Sample records for visual responses optical

  1. Representation of vestibular and visual cues to self-motion in ventral intraparietal (VIP) cortex

    PubMed Central

    Chen, Aihua; Deangelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately half of VIP cells show significant directional selectivity in response to optic flow, half show tuning to vestibular stimuli, and one-third show multisensory responses. Visual and vestibular direction preferences of multisensory VIP neurons could be congruent or opposite. When visual and vestibular stimuli were combined, VIP responses could be dominated by either input, unlike medial superior temporal area (MSTd) where optic flow tuning typically dominates or the visual posterior sylvian area (VPS) where vestibular tuning dominates. Optic flow selectivity in VIP was weaker than in MSTd but stronger than in VPS. In contrast, vestibular tuning for translation was strongest in VPS, intermediate in VIP, and weakest in MSTd. To characterize response dynamics, direction-time data were fit with a spatiotemporal model in which temporal responses were modeled as weighted sums of velocity, acceleration, and position components. Vestibular responses in VIP reflected balanced contributions of velocity and acceleration, whereas visual responses were dominated by velocity. Timing of vestibular responses in VIP was significantly faster than in MSTd, whereas timing of optic flow responses did not differ significantly among areas. These findings suggest that VIP may be proximal to MSTd in terms of vestibular processing but hierarchically similar to MSTd in terms of optic flow processing. PMID:21849564

  2. An insect-inspired model for visual binding I: learning objects and their characteristics.

    PubMed

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  3. OPTICAL COHERENCE TOMOGRAPHY BASELINE PREDICTORS FOR INITIAL BEST-CORRECTED VISUAL ACUITY RESPONSE TO INTRAVITREAL ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR TREATMENT IN EYES WITH DIABETIC MACULAR EDEMA: The CHARTRES Study.

    PubMed

    Santos, Ana R; Costa, Miguel Â; Schwartz, Christian; Alves, Dalila; Figueira, João; Silva, Rufino; Cunha-Vaz, Jose G

    2018-06-01

    To identify baseline optical coherence tomography morphologic characteristics predicting the visual response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Sixty-seven patients with diabetic macular edema completed a prospective, observational study (NCT01947881-CHARTRES). All patients received monthly intravitreal injections of Lucentis for 3 months followed by PRN treatment and underwent best-corrected visual acuity measurements and spectral domain optical coherence tomography at Baseline, Months 1, 2, 3, and 6. Visual treatment response was characterized as good (≥10 letters), moderate (5-10 letters), and poor (<5 or letters loss). Spectral domain optical coherence tomography images were graded before and after treatment by a certified Reading Center. One month after loading dose, 26 patients (38.80%) were identified as good responders, 19 (28.35%) as Moderate and 22 (32.83%) as poor responders. There were no significant best-corrected visual acuity and central retinal thickness differences at baseline (P = 0.176; P = 0.573, respectively). Ellipsoid zone disruption and disorganization of retinal inner layers were good predictors for treatment response, representing a significant risk for poor visual recovery to anti-vascular endothelial growth factor therapy (odds ratio = 10.96; P < 0.001 for ellipsoid zone disruption and odds ratio = 7.05; P = 0.034 for disorganization of retinal inner layers). Damage of ellipsoid zone, higher values of disorganization of retinal inner layers, and central retinal thickness decrease are good predictors of best-corrected visual acuity response to anti-vascular endothelial growth factor therapy.

  4. Magnitude of visual accommodation to a head-up display

    NASA Technical Reports Server (NTRS)

    Leitner, E. F.; Haines, R. F.

    1981-01-01

    The virtual image symbology of head-up displays (HUDs) is presented at optical infinity to the pilot. This design feature is intended to help pilots maintain visual focus distance at optical infinity. However, the accommodation response could be nearer than optical infinity, due to an individual's dark focus response. Accommodation responses were measured of two age groups of airline pilots to: (1) static symbology on a HUD; (2) a landing site background at optical infinity; (3) the combination of the HUD symbology and the landing site background; and (4) complete darkness. Results indicate that magnitude of accommodation to HUD symbology, with and without the background, is not significantly different from an infinity focus response for either age group. The dark focus response is significantly closer than optical infinity for the younger pilots, but not the older pilots, a finding consistent with previous research.

  5. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Feola, Andrew; Gleason, Rudy; Mulugeta, Lealem; Myers, Jerry; Nelson, Emily; Samuels, Brian; Ethier, C. Ross

    2015-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome results in a loss of visual function and occurs in astronauts following long-duration spaceflight. Understanding the mechanisms that lead to the ocular changes involved in VIIP is of critical importance for space medicine research. Although the exact mechanisms of VIIP are not yet known, it is hypothesized that microgravity-induced increases in intracranial pressures (ICP) drive the remodeling of the optic nerve sheath, leading to compression of the optic nerve which in turn may reduce visual acuity. Some astronauts present with a kink in the optic nerve after return to earth, suggesting that tissue remodeling in response to ICP increases may be taking place. The goal of this work is to characterize the mechanical properties of the optic nerve sheath (dura mater) to better understand its biomechanical response to increased ICP.

  6. [Work with visual demands. Assumption of responsibility for optical correction by the employer].

    PubMed

    Hermans, G

    2004-01-01

    Comparison of visual demands of work in a traditional office to those of work in an office equiped with a screen. Description of problems of vision when focusing the eye to various distances and fixing it in various directions. Range of possibilities for optical correction for work with a screen (monofocal, bifocal, progressive or for reading), specifying among the optical corrections those which are exclusively reserved for this activity and should become the employer's responsibility.

  7. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    PubMed

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  8. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis

    PubMed Central

    Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420

  9. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    PubMed

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  10. Clinical approach to optic neuropathies

    PubMed Central

    Behbehani, Raed

    2007-01-01

    Optic neuropathy is a frequent cause of vision loss encountered by ophthalmologist. The diagnosis is made on clinical grounds. The history often points to the possible etiology of the optic neuropathy. A rapid onset is typical of demyelinating, inflammatory, ischemic and traumatic causes. A gradual course points to compressive, toxic/nutritional and hereditary causes. The classic clinical signs of optic neuropathy are visual field defect, dyschromatopsia, and abnormal papillary response. There are ancillary investigations that can support the diagnosis of optic neuropathy. Visual field testing by either manual kinetic or automated static perimetry is critical in the diagnosis. Neuro-imaging of the brain and orbit is essential in many optic neuropathies including demyelinating and compressive. Newer technologies in the evaluation of optic neuropathies include multifocal visual evoked potentials and optic coherence tomography. PMID:19668477

  11. Near-infrared spectroscopy of the visual cortex in unilateral optic neuritis.

    PubMed

    Miki, Atsushi; Nakajima, Takashi; Takagi, Mineo; Usui, Tomoaki; Abe, Haruki; Liu, Chia-Shang J; Liu, Grant T

    2005-02-01

    To examine the occipital-lobe activation of patients with optic neuritis using near-infrared spectroscopy. Experimental study. NIRS was performed on five patients with acute unilateral optic neuritis during monocular visual stimulation. As controls, six normal subjects were also tested in the same manner. In the patients with optic neuritis, the changes in the hemoglobin concentrations (oxyhemoglobin, deoxyhemoglobin, and total hemoglobin) in the occipital lobe were found to be markedly reduced when the clinically affected eyes were stimulated compared with the fellow eyes. The response induced by the stimulation of the affected eye was decreased, even when the patient's visual acuity improved to 20/20 in the recovery phase. There was no difference in the concentration changes between the two eyes in the control subjects. NIRS may be useful in detecting visual dysfunction objectively and noninvasively in patients with visual disturbance, especially when used at the bedside.

  12. Human lateral geniculate nucleus and visual cortex respond to screen flicker.

    PubMed

    Krolak-Salmon, Pierre; Hénaff, Marie-Anne; Tallon-Baudry, Catherine; Yvert, Blaise; Guénot, Marc; Vighetto, Alain; Mauguière, François; Bertrand, Olivier

    2003-01-01

    The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.

  13. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice

    PubMed Central

    Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.

    2018-01-01

    Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518

  14. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.

    PubMed

    Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T

    2011-11-01

    The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.

  15. Movement Perception and Movement Production in Asperger's Syndrome

    ERIC Educational Resources Information Center

    Price, Kelly J.; Shiffrar, Maggie; Kerns, Kimberly A.

    2012-01-01

    To determine whether motor difficulties documented in Asperger's Syndrome (AS) are related to compromised visual abilities, this study examined perception and movement in response to dynamic visual environments. Fourteen males with AS and 16 controls aged 7-23 completed measures of motor skills, postural response to optic flow, and visual…

  16. Responses to deceleration during car following: roles of optic flow, warnings, expectations, and interruptions.

    PubMed

    DeLucia, Patricia R; Tharanathan, Anand

    2009-12-01

    More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on responses to deceleration during car following. With computer simulations of car-following scenes, university students pressed a button when the lead car decelerated. Both classes of information affected responses. Observers relied on discrete warnings when optic flow information was relatively less effective as determined by the lead car's headway and deceleration rate. This is consistent with DeLucia's (2008) conceptual framework of space perception that emphasized the importance of viewing distance and motion (and task). In Experiment 2, we measured responses to deceleration after a visual interruption. Scenes were designed to tease apart the role of expectations and optic flow. Responses mostly were consistent with optic flow information presented after the interruption rather than with putative mental expectations that were set up by the lead car's motion prior to the interruption. The theoretical implication of the present results is that responses to deceleration are based on multiple sources of information, including optical size, optical expansion rate and tau, and discrete warnings that are independent of optic flow. The practical implication is that in-vehicle collision-avoidance warning systems may be more useful when optic flow is less effective (e.g., slow deceleration rates), implicating a role for adaptive collision-warning systems. Copyright 2009 APA

  17. Rise and fall of the two visual systems theory.

    PubMed

    Rossetti, Yves; Pisella, Laure; McIntosh, Robert D

    2017-06-01

    Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.

    PubMed

    Chidlow, Glyn; Wood, John P M; Casson, Robert J

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and -70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and -70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.

  19. Neurosteroid allopregnanolone reduces ipsilateral visual cortex potentiation following unilateral optic nerve injury.

    PubMed

    Sergeeva, Elena G; Espinosa-Garcia, Claudia; Atif, Fahim; Pardue, Machelle T; Stein, Donald G

    2018-05-02

    In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABA A receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABA A receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC. Copyright © 2018. Published by Elsevier Inc.

  20. Testing vision with angular and radial multifocal designs using Adaptive Optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Gonzalez, Veronica; Cortes, Daniel; Radhakrishnan, Aiswaryah; Marcos, Susana

    2017-03-01

    Multifocal vision corrections are increasingly used solutions for presbyopia. In the current study we have evaluated, optically and psychophysically, the quality provided by multizone radial and angular segmented phase designs. Optical and relative visual quality were evaluated using 8 subjects, testing 6 phase designs. Optical quality was evaluated by means of Visual Strehl-based-metrics (VS). The relative visual quality across designs was obtained through a psychophysical paradigm in which images viewed through 210 pairs of phase patterns were perceptually judged. A custom-developed Adaptive Optics (AO) system, including a Hartmann-Shack sensor and an electromagnetic deformable mirror, to measure and correct the eye's aberrations, and a phase-only reflective Spatial Light Modulator, to simulate the phase designs, was developed for this study. The multizone segmented phase designs had 2-4 zones of progressive power (0 to +3D) in either radial or angular distributions. The response of an "ideal observer" purely responding on optical grounds to the same psychophysical test performed on subjects was calculated from the VS curves, and compared with the relative visual quality results. Optical and psychophysical pattern-comparison tests showed that while 2-zone segmented designs (angular & radial) provided better performance for far and near vision, 3- and 4-zone segmented angular designs performed better for intermediate vision. AO-correction of natural aberrations of the subjects modified the response for the different subjects but general trends remained. The differences in perceived quality across the different multifocal patterns are, in a large extent, explained by optical factors. AO is an excellent tool to simulate multifocal refractions before they are manufactured or delivered to the patient, and to assess the effects of the native optics to their performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Magnetic resonance in studies of glaucoma

    PubMed Central

    Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł

    2011-01-01

    Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626

  2. A fish on the hunt, observed neuron by neuron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    This three-dimensional microscopy image reveals an output neuron of the optic tectum lighting up in response to visual information from the retina. The scientists used this state-of-the-art imaging technology to learn how neurons in the optic tectum take visual information and convert it into an output that drives action. More information: http://newscenter.lbl.gov/feature-stories/2010/10/29/zebrafish-vision/

  3. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  4. Peripheral Processing Facilitates Optic Flow-Based Depth Perception

    PubMed Central

    Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin

    2016-01-01

    Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631

  5. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  6. Visuomotor transformations underlying hunting behavior in zebrafish.

    PubMed

    Bianco, Isaac H; Engert, Florian

    2015-03-30

    Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    PubMed

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  8. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

    PubMed Central

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-01-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762

  9. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Stem Cell Therapy for Treatment of Ocular Disorders

    PubMed Central

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented. PMID:27293447

  11. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  12. Neuroretinitis associated with melanocytoma of the optic disk.

    PubMed

    García-Arumí, J; Salvador, F; Corcostegui, B; Mateo, C

    1994-01-01

    Melanocytomas of the optic disk are heavily pigmented benign tumors that are most often discovered during routine examination, as they are classically asymptomatic. Although a slight impairment of visual acuity attributable to the tumor may occur in large tumors, acute profound visual loss is extremely unusual. A case involving a 24-year-old woman with melanocytoma of the optic nervehead in the right eye, who experienced acute severe visual loss, an afferent pupillary defect, and optic nervehead edema, is discussed. Laboratory tests and serology for Toxoplasmosis, Syphilis, Borrelia, and Leptospira were performed. The severe loss of vision, optic disc swelling, exudative detachment of the peripapillary retina, macular star, and spontaneous resolution in an otherwise healthy patient were all consistent with Leber's stellate idiopathic neuroretinitis. Results of serologic testing were not contributory. This is the first report of Leber's neuroretinitis associated with melanocytoma of the optic nervehead, and should be included in the differential diagnosis of neuroretinitis. The possible mechanisms responsible for this association are discussed.

  13. Retinal architecture and mfERG: Optic nerve head component response characteristics in MS.

    PubMed

    Schnurman, Zane S; Frohman, Teresa C; Beh, Shin C; Conger, Darrel; Conger, Amy; Saidha, Shiv; Galetta, Steven; Calabresi, Peter A; Green, Ari J; Balcer, Laura J; Frohman, Elliot M

    2014-05-27

    To describe a novel neurophysiologic signature of the retinal ganglion cell and to elucidate its relationship to abnormalities in validated structural and functional measures of the visual system. We used multifocal electroretinogram-generated optic nerve head component (ONHC) responses from normal subjects (n = 18), patients with multiple sclerosis (MS) (n = 18), and those with glaucoma (n = 3). We then characterized the relationship between ONHC response abnormalities and performance on low-contrast visual acuity, multifocal visual-evoked potential-induced cortical responses, and average and quadrant retinal nerve fiber layer (RNFL) thicknesses, as measured by spectral-domain optical coherence tomography. Compared with the eyes of normal subjects, the eyes of patients with MS exhibited an increased number of abnormal or absent ONHC responses (p < 0.0001). For every 7-letter reduction in low-contrast letter acuity, there were corresponding 4.6 abnormal ONHC responses at 2.5% contrast (p < 0.0001) and 6.6 abnormalities at the 1.25% contrast level (p < 0.0001). Regarding average RNFL thickness, for each 10-μm thickness reduction, we correspondingly observed 6.8 abnormal ONHC responses (p = 0.0002). The most robust association was between RNFL thinning in the temporal quadrant and ONHC response abnormalities (p < 0.0001). Further characterization of ONHC abnormalities (those that are reversible and irreversible) may contribute to the development of novel neurotherapeutic strategies aimed at achieving neuroprotective, and perhaps even neurorestorative, effects in disorders that target the CNS in general, and MS in particular. © 2014 American Academy of Neurology.

  14. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  15. Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila

    PubMed Central

    Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.

    2015-01-01

    Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183

  16. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.

    PubMed

    Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A

    2015-05-13

    Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.

  17. Expression of Inducible Heat Shock Proteins Hsp27 and Hsp70 in the Visual Pathway of Rats Subjected to Various Models of Retinal Ganglion Cell Injury

    PubMed Central

    Chidlow, Glyn; Wood, John P. M.; Casson, Robert J.

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and −70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and −70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration. PMID:25535743

  18. Traumatic optic neuropathy—Clinical features and management issues

    PubMed Central

    Yu-Wai-Man, Patrick

    2015-01-01

    Traumatic optic neuropathy (TON) is an uncommon cause of visual loss following blunt or penetrating head trauma, but the consequences can be devastating, especially in cases with bilateral optic nerve involvement. Although the majority of patients are young adult males, about 20% of cases occur during childhood. A diagnosis of TON is usually straightforward based on the clinical history and examination findings indicative of an optic neuropathy. However, the assessment can be difficult when the patient's mental status is impaired owing to severe trauma. TON frequently results in profound loss of central vision, and the final visual outcome is largely dictated by the patient's baseline visual acuities. Other poor prognostic factors include loss of consciousness, no improvement in vision after 48 hours, the absence of visual evoked responses, and evidence of optic canal fractures on neuroimaging. The management of TON remains controversial. Some clinicians favor observation alone, whereas others opt to intervene with systemic steroids, surgical decompression of the optic canal, or both. The evidence base for these various treatment options is weak, and the routine use of high-dose steroids or surgery in TON is not without any attendant risks. There is a relatively high rate of spontaneous visual recovery among patients managed conservatively, and the possible adverse effects of intervention therefore need to be even more carefully considered in the balance. PMID:26052483

  19. CV2/CRMP5-antibody-related Paraneoplastic Optic Neuropathy Associated with Small-cell Lung Cancer.

    PubMed

    Nakajima, Masanori; Uchibori, Ayumi; Ogawa, Yuki; Miyazaki, Tai; Ichikawa, Yaeko; Kaneko, Kimihiko; Takahashi, Toshiyuki; Nakashima, Ichiro; Shiraishi, Hirokazu; Motomura, Masakatsu; Chiba, Atsuro

    2018-06-01

    A 61-year-old woman who had smoked for 41 years developed subacute dizziness, ataxic gait, opsoclonus, and right visual impairment. She had right optic disc swelling and optic nerve gadolinium enhancement on magnetic resonance imaging. She had small-cell lung cancer (SCLC), with CV2/collapsin response mediator protein (CRMP) 5 and HuD antibodies in her serum and cerebrospinal fluid. She was diagnosed with paraneoplastic optic neuropathy (PON) accompanied by paraneoplastic opsoclonus-ataxia syndrome. Her symptoms improved after removing the SCLC. Classical PON is rare in Japan. We recommend assaying for CV2/CRMP5 antibodies and searching for cancer in elderly patients with subacute painless visual impairment.

  20. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  1. 3D topology of orientation columns in visual cortex revealed by functional optical coherence tomography.

    PubMed

    Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu

    2018-04-01

    Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.

  2. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization.

    PubMed

    Milner, A D; Paulignan, Y; Dijkerman, H C; Michel, F; Jeannerod, M

    1999-11-07

    We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.

  3. The optic pathway: the development of an eLearning animation.

    PubMed

    Cooper, Claire; Erolin, Caroline

    2018-04-01

    The optic pathway is responsible for sending visual information from the eyes to the brain via electrical impulses. It is essential that a sound understanding of this pathway is established in order to determine an accurate diagnosis concerning visual field defects. Although easy for trained neurologists to understand, it is an area which medical students repeatedly struggle to visualise. It is proposed that audio-visual teaching resources can improve students understanding of complex areas of importance. This article describes the development and evaluation of a short animation created for use in the undergraduate neurology curriculum at the University of Dundee School of Medicine.

  4. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  5. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  6. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

    PubMed Central

    Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.

    2009-01-01

    Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590

  7. Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality

    NASA Astrophysics Data System (ADS)

    Hua, Hong

    2017-05-01

    Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).

  8. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  9. A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation.

    PubMed

    Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2014-01-01

    We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.

  10. Optic flow detection is not influenced by visual-vestibular congruency.

    PubMed

    Holten, Vivian; MacNeilage, Paul R

    2018-01-01

    Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.

  11. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Han; Sharma, Diksha; Badano, Aldo, E-mail: aldo.badano@fda.hhs.gov

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: Themore » visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.« less

  12. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  13. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  14. Vision and vision-related outcome measures in multiple sclerosis

    PubMed Central

    Balcer, Laura J.; Miller, David H.; Reingold, Stephen C.

    2015-01-01

    Visual impairment is a key manifestation of multiple sclerosis. Acute optic neuritis is a common, often presenting manifestation, but visual deficits and structural loss of retinal axonal and neuronal integrity can occur even without a history of optic neuritis. Interest in vision in multiple sclerosis is growing, partially in response to the development of sensitive visual function tests, structural markers such as optical coherence tomography and magnetic resonance imaging, and quality of life measures that give clinical meaning to the structure-function correlations that are unique to the afferent visual pathway. Abnormal eye movements also are common in multiple sclerosis, but quantitative assessment methods that can be applied in practice and clinical trials are not readily available. We summarize here a comprehensive literature search and the discussion at a recent international meeting of investigators involved in the development and study of visual outcomes in multiple sclerosis, which had, as its overriding goals, to review the state of the field and identify areas for future research. We review data and principles to help us understand the importance of vision as a model for outcomes assessment in clinical practice and therapeutic trials in multiple sclerosis. PMID:25433914

  15. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.

    PubMed

    Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo

    2016-10-20

    The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.

