy way for COT customers to use original marks. We believe that our new DRC verification method for scribe frame data is indispensable and mutually beneficial.
Optimization of the Timepix chip to measurement of radon, thoron and their progenies.
Janik, Miroslaw; Ploc, Ondrej; Fiederle, Michael; Procz, Simon; Kavasi, Norbert
2016-01-01
Radon and thoron as well as their short-lived progenies are decay products of the radium and thorium series decays. They are the most important radionuclide elements with respect to public exposure. To utilize the semiconductor pixel radiation Timepix chip for the measurement of active and real-time alpha particles from radon, thoron and their progenies, it is necessary to check the registration and visualization of the chip. An energy check for radon, thoron and their progenies, as well as for (241)Am and(210)Po sources, was performed using the radon and thoron chambers at NIRS (National Institute of Radiological Sciences). The check found an energy resolution of 200 keV with a 14% efficiency as well as a linear dependency between the channel number (cluster volume) and the energy. The coefficient of determination r(2) of 0.99 for the range of 5 to 9 MeV was calculated. In addition, an offset for specific Timepix configurations between pre-calibration for low energy from 6 to 60 keV, and the actual calibration for alpha particles with energies from 4000 to 9000 keV, was detected. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Noah, Shahrul Azman; Yaakob, Suraya; Shahar, Suzana
The anthropometries and nutrients records of patients are usually vast in quantity, complex and exhibit temporal features. Therefore, the information acceptance among users will become blur and give cognitive burden if such data is not displayed using effective techniques. The aim of this study is to apply, use and evaluate Information Visualization (IV) techniques for displaying the Personal History Data (PHD) of patients for dietitians during counseling sessions. Since PHD values change consistently with the counseling session, our implementation mainly focused on quantitative temporal data such as Body Mass Index (BMI), blood pressure and blood glucose readings. This data is mapped into orientation circle type of visual representation, whereas data about medicinal and supplement intake are mapped into timeline segment which is based on the thickness of lines as well as the colors. A usability testing has been conducted among dietitians at Faculty of Allied Health Sciences, UKM. The result of the testing has shown that the use of visual representations capable of summarising complex data which ease the dietitian task of checking the PHD.
NASA Astrophysics Data System (ADS)
Sorce, Salvatore; Malizia, Alessio; Jiang, Pingfei; Atherton, Mark; Harrison, David
2018-04-01
One of the main time and money consuming tasks in the design of industrial devices and parts is the checking of possible patent infringements. Indeed, the great number of documents to be mined and the wide variety of technical language used to describe inventions are reasons why considerable amounts of time may be needed. On the other hand, the early detection of a possible patent conflict, in addition to reducing the risk of legal disputes, could stimulate a designers’ creativity to overcome similarities in overlapping patents. For this reason, there are a lot of existing patent analysis systems, each with its own features and access modes. We have designed a visual interface providing an intuitive access to such systems, freeing the designers from the specific knowledge of querying languages and providing them with visual clues. We tested the interface on a framework aimed at representing mechanical engineering patents; the framework is based on a semantic database and provides patent conflict analysis for early-stage designs. The interface supports a visual query composition to obtain a list of potentially overlapping designs.
Shah, Mehul A; Agrawal, Rupesh; Teoh, Ryan; Shah, Shreya M; Patel, Kashyap; Gupta, Satyam; Gosai, Siddharth
2017-05-01
To introduce and validate the pediatric ocular trauma score (POTS) - a mathematical model to predict visual outcome trauma in children with traumatic cataract METHODS: In this retrospective cohort study, medical records of consecutive children with traumatic cataracts aged 18 and below were retrieved and analysed. Data collected included age, gender, visual acuity, anterior segment and posterior segment findings, nature of surgery, treatment for amblyopia, follow-up, and final outcome was recorded on a precoded data information sheet. POTS was derived based on the ocular trauma score (OTS), adjusting for age of patient and location of the injury. Visual outcome was predicted using the OTS and the POTS and using receiver operating characteristic (ROC) curves. POTS predicted outcomes were more accurate compared to that of OTS (p = 0.014). POTS is a more sensitive and specific score with more accurate predicted outcomes compared to OTS, and is a viable tool to predict visual outcomes of pediatric ocular trauma with traumatic cataract.
Sun, Min; Zhang, Zhi-Qiang; Ma, Chi-Yuan; Chen, Sui-Hua; Chen, Xin-Jian
2017-01-01
To determine the dominant predictive factors of postoperative visual recovery for patients with pituitary adenoma. PubMed, Google Scholar, Web of Science and Cochrane Library were searched for relevant human studies, which investigated the prediction of the postoperative visual recovery of patients with pituitary adenoma, from January 2000 to May 2017. Meta-analyses were performed on the primary outcomes. After the related data were extracted by two independent investigators, pooled weighted mean difference (WMD) and odds ratio (OR) with 95% confidence interval (CI) were estimated using a random-effects or a fixed-effects model. Nineteen studies were included in the literature review, and nine trials were included in the Meta-analysis, which comprised 530 patients (975 eyes) with pituitary adenoma. For the primary outcomes, there was a significant difference between preoperative and postoperative mean deviation (MD) values of the visual field (WMD -5.85; 95%CI: -8.19 to -3.51; P <0.00001). Predictive characteristics of four factors were revealed in this Meta-analysis by assigning the patients to sufficient and insufficient groups according to postoperative visual field improvements, including preoperative visual field defect (WMD 10.09; 95%CI: 6.17 to 14.02; P <0.00001), patient age (WMD -12.32; 95%CI: -18.42 to -6.22; P <0.0001), symptom duration (WMD -5.04; 95%CI: -9.71 to -0.37; P =0.03), and preoperative peripapillary retinal nerve fiber layer (pRNFL) thickness (OR 0.1; 95% CI: 0.04 to 0.23; P <0.00001). Preoperative visual field defect, symptom duration, patient age, and preoperative pRNFL thickness are the dominant predictive factors of the postoperative recovery of the visual field for patients with pituitary adenoma.
Schindler, Andreas; Bartels, Andreas
2017-05-01
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS.
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2017-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence's saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them.
Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2018-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence’s saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them. PMID:27896980
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex
Summerfield, Christopher; Egner, Tobias
2016-01-01
Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936
Cooper, Emily A.; Norcia, Anthony M.
2015-01-01
The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624
2007-09-26
NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.
What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations
NASA Astrophysics Data System (ADS)
Schollaert Uz, S.; Ward, K.
2017-12-01
Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.
Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis.
Fryar-Williams, Stephanie; Strobel, Jörg E
2015-01-01
The Mental Health Biomarker Project (2010-2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case-control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Participants underwent protocol-based diagnostic-checking, functional-rating, biological sample-collection for thirty candidate markers and sensory-processing assessment. Fifteen biomarkers were identified on ROC analysis. Using these biomarkers, odds ratios, adjusted for a case-control design, indicated that schizophrenia and schizoaffective disorder were highly associated with dichotic listening disorder, delayed visual processing, low visual span, delayed auditory speed of processing, low reverse digit span as a measure of auditory working memory and elevated levels of catecholamines. Other nutritional and biochemical biomarkers were identified as elevated hydroxyl pyrroline-2-one as a marker of oxidative stress, vitamin D, B6 and folate deficits with elevation of serum B12 and free serum copper to zinc ratio. When individual biomarkers were ranked by odds ratio and correlated with clinical severity, five functional domains of visual processing, auditory processing, oxidative stress, catecholamines and nutritional-biochemical variables were formed. When the strengths of their inter-domain relationships were predicted by Lowess (non-parametric) regression, predominant bidirectional relationships were found between visual processing and catecholamine domains. At a cellular level, the nutritional-biochemical domain exerted a pervasive influence on the auditory domain as well as on all other domains. The findings of this biomarker research point towards a much-required advance in Psychiatry: quantification of some theoretically-understandable, translationally-informative, treatment-relevant underpinnings of serious mental illness. This evidence reveals schizophrenia and schizoaffective disorder in a somewhat different manner, as a conglomerate of several disorders many of which are not currently being assessed-for or treated in clinical settings. Currently available remediation techniques for these underlying conditions have potential to reduce treatment-resistance, relapse-prevention, cost burden and social stigma in these conditions. If replicated and validated in prospective trials, such findings will improve progress-monitoring and treatment-response for schizophrenia and schizoaffective disorder.
Assessment of check-dam groundwater recharge with water-balance calculations
NASA Astrophysics Data System (ADS)
Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos
2017-04-01
Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without check-dam was estimated to be 1 million m3. Upper and lower limits of prediction intervals were computed to assess the uncertainties of the results. The model was rerun with these values and resulted in recharge values of 0.4 m3 as lower and 38 million m3 as upper limit. The sediment survey in the check-dam reservoir area showed that the reservoir area was filled with 2,000 to 3,000 tons of sediment after one rainfall season. This amount of sediment corresponds to 0.2 to 2 t h-1 y-1 sediment yield at the watershed level and reduces the check-dam storage capacity by approximately 10%. Results indicate that check-dams are valuable structures for increasing groundwater resources, but special attention should be given to soil erosion occurring in the upstream area and the resulting sediment built-up in the check-dam reservoir area. This study has received funding from the EU FP7 RECARE Project (GA 603498)
ERIC Educational Resources Information Center
Campbell, Emily; Cuba, Melissa
2015-01-01
The goal of this action research is to increase student awareness of context clues, with an emphasis on student use of visual cues in making predictions. Visual cues in the classroom were used to differentiate according to the needs of student demographics (Herrera, Perez, & Escamilla, 2010). The purpose of this intervention was to improve…
Responses to single photons in visual cells of Limulus
Borsellino, A.; Fuortes, M. G. F.
1968-01-01
1. A system proposed in a previous article as a model of responses of visual cells has been analysed with the purpose of predicting the features of responses to single absorbed photons. 2. As a result of this analysis, the stochastic variability of responses has been expressed as a function of the amplification of the system. 3. The theoretical predictions have been compared to the results obtained by recording electrical responses of visual cells of Limulus to flashes delivering only few photons. 4. Experimental responses to single photons have been tentatively identified and it was shown that the stochastic variability of these responses is similar to that predicted for a model with a multiplication factor of at least twenty-five. 5. These results lead to the conclusion that the processes responsible for visual responses incorporate some form of amplification. This conclusion may prove useful for identifying the physical mechanisms underlying the transducer action of visual cells. PMID:5664231
Vision in two cyprinid fish: implications for collective behavior
Moore, Bret A.; Tyrrell, Luke P.; Fernández-Juricic, Esteban
2015-01-01
Many species of fish rely on their visual systems to interact with conspecifics and these interactions can lead to collective behavior. Individual-based models have been used to predict collective interactions; however, these models generally make simplistic assumptions about the sensory systems that are applied without proper empirical testing to different species. This could limit our ability to predict (and test empirically) collective behavior in species with very different sensory requirements. In this study, we characterized components of the visual system in two species of cyprinid fish known to engage in visually dependent collective interactions (zebrafish Danio rerio and golden shiner Notemigonus crysoleucas) and derived quantitative predictions about the positioning of individuals within schools. We found that both species had relatively narrow binocular and blind fields and wide visual coverage. However, golden shiners had more visual coverage in the vertical plane (binocular field extending behind the head) and higher visual acuity than zebrafish. The centers of acute vision (areae) of both species projected in the fronto-dorsal region of the visual field, but those of the zebrafish projected more dorsally than those of the golden shiner. Based on this visual sensory information, we predicted that: (a) predator detection time could be increased by >1,000% in zebrafish and >100% in golden shiners with an increase in nearest neighbor distance, (b) zebrafish schools would have a higher roughness value (surface area/volume ratio) than those of golden shiners, (c) and that nearest neighbor distance would vary from 8 to 20 cm to visually resolve conspecific striping patterns in both species. Overall, considering between-species differences in the sensory system of species exhibiting collective behavior could change the predictions about the positioning of individuals in the group as well as the shape of the school, which can have implications for group cohesion. We suggest that more effort should be invested in assessing the role of the sensory system in shaping local interactions driving collective behavior. PMID:26290783
Further observations of snow and frost in the Adirondacks
Howard W. Lull; Francis M. Rushmore
1961-01-01
Snow-depth and water-content measurements were made in March and April 1960 in the vicinity of Paul Smiths, New York, to check on procedures developed the previous year for predicting snow accumulation and melt.
Flow Visualization on a Small Scale.
1988-03-01
1150 22.43 26 A good tunnel must have very uniform flow across the test section. The uniformity was checked using a seven tube pitot static rake ...calibration. il Figure 7. The Pitot Static Rake 27 To map the entire 15 x 24 inch cross section 84 individual readings and 12 rake locations were required... rake readings was taken, the micromanometer was reattached to the permanent pitot static probe to ensure calibration of the tunnel to .02 inches of
1985-04-01
and equipment whose operation can be verified with a visual or aural check. The sequence of outputs shall be cyclic, with provisions to stop the...private memory. The decision to provide spare, expansion capability, or a combination of both shall be based on life cycle cost (to the best extent...Computational System should be determined in conjunction with a computer expert (if possible). In any event, it is best to postpone completing - this
ERIC Educational Resources Information Center
Dymock, Susan; Nicholson, Tom
2017-01-01
The ubiquitous weekly spelling test assumes that words are best learned by memorisation and testing but is this the best way? This study compared two well-known approaches to spelling instruction, the rule based and visual memory approaches. A group of 55 seven-year-olds in two Year 3 classrooms was taught spelling in small groups for three…
[E-Learning in radiology; the practical use of the content management system ILIAS].
Schütze, B; Mildenberger, P; Kämmerer, M
2006-05-01
Due to the possibility of using different kinds of visualization, e-learning has the advantage of allowing individualized learning. A check should be performed to determine whether the use of the web-based content management system ILIAS simplifies the writing and production of electronic learning modules in radiology. Internet-based e-learning provides access to existing learning modules regardless of time and location, since fast Internet connections are readily available. Web Content Management Systems (WCMS) are suitable platforms for imparting radiology-related information (visual abilities like the recognition of patterns as well as interdisciplinary specialized knowledge). The open source product ILIAS is a free WCMS. It is used by many universities and is accepted by both students and lecturers. Its modular and object-oriented software architecture makes it easy to adapt and enlarge the platform. The employment of e-learning standards such as LOM and SCORM within ILIAS makes it possible to reuse contents, even if the platform has to be changed. ILIAS renders it possible to provide students with texts, images, or files of any other kind within a learning context which is defined by the lecturer. Students can check their acquired knowledge via online testing and receive direct performance feedback. The significant interest that students have shown in ILIAS proves that e-learning can be a useful addition to conventional learning methods.
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients
Harwerth, Ronald S.; Quigley, Harry A.
2007-01-01
Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839
ERIC Educational Resources Information Center
Kruk, Richard S.; Luther Ruban, Cassia
2018-01-01
Visual processes in Grade 1 were examined for their predictive influences in nonalphanumeric and alphanumeric rapid naming (RAN) in 51 poor early and 69 typical readers. In a lagged design, children were followed longitudinally from Grade 1 to Grade 3 over 5 testing occasions. RAN outcomes in early Grade 2 were predicted by speeded and nonspeeded…
Factors Predicting Post-High School Employment for Young Adults with Visual Impairments
ERIC Educational Resources Information Center
McDonnall, Michele Capella
2010-01-01
Although low levels of employment among transition-age youth with visual impairments (VI) have long been a concern, empirical research in this area is very limited. The purpose of this study was to identify factors that predict future employment for this population and to compare these factors to the factors that predict employment for the general…
Peng, Hsien-Te; Song, Chen-Yi
2015-12-01
Closed kinetic chain and quadriceps strengthening, combined with flexibility exercises of the lower limb musculature, is a common treatment for patellofemoral pain syndrome (PFPS). The effectiveness has been well documented; however, very little is known about which factors predict treatment success. A total of 43 female subjects with PFPS participated in an eight-week progressive leg press (LP) strengthening and stretching exercise program. A decrease of 1.5 cm on a 10 cm visual analog scale (VAS) score was used as an indicator for treatment success. The baseline patellar tilt angle difference (PTA-d) due to quadriceps contraction prior to treatment was evaluated as a predictor of treatment success. The logistic regression and receiver operating characteristics (ROC) curve analysis were performed to investigate the predictive value of PTA-d. PTA-d could significantly predict the treatment success of LP strengthening and stretching exercises. The odds ratio (OR) for having an unsuccessful outcome was 1.19 (95% confidence interval (CI), 1.03-1.39, P<0.021) per degree increment of PTA-d. The most optimal cut-off value for the clinical discrimination of treatment success after LP strengthening and stretching exercise was -1.5° of PTA-d (sensitivity=0.74, specificity=0.71). The area under the ROC curve was 0.73 (standard error=0.08). Female patients with PFPS whose quadriceps contraction reduced the lateral patellar tilt prior to LP strengthening and stretching exercise treatment are more likely to experience pain relief. It seems clinically important to check dynamic patellar tilt characteristics before treatment to aid in clinical decision making. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne
2012-01-01
AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina
2018-05-23
Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.
Measuring and Predicting Tag Importance for Image Retrieval.
Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay
2017-12-01
Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.
Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F
2016-01-01
Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.
Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh
2015-01-01
Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978
Reader error, object recognition, and visual search
NASA Astrophysics Data System (ADS)
Kundel, Harold L.
2004-05-01
Small abnormalities such as hairline fractures, lung nodules and breast tumors are missed by competent radiologists with sufficient frequency to make them a matter of concern to the medical community; not only because they lead to litigation but also because they delay patient care. It is very easy to attribute misses to incompetence or inattention. To do so may be placing an unjustified stigma on the radiologists involved and may allow other radiologists to continue a false optimism that it can never happen to them. This review presents some of the fundamentals of visual system function that are relevant to understanding the search for and the recognition of small targets embedded in complicated but meaningful backgrounds like chests and mammograms. It presents a model for visual search that postulates a pre-attentive global analysis of the retinal image followed by foveal checking fixations and eventually discovery scanning. The model will be used to differentiate errors of search, recognition and decision making. The implications for computer aided diagnosis and for functional workstation design are discussed.
