Sample records for visual processing stream

  1. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  2. Processing reafferent and exafferent visual information for action and perception.

    PubMed

    Reichenbach, Alexandra; Diedrichsen, Jörn

    2015-01-01

    A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.

  3. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  4. Defining the cortical visual systems: "what", "where", and "how"

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  5. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    PubMed

    Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-04-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  6. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision

    PubMed Central

    Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-01-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  7. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility.

    PubMed

    Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido

    2016-10-01

    As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung [Richalnd, WA; Foote, Harlan P [Richland, WA; Adams, Daniel R [Kennewick, WA; Cowley, Wendy E [Richland, WA; Thomas, James J [Richland, WA

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  9. A new neural framework for visuospatial processing.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  10. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    PubMed

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  11. A new neural framework for visuospatial processing

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer

    2012-01-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848

  12. Perception of Shapes Targeting Local and Global Processes in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Grinter, Emma J.; Maybery, Murray T.; Pellicano, Elizabeth; Badcock, Johanna C.; Badcock, David R.

    2010-01-01

    Background: Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and…

  13. Feature integration and object representations along the dorsal stream visual hierarchy

    PubMed Central

    Perry, Carolyn Jeane; Fallah, Mazyar

    2014-01-01

    The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147

  14. Electrophysiological Evidence for Ventral Stream Deficits in Schizophrenia Patients

    PubMed Central

    Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H.

    2013-01-01

    Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies. PMID:22258884

  15. Electrophysiological evidence for ventral stream deficits in schizophrenia patients.

    PubMed

    Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H

    2013-05-01

    Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies.

  16. Perception of shapes targeting local and global processes in autism spectrum disorders.

    PubMed

    Grinter, Emma J; Maybery, Murray T; Pellicano, Elizabeth; Badcock, Johanna C; Badcock, David R

    2010-06-01

    Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and global form processing ability. Within the visual domain, radial frequency (RF) patterns - shapes formed by sinusoidally varying the radius of a circle to add 'bumps' of a certain number to a circle - can be used to examine local and global form perception. Typically developing children and children with an ASD discriminated between circles and RF patterns that are processed either locally (RF24) or globally (RF3). Children with an ASD required greater shape deformation to identify RF3 shapes compared to typically developing children, consistent with difficulty in global processing in the ventral stream. No group difference was observed for RF24 shapes, suggesting intact local ventral-stream processing. These outcomes support the position that a deficit in global visual processing is present in ASDs, consistent with the notion of Weak Central Coherence.

  17. Alpha-band rhythm modulation under the condition of subliminal face presentation: MEG study.

    PubMed

    Sakuraba, Satoshi; Kobayashi, Hana; Sakai, Shinya; Yokosawa, Koichi

    2013-01-01

    The human brain has two streams to process visual information: a dorsal stream and a ventral stream. Negative potential N170 or its magnetic counterpart M170 is known as the face-specific signal originating from the ventral stream. It is possible to present a visual image unconsciously by using continuous flash suppression (CFS), which is a visual masking technique adopting binocular rivalry. In this work, magnetoencephalograms were recorded during presentation of the three invisible images: face images, which are processed by the ventral stream; tool images, which could be processed by the dorsal stream, and a blank image. Alpha-band activities detected by sensors that are sensitive to M170 were compared. The alpha-band rhythm was suppressed more during presentation of face images than during presentation of the blank image (p=.028). The suppression remained for about 1 s after ending presentations. However, no significant difference was observed between tool and other images. These results suggest that alpha-band rhythm can be modulated also by unconscious visual images.

  18. Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection

    PubMed Central

    Denison, Rachel N.; Silver, Michael A.

    2014-01-01

    During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685

  19. Neuroimaging investigations of dorsal stream processing and effects of stimulus synchrony in schizophrenia.

    PubMed

    Sanfratello, Lori; Aine, Cheryl; Stephen, Julia

    2018-05-25

    Impairments in auditory and visual processing are common in schizophrenia (SP). In the unisensory realm visual deficits are primarily noted for the dorsal visual stream. In addition, insensitivity to timing offsets between stimuli are widely reported for SP. The aim of the present study was to test at the physiological level differences in dorsal/ventral stream visual processing and timing sensitivity between SP and healthy controls (HC) using MEG and a simple auditory/visual task utilizing a variety of multisensory conditions. The paradigm included all combinations of synchronous/asynchronous and central/peripheral stimuli, yielding 4 task conditions. Both HC and SP groups showed activation in parietal areas (dorsal visual stream) during all multisensory conditions, with parietal areas showing decreased activation for SP relative to HC, and a significantly delayed peak of activation for SP in intraparietal sulcus (IPS). We also observed a differential effect of stimulus synchrony on HC and SP parietal response. Furthermore, a (negative) correlation was found between SP positive symptoms and activity in IPS. Taken together, our results provide evidence of impairment of the dorsal visual stream in SP during a multisensory task, along with an altered response to timing offsets between presented multisensory stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Visual and visuomotor processing of hands and tools as a case study of cross talk between the dorsal and ventral streams.

    PubMed

    Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão

    2018-05-24

    A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.

  1. A multistream model of visual word recognition.

    PubMed

    Allen, Philip A; Smith, Albert F; Lien, Mei-Ching; Kaut, Kevin P; Canfield, Angie

    2009-02-01

    Four experiments are reported that test a multistream model of visual word recognition, which associates letter-level and word-level processing channels with three known visual processing streams isolated in macaque monkeys: the magno-dominated (MD) stream, the interblob-dominated (ID) stream, and the blob-dominated (BD) stream (Van Essen & Anderson, 1995). We show that mixing the color of adjacent letters of words does not result in facilitation of response times or error rates when the spatial-frequency pattern of a whole word is familiar. However, facilitation does occur when the spatial-frequency pattern of a whole word is not familiar. This pattern of results is not due to different luminance levels across the different-colored stimuli and the background because isoluminant displays were used. Also, the mixed-case, mixed-hue facilitation occurred when different display distances were used (Experiments 2 and 3), so this suggests that image normalization can adjust independently of object size differences. Finally, we show that this effect persists in both spaced and unspaced conditions (Experiment 4)--suggesting that inappropriate letter grouping by hue cannot account for these results. These data support a model of visual word recognition in which lower spatial frequencies are processed first in the more rapid MD stream. The slower ID and BD streams may process some lower spatial frequency information in addition to processing higher spatial frequency information, but these channels tend to lose the processing race to recognition unless the letter string is unfamiliar to the MD stream--as with mixed-case presentation.

  2. Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.

    PubMed

    Schenk, Thomas; Milner, A David

    2006-09-01

    It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.

  3. Emotion processing in the visual brain: a MEG analysis.

    PubMed

    Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus

    2008-06-01

    Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.

  4. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  5. [Symptoms and lesion localization in visual agnosia].

    PubMed

    Suzuki, Kyoko

    2004-11-01

    There are two cortical visual processing streams, the ventral and dorsal stream. The ventral visual stream plays the major role in constructing our perceptual representation of the visual world and the objects within it. Disturbance of visual processing at any stage of the ventral stream could result in impairment of visual recognition. Thus we need systematic investigations to diagnose visual agnosia and its type. Two types of category-selective visual agnosia, prosopagnosia and landmark agnosia, are different from others in that patients could recognize a face as a face and buildings as buildings, but could not identify an individual person or building. Neuronal bases of prosopagnosia and landmark agnosia are distinct. Importance of the right fusiform gyrus for face recognition was confirmed by both clinical and neuroimaging studies. Landmark agnosia is related to lesions in the right parahippocampal gyrus. Enlarged lesions including both the right fusiform and parahippocampal gyri can result in prosopagnosia and landmark agnosia at the same time. Category non-selective visual agnosia is related to bilateral occipito-temporal lesions, which is in agreement with the results of neuroimaging studies that revealed activation of the bilateral occipito-temporal during object recognition tasks.

  6. Vision for perception and vision for action in the primate brain.

    PubMed

    Goodale, M A

    1998-01-01

    Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.

  7. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  8. The psychophysics of Visual Motion and Global form Processing in Autism

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2010-01-01

    Several groups have recently reported that people with autism may suffer from a deficit in visual motion processing and proposed that these deficits may be related to a general dorsal stream dysfunction. In order to test the dorsal stream deficit hypothesis, we investigated coherent and biological motion perception as well as coherent form…

  9. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  10. Normal form from biological motion despite impaired ventral stream function.

    PubMed

    Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P

    2011-04-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information.

    PubMed

    Sheth, Bhavin R; Young, Ryan

    2016-01-01

    Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.

  12. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    PubMed

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  13. Smelling directions: Olfaction modulates ambiguous visual motion perception

    PubMed Central

    Kuang, Shenbing; Zhang, Tao

    2014-01-01

    Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162

  14. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    PubMed

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  15. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information

    PubMed Central

    Sheth, Bhavin R.; Young, Ryan

    2016-01-01

    Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670

  16. Dynamic Object Representations in Infants with and without Fragile X Syndrome

    PubMed Central

    Farzin, Faraz; Rivera, Susan M.

    2009-01-01

    Our visual world is dynamic in nature. The ability to encode, mentally represent, and track an object's identity as it moves across time and space is critical for integrating and maintaining a complete and coherent view of the world. Here we investigated dynamic object processing in typically developing (TD) infants and infants with fragile X syndrome (FXS), a single-gene disorder associated with deficits in dorsal stream functioning. We used the violation of expectation method to assess infants’ visual response to expected versus unexpected outcomes following a brief dynamic (dorsal stream) or static (ventral stream) occlusion event. Consistent with previous reports of deficits in dorsal stream-mediated functioning in individuals with this disorder, these results reveal that, compared to mental age-matched TD infants, infants with FXS could maintain the identity of static, but not dynamic, object information during occlusion. These findings are the first to experimentally evaluate visual object processing skills in infants with FXS, and further support the hypothesis of dorsal stream difficulties in infants with this developmental disorder. PMID:20224809

  17. Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location

    PubMed Central

    Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene

    2017-01-01

    Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005

  18. Weighing the evidence for a dorsal processing bias under continuous flash suppression.

    PubMed

    Ludwig, Karin; Hesselmann, Guido

    2015-09-01

    With the introduction of continuous flash suppression (CFS) as a method to render stimuli invisible and study unconscious visual processing, a novel hypothesis has gained popularity. It states that processes typically ascribed to the dorsal visual stream can escape CFS and remain functional, while ventral stream processes are suppressed when stimuli are invisible under CFS. This notion of a CFS-specific "dorsal processing bias" has been argued to be in line with core characteristics of the influential dual-stream hypothesis of visual processing which proposes a dissociation between dorsally mediated vision-for-action and ventrally mediated vision-for-perception. Here, we provide an overview of neuroimaging and behavioral studies that either examine this dorsal processing bias or base their conclusions on it. We show that both evidence for preserved ventral processing as well as lack of dorsal processing can be found in studies using CFS. To reconcile the diverging results, differences in the paradigms and their effects are worthy of future research. We conclude that given the current level of information a dorsal processing bias under CFS cannot be universally assumed. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Sensitivity to timing and order in human visual cortex

    PubMed Central

    Singer, Jedediah M.; Madsen, Joseph R.; Anderson, William S.

    2014-01-01

    Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. PMID:25429116

  20. Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion

    PubMed Central

    Im, Hee Yeon; Albohn, Daniel N.; Steiner, Troy G.; Cushing, Cody A.; Adams, Reginald B.; Kveraga, Kestutis

    2017-01-01

    In crowds, where scrutinizing individual facial expressions is inefficient, humans can make snap judgments about the prevailing mood by reading “crowd emotion”. We investigated how the brain accomplishes this feat in a set of behavioral and fMRI studies. Participants were asked to either avoid or approach one of two crowds of faces presented in the left and right visual hemifields. Perception of crowd emotion was improved when crowd stimuli contained goal-congruent cues and was highly lateralized to the right hemisphere. The dorsal visual stream was preferentially activated in crowd emotion processing, with activity in the intraparietal sulcus and superior frontal gyrus predicting perceptual accuracy for crowd emotion perception, whereas activity in the fusiform cortex in the ventral stream predicted better perception of individual facial expressions. Our findings thus reveal significant behavioral differences and differential involvement of the hemispheres and the major visual streams in reading crowd versus individual face expressions. PMID:29226255

  1. Automatic topics segmentation for TV news video

    NASA Astrophysics Data System (ADS)

    Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.

  2. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  3. Spontaneous in-flight accommodation of hand orientation to unseen grasp targets: A case of action blindsight.

    PubMed

    Prentiss, Emily K; Schneider, Colleen L; Williams, Zoë R; Sahin, Bogachan; Mahon, Bradford Z

    2018-03-15

    The division of labour between the dorsal and ventral visual pathways is well established. The ventral stream supports object identification, while the dorsal stream supports online processing of visual information in the service of visually guided actions. Here, we report a case of an individual with a right inferior quadrantanopia who exhibited accurate spontaneous rotation of his wrist when grasping a target object in his blind visual field. His accurate wrist orientation was observed despite the fact that he exhibited no sensitivity to the orientation of the handle in a perceptual matching task. These findings indicate that non-geniculostriate visual pathways process basic volumetric information relevant to grasping, and reinforce the observation that phenomenal awareness is not necessary for an object's volumetric properties to influence visuomotor performance.

  4. Beyond visualization of big data: a multi-stage data exploration approach using visualization, sonification, and storification

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey; Ballora, Mark; Shumaker, Wade

    2013-05-01

    As the sheer volume of data grows exponentially, it becomes increasingly difficult for existing visualization techniques to keep pace. The sonification field attempts to address this issue by enlisting our auditory senses to detect anomalies or complex events that are difficult to detect via visualization alone. Storification attempts to improve analyst understanding by converting data streams into organized narratives describing the data at a higher level of abstraction than the input stream that they area derived from. While these techniques hold a great deal of promise, they also each have a unique set of challenges that must be overcome. Sonification techniques must represent a broad variety of distributed heterogeneous data and present it to the analyst/listener in a manner that doesn't require extended listening - as visual "snapshots" are useful but auditory sounds only exist over time. Storification still faces many human-computer interface (HCI) challenges as well as technical hurdles related to automatically generating a logical narrative from lower-level data streams. This paper proposes a novel approach that utilizes a service oriented architecture (SOA)-based hybrid visualization/ sonification / storification framework to enable distributed human-in-the-loop processing of data in a manner that makes optimized usage of both visual and auditory processing pathways while also leveraging the value of narrative explication of data streams. It addresses the benefits and shortcomings of each processing modality and discusses information infrastructure and data representation concerns required with their utilization in a distributed environment. We present a generalizable approach with a broad range of applications including cyber security, medical informatics, facilitation of energy savings in "smart" buildings, and detection of natural and man-made disasters.

  5. Kinesthetic working memory and action control within the dorsal stream.

    PubMed

    Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank

    2008-02-01

    There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.

  6. Focal and Ambient Processing of Built Environments: Intellectual and Atmospheric Experiences of Architecture

    PubMed Central

    Rooney, Kevin K.; Condia, Robert J.; Loschky, Lester C.

    2017-01-01

    Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one’s fist at arm’s length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words) PMID:28360867

  7. Focal and Ambient Processing of Built Environments: Intellectual and Atmospheric Experiences of Architecture.

    PubMed

    Rooney, Kevin K; Condia, Robert J; Loschky, Lester C

    2017-01-01

    Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one's fist at arm's length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words).

  8. Getting a handle on virtual tools: An examination of the neuronal activity associated with virtual tool use.

    PubMed

    Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A

    2018-01-31

    Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M

    Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less

  10. Sensitivity to timing and order in human visual cortex.

    PubMed

    Singer, Jedediah M; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2015-03-01

    Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. Copyright © 2015 the American Physiological Society.

  11. The two-visual-systems hypothesis and the perspectival features of visual experience.

    PubMed

    Foley, Robert T; Whitwell, Robert L; Goodale, Melvyn A

    2015-09-01

    Some critics of the two-visual-systems hypothesis (TVSH) argue that it is incompatible with the fundamentally egocentric nature of visual experience (what we call the 'perspectival account'). The TVSH proposes that the ventral stream, which delivers up our visual experience of the world, works in an allocentric frame of reference, whereas the dorsal stream, which mediates the visual control of action, uses egocentric frames of reference. Given that the TVSH is also committed to the claim that dorsal-stream processing does not contribute to the contents of visual experience, it has been argued that the TVSH cannot account for the egocentric features of our visual experience. This argument, however, rests on a misunderstanding about how the operations mediating action and the operations mediating perception are specified in the TVSH. In this article, we emphasize the importance of the 'outputs' of the two-systems to the specification of their respective operations. We argue that once this point is appreciated, it becomes evident that the TVSH is entirely compatible with a perspectival account of visual experience. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  13. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    PubMed

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  14. Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex

    PubMed Central

    2017-01-01

    Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749

  15. Do Visual Illusions Probe the Visual Brain?: Illusions in Action without a Dorsal Visual Stream

    ERIC Educational Resources Information Center

    Coello, Yann; Danckert, James; Blangero, Annabelle; Rossetti, Yves

    2007-01-01

    Visual illusions have been shown to affect perceptual judgements more so than motor behaviour, which was interpreted as evidence for a functional division of labour within the visual system. The dominant perception-action theory argues that perception involves a holistic processing of visual objects or scenes, performed within the ventral,…

  16. Visual processing of music notation: a study of event-related potentials.

    PubMed

    Lee, Horng-Yih; Wang, Yu-Sin

    2011-04-01

    In reading music, the acquisition of pitch information depends mostly on the spatial position of notes, hence more spatial processing, whereas the acquisition of temporal information depends mostly on the visual features of notes and object recognition. This study used both electrophysiological and behavioral methods to compare the processing of pitch and duration in reading single musical notes. It was observed that in the early stage of note reading, identification of pitch could elicit greater N1 and N2 amplitude than identification of duration at the parietal lobe electrodes. In the later stages of note reading, identifying pitch elicited a greater negative slow wave at parietal electrodes than did identifying note duration. The sustained contribution of parietal processes for pitch suggests that the dorsal pathway is essential for pitch processing. However, the duration task did not elicit greater amplitude of any early ERP components than the pitch task at temporal electrodes. Accordingly, a double dissociation, suggesting involvement of the dorsal visual stream, was not observed in spatial pitch processing and ventral visual stream in processing of note durations.

  17. Skill dependent audiovisual integration in the fusiform induces repetition suppression.

    PubMed

    McNorgan, Chris; Booth, James R

    2015-02-01

    Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Skill Dependent Audiovisual Integration in the Fusiform Induces Repetition Suppression

    PubMed Central

    McNorgan, Chris; Booth, James R.

    2015-01-01

    Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. PMID:25585276

  19. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  20. Attending to Multiple Visual Streams: Interactions between Location-Based and Category-Based Attentional Selection

    ERIC Educational Resources Information Center

    Fagioli, Sabrina; Macaluso, Emiliano

    2009-01-01

    Behavioral studies indicate that subjects are able to divide attention between multiple streams of information at different locations. However, it is still unclear to what extent the observed costs reflect processes specifically associated with spatial attention, versus more general interference due the concurrent monitoring of multiple streams of…

  1. Perceptual deficits of object identification: apperceptive agnosia.

    PubMed

    Milner, A David; Cavina-Pratesi, Cristiana

    2018-01-01

    It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Impaired recognition of faces and objects in dyslexia: Evidence for ventral stream dysfunction?

    PubMed

    Sigurdardottir, Heida Maria; Ívarsson, Eysteinn; Kristinsdóttir, Kristjana; Kristjánsson, Árni

    2015-09-01

    The objective of this study was to establish whether or not dyslexics are impaired at the recognition of faces and other complex nonword visual objects. This would be expected based on a meta-analysis revealing that children and adult dyslexics show functional abnormalities within the left fusiform gyrus, a brain region high up in the ventral visual stream, which is thought to support the recognition of words, faces, and other objects. 20 adult dyslexics (M = 29 years) and 20 matched typical readers (M = 29 years) participated in the study. One dyslexic-typical reader pair was excluded based on Adult Reading History Questionnaire scores and IS-FORM reading scores. Performance was measured on 3 high-level visual processing tasks: the Cambridge Face Memory Test, the Vanderbilt Holistic Face Processing Test, and the Vanderbilt Expertise Test. People with dyslexia are impaired in their recognition of faces and other visually complex objects. Their holistic processing of faces appears to be intact, suggesting that dyslexics may instead be specifically impaired at part-based processing of visual objects. The difficulty that people with dyslexia experience with reading might be the most salient manifestation of a more general high-level visual deficit. (c) 2015 APA, all rights reserved).

  3. Streaming Visual Analytics Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less

  4. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    PubMed

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  5. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    ERIC Educational Resources Information Center

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  6. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

    PubMed Central

    Grossberg, Stephen

    2014-01-01

    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399

  7. Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.

    2012-01-01

    A novel cognitive computing architecture is conceptualized for processing multiple channels of multi-modal sensory data streams simultaneously, and fusing the information in real time to generate intelligent reaction sequences. This unique architecture is capable of assimilating parallel data streams that could be analog, digital, synchronous/asynchronous, and could be programmed to act as a knowledge synthesizer and/or an "intelligent perception" processor. In this architecture, the bio-inspired models of visual pathway and olfactory receptor processing are combined as processing components, to achieve the composite function of "searching for a source of food while avoiding the predator." The architecture is particularly suited for scene analysis from visual data and odorant.

  8. Gradiency and Visual Context in Syntactic Garden-Paths

    ERIC Educational Resources Information Center

    Farmer, Thomas A.; Anderson, Sarah E.; Spivey, Michael J.

    2007-01-01

    Through recording the streaming x- and y-coordinates of computer-mouse movements, we report evidence that visual context provides an immediate constraint on the resolution of syntactic ambiguity in the visual-world paradigm. This finding converges with previous eye-tracking results that support a constraint-based account of sentence processing, in…

  9. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    PubMed

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  10. Interactions between dorsal and ventral streams for controlling skilled grasp

    PubMed Central

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317

  11. fMRI Evidence for Dorsal Stream Processing Abnormality in Adults Born Preterm

    ERIC Educational Resources Information Center

    Chaminade, Thierry; Leutcher, Russia Ha-Vinh; Millet, Veronique; Deruelle, Christine

    2013-01-01

    We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20…

  12. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  13. Parvocellular Pathway Impairment in Autism Spectrum Disorder: Evidence from Visual Evoked Potentials

    ERIC Educational Resources Information Center

    Fujita, Takako; Yamasaki, Takao; Kamio, Yoko; Hirose, Shinichi; Tobimatsu, Shozo

    2011-01-01

    In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in…

  14. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.

    PubMed

    Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf

    2017-03-01

    The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.

  15. Spatiotemporal dynamics underlying object completion in human ventral visual cortex.

    PubMed

    Tang, Hanlin; Buia, Calin; Madhavan, Radhika; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2014-08-06

    Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Memory-guided saccade processing in visual form agnosia (patient DF).

    PubMed

    Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika

    2010-01-01

    According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.

  17. Colour discrimination and categorisation in Williams syndrome.

    PubMed

    Farran, Emily K; Cranwell, Matthew B; Alvarez, James; Franklin, Anna

    2013-10-01

    Individuals with Williams syndrome (WS) present with impaired functioning of the dorsal visual stream relative to the ventral visual stream. As such, little attention has been given to ventral stream functions in WS. We investigated colour processing, a predominantly ventral stream function, for the first time in nineteen individuals with Williams syndrome. Colour discrimination was assessed using the Farnsworth-Munsell 100 hue test. Colour categorisation was assessed using a match-to-sample test and a colour naming task. A visual search task was also included as a measure of sensitivity to the size of perceptual colour difference. Results showed that individuals with WS have reduced colour discrimination relative to typically developing participants matched for chronological age; performance was commensurate with a typically developing group matched for non-verbal ability. In contrast, categorisation was typical in WS, although there was some evidence that sensitivity to the size of perceptual colour differences was reduced in this group. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 3-D vision and figure-ground separation by visual cortex.

    PubMed

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    PubMed

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.

  20. Face and location processing in children with early unilateral brain injury.

    PubMed

    Paul, Brianna; Appelbaum, Mark; Carapetian, Stephanie; Hesselink, John; Nass, Ruth; Trauner, Doris; Stiles, Joan

    2014-07-01

    Human visuospatial functions are commonly divided into those dependent on the ventral visual stream (ventral occipitotemporal regions), which allows for processing the 'what' of an object, and the dorsal visual stream (dorsal occipitoparietal regions), which allows for processing 'where' an object is in space. Information about the development of each of the two streams has been accumulating, but very little is known about the effects of injury, particularly very early injury, on this developmental process. Using a set of computerized dorsal and ventral stream tasks matched for stimuli, required response, and difficulty (for typically-developing individuals), we sought to compare the differential effects of injury to the two systems by examining performance in individuals with perinatal brain injury (PBI), who present with selective deficits in visuospatial processing from a young age. Thirty participants (mean=15.1 years) with early unilateral brain injury (15 right hemisphere PBI, 15 left hemisphere PBI) and 16 matched controls participated. On our tasks children with PBI performed more poorly than controls (lower accuracy and longer response times), and this was particularly prominent for the ventral stream task. Lateralization of PBI was also a factor, as the dorsal stream task did not seem to be associated with lateralized deficits, with both PBI groups showing only subtle decrements in performance, while the ventral stream task elicited deficits from RPBI children that do not appear to improve with age. Our findings suggest that early injury results in lesion-specific visuospatial deficits that persist into adolescence. Further, as the stimuli used in our ventral stream task were faces, our findings are consistent with what is known about the neural systems for face processing, namely, that they are established relatively early, follow a comparatively rapid developmental trajectory (conferring a vulnerability to early insult), and are biased toward the right hemisphere. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    PubMed Central

    2014-01-01

    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860

  2. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  3. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  4. Developmental Differences for Word Processing in the Ventral Stream

    ERIC Educational Resources Information Center

    Olulade, Olumide A.; Flowers, D. Lynn; Napoliello, Eileen M.; Eden, Guinevere F.