  16. A neural model of motion processing and visual navigation by cortical area MST.

    PubMed

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  17. Visualization of Sound Waves Using Regularly Spaced Soap Films

    ERIC Educational Resources Information Center

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  18. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance.

    PubMed

    Dong, Han; Sharma, Diksha; Badano, Aldo

    2014-12-01

    Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridmantis, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webmantis and visualmantis to facilitate the setup of computational experiments via hybridmantis. The visualization tools visualmantis and webmantis enable the user to control simulation properties through a user interface. In the case of webmantis, control via a web browser allows access through mobile devices such as smartphones or tablets. webmantis acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridmantis. The users can download the output images and statistics through a zip file for future reference. In addition, webmantis provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. The visualization tools visualmantis and webmantis provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.

  19. Optic Neuropathy Secondary to Polyarteritis Nodosa, Case Report, and Diagnostic Challenges.

    PubMed

    Vazquez-Romo, Kristian A; Rodriguez-Hernandez, Adrian; Paczka, Jose A; Nuño-Suarez, Moises A; Rocha-Muñoz, Alberto D; Zavala-Cerna, Maria G

    2017-01-01

    To describe a case of optic neuropathy as a primary manifestation of polyarteritis nodosa (PAN) and discuss diagnostic challenges. Case report. A 41-year-old Hispanic man presented with a 2-day history of reduced visual acuity in his left eye. Physical examination revealed a complete visual field loss in the affected eye. Best-corrected visual acuity (BCVA) in the left eye was hand motion, and fundus examination revealed a hyperemic optic disk with blurred margins, swelling, retinal folds, dilated veins, and normal size arteries. BCVA in the right eye was 20/20; no anomalies were seen during examination of the fundus. The patient was started on oral corticosteroids and once the diagnosis of PAN was made, cyclophosphamide was added to the treatment regimen. Six months later, the patient recovered his BCVA to 20/20 in his left eye. Rarely does optic neuropathy present as a primary manifestation of PAN; nevertheless, it represents an ophthalmologic emergency that requires expeditious anti-inflammatory and immunosuppressive treatment to decrease the probability of permanent visual damage. Unfortunately, diagnosing PAN is challenging as it necessitates a high index of suspicion. In young male patients who present for the first time with diminished visual acuity, ophthalmologists become cornerstones in the suspicion of this diagnosis and should be responsible for continuing the study until a diagnosis is reached to ensure rapid commencement of immunosuppressive treatment.

  20. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.

    PubMed

    Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D

    2011-10-30

    Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Visual and Vestibular Determinants of Perceived Eye-Level

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm Martin

    2003-01-01

    Both gravitational and optical sources of stimulation combine to determine the perceived elevations of visual targets. The ways in which these sources of stimulation combine with one another in operational aeronautical environments are critical for pilots to make accurate judgments of the relative altitudes of other aircraft and of their own altitude relative to the terrain. In a recent study, my colleagues and I required eighteen observers to set visual targets at their apparent horizon while they experienced various levels of G(sub z) in the human centrifuge at NASA-Ames Research Center. The targets were viewed in darkness and also against specific background optical arrays that were oriented at various angles with respect to the vertical; target settings were lowered as Gz was increased; this effect was reduced when the background optical array was visible. Also, target settings were displaced in the direction that the background optical array was pitched. Our results were attributed to the combined influences of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched optical arrays that comprise the background. In this paper, I present a mathematical model that describes the independent and combined effects of G(sub z) intensity and the orientation and structure of background optical arrays; the model predicts quantitative deviations from normal accurate perceptions of target localization under a variety of conditions. Our earlier experimental results and the mathematical model are described in some detail, and the effects of viewing specific optical arrays under various gravitational-inertial conditions encountered in aeronautical environments are discussed.

  2. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice

    PubMed Central

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena

    2017-01-01

    Abstract CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60–80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. PMID:28369421

  3. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  4. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA

    2011-05-24

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  5. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  6. Retrobulbar optic neuritis and rhegmatogenous retinal detachment in a fourteen-year-old girl with retinitis pigmentosa sine pigmento.

    PubMed

    Hatta, M; Hayasaka, S; Kato, T; Kadoi, C

    2000-01-01

    A 14-year-old girl complained of a sudden decrease in right visual acuity. The patient had night blindness, a mottled retina but no pigments, extinguished scotopic electroretinographic response, central scotoma in the right eye and rhegmatogenous retinal detachment. She had initially received laser photocoagulation around the retinal tear and then corticosteroid therapy, cryoretinopexy and segmental buckling. Her right visual acuity increased to 1.0. The association of retinitis pigmentosa sine pigmento, retrobulbar optic neuritis and rhegmatogenous retinal detachment, as demonstrated in our patient, may be uncommon. Copyright 2000 S. Karger AG, Basel

  7. Adaptation to Laterally Displacing Prisms in Anisometropic Amblyopia.

    PubMed

    Sklar, Jaime C; Goltz, Herbert C; Gane, Luke; Wong, Agnes M F

    2015-06-01

    Using visual feedback to modify sensorimotor output in response to changes in the external environment is essential for daily function. Prism adaptation is a well-established experimental paradigm to quantify sensorimotor adaptation; that is, how the sensorimotor system adapts to an optically-altered visuospatial environment. Amblyopia is a neurodevelopmental disorder characterized by spatiotemporal deficits in vision that impacts manual and oculomotor function. This study explored the effects of anisometropic amblyopia on prism adaptation. Eight participants with anisometropic amblyopia and 11 visually-normal adults, all right-handed, were tested. Participants pointed to visual targets and were presented with feedback of hand position near the terminus of limb movement in three blocks: baseline, adaptation, and deadaptation. Adaptation was induced by viewing with binocular 11.4° (20 prism diopter [PD]) left-shifting prisms. All tasks were performed during binocular viewing. Participants with anisometropic amblyopia required significantly more trials (i.e., increased time constant) to adapt to prismatic optical displacement than visually-normal controls. During the rapid error correction phase of adaptation, people with anisometropic amblyopia also exhibited greater variance in motor output than visually-normal controls. Amblyopia impacts on the ability to adapt the sensorimotor system to an optically-displaced visual environment. The increased time constant and greater variance in motor output during the rapid error correction phase of adaptation may indicate deficits in processing of visual information as a result of degraded spatiotemporal vision in amblyopia.

  8. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  9. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  10. Global inhibition and stimulus competition in the owl optic tectum

    PubMed Central

    Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.

    2010-01-01

    Stimulus selection for gaze and spatial attention involves competition among stimuli across sensory modalities and across all of space. We demonstrate that such cross-modal, global competition takes place in the intermediate and deep layers of the optic tectum, a structure known to be involved in gaze control and attention. A variety of either visual or auditory stimuli located anywhere outside of a neuron's receptive field (RF) were shown to suppress or completely eliminate responses to a visual stimulus located inside the RF in nitrous oxide sedated owls. The essential mechanism underlying this stimulus competition is global, divisive inhibition. Unlike the effect of the classical inhibitory surround, which decreases with distance from the RF center and shapes neuronal responses to individual stimuli, global inhibition acts across the entirety of space and modulates responses primarily in the context of multiple stimuli. Whereas the source of this global inhibition is as yet unknown, our data indicate that different networks mediate the classical surround and global inhibition. We hypothesize that this global, cross-modal inhibition, which acts automatically in a bottom-up fashion even in sedated animals, is critical to the creation of a map of stimulus salience in the optic tectum. PMID:20130182

  11. Neuropathies of the optic nerve and visual evoked potentials with special reference to color vision and differential light threshold measured with the computer perimeter OCTOPUS.

    PubMed

    Wildberger, H

    1984-10-31

    The contrast evoked potentials (VEPs) to different check sizes were recorded in about 200 cases of discrete optic neuropathies (ON) of different origin. Differential light threshold (DLT) was tested with the computer perimeter OCTOPUS. Saturated and desaturated tests were applied to evaluate the degree of acquired color vision deficiency. Delayed VEP responses are not confined to optic neuritis (RBN) alone and the different latency times obtained from other ON are confluent. The delay may be due to demyelination, to an increasing dominance of paramacular VEP subcomponents or to an increasing dominance of the upper half-field responses. Recording with smaller check sizes has the advantage that discrete dysfunctions in the visual field (VF) center are more easily detected: a correlation between amplitudes and visual acuity is best in strabismic amblyopias, is less expressed in maculopathies of the retina and weak in ON. The absence or reduction of amplitudes to smaller check sizes, however, is an important indication of a disorder in the VF center of ON in an early or recovered stage. Acquired color vision defects of the tritan-like type are more confined to discrete ON, whereas the red/green type is reserved to more severe ON. The DLT of the VF center is reduced in a different, significant and non significant extent in discrete optic neuropathies and the correlation between DLT and visual acuity is weak. A careful numerical analysis is needed in types of discrete ON where the central DLT lies within normal statistical limits: a side difference of the DLT between the affected and the normal fellow eye is always present. Evaluation of visual fatigue effects and of the relative sensitivity loss of VF center and VF periphery may provide further diagnostic information.

  12. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour

    PubMed Central

    Liu, Bao-hua; Huberman, Andrew D.; Scanziani, Massimo

    2017-01-01

    The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections1. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood1–4. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system3,5,6, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision5. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life7–11. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei10–13, cortical lesions have suggested that the visual cortex might also be involved9,14,15. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment11,16–18, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function19, to plastically adapt the execution of innate motor behaviours. PMID:27732573

  13. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea?

    PubMed

    Aptel, Florent; Aryal-Charles, Nischal; Tamisier, Renaud; Pépin, Jean-Louis; Lesoin, Antoine; Chiquet, Christophe

    2017-06-01

    To evaluate whether obstructive sleep apnea (OSA) is responsible for the visual field defects found in the fellow eyes of patients with non-arteritic ischemic optic neuropathy (NAION). Prospective cross-sectional study. The visual fields of the fellow eyes of NAION subjects with OSA were compared to the visual fields of control OSA patients matched for OSA severity. All patients underwent comprehensive ophthalmological and general examination including Humphrey 24.2 SITA-Standard visual field and polysomnography. Visual field defects were classified according the Ischemic Optic Neuropathy Decompression Trial (IONDT) classification. From a cohort of 78 consecutive subjects with NAION, 34 unaffected fellow eyes were compared to 34 control eyes of subjects matched for OSA severity (apnea-hypopnea index [AHI] 35.5 ± 11.6 vs 35.4 ± 9.4 events per hour, respectively, p = 0.63). After adjustment for age and body mass index, all visual field parameters were significantly different between the NAION fellow eyes and those of the control OSA groups, including mean deviation (-4.5 ± 3.7 vs -1.3 ± 1.8 dB, respectively, p < 0.05), visual field index (91.6 ± 10 vs 97.4 ± 3.5%, respectively, p = 0.002), pattern standard deviation (3.7 ± 2.3 vs 2.5 ± 2 dB, respectively, p = 0.015), and number of subjects with at least one defect on the IONDT classification (20 vs 10, respectively, p < 0.05). OSA alone does not explain the visual field defects frequently found in the fellow eyes of NAION patients.

  14. Prefoveal floaters as a differential diagnosis to optic neuritis: "mouches dormantes".

    PubMed

    Burggraaff, Marloes C; de Vries-Knoppert, Willemine A E J; Petzold, Axel

    2017-09-01

    This case series describes a new optical coherence tomography (OCT) specific observation relevant to the differential diagnosis of patients with suspected optic neuritis. A tiny prefoveal floater, only detectable by OCT, was found responsible for the symptoms in three patients, one of whom had been referred with unilateral delayed visual evoked potentials. This case series suggests that with increased use of OCT in routine clinical care, entoptic phenomena can be demonstrated as a relevant differential diagnosis to optic neuritis. Patients should be explained the benign nature of their symptoms.

  15. Responses to Deceleration during Car Following: Roles of Optic Flow, Warnings, Expectations, and Interruptions

    ERIC Educational Resources Information Center

    DeLucia, Patricia R.; Tharanathan, Anand

    2009-01-01

    More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on…

  16. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    PubMed

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  17. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    PubMed

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  18. Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

    PubMed Central

    Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2013-01-01

    Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162

  19. Efficacy of sustained topical dorzolamide therapy for cystic macular lesions in patients with retinitis pigmentosa and usher syndrome.

    PubMed

    Genead, Mohamed A; Fishman, Gerald A

    2010-09-01

    To determine the efficacy of sustained topical therapy with dorzolamide hydrochloride, 2%, on visual acuity and cystic macular lesions in patients with retinitis pigmentosa and Usher syndrome. In a retrospective case series at a university hospital, 64 eyes of 32 patients with retinitis pigmentosa or Usher syndrome receiving treatment with the topical dorzolamide formulation for 6 to 58 months were enrolled. Changes in visual acuity on the Early Treatment Diabetic Retinopathy Study chart and central foveal zone thickness on optical coherence tomography were measured during follow-up for the duration of treatment. Among the study cohort, 20 of 32 patients (63%) showed a positive response to treatment in at least 1 eye and 13 patients (41%) showed a positive response in both eyes. Four patients (20%) showed an initial response and a subsequent rebound of macular cysts. In 8 patients (25%), there was no response to treatment and the macular cysts worsened when compared with the pretreatment level. Ten patients (31%) had improvement in visual acuity by 7 or more letters in at least 1 eye at the most recent follow-up visit. Sixteen patients (67%) showed a reduction of more than 11% in the central foveal zone thickness in at least 1 eye when compared with the pretreatment level. Patients with either retinitis pigmentosa or Usher syndrome who received treatment of cystoid macular edema with topical dorzolamide followed by an optical coherence tomography-guided strategy showed a decrease in central foveal zone thickness in most cases. Visual acuity improved in almost one-third of the cases, suggesting a potential corresponding visual benefit.

  20. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.

    PubMed

    Deneux, Thomas; Takerkart, Sylvain; Grinvald, Amiram; Masson, Guillaume S; Vanzetta, Ivo

    2012-02-01

    Comprehensive information on the spatio-temporal dynamics of the vascular response is needed to underpin the signals used in hemodynamics-based functional imaging. It has recently been shown that red blood cells (RBCs) velocity and its changes can be extracted from wide-field optical imaging recordings of intrinsic absorption changes in cortex. Here, we describe a complete processing work-flow for reliable RBC velocity estimation in cortical networks. Several pre-processing steps are implemented: image co-registration, necessary to correct for small movements of the vasculature, semi-automatic image segmentation for fast and reproducible vessel selection, reconstruction of RBC trajectories patterns for each micro-vessel, and spatio-temporal filtering to enhance the desired data characteristics. The main analysis step is composed of two robust algorithms for estimating the RBCs' velocity field. Vessel diameter and its changes are also estimated, as well as local changes in backscattered light intensity. This full processing chain is implemented with a software suite that is freely distributed. The software uses efficient data management for handling the very large data sets obtained with in vivo optical imaging. It offers a complete and user-friendly graphical user interface with visualization tools for displaying and exploring data and results. A full data simulation framework is also provided in order to optimize the performances of the algorithm with respect to several characteristics of the data. We illustrate the performance of our method in three different cases of in vivo data. We first document the massive RBC speed response evoked by a spreading depression in anesthetized rat somato-sensory cortex. Second, we show the velocity response elicited by a visual stimulation in anesthetized cat visual cortex. Finally, we report, for the first time, visually-evoked RBC speed responses in an extended vascular network in awake monkey extrastriate cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    PubMed Central

    Yu, C.-J.; Debski, E. A.

    2008-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 μM) and bicuculline (25 μM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 μM). Muscarinic receptor-mediated responses, induced by carbachol (100 μM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input. PMID:12676145

  2. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    PubMed

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  3. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis.

    PubMed

    Siu, Timothy L; Morley, John W

    2007-12-01

    The development of a visual prosthesis has been limited by an incomplete understanding of functional changes of the visual cortex accompanying deafferentation. In particular, the role of the corpus callosum in modulating these changes has not been fully evaluated. Recent experimental evidence suggests that through synaptic modulation, short-term (4-5 days) visual deafferentation can induce plastic changes in the visual cortex, leading to adaptive enhancement of residual visual input. We therefore investigated whether a compensatory rerouting of visual information can occur via the indirect transcallosal linkage after deafferentation and the influence of this interhemispheric communication on the visual evoked response of each hemisphere. In albino rabbits, misrouting of uncrossed optic fibres reduces ipsilateral input to a negligible degree. We thus took advantage of this congenital anomaly to model unilateral cortical and ocular deafferentation by eliminating visual input from one eye and recorded the visual evoked potential (VEP) from the intact eye. In keeping with the chiasmal anomaly, no VEP was elicited from the hemisphere ipsilateral to the intact eye. This remained unchanged following unilateral visual deafferentation. The amplitude and latency of the VEP in the fellow hemisphere, however, were significantly decreased in the deafferented animals. Our data suggest that callosal linkage does not contribute to visual evoked responses and this is not changed after short-term deafferentation. The decrease in amplitude and latency of evoked responses in the hemisphere ipsilateral to the treated eye, however, confirms the facilitatory role of callosal transfer. This observation highlights the importance of bicortical stimulation in the future design of a cortical visual prosthesis.

  4. Dominant optic atrophy.

    PubMed

    Lenaers, Guy; Hamel, Christian; Delettre, Cécile; Amati-Bonneau, Patrizia; Procaccio, Vincent; Bonneau, Dominique; Reynier, Pascal; Milea, Dan

    2012-07-09

    DEFINITION OF THE DISEASE: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Patients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer, but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients). Visual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual loss may be more severe over time. To date, there is no preventative or curative treatment in DOA; severely visually impaired patients may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial metabolism. Gene and pharmacological therapies for DOA are currently under investigation.

  5. Dominant optic atrophy

    PubMed Central

    2012-01-01

    Definition of the disease Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer, but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients). Prognosis Visual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual loss may be more severe over time. Management To date, there is no preventative or curative treatment in DOA; severely visually impaired patients may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial metabolism. Gene and pharmacological therapies for DOA are currently under investigation. PMID:22776096

  6. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts.

    PubMed

    Wostyn, Peter; De Deyn, Peter Paul

    2017-11-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in view of future long-duration missions (e.g., Mars missions). Moreover, to ensure selection of astronaut candidates who will be able to complete long-duration missions with low risk of the VIIP syndrome, it is imperative to identify biomarkers for VIIP risk prediction. Here, we hypothesize that the optic nerve sheath response to alterations in intracranial pressure may be a potential predictive biomarker for optic disc edema in astronauts. If confirmed, this biomarker could be used for preflight identification of astronauts at risk for developing VIIP-associated optic disc edema.

  7. Complementary mechanisms create direction selectivity in the fly

    PubMed Central

    Haag, Juergen; Arenz, Alexander; Serbe, Etienne; Gabbiani, Fabrizio; Borst, Alexander

    2016-01-01

    How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. DOI: http://dx.doi.org/10.7554/eLife.17421.001 PMID:27502554

  8. Neurophysiological Estimates of Human Performance Capabilities in Aerospace Systems

    DTIC Science & Technology

    1975-01-27

    effects on the visual system (in lateral geniculate bodies and optic cortex) depending on the frequency of auditory stimulation. 27 SECTION VI...of spa- tial positions. Correct responses were rewarded with food. EEG activity was recorded in the hippocampus, hypothalamus and lateral geniculate ...movement or an object movement reduce transmission of visual information through the lateral geniculate nucleus. This may be a mechanism for saccadic

  9. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    DTIC Science & Technology

    2015-11-05

    the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M

  10. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  11. Pop-out in visual search of moving targets in the archer fish.

    PubMed

    Ben-Tov, Mor; Donchin, Opher; Ben-Shahar, Ohad; Segev, Ronen

    2015-03-10

    Pop-out in visual search reflects the capacity of observers to rapidly detect visual targets independent of the number of distracting objects in the background. Although it may be beneficial to most animals, pop-out behaviour has been observed only in mammals, where neural correlates are found in primary visual cortex as contextually modulated neurons that encode aspects of saliency. Here we show that archer fish can also utilize this important search mechanism by exhibiting pop-out of moving targets. We explore neural correlates of this behaviour and report the presence of contextually modulated neurons in the optic tectum that may constitute the neural substrate for a saliency map. Furthermore, we find that both behaving fish and neural responses exhibit additive responses to multiple visual features. These findings suggest that similar neural computations underlie pop-out behaviour in mammals and fish, and that pop-out may be a universal search mechanism across all vertebrates.

  12. The Pupil Light Reflex in Leber's Hereditary Optic Neuropathy: Evidence for Preservation of Melanopsin-Expressing Retinal Ganglion Cells

    PubMed Central

    Moura, Ana Laura A.; Nagy, Balázs V.; La Morgia, Chiara; Barboni, Piero; Oliveira, André Gustavo Fernandes; Salomão, Solange R.; Berezovsky, Adriana; de Moraes-Filho, Milton Nunes; Chicani, Carlos Filipe; Belfort, Rubens; Carelli, Valerio; Sadun, Alfredo A.; Hood, Donald C.; Ventura, Dora Fix

    2013-01-01

    Purpose. To investigate the pupillary light reflex (PLR) of patients with severe loss of vision due to Leber's Hereditary Optic Neuropathy (LHON) in the context of a proposed preservation of melanopsin-expressing retinal ganglion cells (mRGCs). Methods. Ten LHON patients (7 males; 51.6 ± 14.1 years), with visual acuities ranging from 20/400 to hand motion perception and severe visual field losses, were tested and compared with 16 healthy subjects (7 males; 42.15 ± 15.4 years) tested as controls. PLR was measured with an eye tracker and the stimuli were controlled with a Ganzfeld system. Pupil responses were measured monocularly, to 1 second of blue (470 nm) and red (640 nm) flashes with 1, 10, 100, and 250 cd/m2 luminances. The normalized amplitude of peak of the transient PLR and the amplitude of the sustained PLR at 6 seconds after the flash offset were measured. In addition, optical coherence topography (OCT) scans of the peripapillary retinal nerve fiber layer were obtained. Results. The patient's peak PLR responses were on average 15% smaller than controls (P < 0.05), but 5 out of 10 patients had amplitudes within the range of controls. The patients' sustained PLRs were comparable with controls at lower flash intensities, but on average, 27% smaller to the 250 cd/m2 blue light, although there was considerable overlap with the PLR amplitudes of control. All patients had severe visual field losses and the retinal nerve fiber layer thickness was reduced to a minimum around the optic disc in 8 of the 10 patients. Conclusions. The PLR is maintained overall in LHON patients despite the severity of optic atrophy. These results are consistent with previous evidence of selective preservation of mRGCs. PMID:23737476

  13. Imprinting modulates processing of visual information in the visual wulst of chicks.

    PubMed

    Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2006-11-14

    Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.