[Does music influence visual perception in campimetric measurements of the visual field?].
Gall, Carolin; Geier, Jens-Stefan; Sabel, Bernhard A; Kasten, Erich
2009-01-01
21 subjects (mean age 28,4 +/- 10,9, M +/- SD) without any damage of the visual system were examined with computer-based campimetric tests of near threshold stimulus detection whereby an artificial tunnel vision was induced. Campimetry was performed in four trials in randomized order using a within-subjects-design: 1. classical music, 2. Techno music, 3. music for relaxation and 4. no music. Results were slightly better in all music conditions. Performance was best when subjects were listening to Techno music. The average increase of correctly recognized stimuli and fixation controls amounted to 3 %. To check the stability of the effects 9 subjects were tested three times. A moderating influence of personality traits and habits of listening to music was tested but could not be found. We conclude that music has at least no negative influence on performance in the campimetric measurement. Reasons for the positive effects of music can be seen in a general increase of vigilance and a modulation of perceptual thresholds.
Contributions of visual and embodied expertise to body perception.
Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D
2012-01-01
Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.
ERIC Educational Resources Information Center
Cassidy, Jack
1991-01-01
Presents suggestions for teaching math word problems to elementary students. The strategies take into consideration differences between reading in math and reading in other areas. A problem-prediction game and four self-checking activities are included along with a magic password challenge. (SM)
Predicting Asthma in Preschool Children with Asthma-Like Symptoms
... the AAAAI Foundation Donate Utility navigation Español Journals Pollen Counts Annual Meeting Member Login / My Membership Search navigation ... navigation Donate Annual meeting Browse your conditions Check pollen counts Continuing education center Find an allergist / immunologist Journals ...
Lam, Simon C; Lui, Andrew K F; Lee, Linda Y K; Lee, Joseph K L; Wong, K F; Lee, Cathy N Y
2016-05-01
The use of N95 respirators prevents spread of respiratory infectious agents, but leakage hampers its protection. Manufacturers recommend a user seal check to identify on-site gross leakage. However, no empirical evidence is provided. Therefore, this study aims to examine validity of a user seal check on gross leakage detection in commonly used types of N95 respirators. A convenience sample of 638 nursing students was recruited. On the wearing of 3 different designs of N95 respirators, namely 3M-1860s, 3M-1862, and Kimberly-Clark 46827, the standardized user seal check procedure was carried out to identify gross leakage. Repeated testing of leakage was followed by the use of a quantitative fit testing (QNFT) device in performing normal breathing and deep breathing exercises. Sensitivity, specificity, predictive values, and likelihood ratios were calculated accordingly. As indicated by QNFT, prevalence of actual gross leakage was 31.0%-39.2% with the 3M respirators and 65.4%-65.8% with the Kimberly-Clark respirator. Sensitivity and specificity of the user seal check for identifying actual gross leakage were approximately 27.7% and 75.5% for 3M-1860s, 22.1% and 80.5% for 3M-1862, and 26.9% and 80.2% for Kimberly-Clark 46827, respectively. Likelihood ratios were close to 1 (range, 0.89-1.51) for all types of respirators. The results did not support user seal checks in detecting any actual gross leakage in the donning of N95 respirators. However, such a check might alert health care workers that donning a tight-fitting respirator should be performed carefully. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Chess Evolution Visualization.
Lu, Wei-Li; Wang, Yu-Shuen; Lin, Wen-Chieh
2014-05-01
We present a chess visualization to convey the changes in a game over successive generations. It contains a score chart, an evolution graph and a chess board, such that users can understand a game from global to local viewpoints. Unlike current graphical chess tools, which focus only on highlighting pieces that are under attack and require sequential investigation, our visualization shows potential outcomes after a piece is moved and indicates how much tactical advantage the player can have over the opponent. Users can first glance at the score chart to roughly obtain the growth and decline of advantages from both sides, and then examine the position relations and the piece placements, to know how the pieces are controlled and how the strategy works. To achieve this visualization, we compute the decision tree using artificial intelligence to analyze a game, in which each node represents a chess position and each edge connects two positions that are one-move different. We then merge nodes representing the same chess position, and shorten branches where nodes on them contain only two neighbors, in order to achieve readability. During the graph rendering, the nodes containing events such as draws, effective checks and checkmates, are highlighted because they show how a game is ended. As a result, our visualization helps players understand a chess game so that they can efficiently learn strategies and tactics. The presented results, evaluations, and the conducted user studies demonstrate the feasibility of our visualization design.
Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.
2009-02-01
Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.
Clark, Gavin I; Rock, Adam J; McKeith, Charles F A; Coventry, William L
2017-09-01
Poker-machine gamblers have been demonstrated to report increases in the urge to gamble following exposure to salient gambling cues. However, the processes which contribute to this urge to gamble remain to be understood. The present study aimed to investigate whether changes in the conscious experience of visual imagery, rationality and volitional control (over one's thoughts, images and attention) predicted changes in the urge to gamble following exposure to a gambling cue. Thirty-one regular poker-machine gamblers who reported at least low levels of problem gambling on the Problem Gambling Severity Index (PGSI), were recruited to complete an online cue-reactivity experiment. Participants completed the PGSI, the visual imagery, rationality and volitional control subscales of the Phenomenology of Consciousness Inventory (PCI), and a visual analogue scale (VAS) assessing urge to gamble. Participants completed the PCI subscales and VAS at baseline, following a neutral video cue and following a gambling video cue. Urge to gamble was found to significantly increase from neutral cue to gambling cue (while controlling for baseline urge) and this increase was predicted by PGSI score. After accounting for the effects of problem-gambling severity, cue-reactive visual imagery, rationality and volitional control significantly improved the prediction of cue-reactive urge to gamble. The small sample size and limited participant characteristic data restricts the generalizability of the findings. Nevertheless, this is the first study to demonstrate that changes in the subjective experience of visual imagery, volitional control and rationality predict changes in the urge to gamble from neutral to gambling cue. The results suggest that visual imagery, rationality and volitional control may play an important role in the experience of the urge to gamble in poker-machine gamblers.
Wu, Hua’an; Zhou, Meng
2017-01-01
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266
Gratton, David G; Kwon, So Ran; Blanchette, Derek; Aquilino, Steven A
2016-01-01
The aim of this study was to evaluate the effect of digital tooth preparation imaging and evaluation technology on dental students' technical abilities, self-evaluation skills, and the assessment of their simulated clinical work. A total of 80 second-year students at one U.S. dental school were assigned to one of three groups: control (n=40), E4D Compare (n=20), and Sirona prepCheck (n=20). Students in the control group were taught by traditional teaching methodologies, and the technology-assisted groups received both traditional training and supplementary feedback from the corresponding digital system. Three outcomes were measured: faculty technical score, self-evaluation score, and E4D Compare scores at 0.30 mm tolerance. Correlations were determined between the groups' scores from visual assessment and self-evaluation and between the visual assessment and digital scores. The results showed that the visual assessment and self-evaluation scores did not differ among groups (p>0.05). Overall, correlations between visual and digital assessment scores were modest though statistically significant (5% level of significance). These results suggest that the use of digital tooth preparation evaluation technology did not impact the students' prosthodontic technical and self-evaluation skills. Visual scores given by faculty and digital assessment scores correlated moderately in only two instances.
Buchanan, Verica; Lu, Yafeng; McNeese, Nathan; Steptoe, Michael; Maciejewski, Ross; Cooke, Nancy
2017-03-01
Historically, domains such as business intelligence would require a single analyst to engage with data, develop a model, answer operational questions, and predict future behaviors. However, as the problems and domains become more complex, organizations are employing teams of analysts to explore and model data to generate knowledge. Furthermore, given the rapid increase in data collection, organizations are struggling to develop practices for intelligence analysis in the era of big data. Currently, a variety of machine learning and data mining techniques are available to model data and to generate insights and predictions, and developments in the field of visual analytics have focused on how to effectively link data mining algorithms with interactive visuals to enable analysts to explore, understand, and interact with data and data models. Although studies have explored the role of single analysts in the visual analytics pipeline, little work has explored the role of teamwork and visual analytics in the analysis of big data. In this article, we present an experiment integrating statistical models, visual analytics techniques, and user experiments to study the role of teamwork in predictive analytics. We frame our experiment around the analysis of social media data for box office prediction problems and compare the prediction performance of teams, groups, and individuals. Our results indicate that a team's performance is mediated by the team's characteristics such as openness of individual members to others' positions and the type of planning that goes into the team's analysis. These findings have important implications for how organizations should create teams in order to make effective use of information from their analytic models.
Core OCD Symptoms: Exploration of Specificity and Relations with Psychopathology
Stasik, Sara M.; Naragon-Gainey, Kristin; Chmielewski, Michael; Watson, David
2012-01-01
Obsessive-compulsive disorder (OCD) is a heterogeneous condition, comprised of multiple symptom domains. This study used aggregate composite scales representing three core OCD dimensions (Checking, Cleaning, Rituals), as well as Hoarding, to examine the discriminant validity, diagnostic specificity, and predictive ability of OCD symptom scales. The core OCD scales demonstrated strong patterns of convergent and discriminant validity – suggesting that these dimensions are distinct from other self-reported symptoms – whereas hoarding symptoms correlated just as strongly with OCD and non-OCD symptoms in most analyses. Across analyses, our results indicated that Checking is a particularly strong, specific marker of OCD diagnosis, whereas the specificity of Cleaning and Hoarding to OCD was less strong. Finally, the OCD Checking scale was the only significant predictor of OCD diagnosis in logistic regression analyses. Results are discussed with regard to the importance of assessing OCD symptom dimensions separately and implications for classification. PMID:23026094
Beckman, Robert A.; Chen, Cong
2013-01-01
Predictive biomarkers are important to the future of oncology; they can be used to identify patient populations who will benefit from therapy, increase the value of cancer medicines, and decrease the size and cost of clinical trials while increasing their chance of success. But predictive biomarkers do not always work. When unsuccessful, they add cost, complexity, and time to drug development. This perspective describes phases 2 and 3 development methods that efficiently and adaptively check the ability of a biomarker to predict clinical outcomes. In the end, the biomarker is emphasized to the extent that it can actually predict. PMID:23489587
Assessment of HPV-mRNA test to predict recurrent disease in patients previously treated for CIN 2/3.
Frega, Antonio; Sesti, Francesco; Lombardi, Danila; Votano, Sergio; Sopracordevole, Francesco; Catalano, Angelica; Milazzo, Giusi Natalia; Lombardo, Riccardo; Assorgi, Chiara; Olivola, Sara; Chiusuri, Valentina; Ricciardi, Enzo; French, Deborah; Moscarini, Massimo
2014-05-01
The use of HPV-mRNA test in the follow-up after LEEP is still matter of debate, with regard to its capacity of prediction relapse. The aim of the present study is to evaluate the reliability of HPV-mRNA test to predict the residual and recurrent disease, and its accuracy in the follow-up of patients treated for CIN 2/3. Multicenter prospective cohort study. Patients who underwent LEEP after a biopsy diagnosing CIN 2/3 were followed at 3, 6, 12, 24 and 36 months. Each check up included cytology, colposcopy, HPV-DNA test (LiPA) and HPV-mRNA test (PreTect HPV Proofer Kit NorChip). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), of HPV-DNA test and HPV-mRNA test to predict relapse, recurrent and residual disease. Using multiple logistic regression, the statistical significant variables as assessed in univariate analysis were entered and investigated as predictors of relapse disease. The mRNA-test in predicting a residual disease had a sensitivity of 52% and a NPV of 91%, whereas DNA-test had 100% and 100%, respectively. On the contrary in the prediction of recurrent disease mRNA-test had a sensitivity and a NPV of 73.5% and 97%, whereas DNA-test had 44% and 93%. On the multivariate analysis, age, cytology, HPV DNA and mRNA test achieved the role of independent predictors of relapse. HPV-mRNA test has a higher sensitivity and a higher NPV in predicting recurrent disease, for this reason it should be used in the follow-up of patients treated with LEEP for CIN 2/3 in order to individualize the timing of check up. Copyright © 2014 Elsevier B.V. All rights reserved.
Vinck, Martin; Bosman, Conrado A.
2016-01-01
During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse. PMID:27199684
van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean
2017-04-15
A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting beauty: fractal dimension and visual complexity in art.
Forsythe, A; Nadal, M; Sheehy, N; Cela-Conde, C J; Sawey, M
2011-02-01
Visual complexity has been known to be a significant predictor of preference for artistic works for some time. The first study reported here examines the extent to which perceived visual complexity in art can be successfully predicted using automated measures of complexity. Contrary to previous findings the most successful predictor of visual complexity was Gif compression. The second study examined the extent to which fractal dimension could account for judgments of perceived beauty. The fractal dimension measure accounts for more of the variance in judgments of perceived beauty in visual art than measures of visual complexity alone, particularly for abstract and natural images. Results also suggest that when colour is removed from an artistic image observers are unable to make meaningful judgments as to its beauty. ©2010 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Call, Jared A.; Kwok, John H.; Fisher, Forest W.
2013-01-01
This innovation is a tool used to verify and validate spacecraft sequences at the predicted events file (PEF) level for the GRAIL (Gravity Recovery and Interior Laboratory, see http://www.nasa. gov/mission_pages/grail/main/index. html) mission as part of the Multi-Mission Planning and Sequencing Team (MPST) operations process to reduce the possibility for errors. This tool is used to catch any sequence related errors or issues immediately after the seqgen modeling to streamline downstream processes. This script verifies and validates the seqgen modeling for the GRAIL MPST process. A PEF is provided as input, and dozens of checks are performed on it to verify and validate the command products including command content, command ordering, flight-rule violations, modeling boundary consistency, resource limits, and ground commanding consistency. By performing as many checks as early in the process as possible, grl_pef_check streamlines the MPST task of generating GRAIL command and modeled products on an aggressive schedule. By enumerating each check being performed, and clearly stating the criteria and assumptions made at each step, grl_pef_check can be used as a manual checklist as well as an automated tool. This helper script was written with a focus on enabling the user with the information they need in order to evaluate a sequence quickly and efficiently, while still keeping them informed and active in the overall sequencing process. grl_pef_check verifies and validates the modeling and sequence content prior to investing any more effort into the build. There are dozens of various items in the modeling run that need to be checked, which is a time-consuming and errorprone task. Currently, no software exists that provides this functionality. Compared to a manual process, this script reduces human error and saves considerable man-hours by automating and streamlining the mission planning and sequencing task for the GRAIL mission.
Cost-Reduced M587 Electronic Time Fuze: Root Cause Analysis of July 1979 Early Bursts
1981-04-01
capacitor during gunfire, coupled with an intermit - tent wire bond (which opens during setback and then closes again) can defeat the initialization circuit...is calibrated, (c) the set time is checked out in fast time to verify that the setting has actually been achieved, and (d) the setter visually com...insensitive to supply voltage. One of the reasons for choosing the twin-T design was because it was possible to preclude fail- fast failure modes. The
Visual Predictions in the Orbitofrontal Cortex Rely on Associative Content
Chaumon, Maximilien; Kveraga, Kestutis; Barrett, Lisa Feldman; Bar, Moshe
2014-01-01
Predicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it. Is the OFC automatically engaged to analyze any LSF information for meaning? Or is it engaged only when LSF information matches preexisting memory associations? We tested these hypotheses and show that only LSF information that could be linked to memory associations engages the OFC. Specifically, LSF stimuli activated the OFC in 2 distinct medial and lateral regions only if they resembled known visual objects. More identifiable objects increased activity in the medial OFC, known for its function in affective responses. Furthermore, these objects also increased the connectivity of the lateral OFC with the ventral visual cortex, a crucial region for object identification. At the interface between sensory, memory, and affective processing, the OFC thus appears to be attuned to the associative content of visual information and to play a central role in visuo-affective prediction. PMID:23771980
Stekelenburg, Jeroen J; Vroomen, Jean
2012-01-01
In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.
A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database
2014-01-01
Background Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. Results We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model’s derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc–18.0–GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. Conclusion Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database. PMID:24974895
Technical basis for inner container leak detection sensitivity goals in 3013 DE surveillance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, John M.
Helium leak checking of 3013 inner container lids is under consideration for addition to DE Surveillance tasks as an improved means to detect any through-wall flaws that may have formed during storage. This white paper evaluates whether leak checking at DE could replace and improve upon the current method of comparing gas compositions and pressures within the inner and outer containers. We have used viscous and molecular flow equations in ANSI N14.5 to calculate what the measured standard helium leak rate would be for hypothetical leaks of three different sizes. For comparison, we have also calculated the effects on gasmore » composition and pressure differences as a function of pre-DE storage time for the same three leak sizes, using molecular and viscous flow equations as well as diffusion equations to predict the relevant gas transport. For a hypothetical leak that would be measured at 1x10 -7 std cc/sec, likely an achievable sensitivity using helium leak checking at DE, the calculations predict no measurable effect on pressure difference or gas composition as measured by DE gas analysis. We also calculate that it would take over 200 years for water vapor to diffuse through a 10 -7 std cc/sec leak enough to raise the RH outer container to half the RH value in the inner container. A leak 100 times larger, which would be measured at 1x10 -5 std cc/sec, the same water vapor diffusion would take at least 14 years. Our conclusion is that helium leak checking will be useful even at a sensitivity of 1x10 -5 std cc/sec, and a significant improvement over current DE methods at a sensitivity of 1x10 -7 std cc/sec.« less
Quality of life in patients with visual impairment in Ibadan: a clinical study in primary care.