    2013-01-01

    The visual word form system (VWFS), located in the occipito-temporal cortex, is involved in orthographic processing of visually presented words (Cohen et al., 2002). Recent fMRI studies in children and adults have demonstrated a gradient of increasing word-selectivity along the posterior-to-anterior axis of this system (Vinckier et al., 2007), yet…

  5. Ventral and Dorsal Pathways Relate Differently to Visual Awareness of Body Postures under Continuous Flash Suppression

    PubMed Central

    Goebel, Rainer

    2018-01-01

    Abstract Visual perception includes ventral and dorsal stream processes. However, it is still unclear whether the former is predominantly related to conscious and the latter to nonconscious visual perception as argued in the literature. In this study upright and inverted body postures were rendered either visible or invisible under continuous flash suppression (CFS), while brain activity of human participants was measured with functional MRI (fMRI). Activity in the ventral body-sensitive areas was higher during visible conditions. In comparison, activity in the posterior part of the bilateral intraparietal sulcus (IPS) showed a significant interaction of stimulus orientation and visibility. Our results provide evidence that dorsal stream areas are less associated with visual awareness. PMID:29445766

  6. Enhanced and bilateralized visual sensory processing in the ventral stream may be a feature of normal aging.

    PubMed

    De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J

    2008-10-01

    Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.

  7. Information processing in the primate visual system - An integrated systems perspective

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  8. Enhanced Fine-Form Perception Does Not Contribute to Gestalt Face Perception in Autism Spectrum Disorder

    PubMed Central

    Maekawa, Toshihiko; Miyanaga, Yuka; Takahashi, Kenji; Takamiya, Naomi; Ogata, Katsuya; Tobimatsu, Shozo

    2017-01-01

    Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD. PMID:28146575

  9. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey

    State-of-the-art visual analytics models and frameworks mostly assume a static snapshot of the data, while in many cases it is a stream with constant updates and changes. Exploration of streaming data poses unique challenges as machine-level computations and abstractions need to be synchronized with the visual representation of the data and the temporally evolving human insights. In the visual analytics literature, we lack a thorough characterization of streaming data and analysis of the challenges associated with task abstraction, visualization design, and adaptation of the role of human-in-the-loop for exploration of data streams. We aim to fill this gap by conductingmore » a survey of the state-of-the-art in visual analytics of streaming data for systematically describing the contributions and shortcomings of current techniques and analyzing the research gaps that need to be addressed in the future. Our contributions are: i) problem characterization for identifying challenges that are unique to streaming data analysis tasks, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space for dynamic data and the role of the human-in-the-loop, and iii) reflections on the design-trade-offs for streaming visual analytics techniques and their practical applicability in real-world application scenarios.« less

  10. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.

  11. A Task-Dependent Causal Role for Low-Level Visual Processes in Spoken Word Comprehension

    ERIC Educational Resources Information Center

    Ostarek, Markus; Huettig, Falk

    2017-01-01

    It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual…

  12. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The simplest chronoscope II: reaction time measured by meterstick versus machine.

    PubMed

    Montare, Alberto

    2010-12-01

    Visual simple reaction time (SRT) scores measured in 31 college students of both sexes by use of the simplest chronoscope methodology (meterstick SRT) were compared to scores obtained by use of an electromechanical multi-choice reaction timer (machine SRT). Four hypotheses were tested. Results indicated that the previous mean value of meterstick SRT was replicated; meterstick SRT was significantly faster than long-standing population estimates of mean SRT; and machine SRT was significantly slower than the same long-standing mean SRT estimates for the population. Also, the mean meterstick SRT of 181 msec. was significantly faster than the mean machine SRT of 294 msec. It was theorized that differential visual information processing occurred such that the dorsal visual stream subserved meterstick SRT; whereas the ventral visual stream subserved machine SRT.

  14. Here, there and everywhere: higher visual function and the dorsal visual stream.

    PubMed

    Cooper, Sarah Anne; O'Sullivan, Michael

    2016-06-01

    The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated

    PubMed Central

    Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor

    2015-01-01

    Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech. PMID:26623650

  16. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  17. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects.

    PubMed

    Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi

    2018-05-16

    Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. On the usefulness of 'what' and 'where' pathways in vision.

    PubMed

    de Haan, Edward H F; Cowey, Alan

    2011-10-01

    The primate visual brain is classically portrayed as a large number of separate 'maps', each dedicated to the processing of specific visual cues, such as colour, motion or faces and their many features. In order to understand this fractionated architecture, the concept of cortical 'pathways' or 'streams' was introduced. In the currently prevailing view, the different maps are organised hierarchically into two major pathways, one involved in recognition and memory (the ventral stream or 'what' pathway) and the other in the programming of action (the dorsal stream or 'where' pathway). In this review, we question this heuristically influential but potentially misleading linear hierarchical pathway model and argue instead for a 'patchwork' or network model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.

    PubMed

    Montare, Alberto

    2016-12-01

    Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.

  20. Effects of Spatial Attention on Motion Discrimination are Greater in the Left than Right Visual Field

    PubMed Central

    Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893

  1. Delayed action does not always require the ventral stream: a study on a patient with visual form agnosia.

    PubMed

    Hesse, Constanze; Schenk, Thomas

    2014-05-01

    It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.'s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.'s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    PubMed Central

    Zhang, Sheng; Eckstein, Miguel P.

    2010-01-01

    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways. PMID:20838589

  3. Recapitulation of Emotional Source Context during Memory Retrieval

    PubMed Central

    Bowen, Holly J.; Kensinger, Elizabeth A.

    2016-01-01

    Recapitulation involves the reactivation of cognitive and neural encoding processes at retrieval. In the current study, we investigated the effects of emotional valence on recapitulation processes. Participants encoded neutral words presented on a background face or scene that was negative, positive or neutral. During retrieval, studied and novel neutral words were presented alone (i.e., without the scene or face) and participants were asked to make a remember, know or new judgment. Both the encoding and retrieval tasks were completed in the fMRI scanner. Conjunction analyses were used to reveal the overlap between encoding and retrieval processing. These results revealed that, compared to positive or neutral contexts, words that were recollected and previously encoded in a negative context showed greater encoding-to-retrieval overlap, including in the ventral visual stream and amygdala. Interestingly, the visual stream recapitulation was not enhanced within regions that specifically process faces or scenes but rather extended broadly throughout visual cortices. These findings elucidate how memories for negative events can feel more vivid or detailed than positive or neutral memories. PMID:27923474

  4. Encoding model of temporal processing in human visual cortex.

    PubMed

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  5. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.

  6. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    NASA Astrophysics Data System (ADS)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  7. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  8. Symbol processing in the left angular gyrus: evidence from passive perception of digits.

    PubMed

    Price, Gavin R; Ansari, Daniel

    2011-08-01

    Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Spatial Mechanisms within the Dorsal Visual Pathway Contribute to the Configural Processing of Faces.

    PubMed

    Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Gotts, Stephen J; Ungerleider, Leslie G

    2017-08-01

    Human face recognition is often attributed to configural processing; namely, processing the spatial relationships among the features of a face. If configural processing depends on fine-grained spatial information, do visuospatial mechanisms within the dorsal visual pathway contribute to this process? We explored this question in human adults using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS) in a same-different face detection task. Within localized, spatial-processing regions of the posterior parietal cortex, configural face differences led to significantly stronger activation compared to featural face differences, and the magnitude of this activation correlated with behavioral performance. In addition, detection of configural relative to featural face differences led to significantly stronger functional connectivity between the right FFA and the spatial processing regions of the dorsal stream, whereas detection of featural relative to configural face differences led to stronger functional connectivity between the right FFA and left FFA. Critically, TMS centered on these parietal regions impaired performance on configural but not featural face difference detections. We conclude that spatial mechanisms within the dorsal visual pathway contribute to the configural processing of facial features and, more broadly, that the dorsal stream may contribute to the veridical perception of faces. Published by Oxford University Press 2016.

  10. Surfing a spike wave down the ventral stream.

    PubMed

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  11. Neural Signatures of Stimulus Features in Visual Working Memory—A Spatiotemporal Approach

    PubMed Central

    Jackson, Margaret C.; Klein, Christoph; Mohr, Harald; Shapiro, Kimron L.; Linden, David E. J.

    2010-01-01

    We examined the neural signatures of stimulus features in visual working memory (WM) by integrating functional magnetic resonance imaging (fMRI) and event-related potential data recorded during mental manipulation of colors, rotation angles, and color–angle conjunctions. The N200, negative slow wave, and P3b were modulated by the information content of WM, and an fMRI-constrained source model revealed a progression in neural activity from posterior visual areas to higher order areas in the ventral and dorsal processing streams. Color processing was associated with activity in inferior frontal gyrus during encoding and retrieval, whereas angle processing involved right parietal regions during the delay interval. WM for color–angle conjunctions did not involve any additional neural processes. The finding that different patterns of brain activity underlie WM for color and spatial information is consistent with ideas that the ventral/dorsal “what/where” segregation of perceptual processing influences WM organization. The absence of characteristic signatures of conjunction-related brain activity, which was generally intermediate between the 2 single conditions, suggests that conjunction judgments are based on the coordinated activity of these 2 streams. PMID:19429863

  12. Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream

    PubMed Central

    Rust, Nicole C.; DiCarlo, James J.

    2012-01-01

    While popular accounts suggest that neurons along the ventral visual processing stream become increasingly selective for particular objects, this appears at odds with the fact that inferior temporal cortical (IT) neurons are broadly tuned. To explore this apparent contradiction, we compared processing in two ventral stream stages (V4 and IT) in the rhesus macaque monkey. We confirmed that IT neurons are indeed more selective for conjunctions of visual features than V4 neurons, and that this increase in feature conjunction selectivity is accompanied by an increase in tolerance (“invariance”) to identity-preserving transformations (e.g. shifting, scaling) of those features. We report here that V4 and IT neurons are, on average, tightly matched in their tuning breadth for natural images (“sparseness”), and that the average V4 or IT neuron will produce a robust firing rate response (over 50% of its peak observed firing rate) to ~10% of all natural images. We also observed that sparseness was positively correlated with conjunction selectivity and negatively correlated with tolerance within both V4 and IT, consistent with selectivity-building and invariance-building computations that offset one another to produce sparseness. Our results imply that the conjunction-selectivity-building and invariance-building computations necessary to support object recognition are implemented in a balanced fashion to maintain sparseness at each stage of processing. PMID:22836252

  13. Cross-Modal Interactions during Perception of Audiovisual Speech and Nonspeech Signals: An fMRI Study

    ERIC Educational Resources Information Center

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich,…

  14. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  15. A task-dependent causal role for low-level visual processes in spoken word comprehension.

    PubMed

    Ostarek, Markus; Huettig, Falk

    2017-08-01

    It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual representations contribute functionally to concrete word comprehension using an interference paradigm. We interfered with basic visual processing while participants performed a concreteness task (Experiment 1), a lexical-decision task (Experiment 2), and a word class judgment task (Experiment 3). We found that visual noise interfered more with concrete versus abstract word processing, but only when the task required visual information to be accessed. This suggests that basic visual processes can be causally involved in language comprehension, but that their recruitment is not automatic and rather depends on the type of information that is required in a given task situation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Organization of the Macaque Extrastriate Visual Cortex Re-Examined Using the Principle of Spatial Continuity of Function

    PubMed Central

    Aflalo, T. N.

    2011-01-01

    How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269

  17. Interaction between dorsal and ventral processing streams: where, when and how?

    PubMed

    Cloutman, Lauren L

    2013-11-01

    The execution of complex visual, auditory, and linguistic behaviors requires a dynamic interplay between spatial ('where/how') and non-spatial ('what') information processed along the dorsal and ventral processing streams. However, while it is acknowledged that there must be some degree of interaction between the two processing networks, how they interact, both anatomically and functionally, is a question which remains little explored. The current review examines the anatomical, temporal, and behavioral evidence regarding three potential models of dual stream interaction: (1) computations along the two pathways proceed independently and in parallel, reintegrating within shared target brain regions; (2) processing along the separate pathways is modulated by the existence of recurrent feedback loops; and (3) information is transferred directly between the two pathways at multiple stages and locations along their trajectories. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    PubMed

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. From attentional gating in macaque primary visual cortex to dyslexia in humans.

    PubMed

    Vidyasagar, T R

    2001-01-01

    Selective attention is an important aspect of brain function that we need in coping with the immense and constant barrage of sensory information. One model of attention (Feature Integration Theory) that suggests an early selection of spatial locations of objects via an attentional spotlight would also solve the 'binding problem' (that is how do different attributes of each object get correctly bound together?). Our experiments have demonstrated modulation of specific locations of interest at the level of the primary visual cortex both in visual discrimination and memory tasks, where the actual locations of the targets was also important in being able to perform the task. It is suggested that the feedback mediating the modulation arises from the posterior parietal cortex, which would also be consistent with its known role in attentional control. In primates, the magnocellular (M) and parvocellular (P) pathways are the two major streams of inputs from the retina, carrying distinctly different types of information and they remain fairly segregated in their projections to the primary visual cortex and further into the extra-striate regions. The P inputs go mainly into the ventral (temporal) stream, while the dorsal (parietal) stream is dominated by M inputs. A theory of attentional gating is proposed here where the M dominated dorsal stream gates the P inputs into the ventral stream. This framework is used to provide a neural explanation of the processes involved in reading and in learning to read. This scheme also explains how a magnocellular deficit could cause the common reading impairment, dyslexia.

  20. Real-Time Visualization of Network Behaviors for Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less

  1. Visualizing TZVOLCANO GNSS Data with Grafana via the EarthCube Cyberinfrastructure CHORDS: an Example of Dashboard Creation for the Geosciences

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Stamps, D. S.

    2017-12-01

    Visualizing societally relevant data in easy to comprehend formats is necessary for making informed decisions by non-scientist stakeholders. Despite scientists' efforts to inform the public, there continues to be a disconnect in information between stakeholders and scientists. Closing the gap in knowledge requires increased communication between the two groups facilitated by models and data visualizations. In this work we use real-time streaming data from TZVOLCANO, a network of GNSS/GPS sensors that monitor the active volcano Ol Doinyo Lengai in Tanzania, as a test-case for visualizing societally relevant data. Real-time data from TZVOLCANO is streamed into the US NSF Geodesy Facility UNAVCO archive (www.unavco.org) from which data are made available through the EarthCube cyberinfrastructure CHORDS (Cloud-Hosted Real-Time Data Services for the geosciences). CHORDS uses InfluxDB to make streaming data accessible in Grafana: an open source software that specializes in the display of time series analysis. With over 350 downloadable "dashboards", Grafana serves as an emerging software for data visualizations. Creating user-friendly visualizations ("dashboards") for the TZVOLCANO GNSS/GPS data in Tanzania can help scientists and stakeholders communicate effectively so informed decisions can be made about volcanic hazards during a time-sensitive crisis. Our use of Grafana's dashboards for one specific case-study provides an example for other geoscientists to develop analogous visualizations with the objectives of increasing the knowledge of the general public and facilitating a more informed decision-making process.

  2. Surprise-Induced Blindness: A Stimulus-Driven Attentional Limit to Conscious Perception

    ERIC Educational Resources Information Center

    Asplund, Christopher L.; Todd, J. Jay; Snyder, A. P.; Gilbert, Christopher M.; Marois, Rene

    2010-01-01

    The cost of attending to a visual event can be the failure to consciously detect other events. This processing limitation is well illustrated by the attentional blink paradigm, in which searching for and attending to a target presented in a rapid serial visual presentation stream of distractors can impair one's ability to detect a second target…

  3. Independence between implicit and explicit processing as revealed by the Simon effect.

    PubMed

    Lo, Shih-Yu; Yeh, Su-Ling

    2011-09-01

    Studies showing human behavior influenced by subliminal stimuli mainly focus on implicit processing per se, and little is known about its interaction with explicit processing. We examined this by using the Simon effect, wherein a task-irrelevant spatial distracter interferes with lateralized response. Lo and Yeh (2008) found that the visual Simon effect, although it occurred when participants were aware of the visual distracters, did not occur with subliminal visual distracters. We used the same paradigm and examined whether subliminal and supra-threshold stimuli are processed independently by adding a supra-threshold auditory distracter to ascertain whether it would interact with the subliminal visual distracter. Results showed auditory Simon effect, but there was still no visual Simon effect, indicating that supra-threshold and subliminal stimuli are processed separately in independent streams. In contrast to the traditional view that implicit processing precedes explicit processing, our results suggest that they operate independently in a parallel fashion. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. On the organization of the perisylvian cortex: Insights from the electrophysiology of language. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by M.A. Arbib

    NASA Astrophysics Data System (ADS)

    Brouwer, Harm; Crocker, Matthew W.

    2016-03-01

    The Mirror System Hypothesis (MSH) on the evolution of the language-ready brain draws upon the parallel dorsal-ventral stream architecture for vision [1]. The dorsal ;how; stream provides a mapping of parietally-mediated affordances onto the motor system (supporting preshape), whereas the ventral ;what; stream engages in object recognition and visual scene analysis (supporting pantomime and verbal description). Arbib attempts to integrate this MSH perspective with a recent conceptual dorsal-ventral stream model of auditory language comprehension [5] (henceforth, the B&S model). In the B&S model, the dorsal stream engages in time-dependent combinatorial processing, which subserves syntactic structuring and linkage to action, whereas the ventral stream performs time-independent unification of conceptual schemata. These streams are integrated in the left Inferior Frontal Gyrus (lIFG), which is assumed to subserve cognitive control, and no linguistic processing functions. Arbib criticizes the B&S model on two grounds: (i) the time-independence of the semantic processing in the ventral stream (by arguing that semantic processing is just as time-dependent as syntactic processing), and (ii) the absence of linguistic processing in the lIFG (reconciling syntactic and semantic representations is very much linguistic processing proper). Here, we provide further support for these two points of criticism on the basis of insights from the electrophysiology of language. In the course of our argument, we also sketch the contours of an alternative model that may prove better suited for integration with the MSH.

  5. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  6. A cross-validated cytoarchitectonic atlas of the human ventral visual stream.

    PubMed

    Rosenke, Mona; Weiner, Kevin S; Barnett, Michael A; Zilles, Karl; Amunts, Katrin; Goebel, Rainer; Grill-Spector, Kalanit

    2018-04-15

    The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Adaptations to vision-for-action in primate brain evolution: Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Hecht, Erin

    2016-03-01

    As Arbib [1] notes, the two-streams hypothesis [5] has provided a powerful explanatory framework for understanding visual processing. The inferotemporal ventral stream recognizes objects and agents - ;what; one is seeing. The dorsal ;how; or ;where; stream through parietal cortex processes motion, spatial location, and visuo-proprioceptive relationships - ;vision for action.; Hickock and Poeppel's [3] extension of this model to the auditory system raises the question of deeper, multi- or supra-sensory themes in dorsal vs. ventral processing. Petrides and Pandya [10] postulate that the evolution of language may have been influenced by the fact that the dorsal stream terminates in posterior Broca's area (BA44) while the ventral stream terminates in anterior Broca's area (BA45). In an intriguing potential parallel, a recent ALE metanalysis of 54 fMRI studies found that semantic processing is located more anteriorly and superiorly than syntactic processing in Broca's area [13]. But clearly, macaques do not have language, nor other likely pre- or co-adaptations to language, such as complex imitation and tool use. What changed in the brain that enabled these functions to evolve?

  8. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  9. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  10. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey R.

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey andmore » analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.« less

  11. From genes to brain development to phenotypic behavior: "dorsal-stream vulnerability" in relation to spatial cognition, attention, and planning of actions in Williams syndrome (WS) and other developmental disorders.

    PubMed

    Atkinson, Janette; Braddick, Oliver

    2011-01-01

    Visual information is believed to be processed through two distinct, yet interacting cortical streams. The ventral stream performs the computations needed for recognition of objects and faces ("what" and "who"?) and the dorsal stream the computations for registering spatial relationships and for controlling visually guided actions ("where" and "how"?). We initially proposed a model of spatial deficits in Williams syndrome (WS) in which visual abilities subserved by the ventral stream, such as face recognition, are relatively well developed (although not necessarily in exactly the same way as in typical development), whereas dorsal-stream functions, such as visuospatial actions, are markedly impaired. Since these initial findings in WS, deficits of motion coherence sensitivity, a dorsal-stream function has been found in other genetic disorders such as Fragile X and autism, and as a consequence of perinatal events (in hemiplegia, perinatal brain anomalies following very premature birth), leading to the proposal of a general "dorsal-stream vulnerability" in many different conditions of abnormal human development. In addition, dorsal-stream systems provide information used in tasks of visuospatial memory and locomotor planning, and these systems are closely coupled to networks for attentional control. We and several other research groups have previously shown deficits of frontal and parietal lobe function in WS individuals for specific attention tasks [e.g., Atkinson, J., Braddick, O., Anker, S., Curran, W., & Andrew, R. (2003). Neurobiological models of visuospatial cognition in children with Williams Syndrome: Measures of dorsal-stream and frontal function. Developmental Neuropsychology, 23(1/2), 141-174.]. We have used the Test of Everyday Attention for Children (TEA-Ch) which aims to attempt to separate components of attention with distinct brain networks (selective attention, sustained attention, and attention control-executive function) testing a group of older children with WS, but this test battery is too demanding for many children and adults with WS. Consequently, we have devised a new set of tests of attention, the Early Childhood Attention Battery (ECAB). This uses similar principles to the TEA-Ch, but adapted for mental ages younger than 6 years. The ECAB shows a distinctive attention profile for WS individuals relative to their overall cognitive development, with relative strength in tasks of sustained attention and poorer performance on tasks of selective attention and executive control. These profiles, and the characteristic developmental courses, also show differences between children with Down's syndrome and WS. This chapter briefly reviews new research findings on WS in these areas, relating the development of brain systems in WS to evidence from neuroimaging in typically developing infants, children born very preterm, and normal adults. The hypothesis of "dorsal-stream(s) vulnerability" which will be discussed includes a number of interlinked brain networks, subserving not only global visual processing and formulation of visuomotor actions but interlinked networks of attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque.

    PubMed

    Schroeder, C E; Mehta, A D; Givre, S J

    1998-01-01

    We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal-ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.

  13. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  14. Binding and unbinding the auditory and visual streams in the McGurk effect.

    PubMed

    Nahorna, Olha; Berthommier, Frédéric; Schwartz, Jean-Luc

    2012-08-01

    Subjects presented with coherent auditory and visual streams generally fuse them into a single percept. This results in enhanced intelligibility in noise, or in visual modification of the auditory percept in the McGurk effect. It is classically considered that processing is done independently in the auditory and visual systems before interaction occurs at a certain representational stage, resulting in an integrated percept. However, some behavioral and neurophysiological data suggest the existence of a two-stage process. A first stage would involve binding together the appropriate pieces of audio and video information before fusion per se in a second stage. Then it should be possible to design experiments leading to unbinding. It is shown here that if a given McGurk stimulus is preceded by an incoherent audiovisual context, the amount of McGurk effect is largely reduced. Various kinds of incoherent contexts (acoustic syllables dubbed on video sentences or phonetic or temporal modifications of the acoustic content of a regular sequence of audiovisual syllables) can significantly reduce the McGurk effect even when they are short (less than 4 s). The data are interpreted in the framework of a two-stage "binding and fusion" model for audiovisual speech perception.

  15. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    PubMed

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-06

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  16. Where’s Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene

    PubMed Central

    Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang

    2014-01-01

    The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339

  17. Comparison of animated jet stream visualizations

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  18. Increasingly complex representations of natural movies across the dorsal stream are shared between subjects.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2017-01-15

    Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Comparison of visual survey and seining methods for estimating abundance of an endangered, benthic stream fish

    USGS Publications Warehouse

    Jordan, F.; Jelks, H.L.; Bortone, S.A.; Dorazio, R.M.

    2008-01-01

    We compared visual survey and seining methods for estimating abundance of endangered Okaloosa darters, Etheostoma okaloosae, in 12 replicate stream reaches during August 2001. For each 20-m stream reach, two divers systematically located and marked the position of darters and then a second crew of three to five people came through with a small-mesh seine and exhaustively sampled the same area. Visual surveys required little extra time to complete. Visual counts (24.2 ?? 12.0; mean ?? one SD) considerably exceeded seine captures (7.4 ?? 4.8), and counts from the two methods were uncorrelated. Visual surveys, but not seines, detected the presence of Okaloosa darters at one site with low population densities. In 2003, we performed a depletion removal study in 10 replicate stream reaches to assess the accuracy of the visual survey method. Visual surveys detected 59% of Okaloosa darters present, and visual counts and removal estimates were positively correlated. Taken together, our comparisons indicate that visual surveys more accurately and precisely estimate abundance of Okaloosa darters than seining and more reliably detect presence at low population densities. We recommend evaluation of visual survey methods when designing programs to monitor abundance of benthic fishes in clear streams, especially for threatened and endangered species that may be sensitive to handling and habitat disturbance. ?? 2007 Springer Science+Business Media, Inc.

  20. Attentional Capture by Emotional Stimuli Is Modulated by Semantic Processing

    ERIC Educational Resources Information Center

    Huang, Yang-Ming; Baddeley, Alan; Young, Andrew W.

    2008-01-01

    The attentional blink paradigm was used to examine whether emotional stimuli always capture attention. The processing requirement for emotional stimuli in a rapid sequential visual presentation stream was manipulated to investigate the circumstances under which emotional distractors capture attention, as reflected in an enhanced attentional blink…

  1. Bonsai: an event-based framework for processing and controlling data streams

    PubMed Central

    Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.

    2015-01-01

    The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861

  2. Visual motion disambiguation by a subliminal sound.

    PubMed

    Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier

    2008-09-01

    There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.