  14. Imprinting modulates processing of visual information in the visual wulst of chicks

    PubMed Central

    Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2006-01-01

    Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium. PMID:17101060

  15. Ultralong time response of magnetic fluid based on fiber-optic evanescent field.

    PubMed

    Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong

    2016-07-20

    The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively.

  16. Integral modeling of human eyes: from anatomy to visual response

    NASA Astrophysics Data System (ADS)

    Navarro, Rafael

    2006-02-01

    Three basic stages towards the global modeling of the eye are presented. In the first stage, an adequate choice of the basis geometrical model, general ellipsoid in this case, permits, to fit in a natural way the typical "melon" shape of the cornea with minimum complexity. In addition it facilitates to extract most of its optically relevant parameters, such as the position and orientation of it optical axis in the 3D space, the paraxial and overall refractive power, the amount and axis of astigmatism, etc. In the second level, this geometrical model, along with optical design and optimization tools, is applied to build customized optical models of individual eyes, able to reproduce the measured wave aberration with high fidelity. Finally, we put together a sequence of schematic, but functionally realistic models of the different stages of image acquisition, coding and analysis in the visual system, along with a probabilistic Bayesian maximum a posteriori identification approach. This permitted us to build a realistic simulation of the all the essential processes involved in a visual acuity clinical exam. It is remarkable that at all three levels, it has been possible for the models to predict the experimental data with high accuracy.

  17. Focal damage to macaque photoreceptors produces persistent visual loss

    PubMed Central

    Strazzeri, Jennifer M.; Hunter, Jennifer J.; Masella, Benjamin D.; Yin, Lu; Fischer, William S.; DiLoreto, David A.; Libby, Richard T.; Williams, David R.; Merigan, William H.

    2014-01-01

    Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions. PMID:24316158

  18. Assessment of hydroxychloroquine maculopathy after cessation of treatment: an optical coherence tomography and multifocal electroretinography study

    PubMed Central

    Moschos, Marilita M; Nitoda, Eirini; Chatziralli, Irini P; Gatzioufas, Zisis; Koutsandrea, Chryssanthi; Kitsos, George

    2015-01-01

    Objective This study was conducted to evaluate the macular status of patients treated with hydroxychloroquine before and after cessation of treatment. Methods Forty-two patients with systemic lupus erythematosus underwent ocular examination based on visual acuity evaluation, optical coherence tomography retinal thickness measurements, and multifocal electroretinography (mfERG) records at first visit. The tests were repeated 6 months after treatment withdrawal and compared to the findings at their first visit. Results Mean visual acuity (measured in log minimum angle of resolution) of both eyes was statistically increased after hydroxychloroquine discontinuation (difference in means: 0.06 [P<0.0001] and 0.01 [P=0.003] for the right and left eyes, respectively). Retinal response amplitudes of central and peripheral areas were significantly improved for both eyes. The following values were observed for central responses: the difference in means was −19.9 (P<0.0001) and −13.6 (P<0.0001) for the right eye and the left eye, respectively; for peripheral responses, difference in means was −10.3 (P<0.0001) and −9.5 (P<0.0001) for right eye and left eye, respectively, after the 6-month examination. There were no statistically significant differences in the retinal thickness of patients after cessation of treatment. The visual acuity of the patients was correlated to central and peripheral mfERG responses (r=−0.53 [P<0.0001] and r=−0.53 [P<0.0001], for the right eye and the left eye, respectively). Conclusion The visual acuity of patients receiving hydroxychloroquine improves along with the amplitudes of the mfERG responses 6 months after discontinuation of the drug, but no difference in retinal thickness is identified. PMID:26089648

  19. Assessment of hydroxychloroquine maculopathy after cessation of treatment: an optical coherence tomography and multifocal electroretinography study.

    PubMed

    Moschos, Marilita M; Nitoda, Eirini; Chatziralli, Irini P; Gatzioufas, Zisis; Koutsandrea, Chryssanthi; Kitsos, George

    2015-01-01

    This study was conducted to evaluate the macular status of patients treated with hydroxychloroquine before and after cessation of treatment. Forty-two patients with systemic lupus erythematosus underwent ocular examination based on visual acuity evaluation, optical coherence tomography retinal thickness measurements, and multifocal electroretinography (mfERG) records at first visit. The tests were repeated 6 months after treatment withdrawal and compared to the findings at their first visit. Mean visual acuity (measured in log minimum angle of resolution) of both eyes was statistically increased after hydroxychloroquine discontinuation (difference in means: 0.06 [P<0.0001] and 0.01 [P=0.003] for the right and left eyes, respectively). Retinal response amplitudes of central and peripheral areas were significantly improved for both eyes. The following values were observed for central responses: the difference in means was -19.9 (P<0.0001) and -13.6 (P<0.0001) for the right eye and the left eye, respectively; for peripheral responses, difference in means was -10.3 (P<0.0001) and -9.5 (P<0.0001) for right eye and left eye, respectively, after the 6-month examination. There were no statistically significant differences in the retinal thickness of patients after cessation of treatment. The visual acuity of the patients was correlated to central and peripheral mfERG responses (r=-0.53 [P<0.0001] and r=-0.53 [P<0.0001], for the right eye and the left eye, respectively). The visual acuity of patients receiving hydroxychloroquine improves along with the amplitudes of the mfERG responses 6 months after discontinuation of the drug, but no difference in retinal thickness is identified.

  20. Macaque Parieto-Insular Vestibular Cortex: Responses to self-motion and optic flow

    PubMed Central

    Chen, Aihua; DeAngelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency, and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency, and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed roughly uniformly for translation, but showing a preference for roll rotation. Spatio-temporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception. PMID:20181599

  1. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.

    PubMed

    Schmitz, Lars; Wainwright, Peter C

    2011-11-19

    Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  2. Local motion adaptation enhances the representation of spatial structure at EMD arrays

    PubMed Central

    Lindemann, Jens P.; Egelhaaf, Martin

    2017-01-01

    Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631

  3. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts.

    PubMed

    Iglesias, Teresa L; Dornburg, Alex; Warren, Dan L; Wainwright, Peter C; Schmitz, Lars; Economo, Evan P

    2018-05-28

    Understanding how organismal design evolves in response to environmental challenges is a central goal of evolutionary biology. In particular, assessing the extent to which environmental requirements drive general design features among distantly related groups is a major research question. The visual system is a critical sensory apparatus that evolves in response to changing light regimes. In vertebrates, the optic tectum is the primary visual processing centre of the brain and yet it is unclear how or whether this structure evolves while lineages adapt to changes in photic environment. On one hand, dim-light adaptation is associated with larger eyes and enhanced light-gathering power that could require larger information processing capacity. On the other hand, dim-light vision may evolve to maximize light sensitivity at the cost of acuity and colour sensitivity, which could require less processing power. Here, we use X-ray microtomography and phylogenetic comparative methods to examine the relationships between diel activity pattern, optic morphology, trophic guild and investment in the optic tectum across the largest radiation of vertebrates-teleost fishes. We find that despite driving the evolution of larger eyes, enhancement of the capacity for dim-light vision generally is accompanied by a decrease in investment in the optic tectum. These findings underscore the importance of considering diel activity patterns in comparative studies and demonstrate how vision plays a role in brain evolution, illuminating common design principles of the vertebrate visual system. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  5. Pattern reversal responses in man and cat: a comparison.

    PubMed

    Schuurmans, R P; Berninger, T

    1984-01-01

    In 42 enucleated and arterially perfused cat eyes, graded potentials were recorded from the retina (ERG) and from the optic nerve ( ONR ) in response to checker-board stimuli, reversing at a low temporal frequency in a square wave mode. The ERG and ONR responses show an almost perfect duplication of the response to each reversal of the pattern and exhibit, in contrast to luminance responses, striking similarities in response characteristics such as amplitude, wave shape and time course. Furthermore, the amplitude versus check size plots coincide in both responses. In cat, pattern reversal responses can be recorded from 74 to 9 min of arc, correlating to the cat's visual resolution. In man, almost identical responses can be recorded for the pattern ERG. However, in accordance with the difference in visual resolution in man and cat, a parallel shift for the human pattern reversal ERG response to higher spatial frequencies is observed.

  6. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    PubMed

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  7. Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model.

    PubMed

    Dietrich, Michael; Helling, Niklas; Hilla, Alexander; Heskamp, Annemarie; Issberner, Andrea; Hildebrandt, Thomas; Kohne, Zippora; Küry, Patrick; Berndt, Carsten; Aktas, Orhan; Fischer, Dietmar; Hartung, Hans-Peter; Albrecht, Philipp

    2018-03-07

    In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG 35-55 -induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.

  8. A fast visual evoked potential method for functional assessment and follow-up of childhood optic gliomas.

    PubMed

    Trisciuzzi, Maria Teresa S; Riccardi, Riccardo; Piccardi, Marco; Iarossi, Giancarlo; Buzzonetti, Luca; Dickmann, Anna; Colosimo, Cesare; Ruggiero, Antonio; Di Rocco, Concezio; Falsini, Benedetto

    2004-01-01

    To evaluate a fast technique of visual evoked potentials (VEPs) recording, in response to steady-state luminance stimuli (SS-LVEPs), for functional assessment and follow-up of childhood optic gliomas (OGs). Eighteen OG patients (age range: 3.5-18 years), with different degrees of optic pathway damage severity, were examined. Sixteen age-matched normal subjects served as controls. Ten of the 18 OG patients were re-tested 1-3 months after the first examination. SS-LVEPs were elicited by a sinusoidally-modulated flickering (8 Hz) uniform field, generated by a light emitting diode (LED)-array and presented monocularly in a mini-ganzfeld. Amplitude and phase of the Fourier-analyzed response fundamental (1F) and second harmonic (2F) were measured. The full VEP protocol had a median duration of 6 min (range: 4-12). When compared to normal control values, median 1F and 2F SS-LVEP amplitudes of OG patients were reduced (P<0.01), with a borderline increase in 2F phase lag (P<0.05). In 11 OG patients with asymmetric optic pathway damage in between-eye comparisons, median 1F amplitude losses were greater (P<0.01) in fellow eyes with more severe damage. No significant interocular difference was observed in control subjects. Median test-retest changes of 1F and 2F component were <20% and 30 degrees for amplitude and phase, respectively. In individual OG patients, 1F and 2F amplitudes were positively correlated (P<0.01) with visual acuity. 1F amplitude losses were correlated (P=0.01) with the severity of optic disc atrophy. Considering both 1F and 2F abnormalities, diagnostic sensitivity of SS-LVEP in detecting OG-induced optic pathways damage was 83.3%. The present findings support the use of this technique, as an alternative to pattern VEPs, for functional assessment and follow-up of OG in uncooperative children.

  9. Visualizing Sound with an Electro-Optical Eardrum

    NASA Astrophysics Data System (ADS)

    Truncale, Nicholas P.; Graham, Michelle T.

    2014-02-01

    As science educators, one of our important responsibilities is ensuring students possess the proper tools and accommodations to examine phenomena in a laboratory setting. It is our job to innovate methods enabling students with disabilities to participate in all aspects of investigations. This article describes an experimental accommodation allowing a deaf student to determine and plot the sensitivity of an electro-optical eardrum in the sound range of 10-150 Hz.

  10. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  11. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  12. Toxic optic neuropathy following ingestion of homeopathic medication Arnica-30.

    PubMed

    Venkatramani, Devendra V; Goel, Shubhra; Ratra, Vineet; Gandhi, Rashmin Anilkumar

    2013-03-01

    We report a case of acute, bilateral and severe vision loss after inadvertent consumption of a large quantity of the homoeopathic medication Arnica-30. Severe vomiting which required hospitalization preceded visual symptoms. In the acute stage, pupillary responses to light were absent and fundus examination was normal. Vision loss followed a fluctuating course, with profound loss noted after 6 weeks along with bilateral optic disc pallor. Neuro-ophthalmic examination and detailed investigations were performed, including magnetic resonance imaging, electroretinography (ERG) and visual evoked potentials (VEP). Ocular coherence tomography (OCT) showed gross thinning of the retinal nerve fiber layer. While a differential diagnosis of posterior ischemic optic neuropathy was kept in mind, these findings supported a diagnosis of bilateral toxic optic neuropathy. Arnica-30 is popularly used to accelerate wound healing, including after oculoplastic surgery. While homeopathic medicines are generally considered safe due to the very low concentrations involved, Arnica-30 may be neurotoxic if consumed internally in large quantities.

  13. Optic neuritis

    MedlinePlus

    ... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when it becomes suddenly ... may include: Color vision testing MRI of the brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...

  14. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    PubMed Central

    Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei

    2014-01-01

    Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974

  15. Nocturnal insects use optic flow for flight control

    PubMed Central

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047

  16. Efficacy of vision restoration therapy after optic neuritis (VISION study): study protocol for a randomized controlled trial.

    PubMed

    Schinzel, Johann; Schwarzlose, Lina; Dietze, Holger; Bartusch, Karolina; Weiss, Susanne; Ohlraun, Stephanie; Paul, Friedemann; Dörr, Jan

    2012-06-28

    Optic neuritis is a frequent manifestation of multiple sclerosis. Visual deficits range from a minor impairment of visual functions through to complete loss of vision. Although many patients recover almost completely, roughly 35% of patients remain visually impaired for years, and therapeutic options for those patients hardly exist. Vision restoration therapy is a software-based visual training program that has been shown to improve visual deficits after pre- and postchiasmatic injury. The aim of this pilot study is to evaluate whether residual visual deficits after past or recent optic neuritis can be reduced by means of vision restoration therapy. A randomized, controlled, patient- and observer-blinded clinical pilot study (VISION study) was designed to evaluate the efficacy of vision restoration therapy in optic neuritis patients. Eighty patients with a residual visual deficit after optic neuritis (visual acuity ≤0.7 and/or scotoma) will be stratified according to the time of optic neuritis onset (manifestation more than 12 months ago (40 patients, fixed deficit) versus manifestation 2 to 6 months ago (40 patients, recent optic neuritis)), and randomized into vision restoration therapy arm or saccadic training arm (control intervention). Patients will be instructed to complete a computer-based visual training for approximately 30 minutes each day for a period of 6 months. Patients and evaluators remain blinded to the treatment allocation throughout the study. All endpoints will be analyzed and P-values < 0.05 will be considered statistically significant. The primary outcome parameter will be the expansion of the visual field after 3 and 6 months of treatment as determined by static visual field perimetry and high resolution perimetry. Secondary outcome variables will include visual acuity at both low and high contrast, glare contrast sensitivity, visually evoked potentials, optical coherence tomography and other functional tests of the visual system, alertness, health-related quality of life, fatigue, and depression. If vision restoration therapy is shown to improve visual function after optic neuritis, this method might be a first therapeutic option for patients with incomplete recovery from optic neuritis. NCT01274702.

  17. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.

    PubMed

    Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M

    2003-03-01

    A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.

  18. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  19. Effect of Chromoendoscopy Filters on Visualization of KTP Laser-Associated Tissue Changes: A Cadaveric Animal Model.

    PubMed

    Johnson, Christopher M; Pate, Mariah B; Postma, Gregory N

    2018-04-01

    Standard KTP laser (potassium titanyl phosphate) wavelength-specific protective eyewear often impairs visualization of tissue changes during laser treatment. This sometimes necessitates eyewear removal to evaluate tissue effects, which wastes time and poses safety concerns. The objective was to determine if "virtual" or "electronic" chromoendoscopy filters, as found on some endoscopy platforms, could alleviate the restricted visualization inherent to protective eyewear. A KTP laser was applied to porcine laryngeal tissue and recorded via video laryngoscopy with 1 optical (Olympus Narrow Band Imaging) and 8 digital (Pentax Medical I-scan) chromoendoscopy filters. Videos were viewed by 11 otolaryngologists wearing protective eyewear. Using a discrete visual analog scale, they rated each filter on its ability to improve visualization,. No filter impaired visualization; 5 of 9 improved visualization. Based on statistical significance, the number of positive responses, and the lack of negative responses, narrow band imaging and the I-scan tone enhancement filter for leukoplakia performed best. These filters could shorten procedure time and improve safety; therefore, further clinical evaluation is warranted.

  20. Probing mechanobiology with laser-induced shockwaves

    NASA Astrophysics Data System (ADS)

    Carmona, Christopher; Preece, Daryl C.; Gomez-Godinez, Veronica; Shi, Linda Z.; Berns, Michael W.

    2017-08-01

    Traumatic Brain Injury (TBI) occurs when an external force injures the brain. While clinical outcomes of TBI can vary widely in severity, few mechanisms of neurodegeneration following TBI have been identified for treatment. We propose a model for studying TBI using laser-induced shockwaves (LISs). An optical system was developed that allows single cells to be studied in response to LISs. Our system utilizes an optically-coupled force measurement component that allows for the visualization of shockwave dynamics. Here, the force measurement system is characterized by imaging stages over the period of violent expansion and collapse of microbubbles responsible for shockwave generation.

  1. Optic neuropathy causing vertical unilateral hemianopsia after pars plana vitrectomy for a macular hole: A case report.

    PubMed

    Kawashima, Hirohiko; Nagai, Norihiro; Shinoda, Hajime; Tsubota, Kazuo; Ozawa, Yoko

    2018-04-01

    Recent progress in medical technology has resulted in improved surgical outcomes of pars plana vitrectomy (PPV); with microincision systems, the incidence of procedure-related complications during surgery has been reduced. However, unpredictable visual field defects after PPV remain an unresolved issue. A few reports have shown that damage to the retinal neurofibers owing to dry-up during air/fluid exchange or retinal neurotoxicity of the dye used to visualize the internal limiting membrane (ILM), as well as unintentional removal of retinal neurofibers during ILM peeling, are responsible for such visual field disorders. In this report, we present a case of extensive visual field defect due to optic neuropathy exhibiting vertical hemianopsia after PPV. A 50-year-old woman underwent PPV and cataract surgery for a macular hole and mild cataract under retrobulbar anesthesia with 3.5 mL of xylocaine. At the time of opening an infusion cannula for PPV, the intraocular lens was herniating, with an acute increase in pressure from the posterior eyeball; thus, intraocular pressure configuration level had to be decreased from the default level, whereas the other procedures including 20% SF6 injection were performed without any modification. The macular hole was closed postoperatively. However, the patient experienced nasal hemianopsia, which turned out to be optic neuropathy, as assessed via electric physiological examinations. The pattern of the visual field defect was not typical for glaucoma or anterior ischemic optic neuropathy. Her optic nerve head was pale at the temporal side soon after the surgery, and her blood pressure was low, suggesting that there may have been a congestion of the optic nerve feeder vessels because of the relatively high pressure in the orbit. The space occupancy with xylocaine and extensively stretched and plumped out eye ball with infusion during PPV may have pressed the surrounding tissue of the optic nerve and the feeder vessels. PPV is safe for most patients; however, individual variations in local and/or systemic conditions may cause complications. Future studies to optimize the surgical condition for each individual patient may be warranted.

  2. The brain's dress code: How The Dress allows to decode the neuronal pathway of an optical illusion.

    PubMed

    Schlaffke, Lara; Golisch, Anne; Haag, Lauren M; Lenz, Melanie; Heba, Stefanie; Lissek, Silke; Schmidt-Wilcke, Tobias; Eysel, Ulf T; Tegenthoff, Martin

    2015-12-01

    Optical illusions have broadened our understanding of the brain's role in visual perception. A modern day optical illusion emerged from a posted photo of a striped dress, which some perceived as white and gold and others as blue and black. Here we show, using functional magnetic resonance imaging (fMRI), that those who perceive The Dress as white/gold have higher activation in response to the image of The Dress in brain regions critically involved in higher cognition (frontal and parietal brain areas). These results are consistent with theories of top-down modulation and present a neural signature associated with the differences in perceiving The Dress as white/gold or blue/black. Furthermore the results support recent psychophysiological data on this phenomenon and provide a fundamental building block to study interindividual differences in visual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Optical, analog and digital domain architectural considerations for visual communications

    NASA Astrophysics Data System (ADS)

    Metz, W. A.

    2008-01-01

    The end of the performance entitlement historically achieved by classic scaling of CMOS devices is within sight, driven ultimately by fundamental limits. Performance entitlements predicted by classic CMOS scaling have progressively failed to be realized in recent process generations due to excessive leakage, increasing interconnect delays and scaling of gate dielectrics. Prior to reaching fundamental limits, trends in technology, architecture and economics will pressure the industry to adopt new paradigms. A likely response is to repartition system functions away from digital implementations and into new architectures. Future architectures for visual communications will require extending the implementation into the optical and analog processing domains. The fundamental properties of these domains will in turn give rise to new architectural concepts. The limits of CMOS scaling and impact on architectures will be briefly reviewed. Alternative approaches in the optical, electronic and analog domains will then be examined for advantages, architectural impact and drawbacks.