Adigun, Kehinde; Oluleye, Tunji S; Ladipo, Modupe Ma; Olowookere, Samuel Anu
2014-01-01
Visual function is important for optimal orientation in functional and social life, and has an effect on physical and emotional well-being. Visual impairment, therefore, leads to restrictions in all aspects of daily living and is related to quality of life. The aim of this study was to provide information on the causes of visual impairment in patients presenting to their family physician, the spectrum of impairment, and its impact on quality of life for these patients. This descriptive cross-sectional study of 375 adult patients with ocular symptoms was performed in the general outpatient department of the University College Hospital, Ibadan, from July to September, 2009. After checking their presenting visual acuity, the patients were interviewed using the Vision-Related Quality of Life questionnaire to determine the impact of visual impairment on their quality of life. Ophthalmic examinations were performed to determine the causes of visual impairment. The results were analyzed using proportions and percentages. The main causes of visual impairment were cataracts (58.7%), refractive error (19.4%), and glaucoma (2.9%). Visual impairment was found to be associated with advancing age, low education, and unemployment (P<0.001). Most patients (85.1%) were found to have good quality of life overall. Quality of life was found to be poor in the domains of visual function (64.2%) and social interaction (50.9%). Quality of life was found to be related to the degree of visual impairment, ie, blind patients reported poor quality of life (41.4%) when compared with those having low vision (8.6%) or near normal vision (2.4%, P<0.001). This study identified poor quality of life in patients with a higher degree of visual impairment. Family physicians need to identify these visually impaired patients early and make timely referrals.
The Role of Prediction In Perception: Evidence From Interrupted Visual Search
Mereu, Stefania; Zacks, Jeffrey M.; Kurby, Christopher A.; Lleras, Alejandro
2014-01-01
Recent studies of rapid resumption—an observer’s ability to quickly resume a visual search after an interruption—suggest that predictions underlie visual perception. Previous studies showed that when the search display changes unpredictably after the interruption, rapid resumption disappears. This conclusion is at odds with our everyday experience, where the visual system seems to be quite efficient despite continuous changes of the visual scene; however, in the real world, changes can typically be anticipated based on previous knowledge. The present study aimed to evaluate whether changes to the visual display can be incorporated into the perceptual hypotheses, if observers are allowed to anticipate such changes. Results strongly suggest that an interrupted visual search can be rapidly resumed even when information in the display has changed after the interruption, so long as participants not only can anticipate them, but also are aware that such changes might occur. PMID:24820440
A normal' category-specific advantage for naming living things.
Laws, K R; Neve, C
1999-10-01
'Artefactual' accounts of category-specific disorders for living things have highlighted that compared to nonliving things, living things have lower name frequency, lower concept familiarity and greater visual complexity and greater within-category structural similarity or 'visual crowding' [7]. These hypotheses imply that deficits for living things are an exaggeration of some 'normal tendency'. Contrary to these notions, we found that normal subjects were consistently worse at naming nonliving than living things in a speeded presentation paradigm. Moreover, their naming was not predicted by concept familiarity, name frequency or visual complexity; however, a novel measure of visual familiarity (i.e. for the appearance of things) did significantly predict naming. We propose that under speeded conditions, normal subjects find nonliving things harder to name because their representations are less visually predictable than for living things (i.e. nonliving things show greater within-item structural variability). Finally, because nonliving things have multiple representations in the real world, this may lower the probability of finding impaired naming and recognition in this category.
The accuracy of confrontation visual field test in comparison with automated perimetry.
Johnson, L. N.; Baloh, F. G.
1991-01-01
The accuracy of confrontation visual field testing was determined for 512 visual fields using automated static perimetry as the reference standard. The sensitivity of confrontation testing excluding patchy defects was 40% for detecting anterior visual field defects, 68.3% for posterior defects, and 50% for both anterior and posterior visual field defects combined. The sensitivity within each group varied depending on the type of visual field defect encountered. Confrontation testing had a high sensitivity (75% to 100%) for detecting altitudinal visual loss, central/centrocecal scotoma, and homonymous hemianopsia. Confrontation testing was fairly insensitive (20% to 50% sensitivity) for detecting arcuate scotoma and bitemporal hemianopsia. The specificity of confrontation testing was high at 93.4%. The high positive predictive value (72.6%) and negative predictive value (75.7%) would indicate that visual field defects identified during confrontation testing are often true visual field defects. However, the many limitations of confrontation testing should be remembered, particularly its low sensitivity for detecting visual field loss associated with parasellar tumors, glaucoma, and compressive optic neuropathies. PMID:1800764
Hierarchical acquisition of visual specificity in spatial contextual cueing.
Lie, Kin-Pou
2015-01-01
Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.
Attitudes towards students who plagiarize: a dental hygiene faculty perspective.
Patel-Bhakta, Hemali G; Muzzin, Kathleen B; Dewald, Janice P; Campbell, Patricia R; Buschang, Peter H
2014-01-01
The purpose of this study was to examine baccalaureate dental hygiene faculty members' attitudes and practices regarding student plagiarism. An email containing a link to a thirty-two-item survey was sent to fifty-two baccalaureate dental hygiene program directors in the United States; thirty of those agreed for their faculty members to participate. Of the 257 faculty members who received the survey link, 106 completed the survey, for a response rate of 41.2 percent. The responding faculty members reported thinking plagiarism is a rising concern in their dental hygiene programs (54.5 percent, 54/99). The majority said they check for plagiarism on student class assignment/projects (67.1 percent, 53/79). For those who did not check for plagiarism, 45.8 percent (11/24) stated it took "too much time to check" or it was "too hard to prove" (16.6 percent, 4/24). The most frequent form of student plagiarism observed by the respondents was "copying directly from a source electronically" (78.0 percent, 39/50). Most respondents reported checking for plagiarism through visual inspection (without technological assistance) (73.0 percent, 38/52). Of those who said they use plagiarism detection software/services, 44.4 percent (16/36) always recommended their students use plagiarism detection software/services to detect unintentional plagiarism. For those faculty members who caught students plagiarizing, 52.9 percent (27/51) reported they "always or often" handled the incident within their dental hygiene department, and 76.5 percent (39/51) said they had never reported the student's violation to an academic review board.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Chen, Xiang-Wu; Zhao, Ying-Xi
2017-01-01
AIM To compare the diagnostic performance of isolated-check visual evoked potential (icVEP) and standard automated perimetry (SAP), for evaluating the application values of icVEP in the detection of early glaucoma. METHODS Totally 144 subjects (288 eyes) were enrolled in this study. icVEP testing was performed with the Neucodia visual electrophysiological diagnostic system. A 15% positive-contrast (bright) condition pattern was used in this device to differentiate between glaucoma patients and healthy control subjects. Signal-to-noise ratios (SNR) were derived based on a multivariate statistic. The eyes were judged as abnormal if the test yielded an SNR≤1. SAP testing was performed with the Humphrey Field Analyzer II. The visual fields were deemed as abnormality if the glaucoma hemifield test results outside normal limits; or the pattern standard deviation with P<0.05; or the cluster of three or more non-edge points on the pattern deviation plot in a single hemifield with P<0.05, one of which must have a P<0.01. Disc photographs were graded as either glaucomatous optic neuropathy or normal by two experts who were masked to all other patient information. Moorfields regression analysis (MRA) used as a separate diagnostic classification was performed by Heidelberg retina tomograph (HRT). RESULTS When the disc photograph grader was used as diagnostic standard, the sensitivity for SAP and icVEP was 32.3% and 38.5% respectively and specificity was 82.3% and 77.8% respectively. When the MRA Classifier was used as the diagnostic standard, the sensitivity for SAP and icVEP was 48.6% and 51.4% respectively and specificity was 84.1% and 78.0% respectively. When the combined structural assessment was used as the diagnostic standard, the sensitivity for SAP and icVEP was 59.2% and 53.1% respectively and specificity was 84.2% and 84.6% respectivlely. There was no statistical significance between the sensitivity or specificity of SAP and icVEP, regardless of which diagnostic standard was based on. CONCLUSION The diagnostic performance of icVEP is not better than that of SAP in the detection of early glaucoma. PMID:28503434
The role of visual attention in predicting driving impairment in older adults.
Hoffman, Lesa; McDowd, Joan M; Atchley, Paul; Dubinsky, Richard
2005-12-01
This study evaluated the role of visual attention (as measured by the DriverScan change detection task and the Useful Field of View Test [UFOV]) in the prediction of driving impairment in 155 adults between the ages of 63 and 87. In contrast to previous research, participants were not oversampled for visual impairment or history of automobile accidents. Although a history of automobile accidents within the past 3 years could not be predicted using any variable, driving performance in a low-fidelity simulator could be significantly predicted by performance in the change detection task and by the divided and selection attention subtests of the UFOV in structural equation models. The sensitivity and specificity of each measure in identifying at-risk drivers were also evaluated with receiver operating characteristic curves.
Sciusco, Alberto; Standing, Joseph F; Sheng, Yucheng; Raimondo, Pasquale; Cinnella, Gilda; Dambrosio, Michele
2017-04-01
Bispectral index (BIS) and entropy monitors have been proposed for use in children, but research has not supported their validity for infants. However, effective monitoring of young children may be even more important than for adults, to aid appropriate anesthetic dosing and reduce the chance of adverse consequences. This prospective study aimed to investigate the relationships between age and the predictive performance of BIS and entropy monitors in measuring the anesthetic drug effects within a pediatric surgery setting. We concurrently recorded BIS and entropy (SE/RE) in 48 children aged 1 month-12 years, undergoing general anesthesia with sevoflurane and fentanyl. Nonlinear mixed effects modeling was used to characterize the concentration-response relationship independently between the three monitor indicators with sevoflurane. The model's goodness-of-fit was assessed by prediction-corrected visual predictive checks. Model fit with age was evaluated using absolute conditional individual weighted residuals (|CIWRES|). The ability of BIS and entropy monitors to describe the effect of anesthesia was compared with prediction probabilities (P K ) in different age groups. Intraoperative and awakening values were compared in the age groups. The correlation between BIS and entropy was also calculated. |CIWRES| vs age showed an increasing trend in the model's accuracy for all three indicators. P K probabilities were similar for all three indicators within each age group, though lower in infants. The linear correlations between BIS and entropy in different age groups were lower for infants. Infants also tended to have lower values during surgery and at awakening than older children, while toddlers had higher values. Performance of both monitors improves as age increases. Our results suggest a need for the development of new monitor algorithms or calibration to better account for the age-specific EEG dynamics of younger patients. © 2017 John Wiley & Sons Ltd.
Norman, Laura M.; Niraula, Rewati
2016-01-01
The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.
A Predictive Model of Anesthesia Depth Based on SVM in the Primary Visual Cortex
Shi, Li; Li, Xiaoyuan; Wan, Hong
2013-01-01
In this paper, a novel model for predicting anesthesia depth is put forward based on local field potentials (LFPs) in the primary visual cortex (V1 area) of rats. The model is constructed using a Support Vector Machine (SVM) to realize anesthesia depth online prediction and classification. The raw LFP signal was first decomposed into some special scaling components. Among these components, those containing higher frequency information were well suited for more precise analysis of the performance of the anesthetic depth by wavelet transform. Secondly, the characteristics of anesthetized states were extracted by complexity analysis. In addition, two frequency domain parameters were selected. The above extracted features were used as the input vector of the predicting model. Finally, we collected the anesthesia samples from the LFP recordings under the visual stimulus experiments of Long Evans rats. Our results indicate that the predictive model is accurate and computationally fast, and that it is also well suited for online predicting. PMID:24044024
Spriggs, M J; Sumner, R L; McMillan, R L; Moran, R J; Kirk, I J; Muthukumaraswamy, S D
2018-04-30
The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing) models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal Modelling revealed that the generation of the MMN modulates forward and backward connections in the underlying network, while visual LTP only modulates forward connections. These results suggest that both Predictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for future studies of aberrant plasticity in clinical populations. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garcia, Daniel D.; van de Pol, Corina; Barsky, Brian A.; Klein, Stanley A.
1999-06-01
Many current corneal topography instruments (called videokeratographs) provide an `acuity index' based on corneal smoothness to analyze expected visual acuity. However, post-refractive surgery patients often exhibit better acuity than is predicted by such indices. One reason for this is that visual acuity may not necessarily be determined by overall corneal smoothness but rather by having some part of the cornea able to focus light coherently onto the fovea. We present a new method of representing visual acuity by measuring the wavefront aberration, using principles from both ray and wave optics. For each point P on the cornea, we measure the size of the associated coherence area whose optical path length (OPL), from a reference plane to P's focus, is within a certain tolerance of the OPL for P. We measured the topographies and vision of 62 eyes of patients who had undergone the corneal refractive surgery procedures of photorefractive keratectomy (PRK) and photorefractive astigmatic keratectomy (PARK). In addition to high contrast visual acuity, our vision tests included low contrast and low luminance to test the contribution of the PRK transition zone. We found our metric for visual acuity to be better than all other metrics at predicting the acuity of low contrast and low luminance. However, high contrast visual acuity was poorly predicted by all of the indices we studied, including our own. The indices provided by current videokeratographs sometimes fail for corneas whose shape differs from simple ellipsoidal models. This is the case with post-PRK and post-PARK refractive surgery patients. Our alternative representation that displays the coherence area of the wavefront has considerable advantages, and promises to be a better predictor of low contrast and low luminance visual acuity than current shape measures.
Assessment of visual disability using visual evoked potentials.
Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun
2012-08-06
The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real disability in a range >5.77 μV. The results could be useful, especially in cases of no obvious pale disc with trauma. Visual acuity quantification using absolute value of amplitude in pattern visual evoked potentials was useful in confirming subjective visual acuity for cutoff values >5.77 μV in disability evaluation to discriminate the malingering from real disability.
Assessment of visual disability using visual evoked potentials
2012-01-01
Background The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years), 19 optic neuritis patients (19 eyes: ages 9–71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real disability in a range >5.77 μV. The results could be useful, especially in cases of no obvious pale disc with trauma. Conclusions Visual acuity quantification using absolute value of amplitude in pattern visual evoked potentials was useful in confirming subjective visual acuity for cutoff values >5.77 μV in disability evaluation to discriminate the malingering from real disability. PMID:22866948
RNA-SSPT: RNA Secondary Structure Prediction Tools.
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.
RNA-SSPT: RNA Secondary Structure Prediction Tools
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115
Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein
2017-08-01
Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of events. Copyright © 2017 the American Physiological Society.
Coherent Motion Sensitivity Predicts Individual Differences in Subtraction
ERIC Educational Resources Information Center
Boets, Bart; De Smedt, Bert; Ghesquiere, Pol
2011-01-01
Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to "predict"…
Numerical modeling of eastern connecticut's visual resources
Daniel L. Civco
1979-01-01
A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...
Comparing Three Methods of Geometrical Approach in Visualizing Differential Equations
ERIC Educational Resources Information Center
KarimiFardinpour, Younes; Gooya, Zahra
2018-01-01
This paper concerns "planes-coordination" and "long-term-prediction" difficulties. These are specifically the case when students attempt to visualize solution curves of autonomous differential equations for predicting the long-term behavior of various initial conditions. To address these issues, a study was conducted in which…
Prediction suppression and surprise enhancement in monkey inferotemporal cortex.
Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R
2017-07-01
Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement. NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.
Kasties, Nils; Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.
2016-01-01
Animals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (short vs. long). Subjects’ strength of conditioned responding to visual cues reliably differentiated between predicted reward types and thus indexed valuation. The majority of NCL neurons discriminated between visual cues, with discriminability peaking shortly after stimulus onset and being maintained at lower levels throughout the stimulus presentation period. However, while some cells’ firing rates correlated with reward value, such neurons were not more frequent than expected by chance. Instead, neurons formed discernible clusters which differed in their preferred visual cue. We propose that this activity pattern constitutes a prerequisite for using visual information in more complex situations e.g. requiring value-based choices. PMID:27762287
NASA Astrophysics Data System (ADS)
Harris, E.
Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.
Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka
2017-04-01
Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.
Wongwai, Phanthipha; Anupongongarch, Pacharapan; Suwannaraj, Sirinya; Asawaphureekorn, Somkiat
2016-08-01
To evaluate the prevalence of visual impairment of children aged four to six years in Khon Kaen City Municipality, Thailand. The visual acuity test was performed on 1,286 children in kindergarten schools located in Khon Kaen Municipality. The first test of visual acuity was done by trained teachers and the second test by the pediatric ophthalmologist. The prevalence of visual impairment of both tests was recorded including sensitivity, specificity, likelihood ratio, and predictive value of the test by teachers. The causes of visual impairment were also recorded. There were 39 children with visual impairment from the test by the teacher and 12 children from the test by the ophthalmologist. Myopia is the single cause of visual impairment. Mean spherical equivalence is 1.375 diopters (SD = 0.53). Median spherical equivalence is 1.375 diopters (minimum = 0.5, maximum =4). The detection of visual impairment by trained teachers had a sensitivity of 1.00 (95% CI 0.76-1.00), specificity of 0.98 (95% CI 0.97-0.99), likelihood ratio for a positive test 44.58 (95% CI 30.32-65.54), likelihood ratio for a negative test 0.04 (95% CI 0.003-0.60), positive predictive value of 0.31 (95% CI 0.19-0.47), and negative predictive value of 1.00 (95% CI 0.99-1.00). The prevalence of visual impairment among children aged four to six year old is 0.9%. Trained teachers can be examiners for screening purpose.