  3. Adaptability and specificity of inhibition processes in distractor-induced blindness.

    PubMed

    Winther, Gesche N; Niedeggen, Michael

    2017-12-01

    In a rapid serial visual presentation task, inhibition processes cumulatively impair processing of a target possessing distractor properties. This phenomenon-known as distractor-induced blindness-has thus far only been elicited using dynamic visual features, such as motion and orientation changes. In three ERP experiments, we used a visual object feature-color-to test for the adaptability and specificity of the effect. In Experiment I, participants responded to a color change (target) in the periphery whose onset was signaled by a central cue. Presentation of irrelevant color changes prior to the cue (distractors) led to reduced target detection, accompanied by a frontal ERP negativity that increased with increasing number of distractors, similar to the effects previously found for dynamic targets. This suggests that distractor-induced blindness is adaptable to color features. In Experiment II, the target consisted of coherent motion contrasting the color distractors. Correlates of distractor-induced blindness were found neither in the behavioral nor in the ERP data, indicating a feature specificity of the process. Experiment III confirmed the strict distinction between congruent and incongruent distractors: A single color distractor was embedded in a stream of motion distractors with the target consisting of a coherent motion. While behavioral performance was affected by the distractors, the color distractor did not elicit a frontal negativity. The experiments show that distractor-induced blindness is also triggered by visual stimuli predominantly processed in the ventral stream. The strict specificity of the central inhibition process also applies to these stimulus features. © 2017 Society for Psychophysiological Research.

  4. Ventral and dorsal streams processing visual motion perception (FDG-PET study)

    PubMed Central

    2012-01-01

    Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430

  5. Selective attention to task-irrelevant emotional distractors is unaffected by the perceptual load associated with a foreground task.

    PubMed

    Hindi Attar, Catherine; Müller, Matthias M

    2012-01-01

    A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.

  6. Input Control Processes in Rapid Serial Visual Presentations: Target Selection and Distractor Inhibition

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Watson, Derrick G.

    2006-01-01

    The attentional blink refers to the finding that the 2nd of 2 targets embedded in a stream of rapidly presented distractors is often missed. Whereas most theories of the attentional blink focus on limited-capacity processes that occur after target selection, the present work investigates the selection process itself. Identifying a target letter…

  7. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  8. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception

    PubMed Central

    Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.

    2017-01-01

    Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023

  9. Disentangling brain activity related to the processing of emotional visual information and emotional arousal.

    PubMed

    Kuniecki, Michał; Wołoszyn, Kinga; Domagalik, Aleksandra; Pilarczyk, Joanna

    2018-05-01

    Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.

  10. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.

    PubMed

    Gnadt, William; Grossberg, Stephen

    2008-06-01

    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

  11. Hadoop-based implementation of processing medical diagnostic records for visual patient system

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Shi, Liehang; Xie, Zhe; Zhang, Jianguo

    2018-03-01

    We have innovatively introduced Visual Patient (VP) concept and method visually to represent and index patient imaging diagnostic records (IDR) in last year SPIE Medical Imaging (SPIE MI 2017), which can enable a doctor to review a large amount of IDR of a patient in a limited appointed time slot. In this presentation, we presented a new approach to design data processing architecture of VP system (VPS) to acquire, process and store various kinds of IDR to build VP instance for each patient in hospital environment based on Hadoop distributed processing structure. We designed this system architecture called Medical Information Processing System (MIPS) with a combination of Hadoop batch processing architecture and Storm stream processing architecture. The MIPS implemented parallel processing of various kinds of clinical data with high efficiency, which come from disparate hospital information system such as PACS, RIS LIS and HIS.

  12. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2013-01-01

    Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.

  13. Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception.

    PubMed

    Dima, Diana C; Perry, Gavin; Singh, Krish D

    2018-06-11

    In navigating our environment, we rapidly process and extract meaning from visual cues. However, the relationship between visual features and categorical representations in natural scene perception is still not well understood. Here, we used natural scene stimuli from different categories and filtered at different spatial frequencies to address this question in a passive viewing paradigm. Using representational similarity analysis (RSA) and cross-decoding of magnetoencephalography (MEG) data, we show that categorical representations emerge in human visual cortex at ∼180 ms and are linked to spatial frequency processing. Furthermore, dorsal and ventral stream areas reveal temporally and spatially overlapping representations of low and high-level layer activations extracted from a feedforward neural network. Our results suggest that neural patterns from extrastriate visual cortex switch from low-level to categorical representations within 200 ms, highlighting the rapid cascade of processing stages essential in human visual perception. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Catchment hydrological responses to forest harvest amount and spatial pattern

    Treesearch

    Alex Abdelnour; Marc Stieglitz; Feifei Pan; Robert McKane

    2011-01-01

    Forest harvest effects on streamflow generation have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VELMA), to elucidate how hillslope and catchment-scale processes control stream discharge in...

  15. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    PubMed

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  16. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  17. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  18. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726

  19. Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration

    PubMed Central

    Thoma, Volker; Henson, Richard N.

    2011-01-01

    The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967

  20. Still holding after all these years: An action-perception dissociation in patient DF.

    PubMed

    Ganel, Tzvi; Goodale, Melvyn A

    2017-09-23

    Patient DF, who has bilateral damage in the ventral visual stream, is perhaps the best known individual with visual form agnosia in the world, and has been the focus of scores of research papers over the past twenty-five years. The remarkable dissociation she exhibits between a profound deficit in perceptual report and a preserved ability to generate relatively normal visuomotor behaviour was early on a cornerstone in Goodale and Milner's (1992) two visual systems hypothesis. In recent years, however, there has been a greater emphasis on the damage that is evident in the posterior regions of her parietal cortex in both hemispheres. Deficits in several aspects of visuomotor control in the visual periphery have been demonstrated, leading some researchers to conclude that the double dissociation between vision-for-perception and vision-for-action in DF and patients with classic optic ataxia can no longer be assumed to be strong evidence for the division of labour between the dorsal and ventral streams of visual processing. In this short review, we argue that this is not the case. Indeed, after evaluating DF's performance and the location of her brain lesions, a clear picture of a double dissociation between DF and patients with optic ataxia is revealed. More than quarter of a century after the initial presentation of DF's unique case, she continues to provide compelling evidence for the idea that the ventral stream is critical for the perception of the shape and orientation of objects but not the visual control of skilled actions directed at those objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Disentangling visual imagery and perception of real-world objects

    PubMed Central

    Lee, Sue-Hyun; Kravitz, Dwight J.; Baker, Chris I.

    2011-01-01

    During mental imagery, visual representations can be evoked in the absence of “bottom-up” sensory input. Prior studies have reported similar neural substrates for imagery and perception, but studies of brain-damaged patients have revealed a double dissociation with some patients showing preserved imagery in spite of impaired perception and others vice versa. Here, we used fMRI and multi-voxel pattern analysis to investigate the specificity, distribution, and similarity of information for individual seen and imagined objects to try and resolve this apparent contradiction. In an event-related design, participants either viewed or imagined individual named object images on which they had been trained prior to the scan. We found that the identity of both seen and imagined objects could be decoded from the pattern of activity throughout the ventral visual processing stream. Further, there was enough correspondence between imagery and perception to allow discrimination of individual imagined objects based on the response during perception. However, the distribution of object information across visual areas was strikingly different during imagery and perception. While there was an obvious posterior-anterior gradient along the ventral visual stream for seen objects, there was an opposite gradient for imagined objects. Moreover, the structure of representations (i.e. the pattern of similarity between responses to all objects) was more similar during imagery than perception in all regions along the visual stream. These results suggest that while imagery and perception have similar neural substrates, they involve different network dynamics, resolving the tension between previous imaging and neuropsychological studies. PMID:22040738

  2. From Streaming Data to Streaming Insights: The Impact of Data Velocities on Mental Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Pike, William A.; Cook, Kristin A.

    The rise of Big Data has influenced the design and technical implementation of visual analytic tools required to handle the increased volumes, velocities, and varieties of data. This has required a set of data management and computational advancements to allow us to store and compute on such datasets. However, as the ultimate goal of visual analytic technology is to enable the discovery and creation of insights from the users, an under-explored area is understanding how these datasets impact their mental models. That is, how have the analytic processes and strategies of users changed? How have users changed their perception ofmore » how to leverage, and ask questions of, these datasets?« less

  3. Sedimentation in mountain streams: A review of methods of measurement

    USGS Publications Warehouse

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin

    2013-01-01

    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.

  4. Rapid Extraction of Lexical Tone Phonology in Chinese Characters: A Visual Mismatch Negativity Study

    PubMed Central

    Wang, Xiao-Dong; Liu, A-Ping; Wu, Yin-Yuan; Wang, Peng

    2013-01-01

    Background In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. Methodology/Principal Findings We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. Conclusions/Significance We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage. PMID:23437235

  5. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    PubMed

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  6. Person perception involves functional integration between the extrastriate body area and temporal pole.

    PubMed

    Greven, Inez M; Ramsey, Richard

    2017-02-01

    The majority of human neuroscience research has focussed on understanding functional organisation within segregated patches of cortex. The ventral visual stream has been associated with the detection of physical features such as faces and body parts, whereas the theory-of-mind network has been associated with making inferences about mental states and underlying character, such as whether someone is friendly, selfish, or generous. To date, however, it is largely unknown how such distinct processing components integrate neural signals. Using functional magnetic resonance imaging and connectivity analyses, we investigated the contribution of functional integration to social perception. During scanning, participants observed bodies that had previously been associated with trait-based or neutral information. Additionally, we independently localised the body perception and theory-of-mind networks. We demonstrate that when observing someone who cues the recall of stored social knowledge compared to non-social knowledge, a node in the ventral visual stream (extrastriate body area) shows greater coupling with part of the theory-of-mind network (temporal pole). These results show that functional connections provide an interface between perceptual and inferential processing components, thus providing neurobiological evidence that supports the view that understanding the visual environment involves interplay between conceptual knowledge and perceptual processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.

    PubMed

    Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming

    2017-10-20

    Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.

    PubMed

    Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

  9. Auditory Working Memory Load Impairs Visual Ventral Stream Processing: Toward a Unified Model of Attentional Load

    ERIC Educational Resources Information Center

    Klemen, Jane; Buchel, Christian; Buhler, Mira; Menz, Mareike M.; Rose, Michael

    2010-01-01

    Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences…

  10. An Event-Related Potential and Behavioral Study of Impaired Inhibitory Control in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Tsai, Chia-Liang; Pan, Chien-Yu; Wang, Chun-Hao; Tseng, Yu-Ting; Hsieh, Kai-Wen

    2011-01-01

    Autism spectrum disorders (ASD) are characterized by a deficit of dorsal visual stream processing as well as the impairment of inhibitory control capability. However, the cognitive processing mechanisms of executive dysfunction have not been addressed. In the present study, the endogenous Posner paradigm task was administered to 15 children with…

  11. Pre-processing SAR image stream to facilitate compression for transport on bandwidth-limited-link

    DOEpatents

    Rush, Bobby G.; Riley, Robert

    2015-09-29

    Pre-processing is applied to a raw VideoSAR (or similar near-video rate) product to transform the image frame sequence into a product that resembles more closely the type of product for which conventional video codecs are designed, while sufficiently maintaining utility and visual quality of the product delivered by the codec.

  12. Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.

    PubMed

    Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V

    2013-11-15

    Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Training Organizations in Use of a Modified Stream Visual Assessment Protocol

    ERIC Educational Resources Information Center

    Obropta, Christopher C.; Yergeau, Steven E.

    2011-01-01

    The Stream Visual Assessment Protocol (SVAP) was evaluated as a means to increase watershed surveys in New Jersey. Groups were trained in an SVAP modified for New Jersey streams. Participants in three training workshops were surveyed to determine the usefulness of SVAP as a cost-effective method to evaluate watershed health. Many respondents found…

  14. VAST Challenge 2016: Streaming Visual Analytics

    DTIC Science & Technology

    2016-10-25

    understand rapidly evolving situations. To support such tasks, visual analytics solutions must move well beyond systems that simply provide real-time...received. Mini-Challenge 1: Design Challenge Mini-Challenge 1 focused on systems to support security and operational analytics at the Euybia...Challenge 1 was to solicit novel approaches for streaming visual analytics that push the boundaries for what constitutes a visual analytics system , and to

  15. A number-form area in the blind

    PubMed Central

    Abboud, Sami; Maidenbaum, Shachar; Dehaene, Stanislas; Amedi, Amir

    2015-01-01

    Distinct preference for visual number symbols was recently discovered in the human right inferior temporal gyrus (rITG). It remains unclear how this preference emerges, what is the contribution of shape biases to its formation and whether visual processing underlies it. Here we use congenital blindness as a model for brain development without visual experience. During fMRI, we present blind subjects with shapes encoded using a novel visual-to-music sensory-substitution device (The EyeMusic). Greater activation is observed in the rITG when subjects process symbols as numbers compared with control tasks on the same symbols. Using resting-state fMRI in the blind and sighted, we further show that the areas with preference for numerals and letters exhibit distinct patterns of functional connectivity with quantity and language-processing areas, respectively. Our findings suggest that specificity in the ventral ‘visual’ stream can emerge independently of sensory modality and visual experience, under the influence of distinct connectivity patterns. PMID:25613599

  16. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transient Distraction and Attentional Control during a Sustained Selective Attention Task.

    PubMed

    Demeter, Elise; Woldorff, Marty G

    2016-07-01

    Distracting stimuli in the environment can pull our attention away from our goal-directed tasks. fMRI studies have implicated regions in right frontal cortex as being particularly important for processing distractors [e.g., de Fockert, J. W., & Theeuwes, J. Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 80, 367-373, 2012; Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage, 54, 1518-1529, 2011]. Less is known, however, about the timing and sequence of how right frontal or other brain regions respond selectively to distractors and how distractors impinge upon the cascade of processes related to detecting and processing behaviorally relevant target stimuli. Here we used EEG and ERPs to investigate the neural consequences of a perceptually salient but task-irrelevant distractor on the detection of rare target stimuli embedded in a rapid, serial visual presentation (RSVP) stream. We found that distractors that occur during the presentation of a target interfere behaviorally with detection of those targets, reflected by reduced detection rates, and that these missed targets show a reduced amplitude of the long-latency, detection-related P3 component. We also found that distractors elicited a right-lateralized frontal negativity beginning at 100 msec, whose amplitude negatively correlated across participants with their distraction-related behavioral impairment. Finally, we also quantified the instantaneous amplitude of the steady-state visual evoked potentials elicited by the RSVP stream and found that the occurrence of a distractor resulted in a transient amplitude decrement of the steady-state visual evoked potential, presumably reflecting the pull of attention away from the RSVP stream when distracting stimuli occur in the environment.

  18. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    NASA Astrophysics Data System (ADS)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  19. Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2014-05-01

    Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.

  20. The Function of Consciousness in Multisensory Integration

    ERIC Educational Resources Information Center

    Palmer, Terry D.; Ramsey, Ashley K.

    2012-01-01

    The function of consciousness was explored in two contexts of audio-visual speech, cross-modal visual attention guidance and McGurk cross-modal integration. Experiments 1, 2, and 3 utilized a novel cueing paradigm in which two different flash suppressed lip-streams cooccured with speech sounds matching one of these streams. A visual target was…

  1. Vision for perception and vision for action: normal and unusual development.

    PubMed

    Dilks, Daniel D; Hoffman, James E; Landau, Barbara

    2008-07-01

    Evidence suggests that visual processing is divided into the dorsal ('how') and ventral ('what') streams. We examined the normal development of these streams and their breakdown under neurological deficit by comparing performance of normally developing children and Williams syndrome individuals on two tasks: a visually guided action ('how') task, in which participants posted a card into an oriented slot, and a perception ('what') task, in which they matched a card to the slot's orientation. Results showed that all groups performed worse on the action task than the perception task, but the disparity was more pronounced in WS individuals and in normal 3-4-year-olds than in older children. These findings suggest that the 'how' system may be relatively slow to develop and more vulnerable to breakdown than the 'what' system.

  2. Visual search, visual streams, and visual architectures.

    PubMed

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  3. A reference web architecture and patterns for real-time visual analytics on large streaming data

    NASA Astrophysics Data System (ADS)

    Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer

    2013-12-01

    Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.

  4. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions. PMID:26865609

  5. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    PubMed

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  6. Does Value Stream Mapping affect the structure, process, and outcome quality in care facilities? A systematic review.

    PubMed

    Nowak, Marina; Pfaff, Holger; Karbach, Ute

    2017-08-24

    Quality improvement within health and social care facilities is needed and has to be evidence-based and patient-centered. Value Stream Mapping, a method of Lean management, aims to increase the patients' value and quality of care by a visualization and quantification of the care process. The aim of this research is to examine the effectiveness of Value Stream Mapping on structure, process, and outcome quality in care facilities. A systematic review is conducted. PubMed, EBSCOhost, including Business Source Complete, Academic Search Complete, PSYCInfo, PSYNDX, SocINDEX with Full Text, Web of Knowledge, and EMBASE ScienceDirect are searched in February 2016. All peer-reviewed papers evaluating Value Stream Mapping and published in English or German from January 2000 are included. For data synthesis, all study results are categorized into Donabedian's model of structure, process, and outcome quality. To assess and interpret the effectiveness of Value Stream Mapping, the frequencies of the results statistically examined are considered. Of the 903 articles retrieved, 22 studies fulfill the inclusion criteria. Of these, 11 studies are used to answer the research question. Value Stream Mapping has positive effects on the time dimension of process and outcome quality. It seems to reduce non-value-added time (e.g., waiting time) and length of stay. All study designs are before and after studies without control, and methodologically sophisticated studies are missing. For a final conclusion about Value Stream Mapping's effectiveness, more research with improved methodology is needed. Despite this lack of evidence, Value Stream Mapping has the potential to improve quality of care on the time dimension. The contextual influence has to be investigated to make conclusions about the relationship between different quality domains when applying Value Stream Mapping. However, for using this review's conclusion, the limitation of including heterogeneous and potentially biased results has to be considered.

  7. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions

    Treesearch

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor

    2004-01-01

    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  8. Developmental Changes in Infants' Visual Short-Term Memory for Location

    ERIC Educational Resources Information Center

    Oakes, Lisa M.; Hurley, Karinna B.; Ross-Sheehy, Shannon; Luck, Steven J.

    2011-01-01

    To examine the development of visual short-term memory (VSTM) for location, we presented 6- to 12-month-old infants (N = 199) with two side-by-side stimulus streams. In each stream, arrays of colored circles continually appeared, disappeared, and reappeared. In the "changing" stream, the location of one or more items changed in each cycle; in the…

  9. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Facial identity and facial expression are initially integrated at visual perceptual stages of face processing.

    PubMed

    Fisher, Katie; Towler, John; Eimer, Martin

    2016-01-08

    It is frequently assumed that facial identity and facial expression are analysed in functionally and anatomically distinct streams within the core visual face processing system. To investigate whether expression and identity interact during the visual processing of faces, we employed a sequential matching procedure where participants compared either the identity or the expression of two successively presented faces, and ignored the other irrelevant dimension. Repetitions versus changes of facial identity and expression were varied independently across trials, and event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity and irrelevant expression both interfered with performance in the expression and identity matching tasks. These symmetrical interference effects show that neither identity nor expression can be selectively ignored during face matching, and suggest that they are not processed independently. N250r components to identity repetitions that reflect identity matching mechanisms in face-selective visual cortex were delayed and attenuated when there was an expression change, demonstrating that facial expression interferes with visual identity matching. These findings provide new evidence for interactions between facial identity and expression within the core visual processing system, and question the hypothesis that these two attributes are processed independently. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Neural Integration in Body Perception.

    PubMed

    Ramsey, Richard

    2018-06-19

    The perception of other people is instrumental in guiding social interactions. For example, the appearance of the human body cues a wide range of inferences regarding sex, age, health, and personality, as well as emotional state and intentions, which influence social behavior. To date, most neuroscience research on body perception has aimed to characterize the functional contribution of segregated patches of cortex in the ventral visual stream. In light of the growing prominence of network architectures in neuroscience, the current article reviews neuroimaging studies that measure functional integration between different brain regions during body perception. The review demonstrates that body perception is not restricted to processing in the ventral visual stream but instead reflects a functional alliance between the ventral visual stream and extended neural systems associated with action perception, executive functions, and theory of mind. Overall, these findings demonstrate how body percepts are constructed through interactions in distributed brain networks and underscore that functional segregation and integration should be considered together when formulating neurocognitive theories of body perception. Insight from such an updated model of body perception generalizes to inform the organizational structure of social perception and cognition more generally and also informs disorders of body image, such as anorexia nervosa, which may rely on atypical integration of body-related information.

  12. The influence of attention on value integration.

    PubMed

    Kunar, Melina A; Watson, Derrick G; Tsetsos, Konstantinos; Chater, Nick

    2017-08-01

    People often have to make decisions based on many pieces of information. Previous work has found that people are able to integrate values presented in a rapid serial visual presentation (RSVP) stream to make informed judgements on the overall stream value (Tsetsos et al. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9659-9664, 2012). It is also well known that attentional mechanisms influence how people process information. However, it is unknown how attentional factors impact value judgements of integrated material. The current study is the first of its kind to investigate whether value judgements are influenced by attentional processes when assimilating information. Experiments 1-3 examined whether the attentional salience of an item within an RSVP stream affected judgements of overall stream value. The results showed that the presence of an irrelevant high or low value salient item biased people to judge the stream as having a higher or lower overall mean value, respectively. Experiments 4-7 directly tested Tsetsos et al.'s (Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9659-9664, 2012) theory examining whether extreme values in an RSVP stream become over-weighted, thereby capturing attention more than other values in the stream. The results showed that the presence of both a high (Experiments 4, 6 and 7) and a low (Experiment 5) value outlier captures attention leading to less accurate report of subsequent items in the stream. Taken together, the results showed that valuations can be influenced by attentional processes, and can lead to less accurate subjective judgements.

  13. [Clinical Neuropsychology of Dementia with Lewy Bodies].

    PubMed

    Nagahama, Yasuhiro

    2016-02-01

    Dementia with Lewy bodies (DLB) shows lesser memory impairment and more severe visuospatial disability than Alzheimer disease (AD). Although deficits in both consolidation and retrieval underlie the memory impairment, retrieval deficit is predominant in DLB. Visuospatial dysfunctions in DLB are related to the impairments in both ventral and dorsal streams of higher visual information processing, and lower visual processing in V1/V2 may also be impaired. Attention and executive functions are more widely disturbed in DLB than in AD. Imitation of finger gestures is impaired more frequently in DLB than in other mild dementia, and provides additional information for diagnosis of mild dementia, especially for DLB. Pareidolia, which lies between hallucination and visual misperception, is found frequently in DLB, but its mechanism is still under investigation.

  14. Content-based TV sports video retrieval using multimodal analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  15. Time-Resolved Influences of Functional DAT1 and COMT Variants on Visual Perception and Post-Processing

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Results Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Conclusions Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems. PMID:22844499

  16. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing.

    PubMed

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.

  17. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    PubMed Central

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  19. Fast and Famous: Looking for the Fastest Speed at Which a Face Can be Recognized

    PubMed Central

    Barragan-Jason, Gladys; Besson, Gabriel; Ceccaldi, Mathieu; Barbeau, Emmanuel J.

    2012-01-01

    Face recognition is supposed to be fast. However, the actual speed at which faces can be recognized remains unknown. To address this issue, we report two experiments run with speed constraints. In both experiments, famous faces had to be recognized among unknown ones using a large set of stimuli to prevent pre-activation of features which would speed up recognition. In the first experiment (31 participants), recognition of famous faces was investigated using a rapid go/no-go task. In the second experiment, 101 participants performed a highly time constrained recognition task using the Speed and Accuracy Boosting procedure. Results indicate that the fastest speed at which a face can be recognized is around 360–390 ms. Such latencies are about 100 ms longer than the latencies recorded in similar tasks in which subjects have to detect faces among other stimuli. We discuss which model of activation of the visual ventral stream could account for such latencies. These latencies are not consistent with a purely feed-forward pass of activity throughout the visual ventral stream. An alternative is that face recognition relies on the core network underlying face processing identified in fMRI studies (OFA, FFA, and pSTS) and reentrant loops to refine face representation. However, the model of activation favored is that of an activation of the whole visual ventral stream up to anterior areas, such as the perirhinal cortex, combined with parallel and feed-back processes. Further studies are needed to assess which of these three models of activation can best account for face recognition. PMID:23460051

  20. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    PubMed

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  2. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  3. Six easy steps on how to create a lean sigma value stream map for a multidisciplinary clinical operation.

    PubMed

    Lee, Emily; Grooms, Richard; Mamidala, Soumya; Nagy, Paul

    2014-12-01

    Value stream mapping (VSM) is a very useful technique to visualize and quantify the complex workflows often seen in clinical environments. VSM brings together multidisciplinary teams to identify parts of processes, collect data, and develop interventional ideas. An example involving pediatric MRI with general anesthesia VSM is outlined. As the process progresses, the map shows a large delay between the fax referral and the date of the scheduled and registered appointment. Ideas for improved efficiency and metrics were identified to measure improvement within a 6-month period, and an intervention package was developed for the department. Copyright © 2014. Published by Elsevier Inc.

  4. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  5. The time-course of activation in the dorsal and ventral visual streams during landmark cueing and perceptual discrimination tasks.

    PubMed

    Lambert, Anthony J; Wootton, Adrienne

    2017-08-01

    Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Using Value Stream Mapping to improve quality of care in low-resource facility settings.

    PubMed

    Ramaswamy, Rohit; Rothschild, Claire; Alabi, Funmi; Wachira, Eric; Muigai, Faith; Pearson, Nick

    2017-11-01

    Jacaranda Health (JH) is a Kenya-based organization that attempts to provide affordable, high-quality maternal and newborn healthcare through a chain of private health facilities in Nairobi. JH needed to adopted quality improvement as an organization-wide strategy to optimize effectiveness and efficiency. Value Stream Mapping, a Lean Management tool, was used to engage staff in prioritizing opportunities to improve clinical outcomes and patient-centered quality of care. Implementation was accomplished through a five-step process: (i) leadership engagement and commitment; (ii) staff training; (iii) team formation; (iv) process walkthrough; and (v) construction and validation. The Value Stream Map allowed the organization to come together and develop an end-to-end view of the process of care at JH and to select improvement opportunities for the entire system. The Value Stream Map is a simple visual tool that allows organizations to engage staff at all levels to gain commitment around quality improvement efforts. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  7. Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey.