  4. Acuity-independent effects of visual deprivation on human visual cortex

    PubMed Central

    Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.

    2014-01-01

    Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230

  5. Dorsal light response and changes of its responses under varying acceleration conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takabayashi, A.; Takagi, S.; von Baumgarten, R.; Wetzig, J.

    In order to improve our understanding about functions of the gravity sensors, we have conducted four experiments in goldfish: 1) To define the effect of visual information influx on the static labyrinthine response, the dorsal light response (DLR) which had been proposed by von Holst as a model for postural adjustment in fish was reexamined with a newly designed, rotatory illumination device. The fish responded to illumination from the upper half of the visual field and a narrow range around 180 degrees of the lower half visual field. The maximal tilting angle of normal fish was about 40 degrees under horizontal illumination. 2) Under the changes of the gravito-inertial force level produced by a linear sled, the threshold of the gravity sensors was determined from postural adjustment responses. 3) Under hypogravic conditions during the parabolic flight of an airplane, the light-dependent behavior was investigated in intact and labyrinthectomized goldfish. 4) As one of the most likely candidates of the neural centers for the DLR, the valvula cerebelli, which receives its visual information not through the optic tectum but through the pretectal areas, is confirmed by the brain lesion experiments.

  6. Prediction of accommodative optical response in prepresbyopic patients using ultrasound biomicroscopy

    PubMed Central

    Ramasubramanian, Viswanathan; Glasser, Adrian

    2015-01-01

    PURPOSE To determine whether relatively low-resolution ultrasound biomicroscopy (UBM) can predict the accommodative optical response in prepresbyopic eyes as well as in a previous study of young phakic subjects, despite lower accommodative amplitudes. SETTING College of Optometry, University of Houston, Houston, USA. DESIGN Observational cross-sectional study. METHODS Static accommodative optical response was measured with infrared photorefraction and an autorefractor (WR-5100K) in subjects aged 36 to 46 years. A 35 MHz UBM device (Vumax, Sonomed Escalon) was used to image the left eye, while the right eye viewed accommodative stimuli. Custom-developed Matlab image-analysis software was used to perform automated analysis of UBM images to measure the ocular biometry parameters. The accommodative optical response was predicted from biometry parameters using linear regression, 95% confidence intervals (CIs), and 95% prediction intervals. RESULTS The study evaluated 25 subjects. Per-diopter (D) accommodative changes in anterior chamber depth (ACD), lens thickness, anterior and posterior lens radii of curvature, and anterior segment length were similar to previous values from young subjects. The standard deviations (SDs) of accommodative optical response predicted from linear regressions for UBM-measured biometry parameters were ACD, 0.15 D; lens thickness, 0.25 D; anterior lens radii of curvature, 0.09 D; posterior lens radii of curvature, 0.37 D; and anterior segment length, 0.42 D. CONCLUSIONS Ultrasound biomicroscopy parameters can, on average, predict accommodative optical response with SDs of less than 0.55 D using linear regressions and 95% CIs. Ultrasound biomicroscopy can be used to visualize and quantify accommodative biometric changes and predict accommodative optical response in prepresbyopic eyes. PMID:26049831

  7. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay

    PubMed Central

    Morgan, Jessica I. W.

    2016-01-01

    Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222

  8. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    PubMed Central

    2011-01-01

    Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687

  9. Orbital Radiotherapy Combined With Corticosteroid Treatment for Thyroid Eye Disease-Compressive Optic Neuropathy.

    PubMed

    Gold, Katherine G; Scofield, Stacy; Isaacson, Steven R; Stewart, Michael W; Kazim, Michael

    To evaluate the effectiveness of orbital radiotherapy (ORT) in the treatment of thyroid eye disease (TED)-compressive optic neuropathy. A retrospective review of patients with corticosteroid-responsive compressive optic neuropathy due to TED treated with ORT. Study was conducted in compliance with Health Insurance Portability and Accountability Act. One hundred four patients (163 orbits) with a mean age of 61.7 years met inclusion criteria. Seventy-four percent (77/104) were female, and 32.7% (34/104) were current or previous smokers. A total absorbed dose of 2000 cGy fractionated in 10 treatment doses over the course of 2 weeks was administered to the retroocular tissues according to a standard protocol. The primary end point was failure of ORT, defined as persistent optic neuropathy following completion of radiotherapy that mandated urgent orbital decompression surgery. Ninety-eight of 104 (94%) patients or 152 of 163 (93.3%) orbits did not require orbital decompression surgery during the acute phase. Patients who responded successfully to ORT had similar improvements in visual acuity, color vision, Humphrey threshold visual field testing, and afferent pupillary defects compared with patients who failed ORT and underwent urgent decompression surgery. Only 36.7% of successfully treated patients ultimately underwent elective surgery, including orbital decompression, strabismus, or eyelid surgery, during the inactive phase of TED. The data from this study, the largest retrospective review reported to date, supports the use of ORT in eyes with corticosteroid-responsive TED-compressive optic neuropathy. ORT may favorably alter the natural history of active-phase TED by preventing recurrent compressive optic neuropathy after withdrawal of corticosteroids.

  10. Visual degradation in Leonardo da Vinci's iconic self-portrait: A nanoscale study

    NASA Astrophysics Data System (ADS)

    Conte, A. Mosca; Pulci, O.; Misiti, M. C.; Lojewska, J.; Teodonio, L.; Violante, C.; Missori, M.

    2014-06-01

    The discoloration of ancient paper, due to the development of oxidized groups acting as chromophores in its chief component, cellulose, is responsible for severe visual degradation in ancient artifacts. By adopting a non-destructive approach based on the combination of optical reflectance measurements and time-dependent density functional theory ab-initio calculations, we describe and quantify the chromophores affecting Leonardo da Vinci's iconic self-portrait. Their relative concentrations are very similar to those measured in modern and ancient samples aged in humid environments. This analysis quantifies the present level of optical degradation of the Leonardo da Vinci's self-portrait which, compared with future measurements, will assess its degradation rate. This is a fundamental information in order to plan appropriate conservation strategies.

  11. Optical Molecular Imaging for Diagnosing Intestinal Diseases

    PubMed Central

    Kim, Sang-Yeob

    2013-01-01

    Real-time visualization of the molecular signature of cells can be achieved with advanced targeted imaging techniques using molecular probes and fluorescence endoscopy. This molecular optical imaging in gastrointestinal endoscopy is promising for improving the detection of neoplastic lesions, their characterization for patient stratification, and the assessment of their response to molecular targeted therapy and radiotherapy. In inflammatory bowel disease, this method can be used to detect dysplasia in the presence of background inflammation and to visualize inflammatory molecular targets for assessing disease severity and prognosis. Several preclinical and clinical trials have applied this method in endoscopy; however, this field has just started to evolve. Hence, many problems have yet to be solved to enable the clinical application of this novel method. PMID:24340254

  12. Visual abnormalities associated with enhanced optic nerve myelination.

    PubMed

    Yu, Minzhong; Narayanan, S Priyadarshini; Wang, Feng; Morse, Emily; Macklin, Wendy B; Peachey, Neal S

    2011-02-16

    Expression of the constitutively active serine/threonine kinase Akt in oligodendrocytes results in enhanced myelination in the CNS. Here, we have examined the effects of this Akt overexpression on optic nerve structure and on optic nerve function, assessed using the visual evoked potential (VEP). Transgenic mice have been generated with the Plp promoter driving expression of a modified form of Akt, in which aspartic acids are substituted for Thr308 and Ser473. These Plp-Akt-DD (Akt-DD) mice, and littermate controls, were studied at different ages. Optic nerves were examined anatomically at 2 and 6 months of age. At 2 months of age, optic nerves were substantially thicker in Akt-DD mice, reflecting an increase in myelination of optic nerve axons. By electron microscopy, myelin thickness was increased in Akt-DD optic nerve, with extended paranodal domains having excess paranodal loops, and the density of nodes of Ranvier was reduced, relative to control mice. We recorded VEPs in response to strobe flash ganzfeld stimuli presented after overnight dark- and light-adapted conditions at ages ranging from 1 to 10 months. It was possible to record a clear VEP from Akt-DD mice at all ages examined. At 1 month of age, VEP implicit times were somewhat shorter in Akt-DD transgenic mice than in control animals. Beyond 6months of age, VEP latencies were consistently delayed in Akt-DD transgenic mice. These abnormalities did not reflect an alteration in retinal function as there were no significant differences between ERGs obtained from control or Akt-DD transgenic mice. In young mice, the somewhat faster responses may reflect improved transmission due to increased myelination of optic nerve axons. In older mice, where the Akt-DD optic nerve is markedly thicker than control, it is remarkable that optic nerves continue to function. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Indications and Visual Outcome of Penetrating Keratoplasty in Tertiary Eye Care Institute in Uttarakhand

    PubMed Central

    Gupta, Neeti; Dhasmana, Renu; Nagpal, Ramesh Chander; Bahadur, Harsh; Maitreya, Amit

    2016-01-01

    Introduction Corneal blindness forms significant proportion of visual blindness in developing countries and penetrating keratoplasty (PK) can restore vision for this. The prognosis of PK is dependent on the corneal diseases responsible for corneal blindness. Aim To evaluate the indications and visual outcome of PK in tertiary eye care institute in Uttarakhand. Materials and Methods Data was reviewed from the medical records of 145 PK done in Department of Ophthalmology, Himalayan Institute of Medical Sciences from January 2012 to October 2014. Analysis of data was done for evaluation of the indications and visual outcome by Paired student’s t-test for hypothesis testing of grouped values of preoperative and last follow-up best corrected visual acuity in cases of optical and therapeutic grafts. A p-value < 0.05 was considered statistically significant. Results In this study data of 145 eyes of 138 patients was reviewed. The most common indication for keratoplasty was corneal scarring including adherent leucoma 48 (33.10%). Therapeutic keratoplasty was done for 33 cases with maximum 30(20.68%) cases of infectious keratitis. One case of tectonic graft was included in therapeutic keratoplasty group for analysis. There was statistically significant difference (p=.0001) in best corrected visual acuity improvement from 1.39 logMAR+ 0.022(SD) preoperatively to 0.367 logMAR+0.44(SD) postoperatively and 1.4 logMAR+.000(SD) preoperatively to 0.16 logMAR+0.57(SD) postoperatively for optical and therapeutic grafts respectively. Conclusion Infective keratitis either active or healed was the major indication for keratoplasty. Poor prognosis indications were most common in this part of the country. The visual outcome following corneal transplantation was encouraging particularly in cases of optical keratoplasty. PMID:27504319

  14. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.

    PubMed

    Chow, Dawnis M; Frye, Mark A

    2008-08-01

    Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, flying straight requires the regulation of image rotation across the eye, whereas minimizing side-slip and avoiding a collision require regulation of image expansion. In flies, visual rotation stabilizes plume tracking, but rotation and expansion optomotor responses are controlled by separate visual pathways. Are olfactory signals integrated with optomotor responses in a manner dependent upon visual context? We addressed this question by investigating the effect of an attractive food odor on active optomotor flight control. Odorant caused flies both to increase aerodynamic power output and to steer straighter. However, when challenged with wide-field optic flow, odor resulted in enhanced amplitude rotation responses but reduced amplitude expansion responses. For both visual conditions, flies tracked motion signals more closely in odor, an indication of increased saliency. These results suggest a simple search algorithm by which olfactory signals improve the salience of visual stimuli and modify optomotor control in a context-dependent manner, thereby enabling an animal to fly straight up a plume and approach odiferous objects.

  15. Organization of area hV5/MT+ in subjects with homonymous visual field defects.

    PubMed

    Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M

    2018-04-06

    Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.

    PubMed

    Paulk, Angelique C; Gronenberg, Wulfila

    2008-11-01

    To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.

  17. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients

    PubMed Central

    Laron, Michal; Cheng, Han; Zhang, Bin; Schiffman, Jade S.; Tang, Rosa A.; Frishman, Laura J.

    2010-01-01

    Background Multifocal visual evoked potentials (mfVEP) measure local response amplitude and latency in the field of vision Objective To compare the sensitivity of mfVEP, Humphrey visual field (HVF) and optical coherence tomography (OCT) in detecting visual abnormality in multiple sclerosis (MS) patients. Methods MfVEP, HVF, and OCT (retinal nerve fiber layer [RNFL]) were performed in 47 MS-ON eyes (last optic neuritis (ON) attack ≥ 6 months prior) and 65 MS-no-ON eyes without ON history. Criteria to define an eye as abnormal were: mfVEP 1) amplitude/latency: either amplitude or latency probability plots meeting cluster criteria with 95% specificity 2) amplitude or latency alone (specificity: 97% and 98%, respectively); HVF and OCT, mean deviation and RNFL thickness meeting p < 0.05, respectively. Results MfVEP (amplitude/latency) identified more abnormality in MS-ON eyes (89%) than HVF (72%), OCT (62%), mfVEP amplitude (66%) or latency (67%) alone. 18% of MS-no-ON eyes were abnormal for both mfVEP (amplitude/latency) and HVF compared to 8% with OCT. Agreement between tests ranged from 60% to 79%. MfVEP (amplitude/latency) categorized an additional 15% of MS-ON eyes as abnormal compared to HVF and OCT combined. Conclusions MfVEP, which detects both demyelination (increased latency) and neural degeneration (reduced amplitude) revealed more abnormality than HVF or OCT in MS patients. PMID:20207786

  18. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  19. Nocturnal insects use optic flow for flight control.

    PubMed

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  20. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.

    PubMed

    Kubo, Fumi; Hablitzel, Bastian; Dal Maschio, Marco; Driever, Wolfgang; Baier, Herwig; Arrenberg, Aristides B

    2014-03-19

    Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  2. Cortical visual evoked potentials recorded after optic tract near field stimulation during GPi-DBS in non-cooperative patients.

    PubMed

    Landi, Andrea; Pirillo, David; Cilia, Roberto; Antonini, Angelo; Sganzerla, Erik P

    2011-02-01

    Neurophysiologic monitoring during deep brain stimulation (DBS) interventions in the globus pallidus internum (Gpi) for the treatment of Parkinson's disease or primary dystonia is generally based upon microelectrode recordings (MER); moreover, MER request sophisticated technology and high level trained personnel for a reliable monitoring. Recordings of cortical visual evoked potentials (CVEPs) obtained after stimulation of the optic tract may be a potential option to MER; since optic tract lies just beneath the best target for Gpi DBS, changes in CVEPs during intraoperative exploration may drive a correct electrode positioning. Cortical VEPs from optic tract stimulation (OT C-CEPs) have been recorded in seven patients during GPi-DBS for the treatment of Parkinson's disease and primary dystonia under general sedation. OT C-VEPs were obtained after near-field monopolar stimulation of the optic tract; recording electrodes were at the scalp. Cortical responses after optic tract versus standard visual stimulation were compared. After intraoperative near-field OT stimulation a biphasic wave, named N40-P70, was detected in all cases. N40-P70 neither change in morphology nor in latency at different depths, but increased in amplitude approaching the optic tract. The electrode tip was positioned just 1mm above the point where OT-CVEPs showed the larger amplitude. No MERs were obtained in these patients; OT CVEPs were the only method to detect the Gpi before positioning the electrodes. OT CVEPs seem to be as reliable as MER to detail the optimal target in Gpi surgery: in addition they are less expensive, faster to perform and easier to decode. Copyright © 2010. Published by Elsevier B.V.

  3. Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury.

    PubMed

    Weber, Arthur J; Viswanáthan, Suresh; Ramanathan, Chidambaram; Harman, Christine D

    2010-01-01

    To determine whether application of BDNF to the eye and brain provides a greater level of neuroprotection after optic nerve injury than treatment of the eye alone. Retinal ganglion cell survival and pattern electroretinographic responses were compared in normal cat eyes and in eyes that received (1) a mild nerve crush and no treatment, (2) a single intravitreal injection of BDNF at the time of the nerve injury, or (3) intravitreal treatment combined with 1 to 2 weeks of continuous delivery of BDNF to the visual cortex, bilaterally. Relative to no treatment, administration of BDNF to the eye alone resulted in a significant increase in ganglion cell survival at both 1 and 2 weeks after nerve crush (1 week, 79% vs. 55%; 2 weeks, 60% vs. 31%). Combined treatment of the eye and visual cortex resulted in a modest additional increase (17%) in ganglion cell survival in the 1-week eyes, a further significant increase (55%) in the 2-week eyes, and ganglion cell survival levels for both that were comparable to normal (92%-93% survival). Pattern ERG responses for all the treated eyes were comparable to normal at 1 week after injury; however, at 2 weeks, only the responses of eyes receiving the combined BDNF treatment remained so. Although treatment of the eye alone with BDNF has a significant impact on ganglion cell survival after optic nerve injury, combined treatment of the eye and brain may represent an even more effective approach and should be considered in the development of future optic neuropathy-related neuroprotection strategies.

  4. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  5. Objective Methods to Test Visual Dysfunction in the Presence of Cognitive Impairment

    DTIC Science & Technology

    2011-10-01

    retinitis   pigmentosa .    Ophthalmology...response  to  light  stimuli  for  diagnosing   retinal    and  optic  nerve  disorders           We  have... retinal  ganglion  cell  response  using  red  and  blue  stimuli  at  low  and  high   intensities

  6. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    PubMed

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  7. Combined imaging and chemical sensing using a single optical imaging fiber.

    PubMed

    Bronk, K S; Michael, K L; Pantano, P; Walt, D R

    1995-09-01

    Despite many innovations and developments in the field of fiber-optic chemical sensors, optical fibers have not been employed to both view a sample and concurrently detect an analyte of interest. While chemical sensors employing a single optical fiber or a noncoherent fiberoptic bundle have been applied to a wide variety of analytical determinations, they cannot be used for imaging. Similarly, coherent imaging fibers have been employed only for their originally intended purpose, image transmission. We herein report a new technique for viewing a sample and measuring surface chemical concentrations that employs a coherent imaging fiber. The method is based on the deposition of a thin, analyte-sensitive polymer layer on the distal surface of a 350-microns-diameter imaging fiber. We present results from a pH sensor array and an acetylcholine biosensor array, each of which contains approximately 6000 optical sensors. The acetylcholine biosensor has a detection limit of 35 microM and a fast (< 1 s) response time. In association with an epifluorescence microscope and a charge-coupled device, these modified imaging fibers can display visual information of a remote sample with 4-microns spatial resolution, allowing for alternating acquisition of both chemical analysis and visual histology.

  8. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  9. Applications of optical coherence tomography in pediatric clinical neuroscience.

    PubMed

    Avery, Robert A; Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Waldman, Amy T

    2015-04-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve-the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. Georg Thieme Verlag KG Stuttgart · New York.

  10. Finite Element Modeling of the Posterior Eye in Microgravity

    NASA Technical Reports Server (NTRS)

    Feola, Andrew; Raykin, Julia; Mulugeta, Lealem; Gleason, Rudolph; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian; Ethier, C. Ross

    2015-01-01

    Microgravity experienced during spaceflight affects astronauts in various ways, including weakened muscles and loss of bone density. Recently, visual impairment and intracranial pressure (VIIP) syndrome has become a major concern for space missions lasting longer than 30 days. Astronauts suffering from VIIP syndrome have changes in ocular anatomical and visual impairment that persist after returning to earth. It is hypothesized that a cephalad fluid shift in microgravity may increase the intracranial pressure (ICP), which leads to an altered biomechanical environment of the posterior globe and optic nerve sheath (ONS).Currently, there is a lack of knowledge of how elevated ICP may lead to vision impairment and connective tissue changes in VIIP. Our goal was to develop a finite element model to simulate the acute effects of elevated ICP on the posterior eye and optic nerve sheath. We used a finite element (FE) analysis approach to understand the response of the lamina cribrosa and optic nerve to the elevations in ICP thought to occur in microgravity and to identify which tissue components have the greatest impact on strain experienced by optic nerve head tissues.

  11. Visualizing Sound with an Electro-Optical Eardrum

    ERIC Educational Resources Information Center

    Truncale, Nicholas P.; Graham, Michelle T.

    2014-01-01

    As science educators, one of our important responsibilities is ensuring students possess the proper tools and accommodations to examine phenomena in a laboratory setting. It is our job to innovate methods enabling students with disabilities to participate in all aspects of investigations. This article describes an experimental accommodation…

  12. Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1

    PubMed Central

    Pennings, Ronald J.E.; Hol, Frans A.; Kunst, Henricus P.M.; Hoefsloot, Elisabeth H.; Cruysberg, Johannes R.M.; Cremers, Cor W.R.J.

    2010-01-01

    Purpose To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series. Methods Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution. Fasting serum glucose was assessed in the affected family members. Results All affected individuals showed loss of neuroretinal rim of the optic nerve at fundoscopy with enlarged blind spots at perimetry. They showed a red-green color vision defect at color vision tests and deviations at visually evoked response tests. The audiograms of the affected individuals showed hearing loss and were relatively flat. The unaffected individuals showed no visual deviations or hearing impairment. The affected family members had no glucose intolerance. Leber hereditary optic neuropathy (LHON) mitochondrial mutations and mutations in the Optic atrophy-1 gene (OPA1) were excluded. In the affected individuals, a novel missense mutation c.2508G>C (p.Lys836Asn) in exon 8 of WFS1 was identified. Conclusions This study describes the phenotype of a family with autosomal dominant optic neuropathy and hearing impairment associated with a novel missense mutation in WFS1. PMID:20069065

  13. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.