Kim, Yong Jin; Shin, Jung Ho; Hur, Jun Yong; Kim, Hoon; Ku, Seung-Yup; Suh, Chang Suk
2017-01-01
To evaluate the predictive value of the progesterone level at the beta-human chorionic gonadotropin (β-hCG) check day for ongoing pregnancy maintenance in in vitro fertilization (IVF) cycles in women with previous unexplained repeated miscarriages. One hundred and forty-eight women, with visible gestational sac after IVF, were recruited in this observational study. All subjects had unexplained recurrent miscarriages in more than two previous IVF cycles. The progesterone level at the β-hCG check day (i.e. 14 days after oocyte retrieval) was assessed. The area under the curve (AUC) of the progesterone level was evaluated to predict the ongoing pregnancy or miscarriage outcomes. The overall ongoing pregnancy rate was 60.8% (90/148). The cut-off value with β-hCG levels higher than 126.5 mIU/mL and with progesterone levels higher than 25.2 ng/mL could be the predictive factors for ongoing pregnancy maintenance (AUC = 0.788 and 0.826; sensitivity = 0.788 and 0.723; specificity = 0.689 and 0.833; P < 0.0001 and P < 0.0001, respectively). The miscarriage rates were 19.5% (15/77) in the women with β-hCG > 126.5 mIU/mL and 13.0% (10/77) in those with > 25.2 ng/mL. In the comparison of the ROC curves between both values, a similar significance was found. The subjects with β-hCG > 126.5 mIU/mL and progesterone > 25.2 ng/mL showed higher ongoing pregnancy rates [98.0% (49/50) vs. 41.8% (41/98)] than those with β-hCG ≤ 126.5 mIU/mL or progesterone ≤ 25.2 ng/mL. The progesterone level at 14 days after oocyte retrieval can be a good predictive marker for ongoing pregnancy maintenance in women with repeated IVF failure with miscarriage, together with the β-hCG level. The combined cut-off value of progesterone > 25.2 ng/mL and β-hCG > 126.5 mIU/mL may suggest a good prognosis.
Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis
NASA Astrophysics Data System (ADS)
Sakhuja, Amit; Brevick, Jerald R.
2004-06-01
Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.
On the role of crossmodal prediction in audiovisual emotion perception.
Jessen, Sarah; Kotz, Sonja A
2013-01-01
Humans rely on multiple sensory modalities to determine the emotional state of others. In fact, such multisensory perception may be one of the mechanisms explaining the ease and efficiency by which others' emotions are recognized. But how and when exactly do the different modalities interact? One aspect in multisensory perception that has received increasing interest in recent years is the concept of cross-modal prediction. In emotion perception, as in most other settings, visual information precedes the auditory information. Thereby, leading in visual information can facilitate subsequent auditory processing. While this mechanism has often been described in audiovisual speech perception, so far it has not been addressed in audiovisual emotion perception. Based on the current state of the art in (a) cross-modal prediction and (b) multisensory emotion perception research, we propose that it is essential to consider the former in order to fully understand the latter. Focusing on electroencephalographic (EEG) and magnetoencephalographic (MEG) studies, we provide a brief overview of the current research in both fields. In discussing these findings, we suggest that emotional visual information may allow more reliable predicting of auditory information compared to non-emotional visual information. In support of this hypothesis, we present a re-analysis of a previous data set that shows an inverse correlation between the N1 EEG response and the duration of visual emotional, but not non-emotional information. If the assumption that emotional content allows more reliable predicting can be corroborated in future studies, cross-modal prediction is a crucial factor in our understanding of multisensory emotion perception.
The care and course of diabetes: differences according to level of education.
van der Meer, J B; Mackenbach, J P
1999-01-01
The objective of this study was to describe socioeconomic differences in the utilisation of health services among persons with diabetes and to link these differences with socioeconomic differences in the course of diabetes. A 2-year follow-up study (1991-1993) was done with data from a population-based survey in The Netherlands (city of Eindhoven and surroundings). Those reporting diabetes who also reported treatment with a diet, oral antidiabetics or insulin and who completed questionnaires in the years 1991 and 1993 (n = 173) were included in the analysis. Main outcome measures were: (1) the odds ratios according to level of education of utilisation of 11 types of service or medical checks in 1991, relevant for diabetes; and (2) odds ratios according to level of education of the difference between 1991 and 1993 in the prevalence of symptoms of diabetic complications. Controlling for severity of diabetes, contact rates with the general practitioner were significantly (P < 0.05) higher among those with primary education, compared to those with an educational level of intermediate vocational training or higher. Rates of checks by a specialist, influenza vaccination and many other checks were statistically significantly lower among those with a low educational level, although the group with the lowest educational level did not always show the lowest rates. Of symptoms indicating diabetes complications, the prevalence of pain in the legs and visual impairments developed more unfavourably among those with primary education. The prevalence of all symptoms together developed more unfavourably among those with primary education. A direct contribution of uptake of checks and services to the differential course of diabetes by education could not be demonstrated. People with diabetes with a low level of education have lower utilisation rates of checks and services relevant for diabetes care, and a worse outcome in terms of complications.
Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.
Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys
Liu, Bing
2017-01-01
Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348
Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie
2017-08-01
Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments
2008-01-01
DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments 5a...rover mobility [23, 78]. Remote slip prediction will enable safe traversals on large slopes covered with sand, drift material or loose crater ejecta...aqueous processes, e.g., mineral-rich out- crops which imply exposure to water [92] or putative lake formations or shorelines, layered deposits, etc
See it with feeling: affective predictions during object perception
Barrett, L.F.; Bar, Moshe
2009-01-01
People see with feeling. We ‘gaze’, ‘behold’, ‘stare’, ‘gape’ and ‘glare’. In this paper, we develop the hypothesis that the brain's ability to see in the present incorporates a representation of the affective impact of those visual sensations in the past. This representation makes up part of the brain's prediction of what the visual sensations stand for in the present, including how to act on them in the near future. The affective prediction hypothesis implies that responses signalling an object's salience, relevance or value do not occur as a separate step after the object is identified. Instead, affective responses support vision from the very moment that visual stimulation begins. PMID:19528014
Supèr, Hans; Lamme, Victor A F
2007-06-01
When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.
Li, Yi; Chen, Yuren
2016-12-30
To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.
Generic decoding of seen and imagined objects using hierarchical visual features.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-05-22
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
Reality check: the role of realism in stress reduction using media technology.
de Kort, Y A W; Ijsselsteijn, W A
2006-04-01
There is a growing interest in the use of virtual and other mediated environments for therapeutic purposes. However, in the domain of restorative environments, virtual reality (VR) technology has hardly been used. Here the tendency has been to use mediated real environments, striving for maximum visual realism. This use of photographic material is mainly based on research in aesthetics judgments that has demonstrated the validity of this type of simulations as representations of real environments. Thus, restoration therapy is developing under the untested assumption that photorealistic images have the optimal level of realism, while in therapeutic applications 'experiential realism' seems to be the key rather than visual realism. The present paper discusses this contrast and briefly describes data of three studies aimed at exploring the importance and meaning of realism in the context of restorative environments.
2015-10-01
overview visualization to help clinicians identify patients that are changing and inserted these indices into the sepsis specific decision support...visualization, 4) Created a sepsis identification visualization tool to help clinicians identify patients headed for septic shock, and 5) Generated a...5 Sepsis Visualization
Capturing your charity care: 5 recommendations.
Stern, Hal T
2007-09-01
To identify all charity care patients, hospitals should: Communicate with patients at the point of service. Make qualification for charity care as simple as possible. Use electronic databases to check patient ability to pay. Use predictive modeling techniques. Identify the frequent users of the emergency department.
Connecting Representations: Using Predict, Check, Explain
ERIC Educational Resources Information Center
Roy, George J.; Fueyo, Vivian; Vahey, Philip; Knudsen, Jennifer; Rafanan, Ken; Lara-Meloy, Teresa
2016-01-01
Although educators agree that making connections with the real world, as advocated by "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), is important, making such connections while addressing important mathematics is elusive. The authors have found that math content coupled with the instructional strategy of…
Model Selection Methods for Mixture Dichotomous IRT Models
ERIC Educational Resources Information Center
Li, Feiming; Cohen, Allan S.; Kim, Seock-Ho; Cho, Sun-Joo
2009-01-01
This study examines model selection indices for use with dichotomous mixture item response theory (IRT) models. Five indices are considered: Akaike's information coefficient (AIC), Bayesian information coefficient (BIC), deviance information coefficient (DIC), pseudo-Bayes factor (PsBF), and posterior predictive model checks (PPMC). The five…
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Van Luit, Johannes E H
2015-04-01
The relative importance of visual-spatial and verbal working memory for mathematics performance and learning seems to vary with age, the novelty of the material, and the specific math domain that is investigated. In this study, the relations between verbal and visual-spatial working memory and performance in four math domains (i.e., addition, subtraction, multiplication, and division) at different ages during primary school are investigated. Children (N = 4337) from grades 2 through 6 participated. Visual-spatial and verbal working memory were assessed using online computerized tasks. Math performance was assessed at the start, middle, and end of the school year using a speeded arithmetic test. Multilevel Multigroup Latent Growth Modeling was used to model individual differences in level and growth in math performance, and examine the predictive value of working memory per grade, while controlling for effects of classroom membership. The results showed that as grade level progressed, the predictive value of visual-spatial working memory for individual differences in level of mathematics performance waned, while the predictive value of verbal working memory increased. Working memory did not predict individual differences between children in their rate of performance growth throughout the school year. These findings are discussed in relation to three, not mutually exclusive, explanations for such age-related findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.
State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less
NASA Technical Reports Server (NTRS)
Balch, William; Evans, Robert; Brown, Jim; Feldman, Gene; Mcclain, Charles; Esaias, Wayne
1992-01-01
Global pigment and primary productivity algorithms based on a new data compilation of over 12,000 stations occupied mostly in the Northern Hemisphere, from the late 1950s to 1988, were tested. The results showed high variability of the fraction of total pigment contributed by chlorophyll, which is required for subsequent predictions of primary productivity. Two models, which predict pigment concentration normalized to an attenuation length of euphotic depth, were checked against 2,800 vertical profiles of pigments. Phaeopigments consistently showed maxima at about one optical depth below the chlorophyll maxima. CZCS data coincident with the sea truth data were also checked. A regression of satellite-derived pigment vs ship-derived pigment had a coefficient of determination. The satellite underestimated the true pigment concentration in mesotrophic and oligotrophic waters and overestimated the pigment concentration in eutrophic waters. The error in the satellite estimate showed no trends with time between 1978 and 1986.
ERIC Educational Resources Information Center
McDonnall, Michele Capella
2011-01-01
The study reported here identified factors that predict employment for transition-age youths with visual impairments. Logistic regression was used to predict employment at two levels. Significant variables were early and recent work experiences, completion of a postsecondary program, difficulty with transportation, independent travel skills, and…
ERIC Educational Resources Information Center
Hill, Anita; And Others
1985-01-01
To test ways of predicting how efficiently visually impaired children learn travel skills, a criteria checklist of spatial skills was developed for close-body space, local space, and geographical/travel space. Comparison was made between predictors of efficient learning including subjective ratings of teachers, personal qualities and factors of…
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Ian B.; Arendt, Dustin L.; Bell, Eric B.
Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. This work addresses several important tasks of visualizing and predicting short term text representation shift, i.e. the change in a word’s contextual semantics. We study the relationship between short-term concept drift and representation shift on a large social media corpus – VKontakte collected during the Russia-Ukraine crisis in 2014 – 2015. We visualize short-term representation shift for example keywords and build predictive models to forecast short-term shifts in meaning from previous meaning as well as from conceptmore » drift. We show that short-term representation shift can be accurately predicted up to several weeks in advance and that visualization provides insight into meaning change. Our approach can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event forecasting in social media.« less
2013-01-01
Background People with visual disabilities have increased health needs but face worse inequity to preventive health examinations. To date, only a few nationwide studies have analyzed the utilization of preventive adult health examinations by the visually disabled population. The aim of this study was to investigate the utilization of health examinations by the visually disabled population, and analyze the factors associated with the utilization. Methods Visual disability was certified by ophthalmologists and authenticated by the Ministry of the Interior (MOI), Taiwan. We linked data from three different nationwide datasets (from the MOI, Bureau of Health Promotion, and National Health Research Institutes) between 2006 and 2008 as the data sources. Independent variables included demographic characteristics, income status, health status, and severity of disability; health examination utilization status was the dependent variable. The chi-square test was used to check statistical differences between variables, and a multivariate logistic regression model was used to examine the associated factors with health examination utilization. Results In total, 47,812 visually disabled subjects aged 40 years and over were included in this study, only 16.6% of whom received a health examination. Lower utilization was more likely in male subjects, in those aged 65 years and above, insured dependents and those with a top-ranked premium-based salary, catastrophic illness/injury, chronic diseases of the genitourinary system, and severe or very severe disabilities. Conclusion The overall health examination utilization in the visually disabled population was very low. Lower utilization occurred mainly in males, the elderly, and those with severe disabilities. PMID:24313981
Reifman, Jaques; Kumar, Kamal; Khitrov, Maxim Y; Liu, Jianbo; Ramakrishnan, Sridhar
2018-07-01
The psychomotor vigilance task (PVT) has been widely used to assess the effects of sleep deprivation on human neurobehavioral performance. To facilitate research in this field, we previously developed the PC-PVT, a freely available software system analogous to the "gold-standard" PVT-192 that, in addition to allowing for simple visual reaction time (RT) tests, also allows for near real-time PVT analysis, prediction, and visualization in a personal computer (PC). Here we present the PC-PVT 2.0 for Windows 10 operating system, which has the capability to couple PVT tests of a study protocol with the study's sleep/wake and caffeine schedules, and make real-time individualized predictions of PVT performance for such schedules. We characterized the accuracy and precision of the software in measuring RT, using 44 distinct combinations of PC hardware system configurations. We found that 15 system configurations measured RTs with an average delay of less than 10 ms, an error comparable to that of the PVT-192. To achieve such small delays, the system configuration should always use a gaming mouse as the means to respond to visual stimuli. We recommend using a discrete graphical processing unit for desktop PCs and an external monitor for laptop PCs. This update integrates a study's sleep/wake and caffeine schedules with the testing software, facilitating testing and outcome visualization, and provides near-real-time individualized PVT predictions for any sleep-loss condition considering caffeine effects. The software, with its enhanced PVT analysis, visualization, and prediction capabilities, can be freely downloaded from https://pcpvt.bhsai.org. Published by Elsevier B.V.
Desantis, Andrea; Haggard, Patrick
2016-01-01
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events. PMID:27982063
Desantis, Andrea; Haggard, Patrick
2016-12-16
To maintain a temporally-unified representation of audio and visual features of objects in our environment, the brain recalibrates audio-visual simultaneity. This process allows adjustment for both differences in time of transmission and time for processing of audio and visual signals. In four experiments, we show that the cognitive processes for controlling instrumental actions also have strong influence on audio-visual recalibration. Participants learned that right and left hand button-presses each produced a specific audio-visual stimulus. Following one action the audio preceded the visual stimulus, while for the other action audio lagged vision. In a subsequent test phase, left and right button-press generated either the same audio-visual stimulus as learned initially, or the pair associated with the other action. We observed recalibration of simultaneity only for previously-learned audio-visual outcomes. Thus, learning an action-outcome relation promotes temporal grouping of the audio and visual events within the outcome pair, contributing to the creation of a temporally unified multisensory object. This suggests that learning action-outcome relations and the prediction of perceptual outcomes can provide an integrative temporal structure for our experiences of external events.
Visual body size norms and the under‐detection of overweight and obesity
Robinson, E.
2017-01-01
Summary Objectives The weight status of men with overweight and obesity tends to be visually underestimated, but visual recognition of female overweight and obesity has not been formally examined. The aims of the present studies were to test whether people can accurately recognize both male and female overweight and obesity and to examine a visual norm‐based explanation for why weight status is underestimated. Methods The present studies examine whether both male and female overweight and obesity are visually underestimated (Study 1), whether body size norms predict when underestimation of weight status occurs (Study 2) and whether visual exposure to heavier body weights adjusts visual body size norms and results in underestimation of weight status (Study 3). Results The weight status of men and women with overweight and obesity was consistently visually underestimated (Study 1). Body size norms predicted underestimation of weight status (Study 2) and in part explained why visual exposure to heavier body weights caused underestimation of overweight (Study 3). Conclusions The under‐detection of overweight and obesity may have been in part caused by exposure to larger body sizes resulting in an upwards shift in the range of body sizes that are perceived as being visually ‘normal’. PMID:29479462
Sensory experience modifies feature map relationships in visual cortex
Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S
2016-01-01
The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531
Cross-modal orienting of visual attention.
Hillyard, Steven A; Störmer, Viola S; Feng, Wenfeng; Martinez, Antigona; McDonald, John J
2016-03-01
This article reviews a series of experiments that combined behavioral and electrophysiological recording techniques to explore the hypothesis that salient sounds attract attention automatically and facilitate the processing of visual stimuli at the sound's location. This cross-modal capture of visual attention was found to occur even when the attracting sound was irrelevant to the ongoing task and was non-predictive of subsequent events. A slow positive component in the event-related potential (ERP) that was localized to the visual cortex was found to be closely coupled with the orienting of visual attention to a sound's location. This neural sign of visual cortex activation was predictive of enhanced perceptual processing and was paralleled by a desynchronization (blocking) of the ongoing occipital alpha rhythm. Further research is needed to determine the nature of the relationship between the slow positive ERP evoked by the sound and the alpha desynchronization and to understand how these electrophysiological processes contribute to improved visual-perceptual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dissociating visual form from lexical frequency using Japanese.