    PubMed

    Jellema, Tjeerd; Maassen, Gerard; Perrett, David I

    2004-07-01

    This study investigated the cellular mechanisms in the anterior part of the superior temporal sulcus (STSa) that underlie the integration of different features of the same visually perceived animate object. Three visual features were systematically manipulated: form, motion and location. In 58% of a population of cells selectively responsive to the sight of a walking agent, the location of the agent significantly influenced the cell's response. The influence of position was often evident in intricate two- and three-way interactions with the factors form and/or motion. For only one of the 31 cells tested, the response could be explained by just a single factor. For all other cells at least two factors, and for half of the cells (52%) all three factors, played a significant role in controlling responses. Our findings support a reformulation of the Ungerleider and Mishkin model, which envisages a subdivision of the visual processing into a ventral 'what' and a dorsal 'where' stream. We demonstrated that at least part of the temporal cortex ('what' stream) makes ample use of visual spatial information. Our findings open up the prospect of a much more elaborate integration of visual properties of animate objects at the single cell level. Such integration may support the comprehension of animals and their actions.

  8. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.

    PubMed

    Wiemers, Michael; Fischer, Martin H

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.

  9. Behind the scenes: how visual memory load biases selective attention during processing of visual streams.

    PubMed

    Klaver, Peter; Talsma, Durk

    2013-11-01

    We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.

  10. The neural representation of objects formed through the spatiotemporal integration of visual transients

    PubMed Central

    Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.

    2016-01-01

    Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688

  11. Selection Difficulty and Interitem Competition Are Independent Factors in Rapid Visual Stream Perception

    ERIC Educational Resources Information Center

    Kawahara, Jun-ichiro; Enns, James T.

    2009-01-01

    When observers try to identify successive targets in a visual stream at a rate of 100 ms per item, accuracy for the 2nd target is impaired for intertarget lags of 100-500 ms. Yet, when the same stream is presented more rapidly (e.g., 50 ms per item), this pattern reverses and a 1st-target deficit is obtained. M. C. Potter, A. Staub, and D. H.…

  12. Devil in the details? Developmental dyslexia and visual long-term memory for details.

    PubMed

    Huestegge, Lynn; Rohrßen, Julia; van Ermingen-Marbach, Muna; Pape-Neumann, Julia; Heim, Stefan

    2014-01-01

    Cognitive theories on causes of developmental dyslexia can be divided into language-specific and general accounts. While the former assume that words are special in that associated processing problems are rooted in language-related cognition (e.g., phonology) deficits, the latter propose that dyslexia is rather rooted in a general impairment of cognitive (e.g., visual and/or auditory) processing streams. In the present study, we examined to what extent dyslexia (typically characterized by poor orthographic representations) may be associated with a general deficit in visual long-term memory (LTM) for details. We compared object- and detail-related visual LTM performance (and phonological skills) between dyslexic primary school children and IQ-, age-, and gender-matched controls. The results revealed that while the overall amount of LTM errors was comparable between groups, dyslexic children exhibited a greater portion of detail-related errors. The results suggest that not only phonological, but also general visual resolution deficits in LTM may play an important role in developmental dyslexia.

  13. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence?

    PubMed

    Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R

    2005-01-01

    Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.

  14. The Breakup Mechanism and the Spray Pulsation Behavior of a Three-Stream Atomizer

    NASA Astrophysics Data System (ADS)

    Ng, Chin; Dord, Anne; Aliseda, Alberto

    2011-11-01

    In many processes of industrial importance, such as gasification, the liquid to gas mass ratio injected at the atomizer exceeds the limit of conventional two-fluid coaxial atomizers. To maximize the shear rate between the atomization gas and the liquid while maintaining a large contact area, a secondary gas stream is added at the centerline of the spray, interior to the liquid flow, which is annular in this configuration. This cylindrical gas jet has low momentum and does not contribute to the breakup process, which is still dominated by the high shear between the concentric annular liquid flow and the high momentum gas stream. The presence of two independently controlled gas streams leads to the appearance of a hydrodynamic instability that manifests itself in pulsating liquid flow rates and droplet sizes. We study the dependency of the atomization process on the relative flow rates of the three streams. We measure the size distribution, droplet number density and total liquid volumetric flow rate as a function of time, for realistic Weber and Ohnesorge numbers. Analysis of the temporal evolution of these physical variables reveals the dominant frequency of the instability and its effect on the breakup and dispersion of droplets in the spray. We present flow visualization and Phase Doppler Particle Analyzer results that provide insight into the behavior of this complex coaxial shear flow.

  15. Dissociation between melodic and rhythmic processing during piano performance from musical scores.

    PubMed

    Bengtsson, Sara L; Ullén, Fredrik

    2006-03-01

    When performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception. Here, we used functional magnetic resonance imaging to dissociate between brain areas processing the melodic and the rhythmic aspects during piano playing from musical scores. This behavior requires that the pianist decodes two types of information from the score in order to produce the desired piece of music. The spatial location of a note head determines which piano key to strike, and the various features of the note, such as the stem and flags determine the timing of each key stroke. We found that the medial occipital lobe, the superior temporal lobe, the rostral cingulate cortex, the putamen and the cerebellum process the melodic information, whereas the lateral occipital and the inferior temporal cortex, the left supramarginal gyrus, the left inferior and ventral frontal gyri, the caudate nucleus, and the cerebellum process the rhythmic information. Thus, we suggest a dissociate involvement of the dorsal visual stream in the spatial pitch processing and the ventral visual stream in temporal movement preparation. We propose that this dissociate organization may be important for fast learning and flexibility in motor control.

  16. Children's Use of Allocentric Cues in Visually- and Memory-Guided Reach Space

    ERIC Educational Resources Information Center

    Cordova, Alberto; Gabbard, Carl

    2012-01-01

    Theory suggests that the vision-for-perception and vision-for-action processing streams operate under very different temporal constraints (Glover, 2004; Goodale, Jackobson, & Keillor, 1994; Graham, Bradshaw, & Davis, 1998; Hu, Eagleson, & Goodale, 1999). With the present study, children and young adults were asked to estimate how far a cued target…

  17. Visual processing deficits in 22q11.2 Deletion Syndrome.

    PubMed

    Biria, Marjan; Tomescu, Miralena I; Custo, Anna; Cantonas, Lucia M; Song, Kun-Wei; Schneider, Maude; Murray, Micah M; Eliez, Stephan; Michel, Christoph M; Rihs, Tonia A

    2018-01-01

    Carriers of the rare 22q11.2 microdeletion present with a high percentage of positive and negative symptoms and a high genetic risk for schizophrenia. Visual processing impairments have been characterized in schizophrenia, but less so in 22q11.2 Deletion Syndrome (DS). Here, we focus on visual processing using high-density EEG and source imaging in 22q11.2DS participants (N = 25) and healthy controls (N = 26) with an illusory contour discrimination task. Significant differences between groups emerged at early and late stages of visual processing. In 22q11.2DS, we first observed reduced amplitudes over occipital channels and reduced source activations within dorsal and ventral visual stream areas during the P1 (100-125 ms) and within ventral visual cortex during the N1 (150-170 ms) visual evoked components. During a later window implicated in visual completion (240-285 ms), we observed an increase in global amplitudes in 22q11.2DS. The increased surface amplitudes for illusory contours at this window were inversely correlated with positive subscales of prodromal symptoms in 22q11.2DS. The reduced activity of ventral and dorsal visual areas during early stages points to an impairment in visual processing seen both in schizophrenia and 22q11.2DS. During intervals related to perceptual closure, the inverse correlation of high amplitudes with positive symptoms suggests that participants with 22q11.2DS who show an increased brain response to illusory contours during the relevant window for contour processing have less psychotic symptoms and might thus be at a reduced prodromal risk for schizophrenia.

  18. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    PubMed

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Coherent Motion Sensitivity Predicts Individual Differences in Subtraction

    ERIC Educational Resources Information Center

    Boets, Bart; De Smedt, Bert; Ghesquiere, Pol

    2011-01-01

    Recent findings suggest deficits in coherent motion sensitivity, an index of visual dorsal stream functioning, in children with poor mathematical skills or dyscalculia, a specific learning disability in mathematics. We extended these data using a longitudinal design to unravel whether visual dorsal stream functioning is able to "predict"…

  20. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer's disease.

    PubMed

    Krajcovicova, Lenka; Barton, Marek; Elfmarkova-Nemcova, Nela; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2017-12-01

    Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.

  1. Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects.

    PubMed

    Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka

    2005-10-01

    The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.

  2. Objects and categories: feature statistics and object processing in the ventral stream.

    PubMed

    Tyler, Lorraine K; Chiu, Shannon; Zhuang, Jie; Randall, Billi; Devereux, Barry J; Wright, Paul; Clarke, Alex; Taylor, Kirsten I

    2013-10-01

    Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions-the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an object's meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical of nonliving things) were associated with activity in the medial fusiform gyri. Significantly, a feature statistic reflecting differentiation between highly similar objects, enabling object-specific representations, was associated with bilateral PRC activity. These results confirm that the statistical characteristics of conceptual object features are coded in the ventral stream, supporting a conceptual feature-based hierarchy, and integrating disparate findings of category responses in fusiform gyri and category deficits in aMTL into a unifying neurocognitive framework.

  3. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  4. JS-MS: a cross-platform, modular javascript viewer for mass spectrometry signals.

    PubMed

    Rosen, Jebediah; Handy, Kyle; Gillan, André; Smith, Rob

    2017-11-06

    Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS storage systems or data processing algorithms. We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and better navigation interfaces. The client includes a modular Java backend with a novel streaming.mzML parser to demonstrate the API-based serving of MS data to the viewer. JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at github.com/optimusmoose/jsms.

  5. Visual speech segmentation: using facial cues to locate word boundaries in continuous speech

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition. PMID:25018577

  6. Text Stream Trend Analysis using Multiscale Visual Analytics with Applications to Social Media Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Beaver, Justin M; BogenII, Paul L.

    In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less

  7. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  8. A streaming-based solution for remote visualization of 3D graphics on mobile devices.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea

    2007-01-01

    Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.

  9. Numerosity underestimation with item similarity in dynamic visual display.

    PubMed

    Au, Ricky K C; Watanabe, Katsumi

    2013-01-01

    The estimation of numerosity of a large number of objects in a static visual display is possible even at short durations. Such coarse approximations of numerosity are distinct from subitizing, in which the number of objects can be reported with high precision when a small number of objects are presented simultaneously. The present study examined numerosity estimation of visual objects in dynamic displays and the effect of object similarity on numerosity estimation. In the basic paradigm (Experiment 1), two streams of dots were presented and observers were asked to indicate which of the two streams contained more dots. Streams consisting of dots that were identical in color were judged as containing fewer dots than streams where the dots were different colors. This underestimation effect for identical visual items disappeared when the presentation rate was slower (Experiment 1) or the visual display was static (Experiment 2). In Experiments 3 and 4, in addition to the numerosity judgment task, observers performed an attention-demanding task at fixation. Task difficulty influenced observers' precision in the numerosity judgment task, but the underestimation effect remained evident irrespective of task difficulty. These results suggest that identical or similar visual objects presented in succession might induce substitution among themselves, leading to an illusion that there are few items overall and that exploiting attentional resources does not eliminate the underestimation effect.

  10. ESTEEM: A Novel Framework for Qualitatively Evaluating and Visualizing Spatiotemporal Embeddings in Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Volkova, Svitlana

    Analyzing and visualizing large amounts of social media communications and contrasting short-term conversation changes over time and geo-locations is extremely important for commercial and government applications. Earlier approaches for large-scale text stream summarization used dynamic topic models and trending words. Instead, we rely on text embeddings – low-dimensional word representations in a continuous vector space where similar words are embedded nearby each other. This paper presents ESTEEM,1 a novel tool for visualizing and evaluating spatiotemporal embeddings learned from streaming social media texts. Our tool allows users to monitor and analyze query words and their closest neighbors with an interactive interface.more » We used state-of- the-art techniques to learn embeddings and developed a visualization to represent dynamically changing relations between words in social media over time and other dimensions. This is the first interactive visualization of streaming text representations learned from social media texts that also allows users to contrast differences across multiple dimensions of the data.« less

  11. Early Cerebral Constraints on Reading Skills in School-Age Children: An MRI Study

    ERIC Educational Resources Information Center

    Borst, G.; Cachia, A.; Tissier, C.; Ahr, E.; Simon, G.; Houdé, O.

    2016-01-01

    Reading relies on a left-lateralized network of brain areas that include the pre-lexical processing regions of the ventral stream. Specifically, a region in the left lateral occipitotemporal sulcus (OTS) is consistently more activated for visual presentations of words than for other categories of stimuli. This region undergoes dramatic changes at…

  12. Optic ataxia and the function of the dorsal stream: contributions to perception and action.

    PubMed

    Pisella, Laure; Sergio, Lauren; Blangero, Annabelle; Torchin, Héloïse; Vighetto, Alain; Rossetti, Yves

    2009-12-01

    Optic ataxia (OA) is one of the symptoms pertaining to Bálint's Syndrome. It has been described clinically for nearly 80 years before it became a cornerstone of the most popular dual stream theory of the visual brain. Over the last 10 years a regain of interest for this neurological condition lead to a number of precise analyses of the deficits found in optic ataxia, giving rise to a renewed outline of its very definition and hence of the function(s) of the occipito-parietal (dorsal) stream. In absence of concomitant clinical symptoms, we review evidence that misreaching errors in central vision result from the "hand effect": an erroneous dynamic spatial processing of proprioceptive information from the hand. When visual feedback of the hand is provided (closed-loop condition), pure optic ataxia is restricted to peripheral vision. This central versus peripheral vision distinction is repeatedly used to argue that action and perception are not unique and dissociated systems. New assessments of optic ataxia patients are provided, confirming on one hand that their visuomotor deficit is specific to peripheral vision (i.e. when the gaze and the hand goals are dissociated), on the other hand that they disclose perceptual deficits in peripheral vision. These results are coherent with the recent demonstration that optic ataxia patients exhibit a general contralesional deficit for dynamic visuo-spatial processing, affecting both hand and eye movements [Gaveau, V., Pélisson, D., Blangero, A., Urquizar, C., Prablanc, C.,Vighetto, A., et al. (2008). A common parietal module for saccade and reach: Eye-hand coordination and saccadic control in optic ataxia. Neuropsychologia, 46, 475-486]. Such module(s) within the dorsal stream could be used for both action and perception in the periphery. It is concluded that optic ataxia cannot be considered as a unitary and specific visuo-manual deficit, and that the modular organisation of the dorsal stream allows for numerous dorsal-ventral interactions for perception and action.

  13. Constructing a Streaming Video-Based Learning Forum for Collaborative Learning

    ERIC Educational Resources Information Center

    Chang, Chih-Kai

    2004-01-01

    As web-based courses using videos have become popular in recent years, the issue of managing audio-visual aids has become pertinent. Generally, the contents of audio-visual aids may include a lecture, an interview, a report, or an experiment, which may be transformed into a streaming format capable of making the quality of Internet-based videos…

  14. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  15. A studyforrest extension, retinotopic mapping and localization of higher visual areas

    PubMed Central

    Sengupta, Ayan; Kaule, Falko R.; Guntupalli, J. Swaroop; Hoffmann, Michael B.; Häusler, Christian; Stadler, Jörg; Hanke, Michael

    2016-01-01

    The studyforrest (http://studyforrest.org) dataset is likely the largest neuroimaging dataset on natural language and story processing publicly available today. In this article, along with a companion publication, we present an update of this dataset that extends its scope to vision and multi-sensory research. 15 participants of the original cohort volunteered for a series of additional studies: a clinical examination of visual function, a standard retinotopic mapping procedure, and a localization of higher visual areas—such as the fusiform face area. The combination of this update, the previous data releases for the dataset, and the companion publication, which includes neuroimaging and eye tracking data from natural stimulation with a motion picture, form an extremely versatile and comprehensive resource for brain imaging research—with almost six hours of functional neuroimaging data across five different stimulation paradigms for each participant. Furthermore, we describe employed paradigms and present results that document the quality of the data for the purpose of characterising major properties of participants’ visual processing stream. PMID:27779618

  16. Robust audio-visual speech recognition under noisy audio-video conditions.

    PubMed

    Stewart, Darryl; Seymour, Rowan; Pass, Adrian; Ming, Ji

    2014-02-01

    This paper presents the maximum weighted stream posterior (MWSP) model as a robust and efficient stream integration method for audio-visual speech recognition in environments, where the audio or video streams may be subjected to unknown and time-varying corruption. A significant advantage of MWSP is that it does not require any specific measurements of the signal in either stream to calculate appropriate stream weights during recognition, and as such it is modality-independent. This also means that MWSP complements and can be used alongside many of the other approaches that have been proposed in the literature for this problem. For evaluation we used the large XM2VTS database for speaker-independent audio-visual speech recognition. The extensive tests include both clean and corrupted utterances with corruption added in either/both the video and audio streams using a variety of types (e.g., MPEG-4 video compression) and levels of noise. The experiments show that this approach gives excellent performance in comparison to another well-known dynamic stream weighting approach and also compared to any fixed-weighted integration approach in both clean conditions or when noise is added to either stream. Furthermore, our experiments show that the MWSP approach dynamically selects suitable integration weights on a frame-by-frame basis according to the level of noise in the streams and also according to the naturally fluctuating relative reliability of the modalities even in clean conditions. The MWSP approach is shown to maintain robust recognition performance in all tested conditions, while requiring no prior knowledge about the type or level of noise.

  17. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  18. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    PubMed

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  19. Resilience to the contralateral visual field bias as a window into object representations

    PubMed Central

    Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.

    2016-01-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  20. An ALE meta-analysis on the audiovisual integration of speech signals.

    PubMed

    Erickson, Laura C; Heeg, Elizabeth; Rauschecker, Josef P; Turkeltaub, Peter E

    2014-11-01

    The brain improves speech processing through the integration of audiovisual (AV) signals. Situations involving AV speech integration may be crudely dichotomized into those where auditory and visual inputs contain (1) equivalent, complementary signals (validating AV speech) or (2) inconsistent, different signals (conflicting AV speech). This simple framework may allow the systematic examination of broad commonalities and differences between AV neural processes engaged by various experimental paradigms frequently used to study AV speech integration. We conducted an activation likelihood estimation metaanalysis of 22 functional imaging studies comprising 33 experiments, 311 subjects, and 347 foci examining "conflicting" versus "validating" AV speech. Experimental paradigms included content congruency, timing synchrony, and perceptual measures, such as the McGurk effect or synchrony judgments, across AV speech stimulus types (sublexical to sentence). Colocalization of conflicting AV speech experiments revealed consistency across at least two contrast types (e.g., synchrony and congruency) in a network of dorsal stream regions in the frontal, parietal, and temporal lobes. There was consistency across all contrast types (synchrony, congruency, and percept) in the bilateral posterior superior/middle temporal cortex. Although fewer studies were available, validating AV speech experiments were localized to other regions, such as ventral stream visual areas in the occipital and inferior temporal cortex. These results suggest that while equivalent, complementary AV speech signals may evoke activity in regions related to the corroboration of sensory input, conflicting AV speech signals recruit widespread dorsal stream areas likely involved in the resolution of conflicting sensory signals. Copyright © 2014 Wiley Periodicals, Inc.

  1. Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents.

    PubMed

    Teichgräber, Ulf K; de Bucourt, Maximilian

    2012-01-01

    OJECTIVES: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. The attentional blink in amblyopia.

    PubMed

    Popple, Ariella V; Levi, Dennis M

    2008-10-31

    Amblyopia is a disorder of visual acuity in one eye, thought to arise from suppression by the other eye during development of the visual cortex. In the attentional blink, the second of two targets (T2) in a Rapid Serial Visual Presentation (RSVP) stream is difficult to detect and identify when it appears shortly but not immediately after the first target (T1). We investigated the attentional blink seen through amblyopic eyes and found that it was less finely tuned in time than when the 12 amblyopic observers viewed the stimuli with their preferred eyes. T2 performance was slightly better through amblyopic eyes two frames after T1 but worse one frame after T1. Previously (A. V. Popple & D. M. Levi, 2007), we showed that when the targets were red letters in a stream of gray letters (or vice versa), normal observers frequently confused T2 with the letters before and after it (neighbor errors). Observers viewing through their amblyopic eyes made significantly fewer neighbor errors and more T2 responses consisting of letters that were never presented. In normal observers, T1 (on the rare occasions when it was reported incorrectly) was often confused with the letter immediately after it. Viewing through their amblyopic eyes, observers with amblyopia made more responses to the letter immediately before T1. These results suggest that childhood suppression of the input from amblyopic eyes disrupts attentive processing. We hypothesize reduced connectivity between monocularly tuned lower visual areas, subcortical structures that drive foveal attention, and more frontal regions of the brain responsible for letter recognition and working memory. Perhaps when viewing through their amblyopic eyes, the observers were still processing the letter identity of a prior distractor when the color flash associated with the target was detected. After T1, unfocused temporal attention may have bound together erroneously the features of succeeding letters, resulting in the appearance of letters that were not actually presented. These findings highlight the role of early (monocular) visual processes in modulating the attentional blink, as well as the role of attention in amblyopic visual deficits.

  3. Deep learning of orthographic representations in baboons.

    PubMed

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.

  4. Software Aids Visualization of Computed Unsteady Flow

    NASA Technical Reports Server (NTRS)

    Kao, David; Kenwright, David

    2003-01-01

    Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.

  5. Mitigating the effects of landscape development on streams in urbanizing watersheds

    USGS Publications Warehouse

    Hogan, Dianna M.; Jarnagin, S. Taylor; Loperfido, John V.; Van Ness, Keith

    2013-01-01

    This collaborative study examined urbanization and impacts on area streams while using the best available sediment and erosion control (S&EC) practices in developing watersheds in Maryland, United States. During conversion of the agricultural and forested watersheds to urban land use, land surface topography was graded and vegetation was removed creating a high potential for sediment generation and release during storm events. The currently best available S&EC facilities were used during the development process to mitigate storm runoff water quality, quantity, and timing before entering area streams. Detailed Geographic Information System (GIS) maps were created to visualize changing land use and S&EC practices, five temporal collections of LiDAR (light detection and ranging) imagery were used to map the changing landscape topography, and streamflow, physical geomorphology, and habitat data were used to assess the ability of the S&EC facilities to protect receiving streams during development. Despite the use of the best available S&EC facilities, receiving streams experienced altered flow, geomorphology, and decreased biotic community health. These impacts on small streams during watershed development affect sediment and nutrient loads to larger downstream aquatic ecosystems such as the Chesapeake Bay.

  6. galstreams: Milky Way streams footprint library and toolkit

    NASA Astrophysics Data System (ADS)

    Mateu, Cecilia

    2017-11-01

    galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

  7. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers.

    PubMed

    Kim, Judy S; Kanjlia, Shipra; Merabet, Lotfi B; Bedny, Marina

    2017-11-22

    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the "VWFA" is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind ( n = 10, 9 female, 1 male) and sighted control ( n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We tested the hypothesis that the VWFA develops within the ventral visual stream because reading involves extracting linguistic information from visual symbols. Consistent with this hypothesis, we find that in congenitally blind Braille readers, but not sighted readers of print, the VWFA region is active during grammatical processing of spoken sentences. These results suggest that visual experience contributes to VWFA specialization, and that different neural implementations of reading are possible. Copyright © 2017 the authors 0270-6474/17/3711495-10$15.00/0.

  8. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers

    PubMed Central

    Kanjlia, Shipra; Merabet, Lotfi B.

    2017-01-01

    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the “VWFA” is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind (n = 10, 9 female, 1 male) and sighted control (n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We tested the hypothesis that the VWFA develops within the ventral visual stream because reading involves extracting linguistic information from visual symbols. Consistent with this hypothesis, we find that in congenitally blind Braille readers, but not sighted readers of print, the VWFA region is active during grammatical processing of spoken sentences. These results suggest that visual experience contributes to VWFA specialization, and that different neural implementations of reading are possible. PMID:29061700

  9. The Role of the Magnocellular Visual Pathway in the Attentional Blink

    ERIC Educational Resources Information Center

    Stuart, Geoffrey W.; Lambeth, Sandra E.; Day, Ross H.; Gould, Ian C.; Castles, Anne E.

    2012-01-01

    Visual attention has temporal limitations. In the attentional blink (AB) a stream of stimuli such as letters or digits are presented to a participant on a computer monitor at a rapid rate. Embedded in the stream are two targets that the participant must try to identify. Identification of the second target is severely impaired if it is presented…

  10. Different Attentional Blink Tasks Reflect Distinct Information Processing Limitations: An Individual Differences Approach

    ERIC Educational Resources Information Center

    Kelly, Ashleigh J.; Dux, Paul E.

    2011-01-01

    To study the temporal dynamics and capacity-limits of attentional selection and encoding, researchers often employ the attentional blink (AB) phenomenon: subjects' impaired ability to report the second of two targets in a rapid serial visual presentation (RSVP) stream that appear within 200-500 ms of one another. The AB has now been the subject of…

  11. Use of standardized visual assessments of riparian and stream condition to manage riparian bird habitat in eastern Oregon.

    PubMed

    Cooke, Hilary A; Zack, Steve

    2009-07-01

    The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols--the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)--to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions.

  12. A visual pathway links brain structures active during magnetic compass orientation in migratory birds.

    PubMed

    Heyers, Dominik; Manns, Martina; Luksch, Harald; Güntürkün, Onur; Mouritsen, Henrik

    2007-09-26

    The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.

  13. Physical integrity: the missing link in biological monitoring and TMDLs.

    PubMed

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  14. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  15. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  16. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  18. A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations

    USGS Publications Warehouse

    Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.