    PubMed

    Linander, Nellie; Dacke, Marie; Baird, Emily

    2015-04-01

    When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.

  15. Circadian light

    PubMed Central

    2010-01-01

    The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA) and circadian stimulus (CS) calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example. PMID:20377841

  16. Generation-V dual-Purkinje-image eyetracker

    NASA Technical Reports Server (NTRS)

    Crane, H. D.; Steele, C. M.

    1985-01-01

    Major advances characterize the Generation-V dual-Purkinje-image eyetracker compared with the Generation-III version previously described. These advances include a large reduction in size, major improvements in frequency response and noise level, automatic alignment to a subject, and automatic adjustment for different separation between the visual and optic axes, which can vary considerably from subject to subject. In a number of applications described in the paper, the eyetracker is coupled with other highly specialized optical devices. These applications include accurately stabilizing an image on a subject's retina; accurately simulating a visually dead retinal region (i.e., a scotoma) of arbitrary shape, size, and position; and, for clinical purposes, stabilizing the position of a laser coagulator beam on a patient's retina so that the point of contact is unaffected by the patient's own eye movements.

  17. Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki

    1995-06-01

    A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.

  18. Effects of gravitational and optical stimulation on the perception of target elevation

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Stoper, A. E.; Welch, R. B.; DeRoshia, C. W.

    2001-01-01

    To examine the combined effects of gravitational and optical stimulation on perceived target elevation, we independently altered gravitational-inertial force and both the orientation and the structure of a background visual array. While being exposed to 1.0, 1.5, or 2.0 Gz in the human centrifuge at NASA Ames Research Center, observers attempted to set a target to the apparent horizon. The target was viewed against the far wall of a box that was pitched at various angles. The box was brightly illuminated, had only its interior edges dimly illuminated, or was kept dark. Observers lowered their target settings as Gz was increased; this effect was weakened when the box was illuminated. Also, when the box was visible, settings were displaced in the same direction as that in which the box was pitched. We attribute our results to the combined influence of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched visual arrays.

  19. Optical cylinder designs to increase the field of vision in the osteo-odonto-keratoprosthesis.

    PubMed

    Hull, C C; Liu, C S; Sciscio, A; Eleftheriadis, H; Herold, J

    2000-12-01

    The single optical cylinders used in the osteo-odonto-keratoprosthesis (OOKP) are known to produce very small visual fields. Values of 40 degrees are typically quoted. The purpose of this paper is to present designs for new optical cylinders that significantly increase the field of view and therefore improve the visual rehabilitation of patients having an OOKP. Computer ray-tracing techniques were used to design and analyse improved one- and two-piece optical cylinders made from polymethyl methacrylate. All designs were required to have a potential visual acuity of 6/6 before consideration was given to the visual field and optimising off-axis image quality. Aspheric surfaces were used where this significantly improved off-axis image quality. Single optical cylinders, with increased posterior cylinder (intraocular) diameters, gave an increase in the theoretical visual field of 18% (from 76 degrees to 90 degrees) over current designs. Two-piece designs based on an inverted telephoto principle gave theoretical field angles over 120 degrees. Aspheric surfaces were shown to improve the off-axis image quality while maintaining a potential visual acuity of at least 6/6. This may well increase the measured visual field by improving the retinal illuminance off-axis. Results demonstrate that it is possible to significantly increase the theoretical maximum visual field through OOKP optical cylinders. Such designs will improve the visual rehabilitation of patients undergoing this procedure.

  20. Natural sleep modifies the rat electroretinogram.

    PubMed Central

    Galambos, R; Juhász, G; Kékesi, A K; Nyitrai, G; Szilágyi, N

    1994-01-01

    We show here electroretinograms (ERGs) recorded from freely moving rats during sleep and wakefulness. Bilateral ERGs were evoked by flashes delivered through a light-emitting diode implanted under the skin above one eye and recorded through electrodes inside each orbit near the optic nerve. Additional electrodes over each visual cortex monitored the brain waves and collected flash-evoked cortical potentials to compare with the ERGs. Connections to the stimulating and recording instruments through a plug on the head made data collection possible at any time without physically disturbing the animal. The three major findings are (i) the ERG amplitude during slow-wave sleep can be 2 or more times that of the waking response; (ii) the ERG patterns in slow-wave and REM sleep are different; and (iii) the sleep-related ERG changes closely mimic those taking place at the same time in the responses evoked from the visual cortex. We conclude that the mechanisms that alter the visual cortical-evoked responses during sleep operate also and similarly at the retinal level. PMID:8197199

  1. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses.

    PubMed

    Keshner, E A; Kenyon, R V

    2000-01-01

    We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.

  2. The effects of retinal abnormalities on the multifocal visual evoked potential.

    PubMed

    Chen, John Y; Hood, Donald C; Odel, Jeffrey G; Behrens, Myles M

    2006-10-01

    To examine the effects on the amplitude and latency of the multifocal visual evoked potential (mfVEP) in retinal diseases associated with depressed multifocal electroretinograms (mfERG). Static automated perimetry (SAP), mfERGs, and mfVEPs were obtained from 15 individuals seen by neuro-ophthalmologists and diagnosed with retinal disease based on funduscopic examination, visual field, and mfERG. Optic neuropathy was ruled out in all cases. Diagnoses included autoimmune retinopathy (n = 3), branch retinal arterial occlusion (n = 3), branch retinal vein occlusion (n = 1), vitamin A deficiency (n = 1), digoxin/age-related macular degeneration (n = 1), multiple evanescent white dot syndrome (n = 1), and nonspecific retinal disease (n = 5). Patients were selected from a larger group based on abnormal mfERG amplitudes covering a diameter of 20 degrees or greater. Fourteen (93%) of 15 patients showed significant mfVEP delays, as determined by either mean latency or the probability of a cluster of delayed local responses. Thirteen of 15 patients had normal mfVEP amplitudes in regions corresponding to markedly reduced or nonrecordable mfERG responses. These findings can be mimicked in normal individuals by viewing the display through a neutral-density filter. Retinal diseases can result in mfVEPs of relatively normal amplitudes, often with delays, in regions showing decreased mfERG responses and visual field sensitivity loss. Consequently, a retinal problem can be missed, or dismissed as functional, if a diagnosis is based on an mfVEP of normal or near-normal amplitude. Further, in patients with marked mfVEP delays, a retinal problem could be confused with optic neuritis, especially in a patient with a normal appearing fundus.

  3. Perception and control of rotorcraft flight

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1991-01-01

    Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.

  4. Individual Component Map of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of circular dicroism spectra of complex systems.

    PubMed

    Chang, Le; Baseggio, Oscar; Sementa, Luca; Cheng, Daojian; Fronzoni, Giovanna; Toffoli, Daniele; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro

    2018-06-13

    We introduce Individual Component Maps of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of chiro-optical linear response spectra deriving from time-dependent density functional theory (TDDFT) simulations. ICM-RS and RSD allow one to visualize the origin of chiro-optical response in momentum or real space, including signed contributions and therefore highlighting cancellation terms that are ubiquitous in chirality phenomena, and should be especially useful in analyzing the spectra of complex systems. As test cases, we use ICM-RS and RSD to analyze circular dichroism spectra of selected (Ag-Au)30(SR)18 monolayer-protected metal nanoclusters, showing the potential of the proposed tools to derive insight and understanding, and eventually rational design, in chiro-optical studies of complex systems.

  5. Adalimumab and Non-Arteritic Anterior Ischaemic Optic Neuropathy: A Case Report.

    PubMed

    Kinard, Krista; Walsh, Jessica A; Penmetsa, Gopi K; Warner, Judith E A

    2014-01-01

    Sequential anterior ischaemic optic neuropathy was observed in a patient treated with a tumour necrosis factor α (TNF) inhibitor, adalimumab, for ankylosing spondylitis. He developed decreased visual acuity in the right eye after 17 months of treatment. Findings showed right optic disc oedema with haemorrhages and visual field defect. Adalimumab was discontinued and vision stabilised. After restarting adalimumab, he developed optic neuropathy in the left eye. Findings showed optic disc oedema, with haemorrhages and visual field changes in the left eye. Adalimumab may be associated with optic neuropathy; providers prescribing TNF inhibitors should be aware of optic neuropathy as a potential complication.

  6. Vision problems

    MedlinePlus

    ... shade or curtain hanging across part of your visual field. Optic neuritis : inflammation of the optic nerve ... to ask your doctor Images Crossed eyes Eye Visual acuity test Slit-lamp exam Visual field test ...

  7. Quantifying fast optical signal and event-related potential relationships during a visual oddball task.

    PubMed

    Proulx, Nicole; Samadani, Ali-Akbar; Chau, Tom

    2018-05-16

    Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS signal is required before it can be practically exploited in applications such as brain-computer interfacing. Copyright © 2018. Published by Elsevier Inc.

  8. Strong Electro‐Optic Effect and Spontaneous Domain Formation in Self‐Assembled Peptide Structures

    PubMed Central

    Lafargue, Clément; Handelman, Amir; Shimon, Linda J. W.; Rosenman, Gil; Zyss, Joseph

    2017-01-01

    Short peptides made from repeating units of phenylalanine self‐assemble into a remarkable variety of micro‐ and nanostructures including tubes, tapes, spheres, and fibrils. These bio‐organic structures are found to possess striking mechanical, electrical, and optical properties, which are rarely seen in organic materials, and are therefore shown useful for diverse applications including regenerative medicine, targeted drug delivery, and biocompatible fluorescent probes. Consequently, finding new optical properties in these materials can significantly advance their practical use, for example, by allowing new ways to visualize, manipulate, and utilize them in new, in vivo, sensing applications. Here, by leveraging a unique electro‐optic phase microscopy technique, combined with traditional structural analysis, it is measured in di‐ and triphenylalanine peptide structures a surprisingly large electro‐optic response of the same order as the best performing inorganic crystals. In addition, spontaneous domain formation is observed in triphenylalanine tapes, and the origin of their electro‐optic activity is unveiled to be related to a porous triclinic structure, with extensive antiparallel beta‐sheet arrangement. The strong electro‐optic response of these porous peptide structures with the capability of hosting guest molecules opens the door to create new biocompatible, environmental friendly functional materials for electro‐optic applications, including biomedical imaging, sensing, and optical manipulation. PMID:28932664

  9. Image communication scheme based on dynamic visual cryptography and computer generated holography

    NASA Astrophysics Data System (ADS)

    Palevicius, Paulius; Ragulskis, Minvydas

    2015-01-01

    Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.

  10. Progression of asymptomatic optic disc swelling to non-arteritic anterior ischaemic optic neuropathy.

    PubMed

    Subramanian, Prem S; Gordon, Lynn K; Bonelli, Laura; Arnold, Anthony C

    2017-05-01

    The time of onset of optic disc swelling in non-arteritic anterior ischaemic optic neuropathy (NAION) is not known, and it is commonly assumed to arise simultaneously with vision loss. Our goal is to report the presence and persistence of optic disc swelling without initial vision loss and its subsequent evolution to typical, symptomatic NAION. Clinical case series of patients with optic disc swelling and normal visual acuity and visual fields at initial presentation who progressed to have vision loss typical of NAION. All subjects underwent automated perimetry, disc photography and optic coherence tomography and/or fluorescein angiography to evaluate optic nerve function and perfusion. Four patients were found to have sectoral or diffuse optic disc swelling without visual acuity or visual field loss; the fellow eye of all four had either current or prior NAION or a 'disc at risk' configuration. Over several weeks of clinical surveillance, each patient experienced sudden onset of visual field and/or visual acuity loss typical for NAION. Current treatment options for NAION once vision loss occurs are limited and may not alter the natural history of the disorder. Subjects with NAION may have disc swelling for 2-10 weeks prior to the occurrence of visual loss, and with the development of new therapeutic agents, treatment at the time of observed disc swelling could prevent vision loss from NAION. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. [Clinical feature of chronic compressive optic neuropathy without optic atrophy].

    PubMed

    Jiang, Libin; Shi, Jitong; Liu, Wendong; Kang, Jun; Wang, Ningli

    2014-12-01

    To investigate the clinical feature of the chronic compressive optic neuropathy without optic atrophy. Retrospective cases series study. The clinical data of 25 patients (37 eyes) with chronic compressive optic neuropathy without optic atrophy, treated in Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, from October, 2005 to March, 2014, were collected. Those patients had been showing visual symptoms for 6 months or longer, but missed diagnosed or misdiagnosed as other eye diseases due to their normal or slightly changed fundi. The collected data including visual acuities, visual fields, neuroimaging and/or pathologic diagnosis were analyzed. Among the 25 patients, there were 5 males and 20 females, and their ages range from 9 to 74 years [average (47.5 ± 13.4) years]. All patients suffered progressive impaired vision in single eye or both eyes, without exophthalmos or abnormal eye movements. Except one patient had a headache, other patients did not show systemic symptoms. The corrected visual acuities were between HM to 1.0, and their appearances of optic discs and colors of fundi were normal. After neuroimaging and/or pathological examination, it was proven that 14 patients suffered tuberculum sellae meningiomas, 5 patients with hypophysoma, 3 patient with optic nerve sheath meningioma in orbital apex, 1 patient with cavernous hemangioma, 1 patient with vascular malformation in orbital apex and 1 patient with optic nerve glioma. Among the 19 patients whose suffered occupied lesions of saddle area, 14 patients underwent visual field examinations, and only 4 patients showed classic visual field defects caused by optic chiasmal lesions. Occult progressive visual loss was the most important clinical feature of the disease.

  12. Acute optic neuropathy associated with a novel MFN2 mutation.

    PubMed

    Leonardi, Luca; Marcotulli, Christian; Storti, Eugenia; Tessa, Alessandra; Serrao, Mariano; Parisi, Vincenzo; Santorelli, F M; Pierelli, Francesco; Casali, Carlo

    2015-07-01

    Mutations in the mitofusin 2 (MFN2) gene cause CMT2A the most common form of autosomal dominant axonal Charcot-Marie-Tooth (CMT). In addition, mutations in MFN2 have been shown to be responsible for Hereditary Motor Sensory Neuropathy type VI (HSMN VI), a rare early-onset axonal CMT associated with optic neuropathy. Most reports of HMSN VI presented with a sub-acute form of optic neuropathy. Herein, we report a CMT2A patient, who developed very rapidly progressing severe optic neuropathy. A 40-year-old Caucasian man was evaluated for gait disturbance and lower limbs weakness, slowly progressed over the last 2 years. Due to clinical data and family history, a diagnosis of CMT2 was made. The novel heterozygous c.775C > T (p.Arg259Cys) mutation in MFN2 was detected in the patient and his clinical affected mother. Interestingly, the patient developed a severe sudden bilateral visual deterioration few years early, with clinical and instrumental picture suggestive of acute bilateral optic neuropathy. Our report expands the spectrum of MFN2-related manifestation because it indicates that visual symptoms of HMSN VI may enter in the differential with acquired or hereditary acute optic neuropathies, and that severe optic neuropathy is not invariably an early manifestation of the disease but may occur as disease progressed. This report could have an impact on clinicians who evaluate patients with otherwise unexplainable bilateral acute-onset optic neuropathy, especially if associated with a motor and sensory axonal neuropathy.

  13. The visual control of stability in children and adults: postural readjustments in a ground optical flow.

    PubMed

    Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo

    2004-11-01

    The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.

  14. Dissection of Drosophila Visual Circuits Implicative in Figure Motion

    NASA Astrophysics Data System (ADS)

    Kelley, Ross G.

    The Drosophila visual system offers a model to study the foundations of how motion signals are computed from raw visual input and transformed into behavioral output. My studies focus on how specific cells in the Drosophila nervous system implement this input-output transformation. The individual cell types are known from classical studies using Golgi impregnations, but the assembly of motion processing circuits and the behavioral outputs remain poorly understood. Using an electronic flight simulator for flies and a white-noise analysis developed by Aptekar et al., I screen specific neurons in the optic lobes for behavioral ramifications. This approach produces wing responses to both the spatial and temporal dynamics of motion signals. The results of these experiments give Spatiotemporal Action Fields (STAFs) across the entire visual panorama. Genetically inactivating a distinct grouping of cells in the third optic ganglion, the Lobula Plate, the Horizontal System (HS) cell group, produced a robust phenotype through STAF analysis. Using the Gal4-UAS transgene expression system, we selectively inactivated the HS cells by expressing in their membrane inward rectifying potassium channels (Kir2.1) to hyperpolarize these cells, preventing their role in synaptic signaling. The results of the experiments show mutants lose steering responses to several distinct categories of figure motion and reduced behavioral responses to figure motion set against a contrasting moving background, highlighting their role in figure tracking behavior. Finally, a synapse inactivating protein, tetanus toxin (TNT), expressed in the HS cell group, produces a different behavioral phenotype than overexpressing inward rectifier. TNT, a bacterial neurotoxin, cleaves SNARE proteins resulting in loss of synaptic output of the cell, but the dendrites are intact and signal normally, preserving dendro-dendritic interactions known to sculpt the visual receptive fields of these cells. The two distinct phenotypes to each genetically targeted silencer differentiate the functional role of dendritic integration versus axonal output in this important cell group.

  15. Isolated optic nerve gliomas: a multicenter historical cohort study.

    PubMed

    Shofty, Ben; Ben-Sira, Liat; Kesler, Anat; Jallo, George; Groves, Mari L; Iyer, Rajiv R; Lassaletta, Alvaro; Tabori, Uri; Bouffet, Eric; Thomale, Ulrich-Wilhelm; Hernáiz Driever, Pablo; Constantini, Shlomi

    2017-12-01

    OBJECTIVE Isolated optic nerve gliomas (IONGs) constitute a rare subgroup of optic pathway gliomas (OPGs). Due to the rarity of this condition and the difficulty in differentiating IONGs from other types of OPGs in most clinical series, little is known about these tumors. Currently, due to lack of evidence, they are managed the same as any other OPG. METHODS The authors conducted a multicenter retrospective cohort study aimed at determining the natural history of IONGs. Included were patients with clear-cut glioma of the optic nerve without posterior (chiasmatic/hypothalamic) involvement. At least 1 year of follow-up, 2 MRI studies, and 2 neuro-ophthalmological examinations were required for inclusion. RESULTS Thirty-six patients with 39 tumors were included in this study. Age at diagnosis ranged between 6 months and 16 years (average 6 years). The mean follow-up time was 5.6 years. Twenty-five patients had neurofibromatosis Type 1. During the follow-up period, 59% of the tumors progressed, 23% remained stable, and 18% (all with neurofibromatosis Type 1) displayed some degree of spontaneous regression. Fifty-one percent of the patients presented with visual decline, of whom 90% experienced further deterioration. Nine patients were treated with chemotherapy, 5 of whom improved visually. Ten patients underwent operation, and no local or distal recurrence was noted. CONCLUSIONS Isolated optic nerve gliomas are highly dynamic tumors. Radiological progression and visual deterioration occur in greater percentages than in the general population of patients with OPGs. Response to chemotherapy may be better in this group, and its use should be considered early in the course of the disease.

  16. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  17. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Diffusion tensor imaging of the optic tracts in multiple sclerosis: association with retinal thinning and visual disability.

    PubMed

    Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S

    2011-04-01

    Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.

  19. Diffusion Tensor Imaging of the Optic Tracts in Multiple Sclerosis: Association with Retinal Thinning and Visual Disability

    PubMed Central

    Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.

    2009-01-01

    Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501

  20. Optical birefringence imaging of x-ray excited lithium tantalate

    DOE PAGES

    Durbin, S. M.; Landcastle, A.; DiChiara, A.; ...

    2017-08-04

    X-ray absorption in lithium tantalate induces large, long-lived (~10 -5 s) optical birefringence, visualized via scanning optical polarimetry, likely arising from electrooptic coupling to x-ray induced electric fields. Similar birefringence measured from glass, sapphire, and quartz was two orders of magnitude weaker. This suggests that x-ray excited charges preferentially create ordered, aligned dipoles within the noncentrosymmetric unit cell of ferroelectric LiTaO 3, enhancing the electric field compared to more isotropic charge distributions in the other materials. In conclusion, time-resolved measurements show a prompt response on a picosecond time scale, which along with the long decay time suggest novel approaches tomore » optical detection of x-rays using ferroelectric materials.« less

  1. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    PubMed

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  2. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment.

    PubMed

    Bathelt, Joe; Dale, Naomi; de Haan, Michelle

    2017-10-01

    Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve). Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.

  4. Visual evoked potentials in the horse.

    PubMed

    Ström, L; Ekesten, B

    2016-06-21

    Electrical potentials generated in the central nervous system in response to brief visual stimuli, flash visual evoked potentials (FVEPs), can be recorded non-invasively over the occipital cortex. FVEPs are used clinically in human medicine and also experimentally in a number of animal species, but the method has not yet been evaluated in the horse. The method would potentially allow the ophthalmologist and equine clinician to evaluate visual impairment caused by disorders affecting post-retinal visual pathways. The aim was to establish a method for recording of FVEPs in horses in a clinical setting and to evaluate the waveform morphology in the normal horse. Ten horses were sedated with a continuous detomidine infusion. Responses were recorded from electrodes placed on the scalp. Several positions were evaluated to determine suitable electrode placement. Flash electroretinograms (FERGs) were recorded simultaneously. To evaluate potential contamination of the FVEP from retinal potentials, a retrobulbar nerve block was performed in two horses and transection of the optic nerve was performed in one horse as a terminal procedure. A series of positive (P) and negative (N) peaks in response to light stimuli was recorded in all horses. Reproducible wavelets with mean times-to-peaks of 26 (N1), 55 (P2), 141 (N2) and 216 ms (P4) were seen in all horses in all recordings. Reproducible results were obtained when the active electrode was placed in the midline rostral to the nuchal crest. Recording at lateral positions gave more variable results, possibly due to ear muscle artifacts. Averaging ≥100 responses reduced the impact of noise and artifacts. FVEPs were reproducible in the same horse during the same recording session and between sessions, but were more variable between horses. Retrobulbar nerve block caused a transient loss of the VEP whereas transection of the optic nerve caused an irreversible loss. We describe the waveform of the equine FVEP and our results show that it is possible to record FVEPs in sedated horses in a clinical setting. The potentials recorded were shown to be of post-retinal origin. Further studies are needed to provide normative data and assess potential clinical use.