Twomey, Tae; Kawabata Duncan, Keith J; Hogan, John S; Morita, Kenji; Umeda, Kazumasa; Sakai, Katsuyuki; Devlin, Joseph T
2013-05-01
In Japanese, the same word can be written in either morphographic Kanji or syllabographic Hiragana and this provides a unique opportunity to disentangle a word's lexical frequency from the frequency of its visual form - an important distinction for understanding the neural information processing in regions engaged by reading. Behaviorally, participants responded more quickly to high than low frequency words and to visually familiar relative to less familiar words, independent of script. Critically, the imaging results showed that visual familiarity, as opposed to lexical frequency, had a strong effect on activation in ventral occipito-temporal cortex. Activation here was also greater for Kanji than Hiragana words and this was not due to their inherent differences in visual complexity. These findings can be understood within a predictive coding framework in which vOT receives bottom-up information encoding complex visual forms and top-down predictions from regions encoding non-visual attributes of the stimulus. Copyright © 2012 Elsevier Inc. All rights reserved.
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
The effect of scleral search coil lens wear on the eye.
Murphy, P J; Duncan, A L; Glennie, A J; Knox, P C
2001-03-01
Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused.
Fast visual prediction and slow optimization of preferred walking speed.
O'Connor, Shawn M; Donelan, J Maxwell
2012-05-01
People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting <2 s) and in a direction opposite to the perturbation and consistent with returning the visually presented speed toward their preferred walking speed, when visual speed was suddenly twice (one-half) the walking speed, subjects decreased (increased) their speed. Subjects did not maintain the new speed but instead gradually returned toward the speed preferred before the perturbation (lasting >300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform
Poucke, Sven Van; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; Deyne, Cathy De
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.
Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.
Visual Cortical Entrainment to Motion and Categorical Speech Features during Silent Lipreading
O’Sullivan, Aisling E.; Crosse, Michael J.; Di Liberto, Giovanni M.; Lalor, Edmund C.
2017-01-01
Speech is a multisensory percept, comprising an auditory and visual component. While the content and processing pathways of audio speech have been well characterized, the visual component is less well understood. In this work, we expand current methodologies using system identification to introduce a framework that facilitates the study of visual speech in its natural, continuous form. Specifically, we use models based on the unheard acoustic envelope (E), the motion signal (M) and categorical visual speech features (V) to predict EEG activity during silent lipreading. Our results show that each of these models performs similarly at predicting EEG in visual regions and that respective combinations of the individual models (EV, MV, EM and EMV) provide an improved prediction of the neural activity over their constituent models. In comparing these different combinations, we find that the model incorporating all three types of features (EMV) outperforms the individual models, as well as both the EV and MV models, while it performs similarly to the EM model. Importantly, EM does not outperform EV and MV, which, considering the higher dimensionality of the V model, suggests that more data is needed to clarify this finding. Nevertheless, the performance of EMV, and comparisons of the subject performances for the three individual models, provides further evidence to suggest that visual regions are involved in both low-level processing of stimulus dynamics and categorical speech perception. This framework may prove useful for investigating modality-specific processing of visual speech under naturalistic conditions. PMID:28123363
Development of visual 3D virtual environment for control software
NASA Technical Reports Server (NTRS)
Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence
1991-01-01
Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.
Learning receptive fields using predictive feedback.
Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H
2006-01-01
Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.
POSTERIOR PREDICTIVE MODEL CHECKS FOR DISEASE MAPPING MODELS. (R827257)
Disease incidence or disease mortality rates for small areas are often displayed on maps. Maps of raw rates, disease counts divided by the total population at risk, have been criticized as unreliable due to non-constant variance associated with heterogeneity in base population si...
Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.
Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai
2014-12-01
In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.
Visualization and manipulating the image of a formal data structure (FDS)-based database
NASA Astrophysics Data System (ADS)
Verdiesen, Franc; de Hoop, Sylvia; Molenaar, Martien
1994-08-01
A vector map is a terrain representation with a vector-structured geometry. Molenaar formulated an object-oriented formal data structure for 3D single valued vector maps. This FDS is implemented in a database (Oracle). In this study we describe a methodology for visualizing a FDS-based database and manipulating the image. A data set retrieved by querying the database is converted into an import file for a drawing application. An objective of this study is that an end-user can alter and add terrain objects in the image. The drawing application creates an export file, that is compared with the import file. Differences between these files result in updating the database which involves checks on consistency. In this study Autocad is used for visualizing and manipulating the image of the data set. A computer program has been written for the data exchange and conversion between Oracle and Autocad. The data structure of the FDS is compared to the data structure of Autocad and the data of the FDS is converted into the structure of Autocad equal to the FDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W
We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less
Action-outcome learning and prediction shape the window of simultaneity of audiovisual outcomes.
Desantis, Andrea; Haggard, Patrick
2016-08-01
To form a coherent representation of the objects around us, the brain must group the different sensory features composing these objects. Here, we investigated whether actions contribute in this grouping process. In particular, we assessed whether action-outcome learning and prediction contribute to audiovisual temporal binding. Participants were presented with two audiovisual pairs: one pair was triggered by a left action, and the other by a right action. In a later test phase, the audio and visual components of these pairs were presented at different onset times. Participants judged whether they were simultaneous or not. To assess the role of action-outcome prediction on audiovisual simultaneity, each action triggered either the same audiovisual pair as in the learning phase ('predicted' pair), or the pair that had previously been associated with the other action ('unpredicted' pair). We found the time window within which auditory and visual events appeared simultaneous increased for predicted compared to unpredicted pairs. However, no change in audiovisual simultaneity was observed when audiovisual pairs followed visual cues, rather than voluntary actions. This suggests that only action-outcome learning promotes temporal grouping of audio and visual effects. In a second experiment we observed that changes in audiovisual simultaneity do not only depend on our ability to predict what outcomes our actions generate, but also on learning the delay between the action and the multisensory outcome. When participants learned that the delay between action and audiovisual pair was variable, the window of audiovisual simultaneity for predicted pairs increased, relative to a fixed action-outcome pair delay. This suggests that participants learn action-based predictions of audiovisual outcome, and adapt their temporal perception of outcome events based on such predictions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Modelling individual difference in visual categorization.
Shen, Jianhong; Palmeri, Thomas J
Recent years has seen growing interest in understanding, characterizing, and explaining individual differences in visual cognition. We focus here on individual differences in visual categorization. Categorization is the fundamental visual ability to group different objects together as the same kind of thing. Research on visual categorization and category learning has been significantly informed by computational modeling, so our review will focus both on how formal models of visual categorization have captured individual differences and how individual difference have informed the development of formal models. We first examine the potential sources of individual differences in leading models of visual categorization, providing a brief review of a range of different models. We then describe several examples of how computational models have captured individual differences in visual categorization. This review also provides a bit of an historical perspective, starting with models that predicted no individual differences, to those that captured group differences, to those that predict true individual differences, and to more recent hierarchical approaches that can simultaneously capture both group and individual differences in visual categorization. Via this selective review, we see how considerations of individual differences can lead to important theoretical insights into how people visually categorize objects in the world around them. We also consider new directions for work examining individual differences in visual categorization.
Modelling individual difference in visual categorization
Shen, Jianhong; Palmeri, Thomas J.
2016-01-01
Recent years has seen growing interest in understanding, characterizing, and explaining individual differences in visual cognition. We focus here on individual differences in visual categorization. Categorization is the fundamental visual ability to group different objects together as the same kind of thing. Research on visual categorization and category learning has been significantly informed by computational modeling, so our review will focus both on how formal models of visual categorization have captured individual differences and how individual difference have informed the development of formal models. We first examine the potential sources of individual differences in leading models of visual categorization, providing a brief review of a range of different models. We then describe several examples of how computational models have captured individual differences in visual categorization. This review also provides a bit of an historical perspective, starting with models that predicted no individual differences, to those that captured group differences, to those that predict true individual differences, and to more recent hierarchical approaches that can simultaneously capture both group and individual differences in visual categorization. Via this selective review, we see how considerations of individual differences can lead to important theoretical insights into how people visually categorize objects in the world around them. We also consider new directions for work examining individual differences in visual categorization. PMID:28154496
Construction of Protograph LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Foveated model observers to predict human performance in 3D images
NASA Astrophysics Data System (ADS)
Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.
2017-03-01
We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.
Microscopic analysis and simulation of check-mark stain on the galvanized steel strip
NASA Astrophysics Data System (ADS)
So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon
2010-11-01
When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.
Predictors of Health Service Utilization Among Older Men in Jamaica.
Willie-Tyndale, Douladel; McKoy Davis, Julian; Holder-Nevins, Desmalee; Mitchell-Fearon, Kathryn; James, Kenneth; Waldron, Norman K; Eldemire-Shearer, Denise
2018-01-03
To determine the relative influence of sociodemographic, socioeconomic, psychosocial, and health variables on health service utilization in the last 12 months. Data were analyzed for 1,412 men ≥60 years old from a 2012 nationally representative community-based survey in Jamaica. Associations between six health service utilization variables and several explanatory variables were explored. Logistic regression models were used to identify independent predictors of each utilization measure and determine the strengths of associations. More than 75% reported having health visits and blood pressure checks. Blood sugar (69.6%) and cholesterol (63.1%) checks were less common, and having a prostate check (35.1%) was the least utilized service. Adjusted models confirmed that the presence of chronic diseases and health insurance most strongly predicted utilization. A daughter or son as the main source of financial support (vs self) doubled or tripled, respectively, the odds of routine doctors' visits. Compared with primary or lower education, tertiary education doubled [2.37 (1.12, 4.95)] the odds of a blood pressure check. Regular attendance at club/society/religious organizations' meetings increased the odds of having a prostate check by 45%. Although need and financial resources most strongly influenced health service utilization, psychosocial variables may be particularly influential for underutilized services. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Ziegler, Johannes C.; Pech-Georgel, Catherine; Dufau, Stephane; Grainger, Jonathan
2010-01-01
Visual-attentional theories of dyslexia predict deficits for dyslexic children not only for the perception of letter strings but also for non-alphanumeric symbol strings. This prediction was tested in a two-alternative forced-choice paradigm with letters, digits, and symbols. Children with dyslexia showed significant deficits for letter and digit…
Prediction in the Processing of Repair Disfluencies: Evidence from the Visual-World Paradigm
ERIC Educational Resources Information Center
Lowder, Matthew W.; Ferreira, Fernanda
2016-01-01
Two visual-world eye-tracking experiments investigated the role of prediction in the processing of repair disfluencies (e.g., "The chef reached for some salt uh I mean some ketchup ..."). Experiment 1 showed that listeners were more likely to fixate a critical distractor item (e.g., "pepper") during the processing of repair…
A Visualization System for Predicting Learning Activities Using State Transition Graphs
ERIC Educational Resources Information Center
Okubo, Fumiya; Shimada, Atsushi; Taniguchi, Yuta
2017-01-01
In this paper, we present a system for visualizing learning logs of a course in progress together with predictions of learning activities of the following week and the final grades of students by state transition graphs. Data are collected from 236 students attending the course in progress and from 209 students attending the past course for…
Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure
ERIC Educational Resources Information Center
Snyder, Kelly A.
2010-01-01
The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured…
Visual Attention at Three Months as a Predictor of Cognitive Functioning at Two Years of Age.
ERIC Educational Resources Information Center
Lewis, Michael; Brooks-Gunn, Jeanne
1981-01-01
The predictive power of various cognitive skills at three months of age in terms of later cognitive functioning was examined. Visual habituation and recovery predicted later intellectual functioning at 24 months better than global intelligence or object permanence scores. Changes in cognitive functioning may be a transformation of skills.…
Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations
Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...
2017-08-29
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less
Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less
Predicting Handwriting Legibility in Taiwanese Elementary School Children.
Lee, Tzu-I; Howe, Tsu-Hsin; Chen, Hao-Ling; Wang, Tien-Ni
This study investigates handwriting characteristics and potential predictors of handwriting legibility among typically developing elementary school children in Taiwan. Predictors of handwriting legibility included visual-motor integration (VMI), visual perception (VP), eye-hand coordination (EHC), and biomechanical characteristics of handwriting. A total of 118 children were recruited from an elementary school in Taipei, Taiwan. A computerized program then assessed their handwriting legibility. The biomechanics of handwriting were assessed using a digitizing writing tablet. The children's VMI, VP, and EHC were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration. Results indicated that predictive factors of handwriting legibility varied in different age groups. VMI predicted handwriting legibility for first-grade students, and EHC and stroke force predicted handwriting legibility for second-grade students. Kinematic factors such as stroke velocity were the only predictor for children in fifth and sixth grades. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Learning and Prediction of Slip from Visual Information
NASA Technical Reports Server (NTRS)
Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro
2007-01-01
This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.
The predictive mind and the experience of visual art work
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person’s mindset, which determines what top–down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art. PMID:25566111
The predictive mind and the experience of visual art work.
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
The influence of visual training on predicting complex action sequences.
Cross, Emily S; Stadler, Waltraud; Parkinson, Jim; Schütz-Bosbach, Simone; Prinz, Wolfgang
2013-02-01
Linking observed and executable actions appears to be achieved by an action observation network (AON), comprising parietal, premotor, and occipitotemporal cortical regions of the human brain. AON engagement during action observation is thought to aid in effortless, efficient prediction of ongoing movements to support action understanding. Here, we investigate how the AON responds when observing and predicting actions we cannot readily reproduce before and after visual training. During pre- and posttraining neuroimaging sessions, participants watched gymnasts and wind-up toys moving behind an occluder and pressed a button when they expected each agent to reappear. Between scanning sessions, participants visually trained to predict when a subset of stimuli would reappear. Posttraining scanning revealed activation of inferior parietal, superior temporal, and cerebellar cortices when predicting occluded actions compared to perceiving them. Greater activity emerged when predicting untrained compared to trained sequences in occipitotemporal cortices and to a lesser degree, premotor cortices. The occipitotemporal responses when predicting untrained agents showed further specialization, with greater responses within body-processing regions when predicting gymnasts' movements and in object-selective cortex when predicting toys' movements. The results suggest that (1) select portions of the AON are recruited to predict the complex movements not easily mapped onto the observer's body and (2) greater recruitment of these AON regions supports prediction of less familiar sequences. We suggest that the findings inform both the premotor model of action prediction and the predictive coding account of AON function. Copyright © 2011 Wiley Periodicals, Inc.
Jonckheere Double Star Photometry â Part VIII: Sextans
NASA Astrophysics Data System (ADS)
Knapp, Wilfried
2018-01-01
If any double star discoverer is in urgent need of photometry then it is Jonckheere. There are over 3000 Jonckheere objects listed in the WDS catalog and a good part of them with magnitudes obviously far too bright. This report covers the Jonckheere objects in the constellation Sextans. One image per object was taken with V-filter to allow for visual magnitude measurement by differential photometry. All objects were additionally checked for common proper motion and a good part of the objects qualify indeed as potential CPM pairs.
High-speed holocinematographic velocimeter for studying turbulent flow control physics
NASA Technical Reports Server (NTRS)
Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.
1985-01-01
Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.
Jonckheere Double Star Photometry - Part XI: Lepus & Vulpecula
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2018-07-01
If any double star discoverer is in urgent need of photometry then it is Jonckheere. There are over 3000 Jonckheere objects listed in the WDS catalog and a good part of them with magnitudes obviously far too bright. This report covers the Jonckheere objects in the constellations Lep and Vul. At least one image per object was taken with V-filter to allow for visual magnitude measurement by differential photometry. All objects were additionally checked for common proper motion. Five qualify indeed as most probably CPM pairs with an additional five as potential CPM pairs.
Protection coordination of the Kennedy Space Center electric distribution network
NASA Technical Reports Server (NTRS)
1976-01-01
A computer technique is described for visualizing the coordination and protection of any existing system of devices and settings by plotting the tripping characteristics of the involved devices on a common basis. The program determines the optimum settings of a given set of protective devices and configuration in the sense of the best expected coordinated operation of these devices. Subroutines are given for simulating time versus current characteristics of the different relays, circuit breakers, and fuses in the system; coordination index computation; protection checks; plotting; and coordination optimation.
Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.
Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp
2012-07-30
Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.
Creativity, visualization abilities, and visual cognitive style.
Kozhevnikov, Maria; Kozhevnikov, Michael; Yu, Chen Jiao; Blazhenkova, Olesya
2013-06-01
Despite the recent evidence for a multi-component nature of both visual imagery and creativity, there have been no systematic studies on how the different dimensions of creativity and imagery might interrelate. The main goal of this study was to investigate the relationship between different dimensions of creativity (artistic and scientific) and dimensions of visualization abilities and styles (object and spatial). In addition, we compared the contributions of object and spatial visualization abilities versus corresponding styles to scientific and artistic dimensions of creativity. Twenty-four undergraduate students (12 females) were recruited for the first study, and 75 additional participants (36 females) were recruited for an additional experiment. Participants were administered a number of object and spatial visualization abilities and style assessments as well as a number of artistic and scientific creativity tests. The results show that object visualization relates to artistic creativity and spatial visualization relates to scientific creativity, while both are distinct from verbal creativity. Furthermore, our findings demonstrate that style predicts corresponding dimension of creativity even after removing shared variance between style and visualization ability. The results suggest that styles might be a more ecologically valid construct in predicting real-life creative behaviour, such as performance in different professional domains. © 2013 The British Psychological Society.