    2017-01-01

    Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.

  19. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  20. Stereoscopic augmented reality for laparoscopic surgery.

    PubMed

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.

  1. Gestalten of today: early processing of visual contours and surfaces.

    PubMed

    Kovács, I

    1996-12-01

    While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.

  2. Sensation-to-Cognition Cortical Streams in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X.; García-García, David; Lage-Castellanos, Agustín; Dijk, Koene R.A.Van; Navas-Sánchez, Francisco J.; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-01-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex—visual, auditory, and somatosensory—we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. PMID:25821110

  3. Trout Use of Woody Debris and Habitat in Appalachian Wilderness Streams of North Carolina

    Treesearch

    Patricia A. Flebbe; C. Andrew Dolloff

    1995-01-01

    Wilderness areas in the Appalachian Mountains of North Carolina are set aside to preserve characteristics of both old-growth and second-growth forests and associated streams. Woody debris loadings, trout habitat, and trout were inventoried in three southern Appalachian wilderness streams in North Carolina by the basin-wide visual estimation technique. Two streams in...

  4. A meteor stream study of 1966

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra

    2017-03-01

    3600 individual photographic orbits of meteor bodies and about 2000 visual meteor radiants with corresponding velocities were compiled and carefully studied in detail. 154 minor meteor streams were detected in the Solar System, their basic orbital and other data are given. Firstly some remarkable shower and stream properties are established: examples of the large elliptic radiation areas with semi-major axes perpendicular to the Ecliptic; the existence of the Northern (N) , Southern (S) and Ecliptical (Q) branches of some streams; stream-antipodes and radiant-antipodes (symmetrically arranged relatively to the Ecliptic) with angular distances from the Ecliptic to 40-80°; a number of short-perihelion streams (q 0.05-0.07 A.U.); some meteor streams perpendicular to the Ecliptic's plane. There are also some unique meteor bodies with their orbits enclosed within the limits of the Earth's one, or having the clockwise and anticlockwise direction in two similar orbits. Hyperbolic photographic velocities vh = 57-88 km /sec are treated as real ones according to the best radar and visual observations. A "bunch" of ecliptical streams, discovered in the USSR in 1950, is a complex of orbits of the mostly massive meteor particles of the Zodiacal Cloud. The stream evolution rate is comparatively high. The total complex of sporadic meteor bodies is not totally chaotic and accidental.

  5. Hand Path Priming in Manual Obstacle Avoidance: Evidence that the Dorsal Stream Does Not Only Control Visually Guided Actions in Real Time

    ERIC Educational Resources Information Center

    Jax, Steven A.; Rosenbaum, David A.

    2007-01-01

    According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…

  6. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention.

    PubMed

    Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto

    2004-07-01

    Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.

  7. Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention.

    PubMed

    Callaghan, Eleanor; Holland, Carol; Kessler, Klaus

    2017-01-01

    Background : Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults' driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods : Age groups (21-30, 40-49, 50-59, 60-69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results : Visual search response times (RTs) were longer on "Target Mid" and "Distractor Only" trials in comparison to "Target 1st" trials, reflecting switch-costs. Larger switch-costs were found in both the 40-49 and 60-69 years group in comparison to the 21-30 years group when switching from the Target Mid condition. Discussion : Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial.

  8. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  9. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation.

    PubMed

    Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Freiwald, Winrich A; Poggio, Tomaso

    2017-01-09

    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Building a Billion Spatio-Temporal Object Search and Visualization Platform

    NASA Astrophysics Data System (ADS)

    Kakkar, D.; Lewis, B.

    2017-10-01

    With funding from the Sloan Foundation and Harvard Dataverse, the Harvard Center for Geographic Analysis (CGA) has developed a prototype spatio-temporal visualization platform called the Billion Object Platform or BOP. The goal of the project is to lower barriers for scholars who wish to access large, streaming, spatio-temporal datasets. The BOP is now loaded with the latest billion geo-tweets, and is fed a real-time stream of about 1 million tweets per day. The geo-tweets are enriched with sentiment and census/admin boundary codes when they enter the system. The system is open source and is currently hosted on Massachusetts Open Cloud (MOC), an OpenStack environment with all components deployed in Docker orchestrated by Kontena. This paper will provide an overview of the BOP architecture, which is built on an open source stack consisting of Apache Lucene, Solr, Kafka, Zookeeper, Swagger, scikit-learn, OpenLayers, and AngularJS. The paper will further discuss the approach used for harvesting, enriching, streaming, storing, indexing, visualizing and querying a billion streaming geo-tweets.

  11. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  12. Stimulation of subgenual cingulate area decreases limbic top-down effect on ventral visual stream: A DBS-EEG pilot study.

    PubMed

    Kibleur, Astrid; Polosan, Mircea; Favre, Pauline; Rudrauf, David; Bougerol, Thierry; Chabardès, Stéphan; David, Olivier

    2017-02-01

    Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. Using EEG source localization, we found that the main effect of DBS was a reduction of neuronal responses in limbic regions (temporal pole, medial prefrontal and posterior cingulate cortices) and in ventral visual areas involved in face processing. In the dynamic causal modeling (DCM) approach, the changes of the evoked response amplitudes are assumed to be due to changes of long range connectivity induced by Cg25 DBS. Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Attention versus consciousness in the visual brain: differences in conception, phenomenology, behavior, neuroanatomy, and physiology.

    PubMed

    Baars, B J

    1999-07-01

    A common confound between consciousness and attention makes it difficult to think clearly about recent advances in the understanding of the visual brain. Visual consciousness involves phenomenal experience of the visual world, but visual attention is more plausibly treated as a function that selects and maintains the selection of potential conscious contents, often unconsciously. In the same sense, eye movements select conscious visual events, which are not the same as conscious visual experience. According to common sense, visual experience is consciousness, and selective processes are labeled as attention. The distinction is reflected in very different behavioral measures and in very different brain anatomy and physiology. Visual consciousness tends to be associated with the "what" stream of visual feature neurons in the ventral temporal lobe. In contrast, attentional selection and maintenance are mediated by other brain regions, ranging from superior colliculi to thalamus, prefrontal cortex, and anterior cingulate. The author applied the common-sense distinction between attention and consciousness to the theoretical positions of M. I. Posner (1992, 1994) and D. LaBerge (1997, 1998) to show how it helps to clarify the evidence. He concluded that clarity of thought is served by calling a thing by its proper name.

  14. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.

  15. Syntactic and semantic restrictions on morphological recomposition: MEG evidence from Greek.

    PubMed

    Neophytou, K; Manouilidou, C; Stockall, L; Marantz, A

    2018-05-16

    Complex morphological processing has been extensively studied in the past decades. However, most of this work has either focused on only certain steps involved in this process, or it has been conducted on a few languages, like English. The purpose of the present study is to investigate the spatiotemporal cortical processing profile of the distinct steps previously reported in the literature, from decomposition to re-composition of morphologically complex items, in a relatively understudied language, Greek. Using magnetoencephalography, we confirm the role of the fusiform gyrus in early, form-based morphological decomposition, we relate the syntactic licensing of stem-suffix combinations to the ventral visual processing stream, somewhat independent from lexical access for the stem, and we further elucidate the role of orbitofrontal regions in semantic composition. Thus, the current study offers the most comprehensive test to date of visual morphological processing and additional, crosslinguistic validation of the steps involved in it. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Do different perceptual task sets modulate electrophysiological correlates of masked visuomotor priming? Attention to shape and color put to the test.

    PubMed

    Zovko, Monika; Kiefer, Markus

    2013-02-01

    According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.

  17. Attractive Serial Dependence in the Absence of an Explicit Task.

    PubMed

    Fornaciai, Michele; Park, Joonkoo

    2018-03-01

    Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.

  18. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  19. Cortical Neuroprosthesis Merges Visible and Invisible Light Without Impairing Native Sensory Function

    PubMed Central

    Thomson, Eric E.; Zea, Ivan; França, Wendy

    2017-01-01

    Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860

  20. Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream

    PubMed Central

    Egner, Tobias; Monti, Jim M.; Summerfield, Christopher

    2014-01-01

    Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999

  1. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations.

    PubMed

    Collerton, Daniel; Perry, Elaine; McKeith, Ian

    2005-12-01

    As many as two million people in the United Kingdom repeatedly see people, animals, and objects that have no objective reality. Hallucinations on the border of sleep, dementing illnesses, delirium, eye disease, and schizophrenia account for 90% of these. The remainder have rarer disorders. We review existing models of recurrent complex visual hallucinations (RCVH) in the awake person, including cortical irritation, cortical hyperexcitability and cortical release, top-down activation, misperception, dream intrusion, and interactive models. We provide evidence that these can neither fully account for the phenomenology of RCVH, nor for variations in the frequency of RCVH in different disorders. We propose a novel Perception and Attention Deficit (PAD) model for RCVH. A combination of impaired attentional binding and poor sensory activation of a correct proto-object, in conjunction with a relatively intact scene representation, bias perception to allow the intrusion of a hallucinatory proto-object into a scene perception. Incorporation of this image into a context-specific hallucinatory scene representation accounts for repetitive hallucinations. We suggest that these impairments are underpinned by disturbances in a lateral frontal cortex-ventral visual stream system. We show how the frequency of RCVH in different diseases is related to the coexistence of attentional and visual perceptual impairments; how attentional and perceptual processes can account for their phenomenology; and that diseases and other states with high rates of RCVH have cholinergic dysfunction in both frontal cortex and the ventral visual stream. Several tests of the model are indicated, together with a number of treatment options that it generates.

  2. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals

    PubMed Central

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-01-01

    Brain activity often consists of interactions between internal—or on-going—and external—or sensory—activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal’s on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5 ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40 Hz. Our software’s architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system “StimOMatic” is available freely as open-source. PMID:23473800

  3. Data Stream Mining

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed Medhat; Zaslavsky, Arkady; Krishnaswamy, Shonali

    Data mining is concerned with the process of computationally extracting hidden knowledge structures represented in models and patterns from large data repositories. It is an interdisciplinary field of study that has its roots in databases, statistics, machine learning, and data visualization. Data mining has emerged as a direct outcome of the data explosion that resulted from the success in database and data warehousing technologies over the past two decades (Fayyad, 1997,Fayyad, 1998,Kantardzic, 2003).

  4. Auralization of CFD Vorticity Using an Auditory Illusion

    NASA Astrophysics Data System (ADS)

    Volpe, C. R.

    2005-12-01

    One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally, the simple approach of mapping clockwise and counterclockwise rotations to actual pitch increases and decreases, eventually results in sounds that the listener cannot hear. In this alternate presentation using an auditory illusion, repeated rotations of a stream-tube are replaced with continual increases or decreases in apparent pitch. These apparent pitch changes can continue without bound, yet never exceed the range of frequencies that the listener can hear. The effectiveness of this presentation technique has been studied, and empirical results, obtained through formal user testing and statistical analysis, are presented. These results demonstrate that an aural data presentation using an auditory illusion can improve performance in locating key data characteristics, a task that demonstrates a certain level of understanding of the data. The experiments show that this holds true even when the user expresses a subjective preference and greater confidence in a visual presentation. The CFD data used in the research comes from a number of different industrial domains, but the advantages of this technique could be equally applicable to the study of earth sciences involving fluid mechanics, such as atmospheric or ocean sciences. Furthermore, the approach is applicable not only to CFD data, but to any type of data in which a quantity that is cyclic in nature, such as orientation, needs to be presented. Although the techniques and tools were originally developed with scientists and engineers in mind, they can also be used to aid students, particularly those who are visually impaired or who have difficulty interpreting certain spatial relationships visually.

  5. Visual analytics of anomaly detection in large data streams

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay

    2009-01-01

    Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.

  6. Deep Learning of Orthographic Representations in Baboons

    PubMed Central

    Hannagan, Thomas; Ziegler, Johannes C.; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  7. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  8. Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex.

    PubMed

    Striemer, Christopher L; Whitwell, Robert L; Goodale, Melvyn A

    2017-11-12

    Previous research suggests that the implicit recognition of emotional expressions may be carried out by pathways that bypass primary visual cortex (V1) and project to the amygdala. Some of the strongest evidence supporting this claim comes from case studies of "affective blindsight" in which patients with V1 damage can correctly guess whether an unseen face was depicting a fearful or happy expression. In the current study, we report a new case of affective blindsight in patient MC who is cortically blind following extensive bilateral lesions to V1, as well as face and object processing regions in her ventral visual stream. Despite her large lesions, MC has preserved motion perception which is related to sparing of the motion sensitive region MT+ in both hemispheres. To examine affective blindsight in MC we asked her to perform gender and emotion discrimination tasks in which she had to guess, using a two-alternative forced-choice procedure, whether the face presented was male or female, happy or fearful, or happy or angry. In addition, we also tested MC in a four-alternative forced-choice target localization task. Results indicated that MC was not able to determine the gender of the faces (53% accuracy), or localize targets in a forced-choice task. However, she was able to determine, at above chance levels, whether the face presented was depicting a happy or fearful (67%, p = .006), or a happy or angry (64%, p = .025) expression. Interestingly, although MC was better than chance at discriminating between emotions in faces when asked to make rapid judgments, her performance fell to chance when she was asked to provide subjective confidence ratings about her performance. These data lend further support to the idea that there is a non-conscious visual pathway that bypasses V1 which is capable of processing affective signals from facial expressions without input from higher-order face and object processing regions in the ventral visual stream. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.

    PubMed

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-07-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.

  10. Distractor-Induced Blindness: A Special Case of Contingent Attentional Capture?

    PubMed Central

    Winther, Gesche N.; Niedeggen, Michael

    2017-01-01

    The detection of a salient visual target embedded in a rapid serial visual presentation (RSVP) can be severely affected if target-like distractors are presented previously. This phenomenon, known as distractor-induced blindness (DIB), shares the prerequisites of contingent attentional capture (Folk, Remington, & Johnston, 1992). In both, target processing is transiently impaired by the presentation of distractors defined by similar features. In the present study, we investigated whether the speeded response to a target in the DIB paradigm can be described in terms of a contingent attentional capture process. In the first experiments, multiple distractors were embedded in the RSVP stream. Distractors either shared the target’s visual features (Experiment 1A) or differed from them (Experiment 1B). Congruent with hypotheses drawn from contingent attentional capture theory, response times (RTs) were exclusively impaired in conditions with target-like distractors. However, RTs were not impaired if only one single target-like distractor was presented (Experiment 2). If attentional capture directly contributed to DIB, the single distractor should be sufficient to impair target processing. In conclusion, DIB is not due to contingent attentional capture, but may rely on a central suppression process triggered by multiple distractors. PMID:28439320

  11. Next generation data harmonization

    NASA Astrophysics Data System (ADS)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  12. Statistical regularities in art: Relations with visual coding and perception.

    PubMed

    Graham, Daniel J; Redies, Christoph

    2010-07-21

    Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Audio-visual integration through the parallel visual pathways.

    PubMed

    Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond

    2015-10-22

    Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.

  14. The Cloud-Based Integrated Data Viewer (IDV)

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2015-04-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.

  15. Attention effects on the processing of task-relevant and task-irrelevant speech sounds and letters

    PubMed Central

    Mittag, Maria; Inauri, Karina; Huovilainen, Tatu; Leminen, Miika; Salo, Emma; Rinne, Teemu; Kujala, Teija; Alho, Kimmo

    2013-01-01

    We used event-related brain potentials (ERPs) to study effects of selective attention on the processing of attended and unattended spoken syllables and letters. Participants were presented with syllables randomly occurring in the left or right ear and spoken by different voices and with a concurrent foveal stream of consonant letters written in darker or lighter fonts. During auditory phonological (AP) and non-phonological tasks, they responded to syllables in a designated ear starting with a vowel and spoken by female voices, respectively. These syllables occurred infrequently among standard syllables starting with a consonant and spoken by male voices. During visual phonological and non-phonological tasks, they responded to consonant letters with names starting with a vowel and to letters written in dark fonts, respectively. These letters occurred infrequently among standard letters with names starting with a consonant and written in light fonts. To examine genuine effects of attention and task on ERPs not overlapped by ERPs associated with target processing or deviance detection, these effects were studied only in ERPs to auditory and visual standards. During selective listening to syllables in a designated ear, ERPs to the attended syllables were negatively displaced during both phonological and non-phonological auditory tasks. Selective attention to letters elicited an early negative displacement and a subsequent positive displacement (Pd) of ERPs to attended letters being larger during the visual phonological than non-phonological task suggesting a higher demand for attention during the visual phonological task. Active suppression of unattended speech during the AP and non-phonological tasks and during the visual phonological tasks was suggested by a rejection positivity (RP) to unattended syllables. We also found evidence for suppression of the processing of task-irrelevant visual stimuli in visual ERPs during auditory tasks involving left-ear syllables. PMID:24348324

  16. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  17. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  18. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.

  19. Reframing the action and perception dissociation in DF: haptics matters, but how?

    PubMed

    Whitwell, Robert L; Buckingham, Gavin

    2013-02-01

    Goodale and Milner's (1992) "vision-for-action" and "vision-for-perception" account of the division of labor between the dorsal and ventral "streams" has come to dominate contemporary views of the functional roles of these two pathways. Nevertheless, some lines of evidence for the model remain controversial. Recently, Thomas Schenk reexamined visual form agnosic patient DF's spared anticipatory grip scaling to object size, one of the principal empirical pillars of the model. Based on this new evidence, Schenk rejects the original interpretation of DF's spared ability that was based on segregated processing of object size and argues that DF's spared grip scaling relies on haptic feedback to calibrate visual egocentric cues that relate the posture of the hand to the visible edges of the goal-object. However, a careful consideration of the tasks that Schenk employed reveals some problems with his claim. We suspect that the core issues of this controversy will require a closer examination of the role that cognition plays in the operation of the dorsal and ventral streams in healthy controls and in patient DF.

  20. Hand Path Priming in Manual Obstacle Avoidance: Rapid Decay of Dorsal Stream Information

    ERIC Educational Resources Information Center

    Jax, Steven A.; Rosenbaum, David A.

    2009-01-01

    The dorsal, action-related, visual stream has been thought to have little or no memory. This hypothesis has seemed credible because functions related to the dorsal stream have been generally unsusceptible to priming from previous experience. Tests of this claim have yielded inconsistent results, however. We argue that these inconsistencies may be…

  1. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  2. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    PubMed

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  3. A proposed intracortical visual prosthesis image processing system.

    PubMed

    Srivastava, N R; Troyk, P

    2005-01-01

    It has been a goal of neuroprosthesis researchers to develop a system, which could provide artifical vision to a large population of individuals with blindness. It has been demonstrated by earlier researches that stimulating the visual cortex area electrically can evoke spatial visual percepts, i.e. phosphenes. The goal of visual cortex prosthesis is to stimulate the visual cortex area and generate a visual perception in real time to restore vision. Even though the normal working of the visual system is not been completely understood, the existing knowledge has inspired research groups to develop strategies to develop visual cortex prosthesis which can help blind patients in their daily activities. A major limitation in this work is the development of an image proceessing system for converting an electronic image, as captured by a camera, into a real-time data stream for stimulation of the implanted electrodes. This paper proposes a system, which will capture the image using a camera and use a dedicated hardware real time image processor to deliver electrical pulses to intracortical electrodes. This system has to be flexible enough to adapt to individual patients and to various strategies of image reconstruction. Here we consider a preliminary architecture for this system.

  4. Body-part-specific representations of semantic noun categories.

    PubMed

    Carota, Francesca; Moseley, Rachel; Pulvermüller, Friedemann

    2012-06-01

    Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective-emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.

  5. Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention

    PubMed Central

    Callaghan, Eleanor; Holland, Carol; Kessler, Klaus

    2017-01-01

    Background: Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults’ driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods: Age groups (21–30, 40–49, 50–59, 60–69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results: Visual search response times (RTs) were longer on “Target Mid” and “Distractor Only” trials in comparison to “Target 1st” trials, reflecting switch-costs. Larger switch-costs were found in both the 40–49 and 60–69 years group in comparison to the 21–30 years group when switching from the Target Mid condition. Discussion: Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial. PMID:28261088

  6. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.

  7. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    PubMed

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  8. Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.

    2009-12-01

    Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.

  9. Neural correlates of consciousness: a definition of the dorsal and ventral streams and their relation to phenomenology.

    PubMed

    Vakalopoulos, Costa

    2005-01-01

    The paper presents a hypothesis for a neural correlate of consciousness. A proposal is made that both the dorsal and ventral streams must be concurrently active to generate conscious awareness and that V1 (striate cortex) provides a serial link between them. An argument is presented against a true extrastriate communication between the dorsal and ventral streams. Secondly, a detailed theory is developed for the structure of the visual hierarchy. Premotor theory states that each organism-object interaction can be described by the two quantitative measures of torque and change in joint position served by the basal ganglia and cerebellum, respectively. This leads to a component theory of motor efference copy providing a fundamental tool for categorizing dorsal and ventral stream networks. The rationale for this is that the dorsal stream specifies spatial coordinates of the external world, which can be coded by the reafference of changes in joint position. The ventral stream is concerned with object recognition and is coded for by forces exerted on the world during a developmental exploratory phase of the organism. The proposed pathways for a component motor efference copy from both the cerebellum and basal ganglia converge on the thalamus and modulate thalamocortical projections via the thalamic reticular nucleus. The origin of the corticopontine projections, which are a massive pathway for cortical information to reach the cerebellum, coincides with the area typically considered as part of the dorsal stream, whereas the entire cortex projects to the striatum. This adds empirical support for a new conceptualization of the visual streams. The model also presents a solution to the binding problem of a neural correlate of consciousness, that is, how a distributed neural network synchronizes its activity during a cognitive event. It represents a reinterpretation of the current status of the visual hierarchy.

  10. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task.

    PubMed

    Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.

  11. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    PubMed Central

    Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372

  12. Neural time course of visually enhanced echo suppression.

    PubMed

    Bishop, Christopher W; London, Sam; Miller, Lee M

    2012-10-01

    Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls. Listeners' brains overcome this unique challenge by relying on acoustic timing and, quite surprisingly, visual spatial information to suppress short-latency (1-10 ms) echoes through a process known as "the precedence effect" or "echo suppression." In the present study, we employed electroencephalography (EEG) to investigate the neural time course of echo suppression both with and without the aid of coincident visual stimulation in human listeners. We find that echo suppression is a multistage process initialized during the auditory N1 (70-100 ms) and followed by space-specific suppression mechanisms from 150 to 250 ms. Additionally, we find a robust correlate of listeners' spatial perception (i.e., suppressing or not suppressing the echo) over central electrode sites from 300 to 500 ms. Contrary to our hypothesis, vision's powerful contribution to echo suppression occurs late in processing (250-400 ms), suggesting that vision contributes primarily during late sensory or decision making processes. Together, our findings support growing evidence that echo suppression is a slow, progressive mechanism modifiable by visual influences during late sensory and decision making stages. Furthermore, our findings suggest that audiovisual interactions are not limited to early, sensory-level modulations but extend well into late stages of cortical processing.

  13. Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity.

    PubMed

    Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn

    2005-10-01

    Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.

  14. Chaos based encryption system for encrypting electroencephalogram signals.

    PubMed

    Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De

    2014-05-01

    In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

  15. Partial polygon pruning of hydrographic features in automated generalization

    USGS Publications Warehouse

    Stum, Alexander K.; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2017-01-01

    This paper demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are known to be sensitive to scale change; and thus multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features—such as long and sinuous reservoir arms, stream channels that are too narrow at the target scale, and islands that begin to coalesce—entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the U.S. Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This paper describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the United States.

  16. DIVE: A Graph-based Visual Analytics Framework for Big Data

    PubMed Central

    Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie

    2014-01-01

    The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197

  17. Differentiating Emotional Processing and Attention in Psychopathy with Functional Neuroimaging

    PubMed Central

    Anderson, Nathaniel E.; Steele, Vaughn R.; Maurer, J. Michael; Rao, Vikram; Koenigs, Michael R.; Decety, Jean; Kosson, David; Calhoun, Vince; Kiehl, Kent A.

    2017-01-01

    Psychopathic individuals are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to psychopaths’ emotional deficits, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n=120) evaluated for psychopathic traits using the Hare Psychopathy Checklist – Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience-network regions. During explicit emotional processing psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits. PMID:28092055

  18. Differentiating emotional processing and attention in psychopathy with functional neuroimaging.

    PubMed

    Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Rao, Vikram; Koenigs, Michael R; Decety, Jean; Kosson, David S; Calhoun, Vince D; Kiehl, Kent A

    2017-06-01

    Individuals with psychopathy are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to emotional deficits in persons with psychopathy, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n = 120) evaluated for psychopathic traits using the Hare Psychopathy Checklist-Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing, while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience network regions. During explicit emotional processing, psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits.

  19. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children.

    PubMed

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.

  20. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  1. Data-proximate Visualization via Unidata Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.; Oxelson Ganter, J.; Weber, J.

    2016-12-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service.The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready.The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be.Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  2. Cloud-based data-proximate visualization and analysis

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2017-04-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready. The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  3. Invariant visual object recognition: a model, with lighting invariance.

    PubMed

    Rolls, Edmund T; Stringer, Simon M

    2006-01-01

    How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.

  4. Electrocortical amplification for emotionally arousing natural scenes: The contribution of luminance and chromatic visual channels

    PubMed Central

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas

    2015-01-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949

  5. Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.

    PubMed

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas

    2015-03-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Neural mechanisms of human perceptual choice under focused and divided attention.