  5. Neurophysiological intraoperative monitoring during an optic nerve schwannoma removal.

    PubMed

    San-Juan, Daniel; Escanio Cortés, Manuel; Tena-Suck, Martha; Orozco Garduño, Adolfo Josué; López Pizano, Jesús Alejandro; Villanueva Domínguez, Jonathan; Fernández Gónzalez-Aragón, Maricarmen; Gómez-Amador, Juan Luis

    2017-10-01

    This paper reports the case of a patient with optic nerve schwannoma and the first use of neurophysiological intraoperative monitoring of visual evoked potentials during the removal of such tumor with no postoperative visual damage. Schwannomas are benign neoplasms of the peripheral nervous system arising from the neural crest-derived Schwann cells, these tumors are rarely located in the optic nerve and the treatment consists on surgical removal leading to high risk of damage to the visual pathway. Case report of a thirty-year-old woman with an optic nerve schwannoma. The patient underwent surgery for tumor removal on the left optic nerve through a left orbitozygomatic approach with intraoperative monitoring of left II and III cranial nerves. We used Nicolet Endeavour CR IOM (Carefusion, Middleton WI, USA) to performed visual evoked potentials stimulating binocularly with LED flash goggles with the patient´s eyes closed and direct epidural optic nerve stimulation delivering rostral to the tumor a rectangular current pulse. At follow up examinations 7 months later, the left eye visual acuity was 20/60; Ishihara score was 8/8 in both eyes; the right eye photomotor reflex was normal and left eye was mydriatic and arreflectic; optokinetic reflex and ocular conjugate movements were normal. In this case, the epidural direct electrical stimulation of optic nerve provided stable waveforms during optic nerve schwannoma resection without visual loss.

  6. The Physiology of Vision and the Process of Writing.

    ERIC Educational Resources Information Center

    Roberts, David Harrill

    Acknowledging the importance of sight to the writing process, the paper elucidates the processes of vision related to the composing process. In the opening section the physics of light and vision, optic neuroanatomy, and cortical responses to visual stimuli are explained. Next, theories of vision and data mapping are examined and their…

  7. Microgravity-Induced Fluid Shift and Ophthalmic Changes

    PubMed Central

    Nelson, Emily S.; Mulugeta, Lealem; Myers, Jerry G.

    2014-01-01

    Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight. PMID:25387162

  8. Childhood blindness and visual loss: an assessment at two institutions including a "new" cause.

    PubMed Central

    Mets, M B

    1999-01-01

    PURPOSE: This study was initiated to investigate the causes of childhood blindness and visual impairment in the United States. We also sought a particular etiology--congenital lymphocytic choriomeningitis virus (LCMV)--which has been considered exceedingly rare, in a fixed target population of children, the severely mentally retarded. METHODS: We undertook a library-based study of the world literature to shed light on the causes of childhood blindness internationally and to put our data in context. We prospectively examined all consented children (159) at 2 institutions in the United States to determine their ocular status and the etiology of any visual loss present. One of the institutions is a school for the visually impaired (hereafter referred to as Location V), in which most of the students have normal mentation. The other is a home for severely mentally retarded, nonambulatory children (hereafter referred to as Location M). This institution was selected specifically to provide a sample of visual loss associated with severe retardation because the handful of cases of LCMV in the literature have been associated with severe central nervous system insults. Histories were obtained from records on site, and all children received a complete cyclopleged ophthalmic examination at their institution performed by the author. Patients at Location M with chorioretinal scars consistent with intrauterine infection (a possible sign of LCMV) had separate consents for blood drawing. Sera was obtained and sent for standard TORCHS titers, toxoplasmosis titers (Jack S. Remington, MD, Palo Alto, Calif), and ELISA testing for LCMV (Centers for Disease Control and Prevention, Atlanta, Ga). RESULTS: The diagnoses at Location V were varied and included retinopathy of prematurity (19.4%), optic atrophy (19.4%), retinitis pigmentosa (14.5%), optic nerve hypoplasia (12.9%), cataracts (8.1%), foveal hypoplasia (8.1%), persistent hyperplastic primary vitreous (4.8%), and microphthalmos (3.2%). The most common diagnosis at Location M was bilateral optic atrophy, which was found in 65% of the patients examined who had visual loss. Of these, the insults were most often congenital (42.6%), with birth trauma, prematurity, and genetics each responsible for about 15% of the optic atrophy. The second most common diagnosis was cortical visual impairment (24%), followed by chorioretinal scars (5%), which are strongly suggestive of intrauterine infection. Of 95 patients examined at Location M, 4 had chorioretinal scars. Two of these had dramatically elevated titers for LCMV, as did one of their mothers. One of the other 2 children died before serum could be drawn, and the fourth had negative titers for both TORCHS and LCMV. CONCLUSIONS: At both locations studied, visual loss was most often due to congenital insults, whether genetic or simply prenatal. The visual loss at Location V was twice as likely as that at Location M to be caused by a genetic disorder. The genetic disorders at Location V were more often isolated eye diseases, while those among the severely retarded at Location M were more generalized genetic disorders. Our study identified optic atrophy as a common diagnosis among the severely mentally retarded with vision loss, a finding that is supported by previous studies in other countries. In our population of severely retarded children, the target etiology of lymphocytic choriomeningitis virus was responsible for half the visual loss secondary to chorioretinitis from intrauterine infection. This is more common than would be predicted by the few cases previously described in the literature, and strongly suggests that LCMV may be a more common cause of visual loss than previously appreciated. We believe that serology for LCMV should be part of the workup for congenital chorioretinitis, especially if the TORCHS titers are negative, and that perhaps the mnemonic should be revised to "TORCHS + L." Childhood blindness and visual impairment are tragic and co Images FIGURE 5 FIGURE 6 PMID:10703143

  9. Piscivore-prey fish interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear water.

    PubMed

    Ranåker, Lynn; Persson, Jens; Jönsson, Mikael; Nilsson, P Anders; Brönmark, Christer

    2014-01-01

    Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on piscivore-prey interaction strength and thereby ecosystem responses to brownification of waters.

  10. Head sway response to optic flow: effect of age is more important than the presence of unilateral vestibular hypofunction

    PubMed Central

    Sparto, Patrick J.; Furman, Joseph M.; Redfern, Mark S.

    2014-01-01

    Background The purpose of this study was to examine how older adults with vestibular impairment use sensory feedback for postural control. Methods Nine older adult subjects with unilateral vestibular hypofunction (UVH, mean age 69 y) and 14 older (mean age 70 y) and 8 young adult controls (CON, mean age 28 y) viewed full-field optic flow scenes while standing on a fixed or sway-referenced support surface. The subjects with UVH had 100% caloric asymmetry. Optic flow consisted of sinusoidal anterior-posterior movement of the visual surround at three frequencies and three amplitudes of stimulation. The anterior-posterior head sway was measured. The number of head sway responses that were coupled to the optic flow and magnitude of head sway during optic flow relative to during quiet stance on fixed floor was quantified. Results The number of trials in which the head sway response was significantly coupled to the optic flow was significantly greater in the Older UVH and Older CON subjects compared with the Young CON subjects. Furthermore, the magnitude of head sway was two to three times greater in Older UVH and CON compared with Young CON subjects. There was no difference in coupling or magnitude of head sway between Older UVH and Older CON subjects. The amplitude of sway was also dependent on the amount of surface support, stimulus frequency, and stimulus amplitude. Conclusions Older adults with unilateral vestibular hypofunction who are able to effectively compensate show no difference in postural responses elicited by optic flow compared with age-matched controls. PMID:17312341

  11. Effects of L-arginine on anatomical and electrophysiological deterioration of the eye in a rodent model of nonarteritic ischemic optic neuropathy.

    PubMed

    Chuman, Hideki; Maekubo, Tomoyuki; Osako, Takako; Ishiai, Michitaka; Kawano, Naoko; Nao-I, Nobuhisa

    2013-07-01

    The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.

  12. Comparison of the American Optical Vision Tester and the Armed Forces Far Visual Acuity Test. B-6-133-13

    DTIC Science & Technology

    1954-01-01

    THE AMERICAN OPTICAL VISION TESTER AND THE ARMED FORCES FAR VISUAL ACUITY TEST Comparisons were made of the visual acuity scores of 100 enlisted men on ...the American Optical Vision Tester (with Sloan plates) and on the Armed Forces Far Visual Acuity test. Order of presentation was: AO-left eye, AO...right eye, AFFVAT-left, AFVTAT-right. Correlation coefficients between AO and AFFVAT were around .89. Dispersion of acuity scores was about the same on

  13. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene

    NASA Astrophysics Data System (ADS)

    Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod, A. S.; Liu, M. K.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Hone, J.; Fogler, M. M.; Basov, D. N.

    2016-04-01

    The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media, with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer. We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump-probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.

  14. Optical images of visible and invisible percepts in the primary visual cortex of primates

    PubMed Central

    Macknik, Stephen L.; Haglund, Michael M.

    1999-01-01

    We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363

  15. Characterization of the Biomechanical Behavior of the Optic Nerve Sheath

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Wang, Roy; Forte, Taylor E.; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    A major priority in current space medicine research is to characterize the mechanisms in Visual Impairment and Intracranial Pressure (VIIP) syndrome, a group of ophthalmic changes that occur in some astronauts following long-duration spaceflight [1]. It is hypothesized that microgravity-induced cephalad fluid shifts lead to increases in intracranial pressure (ICP), which drives maladaptive remodeling of the optic nerve sheath (ONS). In this study, we investigated the effects of mechanical loading on the porcine ONS to better understand the mechanical response of the ONS to increased ICP.

  16. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  17. Processing of emotional words measured simultaneously with steady-state visually evoked potentials and near-infrared diffusing-wave spectroscopy.

    PubMed

    Koban, Leonie; Ninck, Markus; Li, Jun; Gisler, Thomas; Kissler, Johanna

    2010-07-27

    Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected with other measures such as EEG steady-state visual evoked potentials (SSVEPs) or optical brain imaging techniques. In the present study, we simultaneously performed SSVEP measurements and near-infrared diffusing-wave spectroscopy (DWS), a new optical technique for the non-invasive measurement of brain function, to measure brain responses to neutral, pleasant, and unpleasant nouns flickering at a frequency of 7.5 Hz. The power of the SSVEP signal was significantly modulated by the words' emotional content at occipital electrodes, showing reduced SSVEP power during stimulation with pleasant compared to neutral nouns. By contrast, the DWS signal measured over the visual cortex showed significant differences between stimulation with flickering words and baseline periods, but no modulation in response to the words' emotional significance. This study is the first investigation of brain responses to emotional words using simultaneous measurements of SSVEPs and DWS. Emotional modulation of word processing was detected with EEG SSVEPs, but not by DWS. SSVEP power for emotional, specifically pleasant, compared to neutral words was reduced, which contrasts with previous results obtained when presenting emotional pictures. This appears to reflect processing differences between symbolic and pictorial emotional stimuli. While pictures prompt sustained perceptual processing, decoding the significance of emotional words requires more internal associative processing. Reasons for an absence of emotion effects in the DWS signal are discussed.

  18. Manipulating the content of dynamic natural scenes to characterize response in human MT/MST.

    PubMed

    Durant, Szonya; Wall, Matthew B; Zanker, Johannes M

    2011-09-09

    Optic flow is one of the most important sources of information for enabling human navigation through the world. A striking finding from single-cell studies in monkeys is the rapid saturation of response of MT/MST areas with the density of optic flow type motion information. These results are reflected psychophysically in human perception in the saturation of motion aftereffects. We began by comparing responses to natural optic flow scenes in human visual brain areas to responses to the same scenes with inverted contrast (photo negative). This changes scene familiarity while preserving local motion signals. This manipulation had no effect; however, the response was only correlated with the density of local motion (calculated by a motion correlation model) in V1, not in MT/MST. To further investigate this, we manipulated the visible proportion of natural dynamic scenes and found that areas MT and MST did not increase in response over a 16-fold increase in the amount of information presented, i.e., response had saturated. This makes sense in light of the sparseness of motion information in natural scenes, suggesting that the human brain is well adapted to exploit a small amount of dynamic signal and extract information important for survival.

  19. Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography

    NASA Astrophysics Data System (ADS)

    Biallas, Martin; Trajkovic, Ivo; Hagmann, Cornelia; Scholkmann, Felix; Jenny, Carmen; Holper, Lisa; Beck, Andreas; Wolf, Martin

    2012-08-01

    In this study 14 healthy term newborns (postnatal mean age 2.1 days) underwent photic stimulation during sleep on two different days. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) was acquired simultaneously. The aims of the study were: to determine (i) the sensitivity and (ii) the repeatability of NIRS to detect the hemodynamic response, (iii) the sensitivity and (iv) the repeatability of EEG to detect a visual evoked potential (VEP), (v) to analyze optical data for the optical neuronal signal, and (vi) to test whether inadequate stimulation could be reason for absent hemodynamic responses. The results of the study were as follows. (i) Sensitivity of NIRS was 61.5% to detect hemodynamic responses; (ii) their reproducibility was 41.7%. A VEP was detected (iii) in 96.3% of all subjects with (iv) a reproducibility of 92.3%. (v) In two measurements data met the criteria for an optical neuronal signal. The noise level was 9.6.10-5% change in optical density. (vi) Insufficient stimulation was excluded as reason for absent hemodynamic responses. We conclude that NIRS is an promising tool to study cognitive activation and development of the brain. For clinical application, however, the sensitivity and reproducibility on an individual level needs to be improved.

  20. Ethambutol/Linezolid Toxic Optic Neuropathy.

    PubMed

    Libershteyn, Yevgeniya

    2016-02-01

    To report a rare toxic optic neuropathy after long-term use of two medications: ethambutol and linezolid. A 65-year-old man presented to the Miami Veterans Affairs Medical Center in December 2014 for evaluation of progressive vision decrease in both eyes. The patient presented with best-corrected visual acuities of 20/400 in the right eye and counting fingers at 5 feet in the left eye. Color vision was significantly reduced in both eyes. Visual fields revealed a cecocentral defect in both eyes. His fundus and optic nerve examination was unremarkable. Because vision continued to decline after discontinuation of ethambutol, linezolid was also discontinued, after which vision, color vision, and visual fields improved. Because of these findings, the final diagnosis was toxic optic neuropathy. Final visual outcome was 20/30 in the right eye and 20/40 in the left eye. Drug-associated toxic optic neuropathy is a rare but vision-threatening condition. Diagnosis is made based on an extensive case history and careful clinical examination. The examination findings include varying decrease in vision, normal pupils and extraocular muscles, and unremarkable fundoscopy, with the possibility of swollen optic discs in the acute stage of the optic neuropathy. Other important findings descriptive of toxic optic neuropathy include decreased color vision and cecocentral visual field defects. This case illustrates the importance of knowledge of all medications and/or substances a patient consumes that may cause a toxic reaction and discontinuing them immediately if the visual functions are worsening or not improving.

  1. Corticosteroid therapy in patients with non-arteritic anterior ischemic optic neuropathy.

    PubMed

    Vidović, Tomislav; Cerovski, Branimir; Perić, Sanja; Kordić, Rajko; Mrazovac, Danijela

    2015-03-01

    Non-arteritic anterior ischemic optic neuropathy is one of the most common conditions affecting the optic nerve in the elderly. It may lead to severe visual loss. Typical symptoms are painless impairment of visual function accompanied by relative afferent pupillary defect, edema of the optic disc and visual field defects. Aim is to present 38 patients with nonarteritic anterior ischemic optic neuropathy who were treated with corticosteroid therapy. This prospective study involved 38 patients, 20 men and 18 women aged 60-75 years who were treated with corticosteroid therapy. The study included patients with visual acuity in the affected eye from 0.1 to 0.8 according to Snellen. Every patient underwent clinical examination, the Octopus 900 perimetry in G program, laboratory testing, while the compressive optic neuropathy was rule out with MSCT of the brain and orbits. The most common forms of visual field defect are altitudinal defect and diffuse depression. Corticosteroid therapy led to recovery in 65% of patient, in 30% of patients did not change, while the deterioration occurred in 5% of patients.

  2. [Atypical optic neuritis in systemic lupus erythematosus (SLE)].

    PubMed

    Eckstein, A; Kötter, I; Wilhelm, H

    1995-11-01

    A 67-year-old woman experienced acute unilateral visual loss accompanied by pain with eye movements. There was a marked relative afferent pupillary defect and a nerve fiber bundle defect in the upper half of the visual field. Optic discs were normal. After 4 days vision worsened to motion detection and only a temporal island was left in the visual field. The optic disc margin was blurred. Since thirty years she had been suffering from renal insufficiency. Immunoserologic examination revealed elevated ANA and DS-DNA antibody titers. An optic neuritis in systemic lupus erythematosus was diagnosed, which is called atopic, because of its association to a systemic disease and the old age of the patient. The patient was treated with 100 mg prednisolone/day, slowly tapered. Within 6 weeks visual acuity improved to 0.6 and visual field normalized except for a small nerve fiber bundle defect. Autoimmune optic neuritis often responds to treatment with corticosteroids. Early onset of treatment is important. Immunopathologic examinations are an important diagnostic tool in atopic optic neuritis. Their results may even have consequences for the treatment of the underlying disease.

  3. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    PubMed

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  4. Neural circuits underlying visually evoked escapes in larval zebrafish

    PubMed Central

    Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo

    2015-01-01

    SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  5. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  6. Endoscopic Endonasal Optic Nerve Decompression for Fibrous Dysplasia

    PubMed Central

    DeKlotz, Timothy R.; Stefko, S. Tonya; Fernandez-Miranda, Juan C.; Gardner, Paul A.; Snyderman, Carl H.; Wang, Eric W.

    2016-01-01

    Objective To evaluate visual outcomes and potential complications for optic nerve decompression using an endoscopic endonasal approach (EEA) for fibrous dysplasia. Design Retrospective chart review of patients with fibrous dysplasia causing extrinsic compression of the canalicular segment of the optic nerve that underwent an endoscopic endonasal optic nerve decompression at the University of Pittsburgh Medical Center from 2010 to 2013. Main Outcome Measures The primary outcome measure assessed was best-corrected visual acuity (BCVA) with secondary outcomes, including visual field testing, color vision, and complications associated with the intervention. Results A total of four patients and five optic nerves were decompressed via an EEA. All patients were symptomatic preoperatively and had objective findings compatible with compressive optic neuropathy: decreased visual acuity was noted preoperatively in three patients while the remaining patient demonstrated an afferent pupillary defect. BCVA improved in all patients postoperatively. No major complications were identified. Conclusion EEA for optic nerve decompression appears to be a safe and effective treatment for patients with compressive optic neuropathy secondary to fibrous dysplasia. Further studies are required to identify selection criteria for an open versus an endoscopic approach. PMID:28180039

  7. Quantitative optical coherence microscopy for the in situ investigation of the biofilm

    NASA Astrophysics Data System (ADS)

    Meleppat, Ratheesh Kumar; Shearwood, Christopher; Keey, Seah Leong; Matham, Murukeshan Vadakke

    2016-12-01

    This paper explores the potential of optical coherence microscopy (OCM) for the in situ monitoring of biofilm growth. The quantitative imaging of the early developmental biology of a representative biofilm, Klebsiella pneumonia (KP-1), was performed using a swept source-based Fourier domain OCM system. The growth dynamics of the KP-1 biofilms and their transient response under perturbation was investigated using the enface visualization of microcolonies and their spatial localization. Furthermore, the optical density (OD) and planar density of the biofilms are calculated using an OCM technique and compared with OD and colony forming units measured using standard procedures via the sampling of the flow-cell effluent.

  8. A novel boundary layer sensor utilizing domain switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1991-01-01

    This paper describes the design and the principles of operation of a novel sensor for the optical detection of a shear stress field induced by air or gas flow on a rigid surface. The detection relies on the effects of shear-induced optical switching in ferroelectric liquid crystals. It is shown that the method overcomes many of the limitations of similar measuring techniques including those using cholesteric liquid crystals. The present method offers a preferred alternative for flow visualization and skin friction measurements in wind-tunnel experiments on laminar boundary layer transition investigations. A theoretical model for the optical response to shear stress is presented together with a schematic diagram of the experimental setup.

  9. High-definition optical coherence tomography and reflectance confocal microscopy in the in vivo visualization of a reaction to permanent make-up.