Kalra, Sanjay; Mithal, Ambrish; Sahay, Rakesh; John, Mathew; Unnikrishnan, A G; Saboo, Banshi; Ghosh, Sujoy; Sanyal, Debmalya; Hirsch, Laurence J; Gupta, Vandita; Strauss, Kenneth W
2017-06-01
Using the Indian and rest of world (ROW) injection technique questionnaire (ITQ) data, we address key insulin injection complications. In 2015 we conducted an ITQ survey throughout India involving 1011 patients. Indian values were compared with those from 41 other countries participating in the ITQ, known here as ROW. More than a quarter of Indian insulin users described lesions consistent with lipohypertrophy (LH) at their injection sites and approximately 1 in 5 were found to have LH by the examining nurse (using visual inspection and palpation). Just over half of Indian injectors report having pain on injection. Of these, 4 out of 5 report having painful injections only several times a month or year (i.e., not with every injection). Doctors and diabetes educators in India (as opposed to nurses) have a larger role in teaching patients how to inject than they do in ROW. Despite this specialized approach, a very high percentage of patients report that they have not been trained (at least cannot remember being trained) in a wide range of essential injection topics. Only about 30% of Indian injectors get their sites checked at least annually, with nearly a third only having sites checked when they specifically complained and nearly 4 out of 10 never having had their sites checked. Indian HCPs can clearly do a better job covering all the vital topics essential to proper injection habits.
Balas, Benjamin
2016-11-01
Peripheral visual perception is characterized by reduced information about appearance due to constraints on how image structure is represented. Visual crowding is a consequence of excessive integration in the visual periphery. Basic phenomenology of visual crowding and other tasks have been successfully accounted for by a summary-statistic model of pooling, suggesting that texture-like processing is useful for how information is reduced in peripheral vision. I attempt to extend the scope of this model by examining a property of peripheral vision: reduced perceived numerosity in the periphery. I demonstrate that a summary-statistic model of peripheral appearance accounts for reduced numerosity in peripherally viewed arrays of randomly placed dots, but does not account for observed effects of dot clustering within such arrays. The model thus offers a limited account of how numerosity is perceived in the visual periphery. I also demonstrate that the model predicts that numerosity estimation is sensitive to element shape, which represents a novel prediction regarding the phenomenology of peripheral numerosity perception. Finally, I discuss ways to extend the model to a broader range of behavior and the potential for using the model to make further predictions about how number is perceived in untested scenarios in peripheral vision.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
HISTORICAL EMISSION AND OZONE TRENDS IN THE HOUSTON AREA
An analysis of historical trend data for emissions and air quality in Houston for period of 1974-78 is conducted for the purposes of checking the EKMA O3-predicting model and of exploring empirical relations between emission changes and O3 air quality in the Houston area. Results...
Listening as an Act of Composing.
ERIC Educational Resources Information Center
Ronald, Katharine; Roskelly, Hephzibah
The fact that students have not learned to listen may be the reason some of them cannot write. Listening is an active process requiring the same skills of prediction, hypothesizing, checking, revising, and generalization that reading and writing demand. The following three exercises were designed to make students conscious of themselves as active…
NON-INTELLECTIVE PREDICTORS OF ACHIEVEMENT IN COLLEGE.
ERIC Educational Resources Information Center
NICHOLS, ROBERT C.
SCALES FOR PREDICTING 1ST-YEAR COLLEGE GRADES AND EXTRACURRICULAR ACHIEVEMENT WERE DEVELOPED BY ITEM ANALYSIS FROM EACH OF FOUR ITEM POOLS--THE CALIFORNIA PSYCHOLOGICAL INVENTORY (CPI), THE VOCATIONAL PREFERENCE INVENTORY (VPI), AN ADJECTIVE CHECK LIST (ACL), AND AN EXPERIMENTAL OBJECTIVE BEHAVIOR INVENTORY (OBI)--USING A SAMPLE OF 1,013 NATIONAL…
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
Mackrous, I; Simoneau, M
2011-11-10
Following body rotation, optimal updating of the position of a memorized target is attained when retinal error is perceived and corrective saccade is performed. Thus, it appears that these processes may enable the calibration of the vestibular system by facilitating the sharing of information between both reference frames. Here, it is assessed whether having sensory information regarding body rotation in the target reference frame could enhance an individual's learning rate to predict the position of an earth-fixed target. During rotation, participants had to respond when they felt their body midline had crossed the position of the target and received knowledge of result. During practice blocks, for two groups, visual cues were displayed in the same reference frame of the target, whereas a third group relied on vestibular information (vestibular-only group) to predict the location of the target. Participants, unaware of the role of the visual cues (visual cues group), learned to predict the location of the target and spatial error decreased from 16.2 to 2.0°, reflecting a learning rate of 34.08 trials (determined from fitting a falling exponential model). In contrast, the group aware of the role of the visual cues (explicit visual cues group) showed a faster learning rate (i.e. 2.66 trials) but similar final spatial error 2.9°. For the vestibular-only group, similar accuracy was achieved (final spatial error of 2.3°), but their learning rate was much slower (i.e. 43.29 trials). Transferring to the Post-test (no visual cues and no knowledge of result) increased the spatial error of the explicit visual cues group (9.5°), but it did not change the performance of the vestibular group (1.2°). Overall, these results imply that cognition assists the brain in processing the sensory information within the target reference frame. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Grimmer, Timo; Wutz, Carolin; Alexopoulos, Panagiotis; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Goldhardt, Oliver; Ortner, Marion; Sorg, Christian; Kurz, Alexander
2016-02-01
Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to rule out underlying AD. The findings of the present study favor a fully automated method of analysis for (11)C-PiB assessments and a visual analysis by experts for (18)F-FDG assessments. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.
Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael
2014-01-01
Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697
Transdiagnostic psychiatric symptoms related to visual evoked potential abnormalities.
Bedwell, Jeffrey S; Butler, Pamela D; Chan, Chi C; Trachik, Benjamin J
2015-12-15
Visual processing abnormalities have been reported across a range of psychotic and mood disorders, but are typically examined within a particular disorder. The current study used a novel transdiagnostic approach to examine diagnostic classes, clinician-rated current symptoms, and self-reported personality traits in relation to visual processing abnormalities. We examined transient visual-evoked potentials (VEPs) from 48 adults (56% female), representing a wide range of psychotic and mood disorders, as well as individuals with no history of psychiatric disorder. Stimuli were low contrast check arrays presented on green and red backgrounds. Pairwise comparisons between individuals with schizophrenia-spectrum disorders (SSD), chronic mood disorders (CMD), and nonpsychiatric controls (NC) revealed no overall differences for either P1 or N1 amplitude. However, there was a significant interaction with the color background in which the NC group showed a significant increase in P1 amplitude to the red, vs. green, background, while the SSD group showed no change. This was related to an increase in social anhedonia and general negative symptoms. Stepwise regressions across the entire sample revealed that individuals with greater apathy and/or eccentric behavior had a reduced P1 amplitude. These relationships provide clues for uncovering the underlying causal pathology for these transdiagnostic symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Population pharmacokinetics of aripiprazole in healthy Korean subjects.
Jeon, Ji-Young; Chae, Soo-Wan; Kim, Min-Gul
2016-04-01
Aripiprazole is widely used to treat schizophrenia and bipolar disorder. This study aimed to develop a combined population pharmacokinetic model for aripiprazole in healthy Korean subjects and to identify the significant covariates in the pharmacokinetic variability of aripiprazole. Aripiprazole plasma concentrations and demographic data were collected retrospectively from previous bioequivalence studies that were conducted in Chonbuk National University Hospital. Informed consent was obtained from subjects for cytochrome P450 (CYP) genotyping. The population pharmacokinetic parameters of aripiprazole were estimated using nonlinear mixed-effect modeling with first-order conditional estimation with interaction method. The effects of age, sex, weight, height, and CYP genotype were assessed as covariates. A total of 1,508 samples from 88 subjects in three bioequivalence studies were collected. The two-compartment model was adopted, and the final population model showed that the CYP2D6 genotype polymorphism, height and weight significantly affect aripiprazole disposition. The bootstrap and visual predictive check results were evaluated, showing that the accuracy of the pharmacokinetic model was acceptable. A population pharmacokinetic model of aripiprazole was developed for Korean subjects. CYP2D6 genotype polymorphism, weight, and height were included as significant factors affecting aripiprazole disposition. The population pharmacokinetic parameters of aripiprazole estimated in the present study may be useful for individualizing clinical dosages and for studying the concentration-effect relationship of the drug.
Population pharmacokinetics of phenytoin in critically ill children.
Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce
2015-03-01
The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.
Predicting Airport Screening Officers' Visual Search Competency With a Rapid Assessment.
Mitroff, Stephen R; Ericson, Justin M; Sharpe, Benjamin
2018-03-01
Objective The study's objective was to assess a new personnel selection and assessment tool for aviation security screeners. A mobile app was modified to create a tool, and the question was whether it could predict professional screeners' on-job performance. Background A variety of professions (airport security, radiology, the military, etc.) rely on visual search performance-being able to detect targets. Given the importance of such professions, it is necessary to maximize performance, and one means to do so is to select individuals who excel at visual search. A critical question is whether it is possible to predict search competency within a professional search environment. Method Professional searchers from the USA Transportation Security Administration (TSA) completed a rapid assessment on a tablet-based X-ray simulator (XRAY Screener, derived from the mobile technology app Airport Scanner; Kedlin Company). The assessment contained 72 trials that were simulated X-ray images of bags. Participants searched for prohibited items and tapped on them with their finger. Results Performance on the assessment significantly related to on-job performance measures for the TSA officers such that those who were better XRAY Screener performers were both more accurate and faster at the actual airport checkpoint. Conclusion XRAY Screener successfully predicted on-job performance for professional aviation security officers. While questions remain about the underlying cognitive mechanisms, this quick assessment was found to significantly predict on-job success for a task that relies on visual search performance. Application It may be possible to quickly assess an individual's visual search competency, which could help organizations select new hires and assess their current workforce.
Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance
Veniero, Domenica
2017-01-01
Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794
Poltavski, Dmitri; Biberdorf, David
2015-01-01
Abstract In the growing field of sports vision little is still known about unique attributes of visual processing in ice hockey and what role visual processing plays in the overall athlete's performance. In the present study we evaluated whether visual, perceptual and cognitive/motor variables collected using the Nike SPARQ Sensory Training Station have significant relevance to the real game statistics of 38 Division I collegiate male and female hockey players. The results demonstrated that 69% of variance in the goals made by forwards in 2011-2013 could be predicted by their faster reaction time to a visual stimulus, better visual memory, better visual discrimination and a faster ability to shift focus between near and far objects. Approximately 33% of variance in game points was significantly related to better discrimination among competing visual stimuli. In addition, reaction time to a visual stimulus as well as stereoptic quickness significantly accounted for 24% of variance in the mean duration of the player's penalty time. This is one of the first studies to show that some of the visual skills that state-of-the-art generalised sports vision programmes are purported to target may indeed be important for hockey players' actual performance on the ice.
Neurocognitive Predictors of Academic Outcomes among Childhood Leukemia Survivors
(Ki) Moore, Ida M.; Lupo, Philip J.; Insel, Kathleen; Harris, Lynnette L.; Pasvogel, Alice; Koerner, Kari M.; Adkins, Kristin B.; Taylor, Olga A.; Hockenberry, Marilyn J.
2015-01-01
Background Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and survival approaches 90%. ALL survivors are more likely than healthy peers or siblings to experience academic underachievement yet little is known about neurocognitive predictors of academic outcomes. Objective Objectives were to compare neurocognitive abilities to age-adjusted standardized norms; to examine change over time in neurocognitive abilities; and to establish neurocognitive predictors of academic outcomes. Methods Seventy-one children were followed over the course of therapy. Cognitive abilities were assessed during Induction when the child was in remission (Baseline) and annually for 3 years (Year 1, Year 2, Year 3). Reading and mathematics abilities were assessed at Year 3. Results Fine motor dexterity was significantly below age-adjusted norms at all data points, but showed improvement over time. Baseline visual-motor integration was within the normal range but significantly declined by Year 3, and mean scores at Years 2 and 3 were significantly below age-adjusted norms. Verbal short-term memory was significantly below age-adjusted norms at all assessments. Visual-motor integration predicted reading and mathematic abilities. Verbal short-term memory predicted reading abilities, and visual short-term memory predicted mathematic abilities. Conclusions CNS-directed therapy is associated with specific neurocognitive problems. Visual spatial skills, verbal and visual short term memory predict academic outcomes. Implications for practice Early assessment of visual spatial perception and short-term memory can identify children at risk for academic problems. Children who are at risk for academic problems could benefit from a school based Individual Educational Program and/or educational intervention. PMID:26166361
A Portable Platform for Evaluation of Visual Performance in Glaucoma Patients
Rosen, Peter N.; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Marvasti, Amir H.; Medeiros, Felipe A.
2015-01-01
Purpose To propose a new tablet-enabled test for evaluation of visual performance in glaucoma, the PERformance CEntered Portable Test (PERCEPT), and to evaluate its ability to predict history of falls and motor vehicle crashes. Design Cross-sectional study. Methods The study involved 71 patients with glaucomatous visual field defects on standard automated perimetry (SAP) and 59 control subjects. The PERCEPT was based on the concept of increasing visual task difficulty to improve detection of central visual field losses in glaucoma patients. Subjects had to perform a foveal 8-alternative-forced-choice orientation discrimination task, while detecting a simultaneously presented peripheral stimulus within a limited presentation time. Subjects also underwent testing with the Useful Field of View (UFOV) divided attention test. The ability to predict history of motor vehicle crashes and falls was investigated by odds ratios and incident-rate ratios, respectively. Results When adjusted for age, only the PERCEPT processing speed parameter showed significantly larger values in glaucoma compared to controls (difference: 243ms; P<0.001). PERCEPT results had a stronger association with history of motor vehicle crashes and falls than UFOV. Each 1 standard deviation increase in PERCEPT processing speed was associated with an odds ratio of 2.69 (P = 0.003) for predicting history of motor vehicle crashes and with an incident-rate ratio of 1.95 (P = 0.003) for predicting history of falls. Conclusion A portable platform for testing visual function was able to detect functional deficits in glaucoma, and its results were significantly associated with history of involvement in motor vehicle crashes and history of falls. PMID:26445501
Prediction of mechanical property loss in polyamide during immersion in sea water
NASA Astrophysics Data System (ADS)
Le Gac, Pierre Yves; Arhant, Mael; Le Gall, Maelenn; Burtin, Christian; Davies, Peter
2016-05-01
It is well known that the water absorption in polyamide leads to a large reduction in the mechanical properties of the polymer, which is induced by the plasticization of the amorphous phase. However, predicting such a loss in a marine environment is not straightforward, especially when thick samples are considered. This study presents a modeling study of the water absorption in polyamide 6 based on the free volume theory. Using this modeling coupled with a description of the stress yield changes with Tg, it is possible to predict the long term behavior of thick samples when immersed in sea water. Reliability of the prediction is checked by a comparison with experimental results.
Computer assisted screening, correction, and analysis of historical weather measurements
NASA Astrophysics Data System (ADS)
Burnette, Dorian J.; Stahle, David W.
2013-04-01
A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.
Wdowczyk, Joanna; Makowiec, Danuta; Dorniak, Karolina; Gruchała, Marcin
2016-01-01
We present a heart transplant patient at his 17th year of uncomplicated follow-up. Within a frame of routine check out several tests were performed. With such a long and uneventful follow-up some degree of graft reinnervation could be anticipated. However, the patient's electrocardiogram and exercise parameters seemed largely inconclusive in this regard. The exercise heart rate dynamics were suggestive of only mild, if any parasympathetic reinnervation of the graft with persisting sympathetic activation. On the other hand, traditional heart rate variability (HRV) indices were inadequately high, due to erratic rhythm resulting from interference of the persisting recipient sinus node or non-conducted atrial parasystole. New tools, originated from network representation of time series, by visualization short-term dynamical patterns, provided a method to discern HRV increase due to reinnervation from other reasons.
pySeismicDQA: open source post experiment data quality assessment and processing
NASA Astrophysics Data System (ADS)
Polkowski, Marcin
2017-04-01
Seismic Data Quality Assessment is python based, open source set of tools dedicated for data processing after passive seismic experiments. Primary goal of this toolset is unification of data types and formats from different dataloggers necessary for further processing. This process requires additional data checks for errors, equipment malfunction, data format errors, abnormal noise levels, etc. In all such cases user needs to decide (manually or by automatic threshold) if data is removed from output dataset. Additionally, output dataset can be visualized in form of website with data availability charts and waveform visualization with earthquake catalog (external). Data processing can be extended with simple STA/LTA event detection. pySeismicDQA is designed and tested for two passive seismic experiments in central Europe: PASSEQ 2006-2008 and "13 BB Star" (2013-2016). National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
A multimodal interface device for online board games designed for sight-impaired people.
Caporusso, Nicholas; Mkrtchyan, Lusine; Badia, Leonardo
2010-03-01
Online games between remote opponents playing over computer networks are becoming a common activity of everyday life. However, computer interfaces for board games are usually based on the visual channel. For example, they require players to check their moves on a video display and interact by using pointing devices such as a mouse. Hence, they are not suitable for visually impaired people. The present paper discusses a multipurpose system that allows especially blind and deafblind people playing chess or other board games over a network, therefore reducing their disability barrier. We describe and benchmark a prototype of a special interactive haptic device for online gaming providing a dual tactile feedback. The novel interface of this proposed device is able to guarantee not only a better game experience for everyone but also an improved quality of life for sight-impaired people.
Pattern reversal responses in man and cat: a comparison.
Schuurmans, R P; Berninger, T
1984-01-01
In 42 enucleated and arterially perfused cat eyes, graded potentials were recorded from the retina (ERG) and from the optic nerve ( ONR ) in response to checker-board stimuli, reversing at a low temporal frequency in a square wave mode. The ERG and ONR responses show an almost perfect duplication of the response to each reversal of the pattern and exhibit, in contrast to luminance responses, striking similarities in response characteristics such as amplitude, wave shape and time course. Furthermore, the amplitude versus check size plots coincide in both responses. In cat, pattern reversal responses can be recorded from 74 to 9 min of arc, correlating to the cat's visual resolution. In man, almost identical responses can be recorded for the pattern ERG. However, in accordance with the difference in visual resolution in man and cat, a parallel shift for the human pattern reversal ERG response to higher spatial frequencies is observed.