    PubMed

    Wyart, Valentin; Myers, Nicholas E; Summerfield, Christopher

    2015-02-25

    Perceptual decisions occur after the evaluation and integration of momentary sensory inputs, and dividing attention between spatially disparate sources of information impairs decision performance. However, it remains unknown whether dividing attention degrades the precision of sensory signals, precludes their conversion into decision signals, or dampens the integration of decision information toward an appropriate response. Here we recorded human electroencephalographic (EEG) activity while participants categorized one of two simultaneous and independent streams of visual gratings according to their average tilt. By analyzing trial-by-trial correlations between EEG activity and the information offered by each sample, we obtained converging behavioral and neural evidence that dividing attention between left and right visual fields does not dampen the encoding of sensory or decision information. Under divided attention, momentary decision information from both visual streams was encoded in slow parietal signals without interference but was lost downstream during their integration as reflected in motor mu- and beta-band (10-30 Hz) signals, resulting in a "leaky" accumulation process that conferred greater behavioral influence to more recent samples. By contrast, sensory inputs that were explicitly cued as irrelevant were not converted into decision signals. These findings reveal that a late cognitive bottleneck on information integration limits decision performance under divided attention, and places new capacity constraints on decision-theoretic models of information integration under cognitive load. Copyright © 2015 the authors 0270-6474/15/353485-14$15.00/0.

  7. Neural mechanisms of human perceptual choice under focused and divided attention

    PubMed Central

    Wyart, Valentin; Myers, Nicholas E.; Summerfield, Christopher

    2015-01-01

    Perceptual decisions occur after evaluation and integration of momentary sensory inputs, and dividing attention between spatially disparate sources of information impairs decision performance. However, it remains unknown whether dividing attention degrades the precision of sensory signals, precludes their conversion into decision signals, or dampens the integration of decision information towards an appropriate response. Here we recorded human electroencephalographic (EEG) activity whilst participants categorised one of two simultaneous and independent streams of visual gratings according to their average tilt. By analyzing trial-by-trial correlations between EEG activity and the information offered by each sample, we obtained converging behavioural and neural evidence that dividing attention between left and right visual fields does not dampen the encoding of sensory or decision information. Under divided attention, momentary decision information from both visual streams was encoded in slow parietal signals without interference but was lost downstream during their integration as reflected in motor mu- and beta-band (10–30 Hz) signals, resulting in a ‘leaky’ accumulation process which conferred greater behavioural influence to more recent samples. By contrast, sensory inputs that were explicitly cued as irrelevant were not converted into decision signals. These findings reveal that a late cognitive bottleneck on information integration limits decision performance under divided attention, and place new capacity constraints on decision-theoretic models of information integration under cognitive load. PMID:25716848

  8. Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants

    PubMed Central

    Kopp, Franziska; Dietrich, Claudia

    2013-01-01

    Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071

  9. Unfolding Visual Lexical Decision in Time

    PubMed Central

    Barca, Laura; Pezzulo, Giovanni

    2012-01-01

    Visual lexical decision is a classical paradigm in psycholinguistics, and numerous studies have assessed the so-called “lexicality effect" (i.e., better performance with lexical than non-lexical stimuli). Far less is known about the dynamics of choice, because many studies measured overall reaction times, which are not informative about underlying processes. To unfold visual lexical decision in (over) time, we measured participants' hand movements toward one of two item alternatives by recording the streaming x,y coordinates of the computer mouse. Participants categorized four kinds of stimuli as “lexical" or “non-lexical:" high and low frequency words, pseudowords, and letter strings. Spatial attraction toward the opposite category was present for low frequency words and pseudowords. Increasing the ambiguity of the stimuli led to greater movement complexity and trajectory attraction to competitors, whereas no such effect was present for high frequency words and letter strings. Results fit well with dynamic models of perceptual decision-making, which describe the process as a competition between alternatives guided by the continuous accumulation of evidence. More broadly, our results point to a key role of statistical decision theory in studying linguistic processing in terms of dynamic and non-modular mechanisms. PMID:22563419

  10. Can You See Me Now Visualizing Battlefield Facial Recognition Technology in 2035

    DTIC Science & Technology

    2010-04-01

    County Sheriff’s Department, use certain measurements such as the distance between eyes, the length of the nose, or the shape of the ears. 8 However...captures multiple frames of video and composites them into an appropriately high-resolution image that can be processed by the facial recognition software...stream of data. High resolution video systems, such as those described below will be able to capture orders of magnitude more data in one video frame

  11. The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition.

    PubMed

    Pehrs, Corinna; Zaki, Jamil; Schlochtermeier, Lorna H; Jacobs, Arthur M; Kuchinke, Lars; Koelsch, Stefan

    2017-01-01

    The temporal pole (TP) has been associated with diverse functions of social cognition and emotion processing. Although the underlying mechanism remains elusive, one possibility is that TP acts as domain-general hub integrating socioemotional information. To test this, 26 participants were presented with 60 empathy-evoking film clips during fMRI scanning. The film clips were preceded by a linguistic sad or neutral context and half of the clips were accompanied by sad music. In line with its hypothesized role, TP was involved in the processing of sad context and furthermore tracked participants' empathic concern. To examine the neuromodulatory impact of TP, we applied nonlinear dynamic causal modeling to a multisensory integration network from previous work consisting of superior temporal gyrus (STG), fusiform gyrus (FG), and amygdala, which was extended by an additional node in the TP. Bayesian model comparison revealed a gating of STG and TP on fusiform-amygdalar coupling and an increase of TP to FG connectivity during the integration of contextual information. Moreover, these backward projections were strengthened by emotional music. The findings indicate that during social cognition, TP integrates information from different modalities and top-down modulates lower-level perceptual areas in the ventral visual stream as a function of integration demands. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  13. Our experiences with development of digitised video streams and their use in animal-free medical education.

    PubMed

    Cervinka, Miroslav; Cervinková, Zuzana; Novák, Jan; Spicák, Jan; Rudolf, Emil; Peychl, Jan

    2004-06-01

    Alternatives and their teaching are an essential part of the curricula at the Faculty of Medicine. Dynamic screen-based video recordings are the most important type of alternative models employed for teaching purposes. Currently, the majority of teaching materials for this purpose are based on PowerPoint presentations, which are very popular because of their high versatility and visual impact. Furthermore, current developments in the field of image capturing devices and software enable the use of digitised video streams, tailored precisely to the specific situation. Here, we demonstrate that with reasonable financial resources, it is possible to prepare video sequences and to introduce them into the PowerPoint presentation, thereby shaping the teaching process according to individual students' needs and specificities.

  14. Contextual modulation and stimulus selectivity in extrastriate cortex.

    PubMed

    Krause, Matthew R; Pack, Christopher C

    2014-11-01

    Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay

    1999-11-01

    The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.

  16. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    PubMed Central

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632

  17. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  18. Non-verbal IQ is correlated with visual field advantages for short duration coherent motion detection in deaf signers with varied ASL exposure and etiologies of deafness.

    PubMed

    Samar, Vincent J; Parasnis, Ila

    2007-12-01

    Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. Brain and Cognition, 49, 170-181; Samar, V. J., & Parasnis, I. (2005). Dorsal stream deficits suggest hidden dyslexia among deaf poor readers: Correlated evidence from reduced perceptual speed and elevated coherent motion detection thresholds. Brain and Cognition, 58, 300-311.] reported a small, non-significant RVF advantage for deaf signers when short duration motion stimuli were used (200-250 ms). Samar and Parasnis (2005) reported that this small RVF advantage became significant when non-verbal IQ was statistically controlled. This paper presents extended analyses of the correlation between non-verbal IQ and visual field asymmetries in the data set of Samar and Parasnis (2005). We speculate that this correlation might plausibly be driven by individual differences either in age of acquisition of American Sign Language (ASL) or in the degree of neurodevelopmental insult associated with various etiologies of deafness. Limited additional analyses are presented that indicate a need for further research on the cause of this apparent IQ-laterality relationship. Some potential implications of this relationship for lateralization studies of deaf signers are discussed. Controlling non-verbal IQ may improve the reliability of short duration coherent motion tasks to detect adaptive dorsal stream lateralization due to exposure to ASL in deaf research participants.

  19. Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.

    PubMed

    Williams, Jason A

    2012-06-01

    The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.

  20. Neural correlates of audiovisual integration in music reading.

    PubMed

    Nichols, Emily S; Grahn, Jessica A

    2016-10-01

    Integration of auditory and visual information is important to both language and music. In the linguistic domain, audiovisual integration alters event-related potentials (ERPs) at early stages of processing (the mismatch negativity (MMN)) as well as later stages (P300(Andres et al., 2011)). However, the role of experience in audiovisual integration is unclear, as reading experience is generally confounded with developmental stage. Here we tested whether audiovisual integration of music appears similar to reading, and how musical experience altered integration. We compared brain responses in musicians and non-musicians on an auditory pitch-interval oddball task that evoked the MMN and P300, while manipulating whether visual pitch-interval information was congruent or incongruent with the auditory information. We predicted that the MMN and P300 would be largest when both auditory and visual stimuli deviated, because audiovisual integration would increase the neural response when the deviants were congruent. The results indicated that scalp topography differed between musicians and non-musicians for both the MMN and P300 response to deviants. Interestingly, musicians' musical training modulated integration of congruent deviants at both early and late stages of processing. We propose that early in the processing stream, visual information may guide interpretation of auditory information, leading to a larger MMN when auditory and visual information mismatch. At later attentional stages, integration of the auditory and visual stimuli leads to a larger P300 amplitude. Thus, experience with musical visual notation shapes the way the brain integrates abstract sound-symbol pairings, suggesting that musicians can indeed inform us about the role of experience in audiovisual integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Prediction and constraint in audiovisual speech perception.

    PubMed

    Peelle, Jonathan E; Sommers, Mitchell S

    2015-07-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    PubMed

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  3. Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?

    PubMed Central

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509

  4. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain.

    PubMed

    Arbib, Michael A

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining "what language is about" in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain

    NASA Astrophysics Data System (ADS)

    Arbib, Michael A.

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining ;what language is about; in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research.

  6. Streakline flow visualization of discrete hole film cooling with holes inclined 30 deg to surface

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.; Lane, J. M.

    1976-01-01

    Film injection from three rows of discrete holes angled 30 deg to the surface in line with mainstream flow and spaced 5 diameters apart in a staggered array was visualized by using helium bubbles as tracer particles. Both the main stream and the film injectant were ambient air. Detailed streaklines showing the turbulent motion of the film mixing with the main stream were obtained by photographing small, neutrally buoyant helium-filled soap bubbles which followed the flow field. The ratio of boundary layer thickness to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. The results showed the behavior of the film and its interaction with the main stream for a range of blowing rates and two initial boundary layer thicknesses.

  7. All I saw was the cake. Hunger effects on attentional capture by visual food cues.

    PubMed

    Piech, Richard M; Pastorino, Michael T; Zald, David H

    2010-06-01

    While effects of hunger on motivation and food reward value are well-established, far less is known about the effects of hunger on cognitive processes. Here, we deployed the emotional blink of attention paradigm to investigate the impact of visual food cues on attentional capture under conditions of hunger and satiety. Participants were asked to detect targets which appeared in a rapid visual stream after different types of task irrelevant distractors. We observed that food stimuli acquired increased power to capture attention and prevent target detection when participants were hungry. This occurred despite monetary incentives to perform well. Our findings suggest an attentional mechanism through which hunger heightens perception of food cues. As an objective behavioral marker of the attentional sensitivity to food cues, the emotional attentional blink paradigm may provide a useful technique for studying individual differences, and state manipulations in the sensitivity to food cues. Published by Elsevier Ltd.

  8. Conjunctive Coding of Complex Object Features

    PubMed Central

    Erez, Jonathan; Cusack, Rhodri; Kendall, William; Barense, Morgan D.

    2016-01-01

    Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects depends on the explicit coding of the conjunctions of features comprising them. PMID:25921583

  9. Single Canonical Model of Reflexive Memory and Spatial Attention

    PubMed Central

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  10. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures

    USDA-ARS?s Scientific Manuscript database

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Habitat complexity measures are often made using total station surveying or visual approximation, which can be subjective and have spatial resolution limitati...

  11. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor.

    PubMed

    Hilgetag, C C; O'Neill, M A; Young, M P

    2000-01-29

    Neuroanatomists have described a large number of connections between the various structures of monkey and cat cortical sensory systems. Because of the complexity of the connection data, analysis is required to unravel what principles of organization they imply. To date, analysis of laminar origin and termination connection data to reveal hierarchical relationships between the cortical areas has been the most widely acknowledged approach. We programmed a network processor that searches for optimal hierarchical orderings of cortical areas given known hierarchical constraints and rules for their interpretation. For all cortical systems and all cost functions, the processor found a multitude of equally low-cost hierarchies. Laminar hierarchical constraints that are presently available in the anatomical literature were therefore insufficient to constrain a unique ordering for any of the sensory systems we analysed. Hierarchical orderings of the monkey visual system that have been widely reported, but which were derived by hand, were not among the optimal orderings. All the cortical systems we studied displayed a significant degree of hierarchical organization, and the anatomical constraints from the monkey visual and somato-motor systems were satisfied with very few constraint violations in the optimal hierarchies. The visual and somato-motor systems in that animal were therefore surprisingly strictly hierarchical. Most inconsistencies between the constraints and the hierarchical relationships in the optimal structures for the visual system were related to connections of area FST (fundus of superior temporal sulcus). We found that the hierarchical solutions could be further improved by assuming that FST consists of two areas, which differ in the nature of their projections. Indeed, we found that perfect hierarchical arrangements of the primate visual system, without any violation of anatomical constraints, could be obtained under two reasonable conditions, namely the subdivision of FST into two distinct areas, whose connectivity we predict, and the abolition of at least one of the less reliable rule constraints. Our analyses showed that the future collection of the same type of laminar constraints, or the inclusion of new hierarchical constraints from thalamocortical connections, will not resolve the problem of multiple optimal hierarchical representations for the primate visual system. Further data, however, may help to specify the relative ordering of some more areas. This indeterminacy of the visual hierarchy is in part due to the reported absence of some connections between cortical areas. These absences are consistent with limited cross-talk between differentiated processing streams in the system. Hence, hierarchical representation of the visual system is affected by, and must take into account, other organizational features, such as processing streams.

  12. Dynamic Visualizations: How Attraction, Motivation and Communication Affect Streaming Video Tutorial Implementation

    ERIC Educational Resources Information Center

    Boger, Claire

    2011-01-01

    The rapid advancement in the capabilities of computer technologies has made it easier to design and deploy dynamic visualizations in web-based learning environments; yet, the implementation of these dynamic visuals has been met with mixed results. While many guidelines exist to assist instructional designers in the design and application of…

  13. Op art and visual perception.

    PubMed

    Wade, N J

    1978-01-01

    An attempt is made to list the visual phenomena exploited in op art. These include moire frinlude moiré fringes, afterimages, Hermann grid effects, Gestalt grouping principles, blurring and movement due to astigmatic fluctuations in accommodation, scintillation and streaming possibly due to eye movements, and visual persistence. The historical origins of these phenomena are also noted.

  14. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin

    2017-01-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122

  15. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  16. On the cyclic nature of perception in vision versus audition

    PubMed Central

    VanRullen, Rufin; Zoefel, Benedikt; Ilhan, Barkin

    2014-01-01

    Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in approximately 7–13 Hz cycles rather than continuously. On the other hand, experimental attempts at applying similar tools to demonstrate the discreteness of auditory awareness have been largely unsuccessful. We argue and demonstrate experimentally that visual and auditory perception are not equally affected by temporal subsampling of their respective input streams: video sequences remain intelligible at sampling rates of two to three frames per second, whereas audio inputs lose their fine temporal structure, and thus all significance, below 20–30 samples per second. This does not mean, however, that our auditory perception must proceed continuously. Instead, we propose that audition could still involve perceptual cycles, but the periodic sampling should happen only after the stage of auditory feature extraction. In addition, although visual perceptual cycles can follow one another at a spontaneous pace largely independent of the visual input, auditory cycles may need to sample the input stream more flexibly, by adapting to the temporal structure of the auditory inputs. PMID:24639585

  17. Integrating sentiment analysis and term associations with geo-temporal visualizations on customer feedback streams

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun

    2012-01-01

    Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).

  18. Graphics to H.264 video encoding for 3D scene representation and interaction on mobile devices using region of interest

    NASA Astrophysics Data System (ADS)

    Le, Minh Tuan; Nguyen, Congdu; Yoon, Dae-Il; Jung, Eun Ku; Jia, Jie; Kim, Hae-Kwang

    2007-12-01

    In this paper, we propose a method of 3D graphics to video encoding and streaming that are embedded into a remote interactive 3D visualization system for rapidly representing a 3D scene on mobile devices without having to download it from the server. In particular, a 3D graphics to video framework is presented that increases the visual quality of regions of interest (ROI) of the video by performing more bit allocation to ROI during H.264 video encoding. The ROI are identified by projection 3D objects to a 2D plane during rasterization. The system offers users to navigate the 3D scene and interact with objects of interests for querying their descriptions. We developed an adaptive media streaming server that can provide an adaptive video stream in term of object-based quality to the client according to the user's preferences and the variation of network bandwidth. Results show that by doing ROI mode selection, PSNR of test sample slightly change while visual quality of objects increases evidently.

  19. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A multi-pathway hypothesis for human visual fear signaling

    PubMed Central

    Silverstein, David N.; Ingvar, Martin

    2015-01-01

    A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513

  1. Modulation of early cortical processing during divided attention to non-contiguous locations

    PubMed Central

    Frey, Hans-Peter; Schmid, Anita M.; Murphy, Jeremy W.; Molholm, Sophie; Lalor, Edmund C.; Foxe, John J.

    2015-01-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. While for several years the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed using high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classical pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing timeframes in hierarchically early visual regions and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. PMID:24606564

  2. A new display stream compression standard under development in VESA

    NASA Astrophysics Data System (ADS)

    Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James

    2017-09-01

    The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.

  3. The impact of hunger on food cue processing: an event-related brain potential study.

    PubMed

    Stockburger, Jessica; Schmälzle, Ralf; Flaisch, Tobias; Bublatzky, Florian; Schupp, Harald T

    2009-10-01

    The present study used event-related brain potentials to examine deprivation effects on visual attention to food stimuli at the level of distinct processing stages. Thirty-two healthy volunteers (16 females) were tested twice 1 week apart, either after 24 h of food deprivation or after normal food intake. Participants viewed a continuous stream of food and flower images while dense sensor ERPs were recorded. As revealed by distinct ERP modulations in relatively earlier and later time windows, deprivation affected the processing of food and flower pictures. Between 300 and 360 ms, food pictures were associated with enlarged occipito-temporal negativity and centro-parietal positivity in deprived compared to satiated state. Of main interest, in a later time window (approximately 450-600 ms), deprivation increased amplitudes of the late positive potential elicited by food pictures. Conversely, flower processing varied by motivational state with decreased positive potentials in the deprived state. Minimum-Norm analyses provided further evidence that deprivation enhanced visual attention to food cues in later processing stages. From the perspective of motivated attention, hunger may induce a heightened state of attention for food stimuli in a processing stage related to stimulus recognition and focused attention.

  4. Repetition Blindness Reveals Differences between the Representations of Manipulable and Nonmanipulable Objects

    ERIC Educational Resources Information Center

    Harris, Irina M.; Murray, Alexandra M.; Hayward, William G.; O'Callaghan, Claire; Andrews, Sally

    2012-01-01

    We used repetition blindness to investigate the nature of the representations underlying identification of manipulable objects. Observers named objects presented in rapid serial visual presentation streams containing either manipulable or nonmanipulable objects. In half the streams, 1 object was repeated. Overall accuracy was lower when streams…

  5. What's in a Face? Visual Contributions to Speech Segmentation

    ERIC Educational Resources Information Center

    Mitchel, Aaron D.; Weiss, Daniel J.

    2010-01-01

    Recent research has demonstrated that adults successfully segment two interleaved artificial speech streams with incongruent statistics (i.e., streams whose combined statistics are noisier than the encapsulated statistics) only when provided with an indexical cue of speaker voice. In a series of five experiments, our study explores whether…

  6. Interactive numerical flow visualization using stream surfaces

    NASA Technical Reports Server (NTRS)

    Hultquist, J. P. M.

    1990-01-01

    Particle traces and ribbons are often used to depict the structure of three-dimensional flowfields, but images produced using these models can be ambiguous. Stream surfaces offer a more visually intuitive method for the depiction of flowfields, but interactive response is needed to allow the user to place surfaces which reveal the essential features of a given flowfield. FLORA, a software package which supports the interactive calculation and display of stream surfaces on silicon graphics workstations, is described. Alternative methods for the integration of particle traces are examined, and calculation through computational space is found to provide rapid results with accuracy adequate for most purposes. Rapid calculation of traces is teamed with progressive refinement of appoximated surfaces. An initial approximation provides immediate user feedback, and subsequent improvement of the surface ensures that the final image is an accurate representation of the flowfield.

  7. Hydraulic flow visualization method and apparatus

    DOEpatents

    Karidis, Peter G.

    1984-01-01

    An apparatus and method for visualizing liquid flow. Pulses of gas bubbles are introduced into a liquid flow stream and a strobe light is operated at a frequency related to the frequency of the gas pulses to shine on the bubbles as they pass through the liquid stream. The gas pulses pass through a probe body having a valve element, and a reciprocating valve stem passes through the probe body to operate the valve element. A stem actuating device comprises a slidable reciprocating member, operated by a crank arm. The actuated member is adjustable to adjust the amount of the valve opening during each pulse.

  8. Postnatal Development of Intrinsic Horizontal Axons in Macaque Inferior Temporal and Primary Visual Cortices.

    PubMed

    Wang, Quanxin; Tanigawa, Hisashi; Fujita, Ichiro

    2017-04-01

    Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-02-01

    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.

  10. Evidence for Deficits in the Temporal Attention Span of Poor Readers

    PubMed Central

    Visser, Troy A. W.

    2014-01-01

    Background While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their “temporal attention span” – that is, their ability to rapidly and accurately process sequences of consecutive target items. Methodology/Principal Findings Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Conclusions/Significance Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span. PMID:24651313

  11. Evidence for deficits in the temporal attention span of poor readers.

    PubMed

    Visser, Troy A W

    2014-01-01

    While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their "temporal attention span"--that is, their ability to rapidly and accurately process sequences of consecutive target items. Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span.

  12. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    PubMed Central

    Kamke, Marc R.; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945

  14. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    PubMed

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  15. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    PubMed

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  16. A quantitative visual dashboard to explore exposures to consumer product ingredients

    EPA Science Inventory

    The Exposure Prioritization (Ex Priori) model features a simplified, quantitative visual dashboard to explore exposures across chemical space. Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “pop...

  17. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  18. Memory-guided reaching in a patient with visual hemiagnosia.

    PubMed

    Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc

    2016-06-01

    The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.« less

  20. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new ideas. This presentation will provide an update of the recent enhancements of the NEIS architecture and visualization capabilities, challenges faced, as well as ongoing research activities related to this project.

  1. Colour-induced relationship between affect and reaching kinematics during a goal-directed aiming task.

    PubMed

    Williams, Camille K; Grierson, Lawrence E M; Carnahan, Heather

    2011-08-01

    A link between affect and action has been supported by the discovery that threat information is prioritized through an action-centred pathway--the dorsal visual stream. Magnocellular afferents, which originate from the retina and project to dorsal stream structures, are suppressed by exposure to diffuse red light, which diminishes humans' perception of threat-based images. In order to explore the role of colour in the relationship between affect and action, participants donned different pairs of coloured glasses (red, yellow, green, blue and clear) and completed Positive and Negative Affect Scale questionnaires as well as a series of target-directed aiming movements. Analyses of affect scores revealed a significant main effect for affect valence and a significant interaction between colour and valence: perceived positive affect was significantly smaller for the red condition. Kinematic analyses of variable error in the primary movement direction and Pearson correlation analyses between the displacements travelled prior to and following peak velocity indicated reduced accuracy and application of online control processes while wearing red glasses. Variable error of aiming was also positively and significantly correlated with negative affect scores under the red condition. These results suggest that only red light modulates the affect-action link by suppressing magnocellular activity, which disrupts visual processing for movement control. Furthermore, previous research examining the effect of the colour red on psychomotor tasks and perceptual acceleration of threat-based imagery suggest that stimulus-driven motor performance tasks requiring online control may be particularly susceptible to this effect.

  2. OpenGl Visualization Tool and Library Version: 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-06-22

    GLVis is an OpenGL tool for visualization of finite element meshes and functions. When started without any options, GLVis starts a server, which waits for a socket connections and visualizes any recieved data. This way the results of simulations on a remote (parallel) machine can be visualized on the lical user desktop. GLVis can also be used to visualize a mesh with or without a finite element function (solution). It can run a batch sequence of commands (GLVis scripts), or display previously saved socket streams.

  3. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  4. Video Streaming in Online Learning

    ERIC Educational Resources Information Center

    Hartsell, Taralynn; Yuen, Steve Chi-Yin

    2006-01-01

    The use of video in teaching and learning is a common practice in education today. As learning online becomes more of a common practice in education, streaming video and audio will play a bigger role in delivering course materials to online learners. This form of technology brings courses alive by allowing online learners to use their visual and…

  5. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism

    PubMed Central

    Villalobos, Michele E.; Mizuno, Akiko; Dahl, Branelle C.; Kemmotsu, Nobuko; Müller, Ralph-Axel

    2010-01-01

    Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and 8 handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional. PMID:15808991

  6. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.

    PubMed

    Villalobos, Michele E; Mizuno, Akiko; Dahl, Branelle C; Kemmotsu, Nobuko; Müller, Ralph-Axel

    2005-04-15

    Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and eight handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional.

  7. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  8. Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing

    DTIC Science & Technology

    2012-12-14

    Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of

  9. The effort to close the gap: Tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping

    PubMed Central

    Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.

    2014-01-01

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674

  10. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    PubMed

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  11. Visual tracking using neuromorphic asynchronous event-based cameras.