    PubMed

    Maier, T; Flaig, M J; Ruzicka, T; Berking, C; Pavicic, T

    2015-03-01

    After permanent make-up treatments, eczematous and granulomatous reactions may occur which need anti-inflammatory treatment. For the definite diagnosis oftentimes biopsies are recommended. In vivo imaging such as reflectance confocal microscopy (RCM) and high-definition optical coherence tomography (HD-OCT) has been successfully used in the non-invasive diagnosis of various dermatoses before. Here, we report on non-invasive imaging of a reaction towards permanent make-up in a 40-year-old woman by using HD-OCT and RCM. Both in HD-OCT and in RCM subepidermal pigment and granulomatous changes could be visualized and correlated with the histopathological findings. Regression of the lesions in response to topical steroids and intralesional injections of steroids and 5-fluorouracil is reported and treatment options are discussed. Non-invasive imaging techniques such as HD-OCT and RCM allow the visualization and localization of exogenous pigment and help in the evaluation of adverse reactions due to permanent make-up tattooing. © 2014 European Academy of Dermatology and Venereology.

  10. Ultrahigh-Speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head

    PubMed Central

    Srinivasan, Vivek J.; Adler, Desmond C.; Chen, Yueli; Gorczynska, Iwona; Huber, Robert; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.

    2009-01-01

    Purpose To demonstrate ultrahigh-speed optical coherence tomography (OCT) imaging of the retina and optic nerve head at 249,000 axial scans per second and a wavelength of 1060 nm. To investigate methods for visualization of the retina, choroid, and optic nerve using high-density sampling enabled by improved imaging speed. Methods A swept-source OCT retinal imaging system operating at a speed of 249,000 axial scans per second was developed. Imaging of the retina, choroid, and optic nerve were performed. Display methods such as speckle reduction, slicing along arbitrary planes, en face visualization of reflectance from specific retinal layers, and image compounding were investigated. Results High-definition and three-dimensional (3D) imaging of the normal retina and optic nerve head were performed. Increased light penetration at 1060 nm enabled improved visualization of the choroid, lamina cribrosa, and sclera. OCT fundus images and 3D visualizations were generated with higher pixel density and less motion artifacts than standard spectral/Fourier domain OCT. En face images enabled visualization of the porous structure of the lamina cribrosa, nerve fiber layer, choroid, photoreceptors, RPE, and capillaries of the inner retina. Conclusions Ultrahigh-speed OCT imaging of the retina and optic nerve head at 249,000 axial scans per second is possible. The improvement of ∼5 to 10× in imaging speed over commercial spectral/Fourier domain OCT technology enables higher density raster scan protocols and improved performance of en face visualization methods. The combination of the longer wavelength and ultrahigh imaging speed enables excellent visualization of the choroid, sclera, and lamina cribrosa. PMID:18658089

  11. Competitive Dynamics in MSTd: A Mechanism for Robust Heading Perception Based on Optic Flow

    PubMed Central

    Layton, Oliver W.; Fajen, Brett R.

    2016-01-01

    Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading. PMID:27341686

  12. Accommodative performance for chromatic displays.

    PubMed

    Lovasik, J V; Kergoat, H

    1988-01-01

    Over the past few years, video display units (VDUs) have been incorporated into many varieties of workplaces and occupational demands. The success of electro-optical displays in facilitating and improving job performance has spawned interest in extracting further advantage from VDUs by incorporating colour coding into such communication systems. However, concerns have been raised about the effect of chromatic stimuli on the visual comfort and task efficiency, because of the chromatic aberration inherent in the optics of the human eye. In this study, we used a computer aided laser speckle optometer system to measure the accommodative responses to brightness-matched chromatic letters displayed on a high-resolution RGB monitor. Twenty, visually normal, paid volunteers in a 22-35 year age category served as subjects. Stimuli were 14, 21, 28 minutes of arc letters presented in a 'monochromatic' (white, red, green or blue, on a black background) or 'multichromatic' (blue-red, blue-green, red-green, foreground-background combinations) mode at 40 and 80 cm viewing distances. The results demonstrated that while the accommodative responses were strongly influenced by the foreground-background colour combination, the group-averaged dioptric difference across colours was relatively small. Further, accommodative responses were not guided in any systematic fashion by the size of letters presented for fixation. Implications of these findings for display designs are discussed.

  13. Neural basis of forward flight control and landing in honeybees.

    PubMed

    Ibbotson, M R; Hung, Y-S; Meffin, H; Boeddeker, N; Srinivasan, M V

    2017-11-06

    The impressive repertoire of honeybee visually guided behaviors, and their ability to learn has made them an important tool for elucidating the visual basis of behavior. Like other insects, bees perform optomotor course correction to optic flow, a response that is dependent on the spatial structure of the visual environment. However, bees can also distinguish the speed of image motion during forward flight and landing, as well as estimate flight distances (odometry), irrespective of the visual scene. The neural pathways underlying these abilities are unknown. Here we report on a cluster of descending neurons (DNIIIs) that are shown to have the directional tuning properties necessary for detecting image motion during forward flight and landing on vertical surfaces. They have stable firing rates during prolonged periods of stimulation and respond to a wide range of image speeds, making them suitable to detect image flow during flight behaviors. While their responses are not strictly speed tuned, the shape and amplitudes of their speed tuning functions are resistant to large changes in spatial frequency. These cells are prime candidates not only for the control of flight speed and landing, but also the basis of a neural 'front end' of the honeybee's visual odometer.

  14. Visualization of tumor vascular reactivity in response to respiratory challenges by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hoon Sup; Lee, Songhyun; Lee, Kiri; Eom, Tae Joong; Kim, Jae G.

    2016-02-01

    We previously reported the potential of using vascular reactivity during respiratory challenges as a marker to predict the response of breast tumor to chemotherapy in a rat model by using a continuous wave near-infrared spectroscopy. However, it cannot visualize how the vascular reactivity from tumor vessel can predict the tumor response to its treatment. In this study, we utilized a spectral domain optical coherence tomography (SD-OCT) system to visualize vascular reactivity of both tumor and normal vasculature during respiratory challenges in a mouse model. We adapted intensity based Doppler variance algorithm to draw angiogram from the ear of mouse (8-week-old Balb/c nu/nu). Animals were anesthetized using 1.5% isoflurane, and the body temperature was maintained by a heating pad. Inhalational gas was switched from air (10min) to 100% oxygen (10min), and a pulse oximeter was used to monitor arterial oxygen saturation and heart rate. OCT angiograms were acquired 5 min after the onset of each gas. The vasoconstriction effect of hyperoxic gas on vasculature was shown by subtracting an en-face image acquired during 100% oxygen from the image acquired during air inhalation. The quantitative change in the vessel diameter was measured from the en-face OCT images of the individual blood vessels. The percentage of blood vessel diameter reduction varied from 1% to 12% depending on arterial, capillary, or venous blood vessel. The vascular reactivity change during breast tumor progression and post chemotherapy will be monitored by OCT angiography.

  15. Reduced Looming Sensitivity in Primary School Children with Developmental Co-Ordination Disorder

    ERIC Educational Resources Information Center

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2012-01-01

    Almost all locomotor animals are sensitive to optical expansion (visual looming) and for most animals this sensitivity is evident very early in their development. In humans there is evidence that responses to looming stimuli begin in the first 6 weeks of life, but here we demonstrate that as children become independent their perceptual acuity…

  16. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.

    PubMed

    Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen

    2018-06-01

    To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.

  17. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  18. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.

    PubMed

    Zarella, Mark D; Ts'o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.

  19. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2

    PubMed Central

    Zarella, Mark D; Ts’o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. PMID:28761385

  20. Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis.

    PubMed

    von Helversen, D; Wendler, G

    2000-01-01

    In the duetting bushcricket species Poecilimon affinis the male calls at intervals of several seconds and is guided to the female by its short response clicks, which release phonotaxis only when perceived by the male during its sensory time window (40-170 ms after his call). The accuracy of phonotaxis in this acoustically open-loop system was investigated on a locomotion compensator with and without optical cues available. Phonotaxis in darkness was strongly meandrous with numerous roundabouts, while in a structured surrounding the oscillating course was attenuated. With a landmark available the male was able to maintain a straight course to the female. This is achieved by coupling of visual cues to an acoustically detected direction. Thus, in this species, the acoustic cues, which in the songs of continuously singing crickets and bushcrickets are permanently present, are replaced by optical ones. Restricting localization of female clicks to a short time window and using optical cues for target tracking allows straight orientation, even when guided by very short signals at long repetition intervals.

  1. Navigation-guided optic canal decompression for traumatic optic neuropathy: Two case reports.

    PubMed

    Bhattacharjee, Kasturi; Serasiya, Samir; Kapoor, Deepika; Bhattacharjee, Harsha

    2018-06-01

    Two cases of traumatic optic neuropathy presented with profound loss of vision. Both cases received a course of intravenous corticosteroids elsewhere but did not improve. They underwent Navigation guided optic canal decompression via external transcaruncular approach, following which both cases showed visual improvement. Postoperative Visual Evoked Potential and optical coherence technology of Retinal nerve fibre layer showed improvement. These case reports emphasize on the role of stereotactic navigation technology for optic canal decompression in cases of traumatic optic neuropathy.

  2. Vision Science and Adaptive Optics, The State of the Field

    PubMed Central

    Marcos, Susana; Werner, John S.; Burns, Stephen A; Merigan, William H.; Artal, Pablo; Atchison, David A.; Hampson, Karen M.; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S.; Doble, Nathan; Dubis, Adam M.; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T.; Paques, Michel; Smithson, Hannah E.; Young, Laura K.; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C.

    2017-01-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. PMID:28212982

  3. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  4. Optical defocus: differential effects on size and contrast letter recognition thresholds.

    PubMed

    Rabin, J

    1994-02-01

    To determine if optical defocus produces a greater reduction in visual acuity or small-letter contrast sensitivity. Letter charts were used to measure visual acuity and small-letter contrast sensitivity (20/25 Snellen equivalent) as a function of optical defocus. Letter size (acuity) and contrast (contrast sensitivity) were varied in equal logarithmic steps to make the task the same for the two types of measurement. Both visual acuity and contrast sensitivity declined with optical defocus, but the effect was far greater in the contrast domain. However, measurement variability also was greater for contrast sensitivity. After correction for this variability, measurement in the contrast domain still proved to be a more sensitive (1.75x) index of optical defocus. Small-letter contrast sensitivity is a powerful technique for detecting subtle amounts of optical defocus. This adjunctive approach may be useful when there are small changes in resolution that are not detected by standard measures of visual acuity. Potential applications include evaluating the course of vision in refractive surgery, classification of cataracts, detection of corneal or macular edema, and detection of visual loss in the aging eye. Evaluation of candidates for occupations requiring unique visual abilities also may be enhanced by measuring resolution in the contrast domain.

  5. Comparison of peripapillary retinal nerve fiber layer loss and visual outcome in fellow eyes following sequential bilateral non-arteritic anterior ischemic optic neuropathy.

    PubMed

    Dotan, Gad; Kesler, Anat; Naftaliev, Elvira; Skarf, Barry

    2015-05-01

    To report on the correlation of structural damage to the axons of the optic nerve and visual outcome following bilateral non-arteritic anterior ischemic optic neuropathy. A retrospective review of the medical records of 25 patients with bilateral sequential non-arteritic anterior ischemic optic neuropathy was performed. Outcome measures were peripapillary retinal nerve fiber layer thickness measured with the Stratus optical coherence tomography scanner, visual acuity and visual field loss. Median peripapillary retinal nerve fiber layer (RNFL) thickness, mean deviation (MD) of visual field, and visual acuity of initially involved NAION eyes (54.00 µm, -17.77 decibels (dB), 0.4, respectively) were comparable to the same parameters measured following development of second NAION event in the other eye (53.70 µm, p = 0.740; -16.83 dB, p = 0.692; 0.4, p = 0.942, respectively). In patients with bilateral NAION, there was a significant correlation of peripapillary RNFL thickness (r = 0.583, p = 0.002) and MD of the visual field (r = 0.457, p = 0.042) for the pairs of affected eyes, whereas a poor correlation was found in visual acuity of these eyes (r = 0.279, p = 0.176). Peripapillary RNFL thickness following NAION was positively correlated with MD of visual field (r = 0.312, p = 0.043) and negatively correlated with logMAR visual acuity (r = -0.365, p = 0.009). In patients who experience bilateral NAION, the magnitude of RNFL loss is similar in each eye. There is a greater similarity in visual field loss than in visual acuity between the two affected eyes with NAION of the same individual.

  6. Simultaneous diffuse near-infrared imaging of hemodynamic and oxygenation changes and electroencephalographic measurements of neuronal activity in the human brain

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi; Kicic, Dubravko; Kotilahti, Kalle; Kajava, Timo; Kahkonen, Seppo; Nissila, Ilkka; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    Visually evoked hemodynamic responses and potentials were simultaneously measured using a 16-channel optical imaging instrument and a 60-channel electroencephalography instrument during normo-, hypo- and hypercapnia from three subjects. Flashing and pattern-reversed checkerboard stimuli were used. The study protocol included two counterbalanced measurements during both normo- and hypocapnia and normo- and hypercapnia. Hypocapnia was produced by controlled hyperventilation and hypercapnia by breathing carbon dioxide enriched air. Near-infrared imaging was also used to monitor the concentration changes of oxy- and deoxyhaemoglobin due to hypo- and hypercapnia. Hemodynamic responses and evoked potentials were successfully detected for each subject above the visual cortex. The latencies of the hemodynamic responses during hypocapnia were shorter whereas during hypercapnia they were longer when compared to the latencies during normocapnia. Hypocapnia tended to decrease the latencies of visually evoked potentials compared to those during normocapnia while hypercapnia did not show any consistent effect to the potentials. The developed measurement setup and the study protocol provide the opportunity to investigate the neurovascular coupling and the links between the baseline level of blood flow, electrical activity and hemodynamic responses in the human brain.

  7. Farris-Tang retractor in optic nerve sheath decompression surgery.

    PubMed

    Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K

    2016-01-01

    Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.

  8. Cranial Nerve II

    PubMed Central

    Gillig, Paulette Marie; Sanders, Richard D.

    2009-01-01

    This article contains a brief review of the anatomy of the visual system, a survey of diseases of the retina, optic nerve and lesions of the optic chiasm, and other visual field defects of special interest to the psychiatrist. It also includes a presentation of the corticothalamic mechanisms, differential diagnosis, and various manifestations of visual illusions, and simple and complex visual hallucinations, as well as the differential diagnoses of these various visual phenomena. PMID:19855858

  9. Indocyanine Green Videoangiography Transoptic Visualization and Clipping Confirmation of an Optic Splitting Ophthalmic Artery Aneurysm.

    PubMed

    Rustemi, Oriela; Cester, Giacomo; Causin, Francesco; Scienza, Renato; Della Puppa, Alessandro

    2016-06-01

    Ophthalmic artery aneurysms with medial and superior projection in exceptionally rare cases can split the optic nerve. Treatment of these aneurysms is challenging, because the aneurysm dome is hidden from the optic nerve, rendering its visualization and clipping confirmation difficult. In addition, optic nerve function should be preserved during surgical maneuvers. Preoperative detection of this growing feature is usually missing. We illustrate the first case of indocyanine green videoangiography (ICG-VA) application in an optic penetrating ophthalmic artery aneurysm treatment. A 57-year-old woman presented with temporal hemianopsia, slight right visual acuity deficit, and new onset of headache. The cerebral angiography detected a right ophthalmic artery aneurysm medially and superiorly projecting. The A1 tract of the ipsilateral anterior cerebral artery was elevated and curved, being suspicious for an under optic aneurysm growth. Surgery was performed. Initially the aneurysm was not visible. ICG-VA permitted the transoptic aneurysm visualization. After optic canal opening, the aneurysm was clipped and transoptic ICG-VA confirmed the aneurysm occlusion. ICG-VA showed also the slight improvement of the optic nerve pial vascularization. Postoperatively, the visual acuity was 10/10 and the hemianopsia did not worsen. The elevation and curve of the A1 tract in medially and superiorly projecting ophthalmic aneurysms may be an indirect sign of under optic growth, or optic splitting aneurysms. ICG-VA transoptic aneurysm detection and occlusion confirmation reduces the surgical maneuvers on the optic nerve, contributing to function preservation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  11. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.

  12. Heading Tuning in Macaque Area V6.

    PubMed

    Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E

    2015-12-16

    Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first demonstration that V6 neurons carry 3D visual heading signals, which are represented in an eye-centered reference frame. In contrast, we found almost no evidence for vestibular heading signals in V6, indicating that V6 is unlikely to contribute to multisensory integration of heading signals, unlike other cortical areas. These findings provide important constraints on the roles of V6 in self-motion perception. Copyright © 2015 the authors 0270-6474/15/3516303-12$15.00/0.

  13. Power profiles and short-term visual performance of soft contact lenses.

    PubMed

    Papas, Eric; Dahms, Anne; Carnt, Nicole; Tahhan, Nina; Ehrmann, Klaus

    2009-04-01

    To investigate the manner in which contemporary soft contact lenses differ in the distribution of optical power within their optic zones and establish if these variations affect the vision of wearers or the prescribing procedure for back vertex power (BVP). By using a Visionix VC 2001 contact lens power analyzer, power profiles were measured across the optic zones of the following contemporary contact lenses ACUVUE 2, ACUVUE ADVANCE, O2OPTIX, NIGHT & DAY and PureVision. Single BVP measures were obtained using a Nikon projection lensometer. Visual performance was assessed in 28 masked subjects who wore each lens type in random order. Measurements taken were high and low contrast visual acuity in normal illumination (250 Cd/m), high contrast acuity in reduced illumination (5 Cd/m), subjective visual quality using a numerical rating scale, and visual satisfaction rating using a Likert scale. Marked differences in the distribution of optical power across the optic zone were evident among the lens types. No significant differences were found for any of the visual performance variables (p > 0.05, analysis of variance with repeated measures and Friedman test). Variations in power profile between contemporary soft lens types exist but do not, in general, result in measurable visual performance differences in the short term, nor do they substantially influence the BVP required for optimal correction.

  14. Spontaneous Resolution of Long-Standing Macular Detachment due to Optic Disc Pit with Significant Visual Improvement.

    PubMed

    Parikakis, Efstratios A; Chatziralli, Irini P; Peponis, Vasileios G; Karagiannis, Dimitrios; Stratos, Aimilianos; Tsiotra, Vasileia A; Mitropoulos, Panagiotis G

    2014-01-01

    To report a case of spontaneous resolution of a long-standing serous macular detachment associated with an optic disc pit, leading to significant visual improvement. A 63-year-old female presented with a 6-month history of blurred vision and micropsia in her left eye. Her best-corrected visual acuity was 6/24 in the left eye, and fundoscopy revealed serous macular detachment associated with optic disc pit, which was confirmed by optical coherence tomography (OCT). The patient was offered vitrectomy as a treatment alternative, but she preferred to be reviewed conservatively. Three years after initial presentation, neither macular detachment nor subretinal fluid was evident in OCT, while the inner segment/outer segment (IS/OS) junction line was intact. Her visual acuity was improved from 6/24 to 6/12 in her left eye, remaining stable at the 6-month follow-up after resolution. We present a case of spontaneous resolution of a long-standing macular detachment associated with an optic disc pit with significant visual improvement, postulating that the integrity of the IS/OS junction line may be a prognostic factor for final visual acuity and suggesting OCT as an indicator of visual prognosis and the probable necessity of a surgical management.

  15. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset.

    PubMed

    Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe

    2017-01-01

    Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A flexible pressure responsive device based on the interaction between silver nanoparticles and an aluminum reflector

    NASA Astrophysics Data System (ADS)

    Rankin, Alasdair; McGarry, Steven

    2018-01-01

    The unique and tunable optical properties of metal nanoparticles have attracted intense and sustained academic attention in recent years. In tandem with the demand for low-cost responsive materials, one particular topic of interest is the development of mechanically responsive device structures. This work describes the design, fabrication, and testing of a mechanically responsive plasmonic device structure that has been integrated onto a standard commercial plastic substrate. With a low actuation force and a visually perceivable color shift, this device would be attractive for applications requiring responsive features that can be activated by the human hand.

  17. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  18. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  19. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  20. Visual Outcomes in Pediatric Optic Pathway Glioma After Conformal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awdeh, Richard M.; Kiehna, Erin N.; Drewry, Richard D.

    Purpose: To assess visual outcome prospectively after conformal radiation therapy (CRT) in children with optic pathway glioma. Methods and Materials: We used CRT to treat optic pathway glioma in 20 children (median age 9.3 years) between July 1997 and January 2002. We assessed changes in visual acuity using the logarithm of the minimal angle of resolution after CRT (54 Gy) with a median follow-up of 24 months. We included in the study children who underwent chemotherapy (8 patients) or resection (9 patients) before CRT. Results: Surgery played a major role in determining baseline (pre-CRT) visual acuity (better eye: P=.0431; worsemore » eye: P=.0032). The visual acuity in the worse eye was diminished at baseline (borderline significant) with administration of chemotherapy before CRT (P=.0726) and progression of disease prior to receiving CRT (P=.0220). In the worse eye, improvement in visual acuity was observed in patients who did not receive chemotherapy before CRT (P=.0289). Conclusions: Children with optic pathway glioma initially treated with chemotherapy prior to receiving radiation therapy have decreased visual acuity compared with those who receive primary radiation therapy. Limited surgery before radiation therapy may have a role in preserving visual acuity.« less

  1. PSA-NCAM expression in the teleost optic tectum is related to ecological niche and use of vision in finding food.

    PubMed

    Labak, I; Pavić, V; Zjalić, M; Blažetić, S; Viljetić, B; Merdić, E; Heffer, M

    2017-08-01

    In this study, tangential migration and neuronal connectivity organization were analysed in the optic tectum of seven different teleosts through the expression of polysialylated neural cell adhesion molecule (PSA-NCAM) in response to ecological niche and use of vision. Reduced PSA-NCAM expression in rainbow trout Oncorhynchus mykiss optic tectum occurred in efferent layers, while in pike Esox lucius and zebrafish Danio rerio it occurred in afferent and efferent layers. Zander Sander lucioperca and European eel Anguilla anguilla had very low PSA-NCAM expression in all tectal layers except in the stratum marginale. Common carp Cyprinus carpio and wels catfish Silurus glanis had the same intensity of PSA-NCAM expression in all tectal layers. The optic tectum of all studied fishes was also a site of tangential migration with sustained PSA-NCAM and c-series ganglioside expression. Anti-c-series ganglioside immunoreactivity was observed in all tectal layers of all analysed fishes, even in layers where PSA-NCAM expression was reduced. Since the optic tectum is indispensable for visually guided prey capture, stabilization of synaptic contact and decrease of neurogenesis and tangential migration in the visual map are an expected adjustment to ecological niche. The authors hypothesize that this stabilization would probably be achieved by down-regulation of PSA-NCAM rather than c-series of ganglioside. © 2017 The Fisheries Society of the British Isles.