A linear model fails to predict orientation selectivity of cells in the cat visual cortex.
Volgushev, M; Vidyasagar, T R; Pei, X
1996-01-01
1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Thomas, J. P.; Palmer, J.; Shimozaki, S. S.
2000-01-01
Recently, quantitative models based on signal detection theory have been successfully applied to the prediction of human accuracy in visual search for a target that differs from distractors along a single attribute (feature search). The present paper extends these models for visual search accuracy to multidimensional search displays in which the target differs from the distractors along more than one feature dimension (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in the display elicits a noisy representation for each of the relevant feature dimensions. The observer combines the representations across feature dimensions to obtain a single decision variable, and the stimulus with the maximum value determines the response. The model accurately predicts human experimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation. The model accounts for performance degradation without resorting to a limited-capacity spatially localized and temporally serial mechanism by which to bind information across feature dimensions.
Visual motion perception predicts driving hazard perception ability.
Lacherez, Philippe; Au, Sandra; Wood, Joanne M
2014-02-01
To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Can responses to basic non-numerical visual features explain neural numerosity responses?
Harvey, Ben M; Dumoulin, Serge O
2017-04-01
Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.
Prediction of functional loss in glaucoma from progressive optic disc damage.
Medeiros, Felipe A; Alencar, Luciana M; Zangwill, Linda M; Bowd, Christopher; Sample, Pamela A; Weinreb, Robert N
2009-10-01
To evaluate the ability of progressive optic disc damage detected by assessment of longitudinal stereophotographs to predict future development of functional loss in those with suspected glaucoma. The study included 639 eyes of 407 patients with suspected glaucoma followed up for an average of 8.0 years with annual standard automated perimetry visual field and optic disc stereophotographs. All patients had normal and reliable standard automated perimetry results at baseline. Conversion to glaucoma was defined as development of 3 consecutive abnormal visual fields during follow-up. Presence of progressive optic disc damage was evaluated by grading longitudinally acquired simultaneous stereophotographs. Other predictive factors included age, intraocular pressure, central corneal thickness, pattern standard deviation, and baseline stereophotograph grading. Hazard ratios for predicting visual field loss were obtained by extended Cox models, with optic disc progression as a time-dependent covariate. Predictive accuracy was evaluated using a modified R(2) index. Progressive optic disc damage had a hazard ratio of 25.8 (95% confidence interval, 16.0-41.7) and was the most important risk factor for development of visual field loss with an R(2) of 79%. The R(2)s for other predictive factors ranged from 6% to 26%. Presence of progressive optic disc damage on stereophotographs was a highly predictive factor for future development of functional loss in glaucoma. These findings suggest the importance of careful monitoring of the optic disc appearance and a potential role for longitudinal assessment of the optic disc as an end point in clinical trials and as a reference for evaluation of diagnostic tests in glaucoma.
Loffing, Florian; Schorer, Jörg; Hagemann, Norbert; Baker, Joseph
2012-02-01
High ball speeds and close distances between competitors require athletes in interactive sports to correctly anticipate an opponent's intentions in order to render appropriate reactions. Although it is considered crucial for successful performance, such skill appears impaired when athletes are confronted with a left-handed opponent, possibly because of athletes' reduced perceptual familiarity with rarely encountered left-handed actions. To test this negative perceptual frequency effect hypothesis, we invited 18 skilled and 18 novice volleyball players to predict shot directions of left- and right-handed attacks in a video-based visual anticipation task. In accordance with our predictions, and with recent reports on laterality differences in visual perception, the outcome of left-handed actions was significantly less accurately predicted than the outcome of right-handed attacks. In addition, this left-right bias was most distinct when predictions had to be based on preimpact (i.e., before hand-ball contact) kinematic cues, and skilled players were generally more affected by the opponents' handedness than were novices. The study's findings corroborate the assumption that skilled visual perception is attuned to more frequently encountered actions.
Dynamic wake prediction and visualization with uncertainty analysis
NASA Technical Reports Server (NTRS)
Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)
2005-01-01
A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.
Implied motion language can influence visual spatial memory.
Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick
2017-07-01
How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.
Stress Associated with Transportation: A Survey of Persons with Visual Impairments
ERIC Educational Resources Information Center
Crudden, Adele; Cmar, Jennifer L.; McDonnall, Michele C.
2017-01-01
Introduction: This study evaluated transportation-related stress and factors predicting stress among persons with visual impairments. Methods: Participants with visual impairments completed electronic surveys rating their stress levels experienced when completing various walking and public transportation tasks. They also indicated activities they…
Gaze distribution analysis and saliency prediction across age groups.
Krishna, Onkar; Helo, Andrea; Rämä, Pia; Aizawa, Kiyoharu
2018-01-01
Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to develop a computational model that can predict saliency across different age groups. Our analysis uncovers how the explorativeness of an observer varies with age, how well saliency maps of an age group agree with fixation points of observers from the same or different age groups, and how age influences the center bias tendency. We analyzed the eye movement behavior of 82 observers belonging to four age groups while they explored visual scenes. Explorative- ness was quantified in terms of the entropy of a saliency map, and area under the curve (AUC) metrics was used to quantify the agreement analysis and the center bias tendency. Analysis results were used to develop age adapted saliency models. Our results suggest that the proposed age-adapted saliency model outperforms existing saliency models in predicting the regions of interest across age groups.
Application of Visual Attention in Seismic Attribute Analysis
NASA Astrophysics Data System (ADS)
He, M.; Gu, H.; Wang, F.
2016-12-01
It has been proved that seismic attributes can be used to predict reservoir. The joint of multi-attribute and geological statistics, data mining, artificial intelligence, further promote the development of the seismic attribute analysis. However, the existing methods tend to have multiple solutions and insufficient generalization ability, which is mainly due to the complex relationship between seismic data and geological information, and undoubtedly own partly to the methods applied. Visual attention is a mechanism model of the human visual system which can concentrate on a few significant visual objects rapidly, even in a mixed scene. Actually, the model qualify good ability of target detection and recognition. In our study, the targets to be predicted are treated as visual objects, and an object representation based on well data is made in the attribute dimensions. Then in the same attribute space, the representation is served as a criterion to search the potential targets outside the wells. This method need not predict properties by building up a complicated relation between attributes and reservoir properties, but with reference to the standard determined before. So it has pretty good generalization ability, and the problem of multiple solutions can be weakened by defining the threshold of similarity.
Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie
2014-08-01
Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.
Kim, Sung-Min
2018-01-01
Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model), a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil) from being polluted by acid mine drainage. PMID:29747480
The contents of visual working memory reduce uncertainty during visual search.
Cosman, Joshua D; Vecera, Shaun P
2011-05-01
Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.
Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K
2013-03-20
Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.
A composite measure to explore visual disability in primary progressive multiple sclerosis.
Poretto, Valentina; Petracca, Maria; Saiote, Catarina; Mormina, Enricomaria; Howard, Jonathan; Miller, Aaron; Lublin, Fred D; Inglese, Matilde
2017-01-01
Optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can provide complementary information on visual system damage in multiple sclerosis (MS). The objective of this paper is to determine whether a composite OCT/MRI score, reflecting cumulative damage along the entire visual pathway, can predict visual deficits in primary progressive multiple sclerosis (PPMS). Twenty-five PPMS patients and 20 age-matched controls underwent neuro-ophthalmologic evaluation, spectral-domain OCT, and 3T brain MRI. Differences between groups were assessed by univariate general linear model and principal component analysis (PCA) grouped instrumental variables into main components. Linear regression analysis was used to assess the relationship between low-contrast visual acuity (LCVA), OCT/MRI-derived metrics and PCA-derived composite scores. PCA identified four main components explaining 80.69% of data variance. Considering each variable independently, LCVA 1.25% was significantly predicted by ganglion cell-inner plexiform layer (GCIPL) thickness, thalamic volume and optic radiation (OR) lesion volume (adjusted R 2 0.328, p = 0.00004; adjusted R 2 0.187, p = 0.002 and adjusted R 2 0.180, p = 0.002). The PCA composite score of global visual pathway damage independently predicted both LCVA 1.25% (adjusted R 2 value 0.361, p = 0.00001) and LCVA 2.50% (adjusted R 2 value 0.323, p = 0.00003). A multiparametric score represents a more comprehensive and effective tool to explain visual disability than a single instrumental metric in PPMS.
Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick
2003-07-01
We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms.
Askar, Medhat; Sobecks, Ronald; Morishima, Yasuo; Kawase, Takakazu; Nowacki, Amy; Makishima, Hideki; Maciejewski, Jaroslaw
2011-09-01
HLA polymorphism remains a major hurdle for hematopoietic stem cell transplantation (HSCT). In 2004, Elsner et al. proposed the HistoCheck Web-based tool to estimate the allogeneic potential between HLA-mismatched stem cell donor/recipient pairs expressed as a sequence similarity matching (SSM). SSM is based on the structure of HLA molecules and the functional similarity of amino acids. According to this algorithm, a high SSM score represents high dissimilarity between MHC molecules, resulting in a potentially more deleterious impact on stem cell transplant outcomes. We investigated the potential of SSM to predict high-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease (aGVHD grades III and IV) published by Kawase et al., by comparing SSM in low- and high-risk combinations. SSM was calculated for allele mismatch combinations using the HistoCheck tool available on the Web (www.histocheck.org). We compared ranges and means of SSM among high-risk (15 combinations observed in 722 donor/recipient pairs) versus low-risk allele combinations (94 combinations in 3490 pairs). Simulation scenarios were created where the recipient's HLA allele was involved in multiple allele mismatch combinations with at least 1 high-risk and 1 low-risk mismatch combination. SSM values were then compared. The mean SSM for high- versus low-risk combinations were 2.39 and 2.90 at A, 1.06 and 2.53 at B, 16.60 and 14.99 at C, 4.02 and 3.81 at DRB1, and 7.47 and 6.94 at DPB1 loci, respectively. In simulation scenarios, no predictable SSM association with high- or low-risk combinations could be distinguished. No DQB1 combinations met the statistical criteria for our study. In conclusion, our analysis demonstrates that mean SSM scores were not significantly different, and SSM distributions were overlapping among high- and low-risk allele combinations within loci HLA-A, B, C, DRB1, and DPB1. This analysis does not support selecting donors for HSCT recipients based on low HistoCheck SSM scores. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
[Outcome of cataract surgery in patients with pigmentary retinal degeneration].
Grześk, Magdalena; Kałuzny, Józef; Malukiewicz-Wiśniewska, Grazyna
2007-01-01
To evaluate the results of cataract surgery in patients with RP because retinitis pigmentosa is one of the disease entities that belongs to tapeto-retinal degenerations. The occurrence of RP appearance is 1:4000 to 1:3000. Twenty patients with RP (7 women and 13 men, 33 eyes), who underwent cataract surgery were examined retrospectively. Average age in our group was 46.6 years. Visual acuity, intraocular pressure, slip lamp examination, fundus examination, cataract morphology, visual field were taken before surgery and on discharge, on the basis of medical documentation. Control examination was taken, on average, eighty one months after cataract surgery. Nine eyes were operated by phacoemulsification, 24 eyes by means of extracapsular cataract extraction. In the same way control group of 18 patients who underwent cataract surgery without RP (33 eyes) was examined. In RP group in 63.6% patients on discharge from the hospital and in 60.6% patients during the control examination, improvement of visual acuity was revealed. Deterioration was noted in 18.2% of patients on discharge from hospital and in 24.2% of patients during the control examination. In the control group improvement of visual acuity was revealed in 90.9% of patients on discharge and in 97% patients during the control examination, whereas deterioration of visual acuity occurred in 6.1% patients on discharge and in 3% patients during the check examination. In patients with retinitis pigmentosa cataract occurs earlier then in the control group. Cataract surgery for relatively minor opacities is beneficial in patients with RP, and causes improvement of visual acuity in most of eyes undergoing surgery.
Top-down and bottom-up competition in visual stimuli processing.
Ligeza, Tomasz S; Tymorek, Agnieszka D; Wyczesany, Mirosław
2017-01-01
Limited attention capacity results that not all the stimuli present in the visual field are equally processed. While processing of salient stimuli is automatically boosted by bottom‑up attention, processing of task‑relevant stimuli can be boosted volitionally by top‑down attention. Usually, both top‑down and bottom‑up influences are present simultaneously, which creates a competition between these two types of attention. We examined this competition using both behavioral and electrophysiological measures. Participants responded to letters superimposed on background pictures. We assumed that responding to different conditions of the letter task engages top‑down attention to different extent, whereas processing of background pictures of varying salience engages bottom‑up attention to different extent. To check how manipulation of top‑down attention influences bottom‑up processing, we measured evoked response potentials (ERPs) in response to pictures (engaging mostly bottom‑up attention) during three conditions of a letter task (different levels of top‑down engagement). Conversely, to check how manipulation of bottom‑up attention influences top‑down processing, we measured ERP responses for letters (engaging mostly top‑down attention) while manipulating the salience of background pictures (different levels of bottom‑up engagement). The correctness and reaction times in response to letters were also analyzed. As expected, most of the ERPs and behavioral measures revealed a trade‑off between both types of processing: a decrease of bottom‑up processing was associated with an increase of top‑down processing and, similarly, a decrease of top‑down processing was associated with an increase in bottom‑up processing. Results proved competition between the two types of attentions.
Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.
ERIC Educational Resources Information Center
Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.
1998-01-01
A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…
ERIC Educational Resources Information Center
Vause, Tricia; Martin, Garry L.; Yu, C.T.; Marion, Carole; Sakko, Gina
2005-01-01
The relationship between language, performance on the Assessment of Basic Learning Abilities (ABLA) test, and stimulus equivalence was examined. Five participants with minimal verbal repertoires were studied; 3 who passed up to ABLA Level 4, a visual quasi-identity discrimination and 2 who passed ABLA Level 6, an auditory-visual nonidentity…
ERIC Educational Resources Information Center
Liu, Duo; Chen, Xi; Chung, Kevin K. H.
2015-01-01
This study examined the relation between the performance in a visual search task and reading ability in 92 third-grade Hong Kong Chinese children. The visual search task, which is considered a measure of visual-spatial attention, accounted for unique variance in Chinese character reading after controlling for age, nonverbal intelligence,…
The Effect of Visual Information on the Manual Approach and Landing
NASA Technical Reports Server (NTRS)
Wewerinke, P. H.
1982-01-01
The effect of visual information in combination with basic display information on the approach performance. A pre-experimental model analysis was performed in terms of the optimal control model. The resulting aircraft approach performance predictions were compared with the results of a moving base simulator program. The results illustrate that the model provides a meaningful description of the visual (scene) perception process involved in the complex (multi-variable, time varying) manual approach task with a useful predictive capability. The theoretical framework was shown to allow a straight-forward investigation of the complex interaction of a variety of task variables.
Cohn, Neil; Paczynski, Martin
2013-01-01
Agents consistently appear prior to Patients in sentences, manual signs, and drawings, and Agents are responded to faster when presented in visual depictions of events. We hypothesized that this “Agent advantage” reflects Agents’ role in event structure. We investigated this question by manipulating the depictions of Agents and Patients in preparatory actions in a wordless visual narrative. We found that Agents elicited a greater degree of predictions regarding upcoming events than Patients, that Agents are viewed longer than Patients, independent of serial order, and that visual depictions of actions are processed more quickly following the presentation of an Agent versus a Patient. Taken together these findings support the notion that Agents initiate the building of event representation. We suggest that Agent First orders facilitate the interpretation of events as they unfold and that the saliency of Agents within visual representations of events is driven by anticipation of upcoming events. PMID:23959023
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
Prediction of shot success for basketball free throws: visual search strategy.
Uchida, Yusuke; Mizuguchi, Nobuaki; Honda, Masaaki; Kanosue, Kazuyuki
2014-01-01
In ball games, players have to pay close attention to visual information in order to predict the movements of both the opponents and the ball. Previous studies have indicated that players primarily utilise cues concerning the ball and opponents' body motion. The information acquired must be effective for observing players to select the subsequent action. The present study evaluated the effects of changes in the video replay speed on the spatial visual search strategy and ability to predict free throw success. We compared eye movements made while observing a basketball free throw by novices and experienced basketball players. Correct response rates were close to chance (50%) at all video speeds for the novices. The correct response rate of experienced players was significantly above chance (and significantly above that of the novices) at the normal speed, but was not different from chance at both slow and fast speeds. Experienced players gazed more on the lower part of the player's body when viewing a normal speed video than the novices. The players likely detected critical visual information to predict shot success by properly moving their gaze according to the shooter's movements. This pattern did not change when the video speed was decreased, but changed when it was increased. These findings suggest that temporal information is important for predicting action outcomes and that such outcomes are sensitive to video speed.
Task relevance modulates the behavioural and neural effects of sensory predictions
Friston, Karl J.; Nobre, Anna C.
2017-01-01
The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225
The function and failure of sensory predictions.
Bansal, Sonia; Ford, Judith M; Spering, Miriam
2018-04-23
Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.
Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653
Catching what we can't see: manual interception of occluded fly-ball trajectories.
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.
Dyslexia and reasoning: the importance of visual processes.