    PubMed

    Ni, Zhenjiang; Ieng, Sio-Hoi; Posch, Christoph; Régnier, Stéphane; Benosman, Ryad

    2015-04-01

    This letter presents a novel computationally efficient and robust pattern tracking method based on a time-encoded, frame-free visual data. Recent interdisciplinary developments, combining inputs from engineering and biology, have yielded a novel type of camera that encodes visual information into a continuous stream of asynchronous, temporal events. These events encode temporal contrast and intensity locally in space and time. We show that the sparse yet accurately timed information is well suited as a computational input for object tracking. In this letter, visual data processing is performed for each incoming event at the time it arrives. The method provides a continuous and iterative estimation of the geometric transformation between the model and the events representing the tracked object. It can handle isometry, similarities, and affine distortions and allows for unprecedented real-time performance at equivalent frame rates in the kilohertz range on a standard PC. Furthermore, by using the dimension of time that is currently underexploited by most artificial vision systems, the method we present is able to solve ambiguous cases of object occlusions that classical frame-based techniques handle poorly.

  12. Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning

    PubMed Central

    Mitchel, Aaron D.; Weiss, Daniel J.

    2014-01-01

    It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms. PMID:21574745

  13. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  14. Dysfunctional visual word form processing in progressive alexia

    PubMed Central

    Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2013-01-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy. PMID:23471694

  15. Dysfunctional visual word form processing in progressive alexia.

    PubMed

    Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M

    2013-04-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy.

  16. The dorsal "action" pathway.

    PubMed

    Gallivan, Jason P; Goodale, Melvyn A

    2018-01-01

    In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz

    PubMed Central

    Bekhtereva, Valeria

    2015-01-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex. PMID:25971598

  18. Brief time course of trait anxiety-related attentional bias to fear-conditioned stimuli: Evidence from the dual-RSVP task.

    PubMed

    Booth, Robert W

    2017-03-01

    Attentional bias to threat is a much-studied feature of anxiety; it is typically assessed using response time (RT) tasks such as the dot probe. Findings regarding the time course of attentional bias have been inconsistent, possibly because RT tasks are sensitive to processes downstream of attention. Attentional bias was assessed using an accuracy-based task in which participants detected a single digit in two simultaneous rapid serial visual presentation (RSVP) streams of letters. Before the target, two coloured shapes were presented simultaneously, one in each RSVP stream; one shape had previously been associated with threat through Pavlovian fear conditioning. Attentional bias was indicated wherever participants identified targets in the threat's RSVP stream more accurately than targets in the other RSVP stream. In 87 unselected undergraduates, trait anxiety only predicted attentional bias when the target was presented immediately following the shapes, i.e. 160 ms later; by 320 ms the bias had disappeared. This suggests attentional bias in anxiety can be extremely brief and transitory. This initial study utilised an analogue sample, and was unable to physiologically verify the efficacy of the conditioning. The next steps will be to verify these results in a sample of diagnosed anxious patients, and to use alternative threat stimuli. The results of studies using response time to assess the time course of attentional bias may partially reflect later processes such as decision making and response preparation. This may limit the efficacy of therapies aiming to retrain attentional biases using response time tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems

    PubMed Central

    Rolls, Edmund T.; Webb, Tristan J.

    2014-01-01

    Searching for and recognizing objects in complex natural scenes is implemented by multiple saccades until the eyes reach within the reduced receptive field sizes of inferior temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual streams both contribute to this. Saliency detection in the dorsal visual system including area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential objects within several degrees. Visual information at the fixated location subtending approximately 9° corresponding to the receptive fields of IT neurons is then passed through a four layer hierarchical model of the ventral cortical visual system, VisNet. We show that VisNet can be trained using a synaptic modification rule with a short-term memory trace of recent neuronal activity to capture both the required view and translation invariances to allow in the model approximately 90% correct object recognition for 4 objects shown in any view across a range of 135° anywhere in a scene. The model was able to generalize correctly within the four trained views and the 25 trained translations. This approach analyses the principles by which complementary computations in the dorsal and ventral visual cortical streams enable objects to be located and recognized in complex natural scenes. PMID:25161619

  20. 7 CFR 650.24 - Scenic beauty (visual resource).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... planning assistance to individual landowners, groups, units of government, and watershed and resource... management, access roads, critical area treatment; design and management of ponds, stream margins, odd areas..., erosion control, and recreation or wildlife uses be carried out with full attention to visual resource...

  1. 7 CFR 650.24 - Scenic beauty (visual resource).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... planning assistance to individual landowners, groups, units of government, and watershed and resource... management, access roads, critical area treatment; design and management of ponds, stream margins, odd areas..., erosion control, and recreation or wildlife uses be carried out with full attention to visual resource...

  2. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development.

    PubMed

    Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin

    2017-06-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Platform for intraoperative analysis of video streams

    NASA Astrophysics Data System (ADS)

    Clements, Logan; Galloway, Robert L., Jr.

    2004-05-01

    Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.

  4. Neural dynamics of motion processing and speed discrimination.

    PubMed

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  5. The Posture of Putting One's Palms Together Modulates Visual Motion Event Perception.

    PubMed

    Saito, Godai; Gyoba, Jiro

    2018-02-01

    We investigated the effect of an observer's hand postures on visual motion perception using the stream/bounce display. When two identical visual objects move across collinear horizontal trajectories toward each other in a two-dimensional display, observers perceive them as either streaming or bouncing. In our previous study, we found that when observers put their palms together just below the coincidence point of the two objects, the percentage of bouncing responses increased, mainly depending on the proprioceptive information from their own hands. However, it remains unclear if the tactile or haptic (force) information produced by the postures mostly influences the stream/bounce perception. We solved this problem by changing the tactile and haptic information on the palms of the hands. Experiment 1 showed that the promotion of bouncing perception was observed only when the posture of directly putting one's palms together was used, while there was no effect when a brick was sandwiched between the participant's palms. Experiment 2 demonstrated that the strength of force used when putting the palms together had no effect on increasing bounce perception. Our findings indicate that the hands-induced bounce effect derives from the tactile information produced by the direct contact between both palms.

  6. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?

    PubMed

    Cao, Yongqiang; Grossberg, Stephen; Markowitz, Jeffrey

    2011-12-01

    All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects may be visually detected at multiple positions, sizes, and viewpoints. How does the brain rapidly learn and recognize objects while scanning a scene with eye movements, without causing a combinatorial explosion in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying parts of different objects together at the same or different positions in a visual scene? In monkeys and humans, a key area for such invariant object category learning and recognition is the inferotemporal cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1, V2, V4, and IT in the brain's What cortical stream, as they interact with spatial attention processes within the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN) model proposes how the following additional processes in the What cortical processing stream also enable position-invariant object representations to be learned: IT cells with persistent activity, and a combination of normalizing object category competition and a view-to-object learning law which together ensure that unambiguous views have a larger effect on object recognition than ambiguous views. The model explains how such invariant learning can be fooled when monkeys, or other primates, are presented with an object that is swapped with another object during eye movements to foveate the original object. The swapping procedure is predicted to prevent the reset of spatial attention, which would otherwise keep the representations of multiple objects from being combined by learning. Li and DiCarlo (2008) have presented neurophysiological data from monkeys showing how unsupervised natural experience in a target swapping experiment can rapidly alter object representations in IT. The model quantitatively simulates the swapping data by showing how the swapping procedure fools the spatial attention mechanism. More generally, the model provides a unifying framework, and testable predictions in both monkeys and humans, for understanding object learning data using neurophysiological methods in monkeys, and spatial attention, episodic learning, and memory retrieval data using functional imaging methods in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neurocognitive mechanisms of gaze-expression interactions in face processing and social attention

    PubMed Central

    Graham, Reiko; LaBar, Kevin S.

    2012-01-01

    The face conveys a rich source of non-verbal information used during social communication. While research has revealed how specific facial channels such as emotional expression are processed, little is known about the prioritization and integration of multiple cues in the face during dyadic exchanges. Classic models of face perception have emphasized the segregation of dynamic versus static facial features along independent information processing pathways. Here we review recent behavioral and neuroscientific evidence suggesting that within the dynamic stream, concurrent changes in eye gaze and emotional expression can yield early independent effects on face judgments and covert shifts of visuospatial attention. These effects are partially segregated within initial visual afferent processing volleys, but are subsequently integrated in limbic regions such as the amygdala or via reentrant visual processing volleys. This spatiotemporal pattern may help to resolve otherwise perplexing discrepancies across behavioral studies of emotional influences on gaze-directed attentional cueing. Theoretical explanations of gaze-expression interactions are discussed, with special consideration of speed-of-processing (discriminability) and contextual (ambiguity) accounts. Future research in this area promises to reveal the mental chronometry of face processing and interpersonal attention, with implications for understanding how social referencing develops in infancy and is impaired in autism and other disorders of social cognition. PMID:22285906

  8. Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization.

    PubMed

    Bladin, Karl; Axelsson, Emil; Broberg, Erik; Emmart, Carter; Ljung, Patric; Bock, Alexander; Ynnerman, Anders

    2017-08-29

    Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.

  9. A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data

    PubMed Central

    Venkat, A.; Christensen, C.; Gyulassy, A.; Summa, B.; Federer, F.; Angelucci, A.; Pascucci, V.

    2017-01-01

    The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data. PMID:28638896

  10. A Scalable Cyberinfrastructure for Interactive Visualization of Terascale Microscopy Data.

    PubMed

    Venkat, A; Christensen, C; Gyulassy, A; Summa, B; Federer, F; Angelucci, A; Pascucci, V

    2016-08-01

    The goal of the recently emerged field of connectomics is to generate a wiring diagram of the brain at different scales. To identify brain circuitry, neuroscientists use specialized microscopes to perform multichannel imaging of labeled neurons at a very high resolution. CLARITY tissue clearing allows imaging labeled circuits through entire tissue blocks, without the need for tissue sectioning and section-to-section alignment. Imaging the large and complex non-human primate brain with sufficient resolution to identify and disambiguate between axons, in particular, produces massive data, creating great computational challenges to the study of neural circuits. Researchers require novel software capabilities for compiling, stitching, and visualizing large imagery. In this work, we detail the image acquisition process and a hierarchical streaming platform, ViSUS, that enables interactive visualization of these massive multi-volume datasets using a standard desktop computer. The ViSUS visualization framework has previously been shown to be suitable for 3D combustion simulation, climate simulation and visualization of large scale panoramic images. The platform is organized around a hierarchical cache oblivious data layout, called the IDX file format, which enables interactive visualization and exploration in ViSUS, scaling to the largest 3D images. In this paper we showcase the VISUS framework used in an interactive setting with the microscopy data.

  11. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  12. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  13. Repetition blindness has a perceptual locus: evidence from online processing of targets in RSVP streams

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Hochhaus, Larry; Ruthruff, Eric

    2002-01-01

    Four experiments tested whether repetition blindness (RB; reduced accuracy reporting repetitions of briefly displayed items) is a perceptual or a memory-recall phenomenon. RB was measured in rapid serial visual presentation (RSVP) streams, with the task altered to reduce memory demands. In Experiment 1 only the number of targets (1 vs. 2) was reported, eliminating the need to remember target identities. Experiment 2 segregated repeated and nonrepeated targets into separate blocks to reduce bias against repeated targets. Experiments 3 and 4 required immediate "online" buttonpress responses to targets as they occurred. All 4 experiments showed very strong RB. Furthermore, the online response data showed clearly that the 2nd of the repeated targets is the one missed. The present results show that in the RSVP paradigm, RB occurs online during initial stimulus encoding and decision making. The authors argue that RB is indeed a perceptual phenomenon.

  14. A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.

    2006-01-01

    A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial. Stream sites included in the database had drainage areas that ranged from 0.04 to 10.96 square miles. Of the 66 stream sites with drainage areas greater than 2.00 square miles, 2 sites were intermittent and 64 sites were perennial. Thus, stream sites with drainage areas greater than 2.00 square miles were assumed to flow perennially, and the database used to develop the logistic regression equation included only those stream sites with drainage areas less than 2.00 square miles. The database for the equation included 285 stream sites that had drainage areas less than 2.00 square miles, of which 83 sites were intermittent and 202 sites were perennial. Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of four explanatory variables: (1) drainage area (natural logarithm), (2) areal percentage of sand and gravel deposits, (3) areal percentage of forest land, and (4) region of the state (eastern region or western region). Although the equation provides an objective means of determining the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used in its development. The equation is not recommended for (1) losing stream reaches or (2) streams whose ground-water contributing areas do not coincide with their surface-water drainage areas, such as many streams draining the Southeast Coastal Region-the southern part of the South Coastal Basin, the eastern part of the Buzzards Bay Basin, and the entire area of the Cape Cod and the Islands Basins. If the equation were used on a regulated stream site, the estimated intermittent or perennial status would reflect the natural flow conditions for that site. An automated mapping procedure was developed to determine the intermittent or perennial status of stream sites along reaches throughout a basin. The procedure delineates the drainage area boundaries, determines values for the four explanatory variables, and solves the equation for estimating the probability of a stream flowing perennially at two locations on a headwater (first-order) stream reach-one near its confluence or end point and one near its headwaters or start point. The automated procedure then determines the intermittent or perennial status of the reach on the basis of the calculated probability values and a probability cutpoint (a stream is considered to flow perennially at a cutpoint of 0.56 or greater for this study) for the two locations or continues to loop upstream or downstream between locations less than and greater than the cutpoint of 0.56 to determine the transition point from an intermittent to a perennial stream. If the first-order stream reach is determined to be intermittent, the procedure moves to the next downstream reach and repeats the same process. The automated procedure then moves to the next first-order stream and repeats the process until the entire basin is mapped. A map of the intermittent and perennial stream reaches in the Shawsheen River Basin is provided on a CD-ROM that accompanies this report. The CD-ROM also contains ArcReader 9.0, a freeware product, that allows a user to zoom in and out, set a scale, pan, turn on and off map layers (such as a USGS topographic map), and print a map of the stream site with a scale bar. Maps of the intermittent and perennial stream reaches in Massachusetts will provide city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing the intermittent or perennial status of stream sites.

  15. Heat as a tracer to determine streambed water exchanges

    USGS Publications Warehouse

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  16. Method for enhanced atomization of liquids

    DOEpatents

    Thompson, Richard E.; White, Jerome R.

    1993-01-01

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  17. GREENSCOPE: A Method for Modeling Chemical Process ...

    EPA Pesticide Factsheets

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  18. Attention Gating in Short-Term Visual Memory.

    ERIC Educational Resources Information Center

    Reeves, Adam; Sperling, George

    1986-01-01

    An experiment is conducted showing that an attention shift to a stream of numerals presented in rapid serial visual presentation mode produces not a total loss, but a systematic distortion of order. An attention gating model (AGM) is developed from a more general attention model. (Author/LMO)

  19. Modulation of early cortical processing during divided attention to non-contiguous locations.

    PubMed

    Frey, Hans-Peter; Schmid, Anita M; Murphy, Jeremy W; Molholm, Sophie; Lalor, Edmund C; Foxe, John J

    2014-05-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. Whereas, for several years, the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed by the use of high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classic pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced, and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing time-frames in hierarchically early visual regions, and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  1. Tomo-PIV measurements of the flow field in the wake of a sphere

    NASA Astrophysics Data System (ADS)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  2. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  3. Serial, Covert, Shifts of Attention during Visual Search are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations

    PubMed Central

    Buschman, Timothy J.; Miller, Earl K.

    2009-01-01

    Attention regulates the flood of sensory information into a manageable stream, and so understanding how attention is controlled is central to understanding cognition. Competing theories suggest visual search involves serial and/or parallel allocation of attention, but there is little direct, neural, evidence for either mechanism. Two monkeys were trained to covertly search an array for a target stimulus under visual search (endogenous) and pop-out (exogenous) conditions. Here we present neural evidence in the frontal eye fields (FEF) for serial, covert shifts of attention during search but not pop-out. Furthermore, attention shifts reflected in FEF spiking activity were correlated with 18–34 Hz oscillations in the local field potential, suggesting a ‘clocking’ signal. This provides direct neural evidence that primates can spontaneously adopt a serial search strategy and that these serial covert shifts of attention are directed by the FEF. It also suggests that neuron population oscillations may regulate the timing of cognitive processing. PMID:19679077

  4. The evolution of meaning: spatio-temporal dynamics of visual object recognition.

    PubMed

    Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K

    2011-08-01

    Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.

  5. Data-Proximate Analysis and Visualization in the Cloud using Cloudstream, an Open-Source Application Streaming Technology Stack

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.

    2017-12-01

    The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. Moving standard desktop analysis and visualization tools to the cloud is enabled via a technique called "Application Streaming". This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has created a Docker-based solution for easily adapting legacy software for Application Streaming. This technology stack, dubbed Cloudstream, allows desktop software to run in the cloud with little-to-no effort. The docker container is configured by editing text files, and the legacy software does not need to be modified in any way. This work will discuss the underlying technologies used by Cloudstream, and outline how to use Cloudstream to run and access an existing desktop application to the cloud.

  6. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    PubMed

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  7. Identifying the Computational Requirements of an Integrated Top-Down-Bottom-Up Model for Overt Visual Attention within an Active Vision System

    PubMed Central

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as ‘active vision’, to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of ‘where’ and ‘what’ information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate ‘active’ visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a ‘priority map’. PMID:23437044

  8. Acoustic streaming jets: A scaling and dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botton, V., E-mail: valery.botton@insa-lyon.fr; Henry, D.; Millet, S.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  9. Representational Account of Memory: Insights from Aging and Synesthesia.

    PubMed

    Pfeifer, Gaby; Ward, Jamie; Chan, Dennis; Sigala, Natasha

    2016-12-01

    The representational account of memory envisages perception and memory to be on a continuum rather than in discretely divided brain systems [Bussey, T. J., & Saksida, L. M. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus, 17, 898-908, 2007]. We tested this account using a novel between-group design with young grapheme-color synesthetes, older adults, and young controls. We investigated how the disparate sensory-perceptual abilities between these groups translated into associative memory performance for visual stimuli that do not induce synesthesia. ROI analyses of the entire ventral visual stream showed that associative retrieval (a pair-associate retrieved in the absence of a visual stimulus) yielded enhanced activity in young and older adults' visual regions relative to synesthetes, whereas associative recognition (deciding whether a visual stimulus was the correct pair-associate) was characterized by enhanced activity in synesthetes' visual regions relative to older adults. Whole-brain analyses at associative retrieval revealed an effect of age in early visual cortex, with older adults showing enhanced activity relative to synesthetes and young adults. At associative recognition, the group effect was reversed: Synesthetes showed significantly enhanced activity relative to young and older adults in early visual regions. The inverted group effects observed between retrieval and recognition indicate that reduced sensitivity in visual cortex (as in aging) comes with increased activity during top-down retrieval and decreased activity during bottom-up recognition, whereas enhanced sensitivity (as in synesthesia) shows the opposite pattern. Our results provide novel evidence for the direct contribution of perceptual mechanisms to visual associative memory based on the examples of synesthesia and aging.

  10. Temporal allocation of attention toward threat in individuals with posttraumatic stress symptoms.

    PubMed

    Amir, Nader; Taylor, Charles T; Bomyea, Jessica A; Badour, Christal L

    2009-12-01

    Research suggests that individuals with posttraumatic stress disorder (PTSD) selectively attend to threat-relevant information. However, little is known about how initial detection of threat influences the processing of subsequently encountered stimuli. To address this issue, we used a rapid serial visual presentation paradigm (RSVP; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860) to examine temporal allocation of attention to threat-related and neutral stimuli in individuals with PTSD symptoms (PTS), traumatized individuals without PTSD symptoms (TC), and non-anxious controls (NAC). Participants were asked to identify one or two targets in an RSVP stream. Typically processing of the first target decreases accuracy of identifying the second target as a function of the temporal lag between targets. Results revealed that the PTS group was significantly more accurate in detecting a neutral target when it was presented 300 or 500ms after threat-related stimuli compared to when the target followed neutral stimuli. These results suggest that individuals with PTSD may process trauma-relevant information more rapidly and efficiently than benign information.

  11. Basinwide Estimation of Habitat and Fish Populations in Streams

    Treesearch

    C. Andrew Dolloff; David G. Hankin; Gordon H. Reeves

    1993-01-01

    Basinwide visual estimation techniques (BVET) are statistically reliable and cost effective for estimating habitat and fish populations across entire watersheds. Survey teams visit habitats in every reach of the study area to record visual observations. At preselected intervals, teams also record actual measurements. These observations and measurements are used to...

  12. Visual Priming of Inverted and Rotated Objects

    ERIC Educational Resources Information Center

    Knowlton, Barbara J.; McAuliffe, Sean P.; Coelho, Chase J.; Hummel, John E.

    2009-01-01

    Object images are identified more efficiently after prior exposure. Here, the authors investigated shape representations supporting object priming. The dependent measure in all experiments was the minimum exposure duration required to correctly identify an object image in a rapid serial visual presentation stream. Priming was defined as the change…

  13. Memory for Spatial Locations in a Patient with Near Space Neglect and Optic Ataxia: Involvement of the Occipitotemporal Stream

    PubMed Central

    Chieffi, Sergio; Messina, Giovanni; Messina, Antonietta; Villano, Ines; Monda, Vincenzo; Ambra, Ferdinando Ivano; Garofalo, Elisabetta; Romano, Felice; Mollica, Maria Pina; Monda, Marcellino; Iavarone, Alessandro

    2017-01-01

    Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP) with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1) an immediate reaching task, in which GP reached target locations under visual control and (2) a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1). In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2), but not proprioceptive (experiment 3), target locations. As a whole, these findings further support the hypothesis of an involvement of the occipitotemporal stream in delayed reaching. Furthermore, the observation that in both delayed reaching tasks the variable errors were greater in GP than in the controls suggested that in optic ataxia is present not only a visuo- but also a proprioceptivo-motor integration deficit. PMID:28620345

  14. Toward a Visualization-Supported Workflow for Cyber Alert Management using Threat Models and Human-Centered Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.

    Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less

  15. Insights from event-related potentials into the temporal and hierarchical organization of the ventral and dorsal streams of the visual system in selective attention.

    PubMed

    Martín-Loeches, M; Hinojosa, J A; Rubia, F J

    1999-11-01

    The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.

  16. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID

    2009-09-29

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

  17. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical to understanding how local processing in V1 relates to downstream processing. We have identified the local circuits of a population of cells in V1 layer (L)4B that project to area V2. These cells' local circuits differ from classical descriptions of L4B circuits in both the laminar and functional compartments targeted by their axons, and identify two neuron classes. Our results demonstrate that both local intra-V1 and extrinsic V1-to-V2 connections of L4B neurons preserve CO-stream segregation, suggesting that across-stream integration occurs downstream of V1, and that output targets dictate local V1 circuitry. PMID:28077720

  18. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  19. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA

    2007-05-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  20. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.

    2005-11-08

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  1. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2005-05-03

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  2. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2003-06-24

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  3. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  4. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  5. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  6. The persistence of the attentional bias to regularities in a changing environment.

    PubMed

    Yu, Ru Qi; Zhao, Jiaying

    2015-10-01

    The environment often is stable, but some aspects may change over time. The challenge for the visual system is to discover and flexibly adapt to the changes. We examined how attention is shifted in the presence of changes in the underlying structure of the environment. In six experiments, observers viewed four simultaneous streams of objects while performing a visual search task. In the first half of each experiment, the stream in the structured location contained regularities, the shapes in the random location were randomized, and gray squares appeared in two neutral locations. In the second half, the stream in the structured or the random location may change. In the first half of all experiments, visual search was facilitated in the structured location, suggesting that attention was consistently biased toward regularities. In the second half, this bias persisted in the structured location when no change occurred (Experiment 1), when the regularities were removed (Experiment 2), or when new regularities embedded in the original or novel stimuli emerged in the previously random location (Experiments 3 and 6). However, visual search was numerically but no longer reliably faster in the structured location when the initial regularities were removed and new regularities were introduced in the previously random location (Experiment 4), or when novel random stimuli appeared in the random location (Experiment 5). This suggests that the attentional bias was weakened. Overall, the results demonstrate that the attentional bias to regularities was persistent but also sensitive to changes in the environment.

  7. Bringing the Unidata IDV to the Cloud

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.; Oxelson Ganter, J.

    2015-12-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While traditional software engineering provides a suite of tools and methodologies which may mitigate this issue, they are typically ignored by developers lacking a background in software engineering. Causing further problems, these methodologies are best applied at the start of project; trying to apply them to an existing, mature project can require an immense effort. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. As a result of these issues, there exists a large body of software which is simultaneously critical to the scientists who are dependent upon it, and yet increasingly difficult to maintain.The solution to this problem was partially provided with the advent of Cloud Computing; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. When coupled with containerization technology such as Docker, we are able to easily bring the same visualization software to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be.Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  8. Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm.

    PubMed

    Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H

    2015-09-01

    How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping.

    PubMed

    Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J

    2014-04-15

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The use of a Stream Visual Assessment Protocol to determine ecosystem integrity in an urban watershed in Puerto Rico

    NASA Astrophysics Data System (ADS)

    de Jesús-Crespo, Rebeca; Ramirez, Alonso

    The growing need to protect stream ecosystems in Puerto Rico requires the development of monitoring procedures that help determine management priorities. Physical habitat assessments have been used to make quick evaluations that are cost efficient and easy conduct, yet they need to be studied further to understand their accuracy at predicting stream health. This study evaluated the efficiency of the Hawaii Stream Visual Assessment Protocol (HSVAP) at determining integrity of streams within the highly urbanized Rio Piedras watershed in Puerto Rico. To validate the protocol we compared results from HSVAP assessments conducted at 16 reaches with water quality and macroinvertebrate data collected at the same sites. Results from linear regressions between the water quality measures and HSVAP scores showed that there was no significant relationships ( R2 = 0.48; p = 0.08). This implies that the protocol is not supported by the water quality data. However, results from regressions between macroinvertebrate diversity and the number of families per site showed a significant positive relation with HSVAP scores ( R2 = 0.30; p = 0.02; R2 = 0.24; p = 0.05). In addition, a significant negative relation was observed between HSVAP scores and the Family Biotic Index (FBI) ( R2 = 0.32; p = 0.02). Comparisons between ratings obtained from the FBI and HSVAP scores suggest that the HSVAP classified sites as having higher quality than the biological metric. Based on these results, it can be concluded that the HSVAP is a good tool for a general assessment of the physical characteristics of a stream, but it needs modifications to accurately assess ecological quality of streams in Puerto Rico.

  11. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  12. Functional communication within a perceptual network processing letters and pseudoletters.

    PubMed

    Herdman, Anthony T

    2011-10-01

    Many studies have identified regions within human ventral visual stream to be important for object identification and categorization; however, knowledge of how perceptual information is communicated within the visual network is still limited. Current theories posit that if a high correspondence between incoming sensory information and internal representations exists, then the object is rapidly identified, and if there is not, then the object requires extra detailed processing. Event-related responses from the present magnetoencephalography study showed two main effects. The N1m peak latencies were approximately 15 milliseconds earlier to familiar letters than to unfamiliar pseudoletters, and the N2m was more negative to pseudoletters than to letters. Event-related beamforming analyses identified these effects to be within bilateral visual cortices with a right lateralization for the N2m effect. Furthermore, functional connectivity analyses revealed that gamma-band (50-80 Hz) oscillatory phase synchronizations among occipital regions were greater to letters than to pseudoletters (around 85 milliseconds). However, during a later time interval between 245 and 375 milliseconds, pseudoletters elicited greater gamma-band phase synchronizations among a more distributed occipital network than did letters. These findings indicate that familiar object processing begins by at least 85 milliseconds, which could represent an initial match to an internal template. In addition, unfamiliar object processing persisted longer than that for familiar objects, which could reflect greater attention to inexperienced objects to determine their identity and/or to consolidate a new template to aid in future identification.

  13. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.

    PubMed

    Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A

    2013-06-07

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Functional neural substrates of posterior cortical atrophy patients.

    PubMed

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  15. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  16. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  17. Pseudo-spectral methodology for a quantitative assessment of the cover of in-stream vegetation in small streams

    NASA Astrophysics Data System (ADS)

    Hershkovitz, Yaron; Anker, Yaakov; Ben-Dor, Eyal; Schwartz, Guy; Gasith, Avital

    2010-05-01

    In-stream vegetation is a key ecosystem component in many fluvial ecosystems, having cascading effects on stream conditions and biotic structure. Traditionally, ground-level surveys (e.g. grid and transect analyses) are commonly used for estimating cover of aquatic macrophytes. Nonetheless, this methodological approach is highly time consuming and usually yields information which is practically limited to habitat and sub-reach scales. In contrast, remote-sensing techniques (e.g. satellite imagery and airborne photography), enable collection of large datasets over section, stream and basin scales, in relatively short time and reasonable cost. However, the commonly used spatial high resolution (1m) is often inadequate for examining aquatic vegetation on habitat or sub-reach scales. We examined the utility of a pseudo-spectral methodology, using RGB digital photography for estimating the cover of in-stream vegetation in a small Mediterranean-climate stream. We compared this methodology with that obtained by traditional ground-level grid methodology and with an airborne hyper-spectral remote sensing survey (AISA-ES). The study was conducted along a 2 km section of an intermittent stream (Taninim stream, Israel). When studied, the stream was dominated by patches of watercress (Nasturtium officinale) and mats of filamentous algae (Cladophora glomerata). The extent of vegetation cover at the habitat and section scales (100 and 104 m, respectively) were estimated by the pseudo-spectral methodology, using an airborne Roli camera with a Phase-One P 45 (39 MP) CCD image acquisition unit. The swaths were taken in elevation of about 460 m having a spatial resolution of about 4 cm (NADIR). For measuring vegetation cover at the section scale (104 m) we also used a 'push-broom' AISA-ES hyper-spectral swath having a sensor configuration of 182 bands (350-2500 nm) at elevation of ca. 1,200 m (i.e. spatial resolution of ca. 1 m). Simultaneously, with every swath we used an Analytical Spectral Device (ASD) to measure hyper-spectral signatures (2150 bands configuration; 350-2500 nm) of selected ground-level targets (located by GPS) of soil, water; vegetation (common reed, watercress, filamentous algae) and standard EVA foam colored sheets (red, green, blue, black and white). Processing and analysis of the data were performed over an ITT ENVI platform. The hyper-spectral image underwent radiometric calibration according to the flight and sensor calibration parameters on CALIGEO platform and the raw DN scale was converted into radiance scale. Ground level visual survey of vegetation cover and height was applied at the habitat scale (100 m) by placing a 1m2 netted grids (10x10cm cells) along 'bank-to-bank' transect (in triplicates). Estimates of plant cover obtained by the pseudo-spectral methodology at the habitat scale were 35-61% for the watercress, 0.4-25% for the filamentous algae and 27-51% for plant-free patches. The respective estimates by ground level visual survey were 26-50, 14-43% and 36-50%. The pseudo-spectral methodology also yielded estimates for the section scale (104 m) of ca. 39% for the watercress, ca. 32% for the filamentous algae and 6% for plant-free patches. The respective estimates obtained by hyper-spectral swath were 38, 26 and 8%. Validation against ground-level measurements proved that pseudo-spectral methodology gives reasonably good estimates of in-stream plant cover. Therefore, this methodology can serve as a substitute for ground level estimates at small stream scales and for the low resolution hyper-spectral methodology at larger scales.

  18. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  19. A cross-modal investigation of the neural substrates for ongoing cognition

    PubMed Central

    Wang, Megan; He, Biyu J.

    2014-01-01

    What neural mechanisms underlie the seamless flow of our waking consciousness? A necessary albeit insufficient condition for such neural mechanisms is that they should be consistently modulated across time were a segment of the conscious stream to be repeated twice. In this study, we experimentally manipulated the content of a story followed by subjects during functional magnetic resonance imaging (fMRI) independently from the modality of sensory input (as visual text or auditory speech) as well as attentional focus. We then extracted brain activity patterns consistently modulated across subjects by the evolving content of the story regardless of whether it was presented visually or auditorily. Specifically, in one experiment we presented the same story to different subjects via either auditory or visual modality. In a second experiment, we presented two different stories simultaneously, one auditorily, one visually, and manipulated the subjects' attentional focus. This experimental design allowed us to dissociate brain activities underlying modality-specific sensory processing from modality-independent story processing. We uncovered a network of brain regions consistently modulated by the evolving content of a story regardless of the sensory modality used for stimulus input, including the superior temporal sulcus/gyrus (STS/STG), the inferior frontal gyrus (IFG), the posterior cingulate cortex (PCC), the medial frontal cortex (MFC), the temporal pole (TP), and the temporoparietal junction (TPJ). Many of these regions have previously been implicated in semantic processing. Interestingly, different stories elicited similar brain activity patterns, but with subtle differences potentially attributable to varying degrees of emotional valence and self-relevance. PMID:25206347

  20. The Attention Cascade Model and Attentional Blink

    ERIC Educational Resources Information Center

    Shih, Shui-I

    2008-01-01

    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  1. Across Space and Time: Infants Learn from Backward and Forward Visual Statistics

    ERIC Educational Resources Information Center

    Tummeltshammer, Kristen; Amso, Dima; French, Robert M.; Kirkham, Natasha Z.

    2017-01-01

    This study investigates whether infants are sensitive to backward and forward transitional probabilities within temporal and spatial visual streams. Two groups of 8-month-old infants were familiarized with an artificial grammar of shapes, comprising backward and forward base pairs (i.e. two shapes linked by strong backward or forward transitional…

  2. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.

    PubMed

    Bonfiglio, Luca; Bocci, Tommaso; Minichilli, Fabrizio; Crecchi, Alessandra; Barloscio, Davide; Spina, Donata Maria; Rossi, Bruno; Sartucci, Ferdinando

    2017-01-01

    As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.

  3. How (and why) the visual control of action differs from visual perception

    PubMed Central

    Goodale, Melvyn A.

    2014-01-01

    Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899

  4. Objective video presentation QoE predictor for smart adaptive video streaming

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zeng, Kai; Rehman, Abdul; Yeganeh, Hojatollah; Wang, Shiqi

    2015-09-01

    How to deliver videos to consumers over the network for optimal quality-of-experience (QoE) has been the central goal of modern video delivery services. Surprisingly, regardless of the large volume of videos being delivered everyday through various systems attempting to improve visual QoE, the actual QoE of end consumers is not properly assessed, not to say using QoE as the key factor in making critical decisions at the video hosting, network and receiving sites. Real-world video streaming systems typically use bitrate as the main video presentation quality indicator, but using the same bitrate to encode different video content could result in drastically different visual QoE, which is further affected by the display device and viewing condition of each individual consumer who receives the video. To correct this, we have to put QoE back to the driver's seat and redesign the video delivery systems. To achieve this goal, a major challenge is to find an objective video presentation QoE predictor that is accurate, fast, easy-to-use, display device adaptive, and provides meaningful QoE predictions across resolution and content. We propose to use the newly developed SSIMplus index (https://ece.uwaterloo.ca/~z70wang/research/ssimplus/) for this role. We demonstrate that based on SSIMplus, one can develop a smart adaptive video streaming strategy that leads to much smoother visual QoE impossible to achieve using existing adaptive bitrate video streaming approaches. Furthermore, SSIMplus finds many more applications, in live and file-based quality monitoring, in benchmarking video encoders and transcoders, and in guiding network resource allocations.

  5. Letter position coding across modalities: braille and sighted reading of sentences with jumbled words.

    PubMed

    Perea, Manuel; Jiménez, María; Martín-Suesta, Miguel; Gómez, Pablo

    2015-04-01

    This article explores how letter position coding is attained during braille reading and its implications for models of word recognition. When text is presented visually, the reading process easily adjusts to the jumbling of some letters (jugde-judge), with a small cost in reading speed. Two explanations have been proposed: One relies on a general mechanism of perceptual uncertainty at the visual level, and the other focuses on the activation of an abstract level of representation (i.e., bigrams) that is shared by all orthographic codes. Thus, these explanations make differential predictions about reading in a tactile modality. In the present study, congenitally blind readers read sentences presented on a braille display that tracked the finger position. The sentences either were intact or involved letter transpositions. A parallel experiment was conducted in the visual modality. Results revealed a substantially greater reading cost for the sentences with transposed-letter words in braille readers. In contrast with the findings with sighted readers, in which there is a cost of transpositions in the external (initial and final) letters, the reading cost in braille readers occurs serially, with a large cost for initial letter transpositions. Thus, these data suggest that the letter-position-related effects in visual word recognition are due to the characteristics of the visual stream.

  6. Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi

    2005-05-01

    The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.

  7. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  8. Information fusion via isocortex-based Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.

  9. Redefining "Learning" in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities?

    PubMed

    Siegelman, Noam; Bogaerts, Louisa; Kronenfeld, Ofer; Frost, Ram

    2017-10-07

    From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL. © 2017 Cognitive Science Society, Inc.

  10. Cue-induced brain activity in pathological gamblers.

    PubMed

    Crockford, David N; Goodyear, Bradley; Edwards, Jodi; Quickfall, Jeremy; el-Guebaly, Nady

    2005-11-15

    Previous studies using functional magnetic resonance imaging (fMRI) have identified differential brain activity in healthy subjects performing gambling tasks and in pathological gambling (PG) subjects when exposed to motivational and emotional predecessors for gambling as well as during gambling or response inhibition tasks. The goal of the present study was to determine if PG subjects exhibit differential brain activity when exposed to visual gambling cues. Ten male DSM-IV-TR PG subjects and 10 matched healthy control subjects underwent fMRI during visual presentations of gambling-related video alternating with video of nature scenes. Pathological gambling subjects and control subjects exhibited overlap in areas of brain activity in response to the visual gambling cues; however, compared with control subjects, PG subjects exhibited significantly greater activity in the right dorsolateral prefrontal cortex (DLPFC), including the inferior and medial frontal gyri, the right parahippocampal gyrus, and left occipital cortex, including the fusiform gyrus. Pathological gambling subjects also reported a significant increase in mean craving for gambling after the study. Post hoc analyses revealed a dissociation in visual processing stream (dorsal vs. ventral) activation by subject group and cue type. These findings may represent a component of cue-induced craving for gambling or conditioned behavior that could underlie pathological gambling.

  11. Device for staged carbon monoxide oxidation

    DOEpatents

    Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph

    1993-01-01

    A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

  12. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    PubMed Central

    Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.

    2013-01-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548

  13. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    PubMed

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  15. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  16. TERMINAL ELECTRON ACCEPTING PROCESSES IN THE ALLUVIAL SEDIMENTS OF A HEADWATER STREAM

    EPA Science Inventory

    Chemical fluxes between catchments and streams are influenced by biochemical processes in the groundwater-stream water (GW-SW) ecotone, the interface between stream surface water and groundwater. Terminal electron accepting processes (TEAPs) that are utilized in respiration of ...

  17. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina

    PubMed Central

    Venkataramani, Sowmya

    2016-01-01

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041

  18. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.

    PubMed

    Venkataramani, Sowmya; Taylor, W Rowland

    2016-03-16

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.

  19. Face perception is tuned to horizontal orientation in the N170 time window.

    PubMed

    Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie

    2014-02-07

    The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.

  20. Learning enhances the relative impact of top-down processing in the visual cortex

    PubMed Central

    Makino, Hiroshi; Komiyama, Takaki

    2015-01-01

    Theories have proposed that in sensory cortices learning can enhance top-down modulation by higher brain areas while reducing bottom-up sensory inputs. To address circuit mechanisms underlying this process, we examined the activity of layer 2/3 (L2/3) excitatory neurons in the mouse primary visual cortex (V1) as well as L4 neurons, the main bottom-up source, and long-range top-down projections from the retrosplenial cortex (RSC) during associative learning over days using chronic two-photon calcium imaging. During learning, L4 responses gradually weakened, while RSC inputs became stronger. Furthermore, L2/3 acquired a ramp-up response temporal profile with learning, coinciding with a similar change in RSC inputs. Learning also reduced the activity of somatostatin-expressing inhibitory neurons (SOM-INs) in V1 that could potentially gate top-down inputs. Finally, RSC inactivation or SOM-IN activation was sufficient to partially reverse the learning-induced changes in L2/3. Together, these results reveal a learning-dependent dynamic shift in the balance between bottom-up and top-down information streams and uncover a role of SOM-INs in controlling this process. PMID:26167904

  1. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States

    USGS Publications Warehouse

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2010-01-01

    In addition, watersheds were assessed for their reference quality within nine broad regions for use in studies intended to characterize stream flows under conditions minimally influenced by human activities. Three primary criteria were used to assess reference quality: (1) a quantitative index of anthropogenic modification within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and drainage basin from recent high-resolution imagery and topographic maps, and (3) information about man-made influences from USGS Annual Water Data Reports. From the set of 6785 sites, we identified 1512 as reference-quality stream gages. All data derived for these watersheds as well as the reference condition evaluation are provided as an online data set termed GAGES (geospatial attributes of gages for evaluating stream flow).

  2. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  3. Ambient illumination switches contrast preference of specific retinal processing streams

    PubMed Central

    Pearson, James T.

    2015-01-01

    Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ONpref) or negative (OFFpref) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ONpref to OFFpref and Sw3-RGCs from OFFpref to ONpref. In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels. PMID:25995351

  4. The Primary Break-up Instabilities in a gas-liquid coaxial atomizer combined with electro-spray

    NASA Astrophysics Data System (ADS)

    Osuna, Rodrigo; Machicoane, Nathanael; Aliseda, Alberto

    2017-11-01

    We present an experimental study of a canonical coaxial gas-liquid atomizer, balancing the physics of gas-assisted atomization and electro-sprays. The laminar liquid stream is injected through a long straight metallic pipe at the center of the turbulent gas jet. The liquid needle is used as the anode, while the cathode is formed by a ring located on the streamwise face of the coaxial gas chamber. The gas Reynolds number ranges from 104-106, while keeping the liquid Reynolds number constant at 103. The electrospray voltage applied is varied from 100 to 5000 V and the resulting negative charge transferred to the liquid jet spans from O(10-3 - 10-1) Coulomb per cubic meter. The relative influence of the high speed gas to the liquid electric charge on the primary instability and jet break-up is studied. The effect of the electric field on the atomization process is characterized by high speed visualization at the nozzle exit, complemented with the resulting droplet size distribution in the mid field after break-up has ended. The quantitative visualization captures the fast dynamics of the interface de-stabilization and clearly shows the changes in the liquid stream instabilities caused by the electric field. These instabilities control the liquid droplet sizes and their spatio-temporal distribution in the spray, as measured from light interferometry.

  5. Visual sensitivity of river recreation to power plants

    Treesearch

    David H. Blau; Michael C. Bowie

    1979-01-01

    The consultants were asked by the Power Plant Siting Staff of the Minnesota Environmental Quality Council to develop a methodology for evaluating the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants. The methodology, which is applicable to any major stream in the state, was developed and tested on a case study...

  6. Metabolic alterations in patients with Parkinson disease and visual hallucinations.

    PubMed

    Boecker, Henning; Ceballos-Baumann, Andres O; Volk, Dominik; Conrad, Bastian; Forstl, Hans; Haussermann, Peter

    2007-07-01

    Visual hallucinations (VHs) occur frequently in advanced stages of Parkinson disease (PD). Which brain regions are affected in PD with VH is not well understood. To characterize the pattern of affected brain regions in PD with VH and to determine whether functional changes in PD with VH occur preferentially in visual association areas, as is suggested by the complex clinical symptomatology. Positron emission tomography measurements using fluorodeoxyglucose F 18. Between-group statistical analysis, accounting for the variance related to disease stage. University hospital. Patients Eight patients with PD and VH and 11 patients with PD without VH were analyzed. The presence of VH during the month before positron emission tomography was rated using the Neuropsychiatric Inventory subscale for VH (PD and VH, 4.63; PD without VH, 0.00; P < .002). Parkinson disease with VH, compared with PD without VH, was characterized by reduction in the regional cerebral metabolic rate for glucose consumption (P < .05, corrected for false discovery rate) in occipitotemporoparietal regions, sparing the occipital pole. No significant increase in regional glucose metabolism was detected in patients with PD and VH. The pattern of resting-state metabolic changes in regions of the dorsal and ventral visual streams, but not in primary visual cortex, in patients with PD and VH, is compatible with the functional roles of visual association areas in higher-order visual processing. These findings may help to further elucidate the functional mechanisms underlying VH in PD.

  7. The Representation of Color across the Human Visual Cortex: Distinguishing Chromatic Signals Contributing to Object Form Versus Surface Color.

    PubMed

    Seymour, K J; Williams, M A; Rich, A N

    2016-05-01

    Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Methods for determining manning's coefficients for Illinois streams

    USGS Publications Warehouse

    Soong, D.T.; Halfar, T.M.; Jupin, M.A.; Wobig, L.A.; ,

    2004-01-01

    Determination of Manning's coefficient, n, for natural streams remains a challenge in practices. One source for determining the n-values that has received practitioners' attention is presenting the n-values determined from field data (measured discharge and water-surface slope) in combination of photographs and site descriptions (ancillary information). Further improvements in the visual approach can be made in presenting site characteristics and describing site ancillary information. In this manner, users can use the presented information for sites of interest with similar features. This approach in a current project on the subject for Illinois streams is discussed.

  9. Fish assemblages

    USGS Publications Warehouse

    McGarvey, Daniel J.; Falke, Jeffrey A.; Li, Hiram W.; Li, Judith; Hauer, F. Richard; Lamberti, G.A.

    2017-01-01

    Methods to sample fishes in stream ecosystems and to analyze the raw data, focusing primarily on assemblage-level (all fish species combined) analyses, are presented in this chapter. We begin with guidance on sample site selection, permitting for fish collection, and information-gathering steps to be completed prior to conducting fieldwork. Basic sampling methods (visual surveying, electrofishing, and seining) are presented with specific instructions for estimating population sizes via visual, capture-recapture, and depletion surveys, in addition to new guidance on environmental DNA (eDNA) methods. Steps to process fish specimens in the field including the use of anesthesia and preservation of whole specimens or tissue samples (for genetic or stable isotope analysis) are also presented. Data analysis methods include characterization of size-structure within populations, estimation of species richness and diversity, and application of fish functional traits. We conclude with three advanced topics in assemblage-level analysis: multidimensional scaling (MDS), ecological networks, and loop analysis.

  10. Are some gestalt principles deployed more readily than others during early development? The case of lightness versus form similarity.

    PubMed

    Quinn, Paul C; Bhatt, Ramesh S

    2006-10-01

    Four experiments investigated how readily infants achieve perceptual organization by lightness and form similarity. Infants were (a) familiarized with elements that could be organized into rows or columns on the basis of lightness or form similarity and tested with vertical versus horizontal bars depicting the familiar versus novel organization or (b) familiarized with bars and tested with elements. For lightness similarity, generalization occurred in both tasks; however, for form similarity, generalization occurred only in the elements --> bars task. The findings indicate that lightness similarity is more readily deployed than form similarity and are discussed in the context of (a) whether the difference reflects speed of application or experience-based learning, (b) evidence from visual agnosic patients and the time course of application of the principles in healthy adults, and (c) development of dorsal and ventral visual processing streams. Copyright 2006 APA.

  11. What predicts successful literacy acquisition in a second language?

    PubMed Central

    Frost, Ram; Siegelman, Noam; Narkiss, Alona; Afek, Liron

    2013-01-01

    We examined whether success (or failure) in assimilating the structure of a second language could be predicted by general statistical learning abilities that are non-linguistic in nature. We employed a visual statistical learning (VSL) task, monitoring our participants’ implicit learning of the transitional probabilities of visual shapes. A pretest revealed that performance in the VSL task is not correlated with abilities related to a general G factor or working memory. We found that native speakers of English who picked up the implicit statistical structure embedded in the continuous stream of shapes, on average, better assimilated the Semitic structure of Hebrew words. Our findings thus suggest that languages and their writing systems are characterized by idiosyncratic correlations of form and meaning, and these are picked up in the process of literacy acquisition, as they are picked up in any other type of learning, for the purpose of making sense of the environment. PMID:23698615

  12. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.

    PubMed

    Rolls, Edmund T; Mills, W Patrick C

    2018-05-01

    When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Prism adaptation does not alter configural processing of faces

    PubMed Central

    Bultitude, Janet H.; Downing, Paul E.; Rafal, Robert D.

    2013-01-01

    Patients with hemispatial neglect (‘neglect’) following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing. PMID:25110574

  14. Prism adaptation does not alter configural processing of faces.

    PubMed

    Bultitude, Janet H; Downing, Paul E; Rafal, Robert D

    2013-01-01

    Patients with hemispatial neglect ('neglect') following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing.

  15. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the image, the target and the surrounding assistant targets could be identified easily, and the noise was not amplified much. For the low quality image, these improved algorithms augment the information entropy and improve the image and the video stream aesthetic quality, while for the high quality image they will not debase the quality of the image.

  16. Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series.

    PubMed

    Verleger, Rolf; Śmigasiewicz, Kamila

    2015-09-01

    Everyday experience suggests that people are equally aware of events in both hemi-fields. However, when two streams of stimuli are rapidly presented left and right containing two targets, the second target is better identified in the left than in the right visual field. This might be considered evidence for a right-hemisphere advantage in generating conscious percepts. However, this putative asymmetry of conscious perception cannot be measured independently of participants' access to their conscious percepts, and there is actually evidence from split-brain patients for the reverse, left-hemisphere advantage in having access to conscious percepts. Several other topics were studied in search of the responsible mechanism, among others: Mutual inhibition of hemispheres, cooperation of hemispheres in perceiving midline stimuli, and asymmetries in processing various perceptual inputs. Directing attention by salient cues turned out to be one of the few mechanisms capable of modifying the left visual-field advantage in this paradigm. Thus, this left visual-field advantage is best explained by the notion of a right-hemisphere advantage in directing attention to salient events. Dovetailing with the pathological asymmetries of attention after right-hemisphere lesions and with asymmetries of brain activation when healthy participants shift their attention, the present results extend that body of evidence by demonstrating unusually large and reliable behavioral asymmetries for attention-directing processes in healthy participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    PubMed

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  18. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives

    PubMed Central

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context. PMID:24550798

  19. Research to Operations: From Point Positions, Earthquake and Tsunami Modeling to GNSS-augmented Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    Stough, T.; Green, D. S.

    2017-12-01

    This collaborative research to operations demonstration brings together the data and algorithms from NASA research, technology, and applications-funded projects to deliver relevant data streams, algorithms, predictive models, and visualization tools to the NOAA National Tsunami Warning Center (NTWC) and Pacific Tsunami Warning Center (PTWC). Using real-time GNSS data and models in an operational environment, we will test and evaluate an augmented capability for tsunami early warning. Each of three research groups collect data from a selected network of real-time GNSS stations, exchange data consisting of independently processed 1 Hz station displacements, and merge the output into a single, more accurate and reliable set. The resulting merged data stream is delivered from three redundant locations to the TWCs with a latency of 5-10 seconds. Data from a number of seismogeodetic stations with collocated GPS and accelerometer instruments are processed for displacements and seismic velocities and also delivered. Algorithms for locating and determining the magnitude of earthquakes as well as algorithms that compute the source function of a potential tsunami using this new data stream are included in the demonstration. The delivered data, algorithms, models and tools are hosted on NOAA-operated machines at both warning centers, and, once tested, the results will be evaluated for utility in improving the speed and accuracy of tsunami warnings. This collaboration has the potential to dramatically improve the speed and accuracy of the TWCs local tsunami information over the current seismometer-only based methods. In our first year of this work, we have established and deployed an architecture for data movement and algorithm installation at the TWC's. We are addressing data quality issues and porting algorithms into the TWCs operating environment. Our initial module deliveries will focus on estimating moment magnitude (Mw) from Peak Ground Displacement (PGD), within 2-3 minutes of the event, and coseismic displacements converging to static offsets. We will also develop visualizations of module outputs tailored to the operational environment. In the context of this work, we will also discuss this research to operations approach and other opportunities within the NASA Applied Science Disaster Program.

  20. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    PubMed Central

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068

Top