Bacon, Alison M; Handley, Simon J
2010-08-01
Recent research has suggested that individuals with dyslexia rely on explicit visuospatial representations for syllogistic reasoning while most non-dyslexics opt for an abstract verbal strategy. This paper investigates the role of visual processes in relational reasoning amongst dyslexic reasoners. Expt 1 presents written and verbal protocol evidence to suggest that reasoners with dyslexia generate detailed representations of relational properties and use these to make a visual comparison of objects. Non-dyslexics use a linear array of objects to make a simple transitive inference. Expt 2 examined evidence for the visual-impedance effect which suggests that visual information detracts from reasoning leading to longer latencies and reduced accuracy. While non-dyslexics showed the impedance effects predicted, dyslexics showed only reduced accuracy on problems designed specifically to elicit imagery. Expt 3 presented problems with less semantically and visually rich content. The non-dyslexic group again showed impedance effects, but dyslexics did not. Furthermore, in both studies, visual memory predicted reasoning accuracy for dyslexic participants, but not for non-dyslexics, particularly on problems with highly visual content. The findings are discussed in terms of the importance of visual and semantic processes in reasoning for individuals with dyslexia, and we argue that these processes play a compensatory role, offsetting phonological and verbal memory deficits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouaf, Lucie; Girard, Nicolas; Claude Bernard University, Lyon
2012-03-01
Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were comparedmore » with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.« less
Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji
2016-02-01
In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ma, Wei Ji; Zhou, Xiang; Ross, Lars A; Foxe, John J; Parra, Lucas C
2009-01-01
Watching a speaker's facial movements can dramatically enhance our ability to comprehend words, especially in noisy environments. From a general doctrine of combining information from different sensory modalities (the principle of inverse effectiveness), one would expect that the visual signals would be most effective at the highest levels of auditory noise. In contrast, we find, in accord with a recent paper, that visual information improves performance more at intermediate levels of auditory noise than at the highest levels, and we show that a novel visual stimulus containing only temporal information does the same. We present a Bayesian model of optimal cue integration that can explain these conflicts. In this model, words are regarded as points in a multidimensional space and word recognition is a probabilistic inference process. When the dimensionality of the feature space is low, the Bayesian model predicts inverse effectiveness; when the dimensionality is high, the enhancement is maximal at intermediate auditory noise levels. When the auditory and visual stimuli differ slightly in high noise, the model makes a counterintuitive prediction: as sound quality increases, the proportion of reported words corresponding to the visual stimulus should first increase and then decrease. We confirm this prediction in a behavioral experiment. We conclude that auditory-visual speech perception obeys the same notion of optimality previously observed only for simple multisensory stimuli.
Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.
Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane
2010-12-01
Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.
Naturalistic distraction and driving safety in older drivers.
Aksan, Nazan; Dawson, Jeffrey D; Emerson, Jamie L; Yu, Lixi; Uc, Ergun Y; Anderson, Steven W; Rizzo, Matthew
2013-08-01
In this study, we aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and to predict older drivers performance given functioning in visual, motor, and cognitive domains. Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. A total of 203 drivers, 120 healthy older (61 men and 59 women, ages 65 years and older) and 83 middle-aged drivers (38 men and 45 women, ages 40 to 64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Older drivers identified fewer landmarks and drove slower but committed more safety errors than did middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers.Visual cognition predicted both traffic sign identification and safety errors, and executive function predicted traffic sign identification over and above vision. Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older drivers' management of driving tasks at multiple levels and can help inform the design of on-road tests and interventions for older drivers.
NASA Astrophysics Data System (ADS)
Ortiz-Gil, A.; Benacchio, L.; Boccato, C.
2011-10-01
The Moon is, together with the Sun, the very first astronomical object that we experience in our life. As this is an exclusively visual experience, people with visual impairments need a different mode to experience it too. This statement is especially true when events, such as more and more frequent public observations of sky, take place. This is the reason why we are preparing a special package for visual impaired people containing three brand new items: 1. a tactile 3D Moon sphere in Braille with its paper key in Braille. To produce it we used imaging data obtained by NASA's mission Clementine, along with free image processing and 3D rendering software. In order to build the 3D small scale model funding by Europlanet and the Italian Ministry for Research have been used. 2. a multilingual web site for visually impaired users of all ages, on basic astronomy together with an indepth box about the Moon; 3. a book in Braille with the same content of the Web site mentioned above. All the items will be developed with the collaboration of visually impaired people that will check each step of the project and support their comments and criticism to improve it. We are going to test this package during the next International Observe the Moon Night event. After a first testing phase we'll collect all the feedback data in order to give an effective form to the package. Finally the Moon package could be delivered to all those who will demand it for outreach or educational goals.
The effect of scleral search coil lens wear on the eye
Murphy, P.; Duncan, A.; Glennie, A.; Knox, P.
2001-01-01
BACKGROUND/AIM—Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. METHODS—Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. RESULTS—No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. CONCLUSION—Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused. PMID:11222341
Marino, Robert A; Levy, Ron; Munoz, Douglas P
2015-08-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. Copyright © 2015 the American Physiological Society.
Levy, Ron; Munoz, Douglas P.
2015-01-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. PMID:26063770
Inflation without self-reproduction in F( R) gravity
NASA Astrophysics Data System (ADS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
2015-05-01
We investigate inflation in frames of two classes of F( R) gravity and check its consistency with Planck data. It is shown that F( R) inflation without self-reproduction may be constructed in close analogy with the corresponding scalar example proposed by Mukhanov for the resolution of the problems of multiverse, predictability and initial conditions.
Decoupling erasure coding from massive multiplayer online role-playing games in model checking
NASA Astrophysics Data System (ADS)
Liu, Linhui; Li, Wei
2009-07-01
SMPs must work. Given the current status of unstable configurations, systems engineers predictably desire the emulation of RAID. in order to surmount this problem, we verify not only that IPv7 and symmetric encryption can cooperate to overcome this problem, but that the same is true for web browsers.
Checklists for the Evaluation of Educational Software: Critical Review and Prospects.
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf
1998-01-01
Reviews strengths and weaknesses of check lists for the evaluation of computer software and outlines consequences for their practical application. Suggests an approach based on an instructional design model and a comprehensive framework to cope with problems of validity and predictive power of software evaluation. Discusses prospects of the…
Reliability considerations for the total strain range version of strainrange partitioning
NASA Technical Reports Server (NTRS)
Wirsching, P. H.; Wu, Y. T.
1984-01-01
A proposed total strainrange version of strainrange partitioning (SRP) to enhance the manner in which SRP is applied to life prediction is considered with emphasis on how advanced reliability technology can be applied to perform risk analysis and to derive safety check expressions. Uncertainties existing in the design factors associated with life prediction of a component which experiences the combined effects of creep and fatigue can be identified. Examples illustrate how reliability analyses of such a component can be performed when all design factors in the SRP model are random variables reflecting these uncertainties. The Rackwitz-Fiessler and Wu algorithms are used and estimates of the safety index and the probablity of failure are demonstrated for a SRP problem. Methods of analysis of creep-fatigue data with emphasis on procedures for producing synoptic statistics are presented. An attempt to demonstrate the importance of the contribution of the uncertainties associated with small sample sizes (fatique data) to risk estimates is discussed. The procedure for deriving a safety check expression for possible use in a design criteria document is presented.
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
Does working memory capacity predict cross-modally induced failures of awareness?
Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel
2016-01-01
People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.
Body region dissatisfaction predicts attention to body regions on other women.
Lykins, Amy D; Ferris, Tamara; Graham, Cynthia A
2014-09-01
The proliferation of "idealized" (i.e., very thin and attractive) women in the media has contributed to increasing rates of body dissatisfaction among women. However, it remains relatively unknown how women attend to these images: does dissatisfaction predict greater or lesser attention to these body regions on others? Fifty healthy women (mean age=21.8 years) viewed images of idealized and plus-size models; an eye-tracker recorded visual attention. Participants also completed measures of satisfaction for specific body regions, which were then used as predictors of visual attention to these regions on models. Consistent with an avoidance-type process, lower levels of satisfaction with the two regions of greatest reported concern (mid, lower torso) predicted less attention to these regions; greater satisfaction predicted more attention to these regions. While this visual attention bias may aid in preserving self-esteem when viewing idealized others, it may preclude the opportunity for comparisons that could improve self-esteem. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Burton, John K.; Wildman, Terry M.
The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…
Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna
2015-11-01
Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.
Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention.
Ikkai, Akiko; Dandekar, Sangita; Curtis, Clayton E
2016-01-01
Attending to a task-relevant location changes how neural activity oscillates in the alpha band (8-13Hz) in posterior visual cortical areas. However, a clear understanding of the relationships between top-down attention, changes in alpha oscillations in visual cortex, and attention performance are still poorly understood. Here, we tested the degree to which the posterior alpha power tracked the locus of attention, the distribution of attention, and how well the topography of alpha could predict the locus of attention. We recorded magnetoencephalographic (MEG) data while subjects performed an attention demanding visual discrimination task that dissociated the direction of attention from the direction of a saccade to indicate choice. On some trials, an endogenous cue predicted the target's location, while on others it contained no spatial information. When the target's location was cued, alpha power decreased in sensors over occipital cortex contralateral to the attended visual field. When the cue did not predict the target's location, alpha power again decreased in sensors over occipital cortex, but bilaterally, and increased in sensors over frontal cortex. Thus, the distribution and the topography of alpha reliably indicated the locus of covert attention. Together, these results suggest that alpha synchronization reflects changes in the excitability of populations of neurons whose receptive fields match the locus of attention. This is consistent with the hypothesis that alpha oscillations reflect the neural mechanisms by which top-down control of attention biases information processing and modulate the activity of neurons in visual cortex.
Bates-Jensen, Barbara M; McCreath, Heather E; Patlan, Anabel
2017-05-01
We examined the relationship between subepidermal moisture measured using surface electrical capacitance and visual skin assessment of pressure ulcers at the trunk location (sacral, ischial tuberosities) in 417 nursing home residents residing in 19 facilities. Participants were on average older (mean age of 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, and 21% Hispanic), and at risk for pressure ulcers (mean score for Braden Scale for Predicting Pressure Ulcer Risk of 15.6). Concurrent visual assessments and subepidermal moisture were obtained at the sacrum and right and left ischium weekly for 16 weeks. Visual assessment was categorized as normal, erythema, stage 1 pressure ulcer, Deep Tissue Injury or stage 2+ pressure ulcer using the National Pressure Ulcer Advisory Panel 2009 classification system. Incidence of any skin damage was 52%. Subepidermal moisture was measured with a dermal phase meter where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with values increasing significantly with the presence of skin damage. Elevated subepidermal moisture values co-occurred with concurrent skin damage in generalized multinomial logistic models (to control for repeated observations) at the sacrum, adjusting for age and risk. Higher subepidermal moisture values were associated with visual damage 1 week later using similar models. Threshold values for subepidermal moisture were compared to visual ratings to predict skin damage 1 week later. Subepidermal moisture of 39 tissue dielectric constant units predicted 41% of future skin damage while visual ratings predicted 27%. Thus, this method of detecting early skin damage holds promise for clinicians, especially as it is objective and equally valid for all groups of patients. © 2017 by the Wound Healing Society.
Visual field defects may not affect safe driving.
Dow, Jamie
2011-10-01
In Quebec a driver whose acquired visual field defect renders them ineligible for a driver's permit renewal may request an exemption from the visual field standard by demonstrating safe driving despite the defect. For safety reasons it was decided to attempt to identify predictors of failure on the road test in order to avoid placing driving evaluators in potentially dangerous situations when evaluating drivers with visual field defects. During a 4-month period in 2009 all requests for exemptions from the visual field standard were collected and analyzed. All available medical and visual field data were collated for 103 individuals, of whom 91 successfully completed the evaluation process and obtained a waiver. The collated data included age, sex, type of visual field defect, visual field characteristics, and concomitant medical problems. No single factor, or combination of factors, could predict failure of the road test. All 5 failures of the road test had cognitive problems but 6 of the successful drivers also had known cognitive problems. Thus, cognitive problems influence the risk of failure but do not predict certain failure. Most of the applicants for an exemption were able to complete the evaluation process successfully, thereby demonstrating safe driving despite their handicap. Consequently, jurisdictions that have visual field standards for their driving permit should implement procedures to evaluate drivers with visual field defects that render them unable to meet the standard but who wish to continue driving.
Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot
Raman, Rajani; Sarkar, Sandip
2016-01-01
Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812
Synchronous activity in cat visual cortex encodes collinear and cocircular contours.
Samonds, Jason M; Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2006-04-01
We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.
Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg
2012-01-01
Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.
Melis-Dankers, Bart J. M.; Brouwer, Wiebo H.; Tucha, Oliver; Heutink, Joost
2016-01-01
Introduction People with homonymous visual field defects (HVFD) often report difficulty detecting obstacles in the periphery on their blind side in time when moving around. Recently, a randomized controlled trial showed that the InSight-Hemianopia Compensatory Scanning Training (IH-CST) specifically improved detection of peripheral stimuli and avoiding obstacles when moving around, especially in dual task situations. Method The within-group training effects of the previously reported IH-CST are examined in an extended patient group. Performance of patients with HVFD on a pre-assessment, post-assessment and follow-up assessment and performance of a healthy control group are compared. Furthermore, it is examined whether training effects can be predicted by demographic characteristics, variables related to the visual disorder, and neuropsychological test results. Results Performance on both subjective and objective measures of mobility-related scanning was improved after training, while no evidence was found for improvement in visual functions (including visual fields), reading, visual search and dot counting. Self-reported improvement did not correlate with improvement in objective mobility performance. According to the participants, the positive effects were still present six to ten months after training. No demographic characteristics, variables related to the visual disorder, and neuropsychological test results were found to predict the size of training effect, although some inconclusive evidence was found for more improvement in patients with left-sided HVFD than in patients with right-sided HFVD. Conclusion Further support was found for a positive effect of IH-CST on detection of visual stimuli during mobility-related activities specifically. Based on the reports given by patients, these effects appear to be long-term effects. However, no conclusions can be drawn on the objective long-term training effects. PMID:27935973
Kim, Jae Hui; Chang, Young Suk; Kim, Jong Woo
2017-12-01
To evaluate the 24-month natural course of visual changes in patients discontinuing treatment despite persistent or recurrent fluid and factors predictive of visual prognosis. This retrospective, observational study included 35 patients (35 eyes) who initially received anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD), but discontinued treatment despite persistent or recurrent fluid. The best-corrected visual acuity (BCVA) at treatment discontinuation was determined and compared with the 24-month BCVA, which was then compared between polypoidal choroidal vasculopathy and other neovascular age-related macular degeneration subtypes. Baseline characteristics predictive of visual outcome and the degree of visual change were also analyzed. The mean number of anti-vascular endothelial growth factor injections before treatment discontinuation was 4.0 ± 1.6. The mean logarithm of minimal angle of resolution of BCVA at treatment discontinuation and that at 24 months were 1.02 ± 0.20 (Snellen equivalents = 20/209) and 1.60 ± 0.56 (20/796), respectively (P < 0.001). The 24-month BCVA was not different between polypoidal choroidal vasculopathy and other neovascular age-related macular degeneration subtypes (P = 0.803). The type of fluid (intraretinal fluid vs. no intraretinal fluid) was predictive of 24-month BCVA (P = 0.004) and the degree of changes in BCVA (P = 0.043). Marked deterioration in visual acuity was noted in patients discontinuing treatment, regardless of neovascular age-related macular degeneration subtypes. The presence of intraretinal fluid was associated with worse visual prognosis, suggesting that patients with intraretinal fluid should be strongly warned about their poor prognosis before they decide to discontinue treatment.
Beesley, Tom; Hanafi, Gunadi; Vadillo, Miguel A; Shanks, David R; Livesey, Evan J
2018-05-01
Two experiments examined biases in selective attention during contextual cuing of visual search. When participants were instructed to search for a target of a particular color, overt attention (as measured by the location of fixations) was biased strongly toward distractors presented in that same color. However, when participants searched for targets that could be presented in 1 of 2 possible colors, overt attention was not biased between the different distractors, regardless of whether these distractors predicted the location of the target (repeating) or did not (randomly arranged). These data suggest that selective attention in visual search is guided only by the demands of the target detection task (the attentional set) and not by the predictive validity of the distractor elements. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
Allott, Kelly A; Cotton, Susan M; Chinnery, Gina L; Baksheev, Gennady N; Massey, Jessica; Sun, Pamela; Collins, Zoe; Barlow, Emma; Broussard, Christina; Wahid, Tasha; Proffitt, Tina-Marie; Jackson, Henry J; Killackey, Eoin
2013-10-01
To examine whether baseline neurocognition and social cognition predict vocational outcomes over 6 months in patients with first-episode psychosis (FEP) enrolled in a randomised controlled trial of Individual Placement and Support (IPS) versus treatment as usual (TAU). 135 FEP participants (IPS n=69; TAU n=66) completed a comprehensive neurocognitive and social cognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying cognitive structure of the battery. Setwise (hierarchical) logistic and multivariate linear regressions were used to examine predictors of: (a) enrolment in education and employment; and (b) hours of employment over 6 months. Neurocognition and social cognition factors were entered into the models after accounting for premorbid IQ, baseline functioning and treatment group. Six cognitive factors were extracted: (i) social cognition; (ii) information processing speed; (iii) verbal learning and memory; (iv) attention and working memory; (v) visual organisation and memory; and (vi) verbal comprehension. Enrolment in education over 6 months was predicted by enrolment in education at baseline (p=.002) and poorer visual organisation and memory (p=.024). Employment over 6 months was predicted by employment at baseline (p=.041) and receiving IPS (p=.020). Better visual organisation and memory predicted total hours of paid work over 6 months (p<.001). Visual organisation and memory predicted the enrolment in education and duration of employment, after accounting for premorbid IQ, baseline functioning and treatment. Social cognition did not contribute to the prediction of vocational outcomes. Neurocognitive interventions may enhance employment duration in FEP. © 2013 Elsevier B.V. All rights reserved.