  2. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  3. Optical treatment strategies to slow myopia progression: Effects of the visual extent of the optical treatment zone

    PubMed Central

    Smith, Earl L.

    2013-01-01

    In order to develop effective optical treatment strategies for myopia, it is important to understand how visual experience influences refractive development. Beginning with the discovery of the phenomenon of form deprivation myopia, research involving many animal species has demonstrated that refractive development is regulated by visual feedback. In particular, animal studies have shown that optically imposed myopic defocus slows axial elongation, that the effects of vision are dominated by local retinal mechanisms, and that peripheral vision can dominate central refractive development. In this review, the results obtained from clinical trials of traditional optical treatment strategies employed in efforts to slow myopia progression in children are interpreted in light of the results from animal studies and are compared to the emerging results from preliminary clinical studies of optical treatment strategies that manipulate the effective focus of the peripheral retina. Overall, the results suggest that imposed myopic defocus can slow myopia progression in children and that the effectiveness of an optical treatment strategy in reducing myopia progression is influenced by the extent of the visual field that is manipulated. PMID:23290590

  4. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Radial Peripapillary Capillary Network Visualized Using Wide-Field Montage Optical Coherence Tomography Angiography.

    PubMed

    Mase, Tomoko; Ishibazawa, Akihiro; Nagaoka, Taiji; Yokota, Harumasa; Yoshida, Akitoshi

    2016-07-01

    We quantitatively analyzed the features of a radial peripapillary capillary (RPC) network visualized using wide-field montage optical coherence tomography (OCT) angiography in healthy human eyes. Twenty eyes of 20 healthy subjects were recruited. En face 3 × 3-mm OCT angiograms of multiple locations in the posterior pole were acquired using the RTVue XR Avanti, and wide-field montage images of the RPC were created. To evaluate the RPC density, the montage images were binarized and skeletonized. The correlation between the RPC density and the retinal nerve fiber layer (RNFL) thickness measured by an OCT circle scan was investigated. The RPC at the temporal retina was detected as far as 7.6 ± 0.7 mm from the edge of the optic disc but not around the perifoveal area within 0.9 ± 0.1 mm of the fovea. Capillary-free zones beside the first branches of the arterioles were significantly (P < 0.0001) narrower than those beside the second ones. The RPC densities at 0.5, 2.5, and 5 mm from the optic disc edge were 13.6 ± 0.8, 11.9 ± 0.9, and 10.4 ± 0.9 mm-1. The RPC density also was correlated significantly (r = 0.64, P < 0.0001) with the RNFL thickness, with the greatest density in the inferotemporal region. Montage OCT angiograms can visualize expansion of the RPC network. The RPC is present in the superficial peripapillary retina in proportion to the RNFL thickness, supporting the idea that the RPC may be the vascular network primarily responsible for RNFL nourishment.

  6. Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads

    PubMed Central

    Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.; Mayer, Theresa S.

    2015-01-01

    The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits. PMID:25961804

  7. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Applications of Phase-Based Motion Processing

    NASA Technical Reports Server (NTRS)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  9. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  10. Effects of Optical Pitch on Oculomotor Control and the Perception of Target Elevation

    NASA Technical Reports Server (NTRS)

    Cohen, Malcom M.; Ebenholtz, Sheldon M.; Linder, Barry J.

    1995-01-01

    In two experiments, we used an ISCAN infrared video system to examine the influence of a pitched visual array on gaze elevation and on judgments of visually perceived eye level. In Experiment 1, subjects attempted to direct their gaze to a relaxed or to a horizontal orientation while they were seated in a room whose walls were pitched at various angles with respect to gravity. Gaze elevation was biased in the direction in which the room was pitched. In Experiment 2, subjects looked into a small box that was pitched at various angles while they attempted simply to direct their gaze alone, or to direct their gaze and place a visual target at their apparent horizon. Both gaze elevation and target settings varied systematically with the pitch orientation of the box. Our results suggest that under these conditions, an optostatic response, of which the subject is unaware, is responsible for the changes in both gaze elevation and judgments of target elevation.

  11. Voltage transfer function as an optical method to characterize electrical properties of liquid crystal devices.

    PubMed

    Bateman, J; Proctor, M; Buchnev, O; Podoliak, N; D'Alessandro, G; Kaczmarek, M

    2014-07-01

    The voltage transfer function is a rapid and visually effective method to determine the electrical response of liquid crystal (LC) systems using optical measurements. This method relies on crosspolarized intensity measurements as a function of the frequency and amplitude of the voltage applied to the device. Coupled with a mathematical model of the device it can be used to determine the device time constants and electrical properties. We validate the method using photorefractive LC cells and determine the main time constants and the voltage dropped across the layers using a simple nonlinear filter model.

  12. Optical hiding with visual cryptography

    NASA Astrophysics Data System (ADS)

    Shi, Yishi; Yang, Xiubo

    2017-11-01

    We propose an optical hiding method based on visual cryptography. In the hiding process, we convert the secret information into a set of fabricated phase-keys, which are completely independent of each other, intensity-detected-proof and image-covered, leading to the high security. During the extraction process, the covered phase-keys are illuminated with laser beams and then incoherently superimposed to extract the hidden information directly by human vision, without complicated optical implementations and any additional computation, resulting in the convenience of extraction. Also, the phase-keys are manufactured as the diffractive optical elements that are robust to the attacks, such as the blocking and the phase-noise. Optical experiments verify that the high security, the easy extraction and the strong robustness are all obtainable in the visual-cryptography-based optical hiding.

  13. A mechanical mounting system for functional near-infrared spectroscopy brain imaging studies

    NASA Astrophysics Data System (ADS)

    Coyle, Shirley; Markham, Charles; Lanigan, William; Ward, Tomas

    2005-06-01

    In this work a mechanical optode mounting system for functional brain imaging with light is presented. The particular application here is a non-invasive optical brain computer interface (BCI) working in the near-infrared range. A BCI is a device that allows a user to interact with their environment through thought processes alone. Their most common use is as a communication aid for the severely disabled. We have recently pioneered the use of optical techniques for such BCI systems rather than the usual electrical modality. Our optical BCI detects characteristic changes in the cerebral haemodynamic responses that occur during motor imagery tasks. On detection of features of the optical response, resulting from localised haemodynamic changes, the BCI translates such responses and provides visual feedback to the user. While signal processing has a large part to play in terms of optimising performance we have found that it is the mechanical mounting of the optical sources and detectors (optodes) that has the greatest bearing on the performance of the system and indeed presents many interesting and novel challenges with regard to sensor placement, depth of penetration, signal intensity, artifact reduction and robustness of measurement. Here a solution is presented that accommodates the range of experimental parameters required for the application as well as meeting many of the challenges outlined above. This is the first time that a concerted study on optode mounting systems for optical BCIs has been attempted and it is hoped this paper may stimulate further research in this area.

  14. Nanomusical systems visualized and controlled in 4D electron microscopy.

    PubMed

    Baskin, J Spencer; Park, Hyun Soon; Zewail, Ahmed H

    2011-05-11

    Nanomusical systems, nanoharp and nanopiano, fabricated as arrays of cantilevers by focused ion beam milling of a layered Ni/Ti/Si(3)N(4) thin film, have been investigated in 4D electron microscopy. With the imaging and selective femtosecond and nanosecond control combinations, full characterization of the amplitude and phase of the resonant response of a particular cantilever relative to the optical pulse train was possible. Using a high repetition rate, low energy optical pulse train for selective, resonant excitation, coupled with pulsed and steady-state electron imaging for visualization in space and time, both the amplitude on the nanoscale and resonance of motion on the megahertz scale were resolved for these systems. Tilting of the specimen allowed in-plane and out-of-plane cantilever bending and cantilever torsional motions to be identified in stroboscopic measurements of impulsively induced free vibration. Finally, the transient, as opposed to steady state, thermostat effect was observed for the layered nanocantilevers, with a sufficiently sensitive response to demonstrate suitability for in situ use in thin-film temperature measurements requiring resolutions of <10 K and 10 μm on time scales here mechanically limited to microseconds and potentially at shorter times.

  15. Monitoring skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shi, Rui; Zhu, Dan

    2018-02-01

    To monitor skin microvascular dysfunction of alloxan-induced type 1 diabetic mice model. In this work, we used laser speckle contrast imaging and hyperspectral imaging through in vivo skin optical clearing method to simultaneously monitor the noradrenaline-induced response of microvascular blood flow and blood oxygen with the development of diabetes. The main results showed that venous and arterious blood flow steadily decreased without recovery after injecting noradrenaline (NE), furthermore the influence of NE-induced arterious blood oxygen response greatly decreased, especially for 2-weeks and 4-weeks diabetic mice. This study demonstrated that skin microvascular function was a potential research biomarker for early warning in the occurrence and development of diabetes. And it provides a feasible solution to realize visualization of cutaneous microvessels for monitoring microvascular reactivity.

  16. Pigment-dispersing factor sets the night state of the medulla bilateral neurons in the optic lobe of the cricket, Gryllus bimaculatus.

    PubMed

    Saifullah, A S M; Tomioka, Kenji

    2003-03-01

    Pigment-dispersing factor (PDF) is an octadeca-neuropeptide widely distributed in the insect brain and suggested to be involved in the insect circadian systems. We have examined its effects on the neuronal activity of the brain efferents in the optic stalk including medulla bilateral neurons (MBNs) in the cricket, Gryllus bimaculatus. The MBNs are visually responding interneurons connecting the bilateral medulla, which show a clear day/night change in their light responsiveness that is greater during the night. Microinjection of PDF into the optic lobe induced a significant increase in the spontaneous activity of the brain efferents and the photo-responsiveness of the MBNs during the day, while little change was induced during the night. The enhancing effects began to occur about 20 min after the injection and another 10 min was necessary to reach the maximal level. The effects of PDF were dose-dependent. When 22 nl of anti-Gryllus-PDF (1:200) IgG was injected into the medulla, the photo-responsiveness of the MBNs was suppressed in both the day and the night with greater magnitude during the night. No significant suppression was induced by injection of the same amount of IgG from normal rabbit serum. These results suggest that in the cricket optic lobe, PDF is released during the night and enhances MBNs' photo-responsiveness to set their night state.

  17. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  18. Optic nerve head component responses of the multifocal electroretinogram in MS.

    PubMed

    Frohman, Teresa C; Beh, Shin Chien; Saidha, Shiv; Schnurman, Zane; Conger, Darrel; Conger, Amy; Ratchford, John N; Lopez, Carmen; Galetta, Steven L; Calabresi, Peter A; Balcer, Laura J; Green, Ari J; Frohman, Elliot M

    2013-08-06

    To employ a novel stimulation paradigm in order to elicit multifocal electroretinography (mfERG)-induced optic nerve head component (ONHC) responses, believed to be contingent upon the transformation in electrical transmission properties of retinal ganglion cell axons from membrane to saltatory conduction mechanisms, as they traverse the lamina cribrosa and obtain oligodendrocyte myelin. We further sought to characterize abnormalities in ONHC responses in eyes from patients with multiple sclerosis (MS). In 10 normal subjects and 7 patients with MS (including eyes with and without a history of acute optic neuritis), we utilized a novel mfERG stimulation paradigm that included interleaved global flashes in order to elicit the ONHC responses from 103 retinal patches of pattern-reversal stimulation. The number of abnormal or absent ONHC responses was significantly increased in MS patient eyes compared to normal subject eyes (p < 0.001, by general estimating equation modeling, and accounting for age and within-subject, intereye correlations). Studying the relationship between ONHC abnormalities and alterations in validated structural and functional measures of the visual system may facilitate the ability to dissect and characterize the pathobiological mechanisms that contribute to tissue damage in MS, and may have utility to detect and monitor neuroprotective or restorative effects of novel therapies.

  19. Relationship between Structural and Functional Assessment of the Visual System in Mildly Disabled Relapsing-Remitting Multiple Sclerosis Patients

    PubMed Central

    Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay

    2014-01-01

    Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266

  20. Visual acuity and magnification devices in dentistry.

    PubMed

    Perrin, Philippe; Eichenberger, Martina; Neuhaus, Klaus W; Lussi, Adrian

    2016-01-01

    This review discusses visual acuity in dentistry and the influence of optical aids. Studies based on objective visual tests at a dental working distance were included. These studies show dramatic individual variation independent of the dentists’ age. The limitations due to presbyopia begin at an age of 40 years. Dental professionals should have their near vision tested regularly. Visual deficiencies can be compensated with magnification aids. It is important to differentiate between Galilean and Keplerian loupes. The lightweight Galilean loupes allow an almost straight posture and offer improved ergonomics. Younger dentists profit more from the ergonomic aspects, while dentists over the age of 40 can compensate their age-related visual deficiencies when using this type of loupe. Keplerian loupes, with their superior optical construction, improve the visual performance for dentists of all age groups. The optical advantages come at the cost of ergonomic constraints due to the weight of these loupes. The microscope is highly superior visually and ergonomically, and it is indispensable for the visual control of endodontic treatments.

  1. Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy.

    PubMed

    Heo, Dong Won; Kim, Kyoung Nam; Lee, Min Woo; Lee, Sung Bok; Kim, Chang-Sik

    2017-01-01

    To evaluate the properties of pattern standard deviation (PSD) according to localization of the glaucomatous optic neuropathy. We enrolled 242 eyes of 242 patients with primary open-angle glaucoma, with a best-corrected visual acuity ≥ 20/25, and no media opacity. Patients were examined via dilated fundus photography, spectral-domain optical coherence tomography, and Humphrey visual field examination, and divided into those with hemi-optic neuropathy (superior or inferior) and bi-optic neuropathy (both superior and inferior). We assessed the relationship between mean deviation (MD) and PSD. Using broken stick regression analysis, the tipping point was identified, i.e., the point at which MD became significantly associated with a paradoxical reversal of PSD. In 91 patients with hemi-optic neuropathy, PSD showed a strong correlation with MD (r = -0.973, β = -0.965, p < 0.001). The difference between MD and PSD ("-MD-PSD") was constant (mean, -0.32 dB; 95% confidence interval, -2.48~1.84 dB) regardless of visual field defect severity. However, in 151 patients with bi-optic neuropathy, a negative correlation was evident between "-MD-PSD" and MD (r2 = 0.907, p < 0.001). Overall, the MD tipping point was -14.0 dB, which was close to approximately 50% damage of the entire visual field (p < 0.001). Although a false decrease of PSD usually begins at approximately 50% visual field damage, in patients with hemi-optic neuropathy, the PSD shows no paradoxical decrease and shows a linear correlation with MD.

  2. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy

    PubMed Central

    Jayaraman, Manju; Gandhi, Rashmin Anilkumar; Ravi, Priya; Sen, Parveen

    2014-01-01

    Purpose: To investigate the effect of optic neuritis (ON), ischemic optic neuropathy (ION) and compressive optic neuropathy (CON) on multifocal visual evoked potential (mfVEP) amplitudes and latencies, and to compare the parameters among three optic nerve disorders. Materials and Methods: mfVEP was recorded for 71 eyes of controls and 48 eyes of optic nerve disorders with subgroups of optic neuritis (ON, n = 21 eyes), ischemic optic neuropathy (ION, n = 14 eyes), and compressive optic neuropathy (CON, n = 13 eyes). The size of defect in mfVEP amplitude probability plots and relative latency plots were analyzed. The pattern of the defect in amplitude probability plot was classified according to the visual field profile of optic neuritis treatment trail (ONTT). Results: Median of mfVEP amplitude (log SNR) averaged across 60 sectors were reduced in ON (0.17 (0.13-0.33)), ION (0.14 (0.12-0.21)) and CON (0.21 (0.14-0.30)) when compared to controls. The median mfVEP relative latencies compared to controls were significantly prolonged in ON and CON group of 10.53 (2.62-15.50) ms and 5.73 (2.67-14.14) ms respectively compared to ION group (2.06 (-4.09-13.02)). The common mfVEP amplitude defects observed in probability plots were diffuse pattern in ON, inferior altitudinal defect in ION and temporal hemianopia in CON eyes. Conclusions: Optic nerve disorders cause reduction in mfVEP amplitudes. The extent of delayed latency noted in ischemic optic neuropathy was significantly lesser compared to subjects with optic neuritis and compressive optic neuropathy. mfVEP amplitudes can be used to objectively assess the topography of the visual field defect. PMID:24088641

  3. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum

    PubMed Central

    Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.

    2008-01-01

    Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313

  4. Optical phonetics and visual perception of lexical and phrasal stress in English.

    PubMed

    Scarborough, Rebecca; Keating, Patricia; Mattys, Sven L; Cho, Taehong; Alwan, Abeer

    2009-01-01

    In a study of optical cues to the visual perception of stress, three American English talkers spoke words that differed in lexical stress and sentences that differed in phrasal stress, while video and movements of the face were recorded. The production of stressed and unstressed syllables from these utterances was analyzed along many measures of facial movement, which were generally larger and faster in the stressed condition. In a visual perception experiment, 16 perceivers identified the location of stress in forced-choice judgments of video clips of these utterances (without audio). Phrasal stress was better perceived than lexical stress. The relation of the visual intelligibility of the prosody of these utterances to the optical characteristics of their production was analyzed to determine which cues are associated with successful visual perception. While most optical measures were correlated with perception performance, chin measures, especially Chin Opening Displacement, contributed the most to correct perception independently of the other measures. Thus, our results indicate that the information for visual stress perception is mainly associated with mouth opening movements.

  5. Optic Disc Drusen in Children

    PubMed Central

    Chang, Melinda Y.; Pineles, Stacy L.

    2016-01-01

    Optic disc drusen occur in 0.4% of children and consist of acellular intracellular and extracellular deposits that often become calcified over time. They are typically buried early in life and generally become superficial, and therefore visible, later in childhood, at the average age of 12 years. Their main clinical significance lies in the ability of optic disc drusen, particularly when buried, to simulate true optic disc edema. Misdiagnosing drusen as true disc edema may lead to an invasive and unnecessary workup for elevated intracranial pressure. Ancillary testing, including ultrasonography, fluorescein angiography, fundus autofluorescence, and optical coherence tomography, may aid in the correct diagnosis of optic disc drusen. Complications of optic disc drusen in children include visual field defects, hemorrhages, choroidal neovascular membrane, non-arteritic anterior ischemic optic neuropathy, and retinal vascular occlusions. Treatment options for these complications include ocular hypotensive agents for visual field defects and intravitreal anti-vascular endothelial growth factor (anti-VEGF) agents for choroidal neovascular membranes. In most cases, however, children with optic disc drusen can be managed by observation with serial examinations and visual field testing, once true optic disc edema has been excluded. PMID:27033945

  6. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  7. Comparison of vision through surface modulated and spatial light modulated multifocal optics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-01-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655

  8. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, J.; Mancuso, A.; Beck, R.

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence ofmore » both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.« less

  9. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclean, Jillian, E-mail: jillian.maclean@uclh.nhs.uk; Fersht, Naomi; Bremner, Fion

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16more » patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.« less

  10. Evaluation of the effect of erythropoietin + corticosteroid versus corticosteroid alone in methanol-induced optic nerve neuropathy.

    PubMed

    Zamani, Nasim; Hassanian-Moghaddam, Hossein; Shojaei, Maziar; Rahimian, Sara

    2018-06-01

    Following methanol intoxication, optic nerve neuropathy may occur, which is currently treated by different therapeutic regimens. Erythropoietin (EPO) has recently been introduced as a good therapeutic option in methanol-induced optic neuropathy. The aim of the current study was to evaluate the efficacy of EPO in improvement of the visual disturbances in methanol-intoxicated patients. In a case-control study, all patients who had referred to our toxicology centre with confirmed diagnosis of methanol toxicity were considered to be included. Of them, those who had referred with visual disturbances, survived, and their visual disturbances had not improved after haemodialysis were entered. Cases received EPO and corticosteroids while controls only received corticosteroids. They were then compared regarding their visual outcome. All five patients in the control group mentioned that after discharge, their visual acuity had improved while in the cases, three mentioned visual improvement, two mentioned their visual acuity had deteriorated after discharge, two mentioned no change in their visual acuity and three mentioned that their visual acuity had first improved but then deteriorated with a mean two-month interval period. In fundoscopic evaluations, two controls had normal fundospcopy while eight cases had abnormal fundoscopy (p = 0.055). Protective effect of EPO on methanol-induced optic nerve may be strong at the beginning of the intervention but is probably transient.

  11. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    ERIC Educational Resources Information Center

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  12. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy.

    PubMed

    Miller, N R; Arnold, A C

    2015-01-01

    Nonarteritic anterior ischaemic optic neuropathy (NAION) is the most common acute optic neuropathy in patients over the age of 50 and is the second most common cause of permanent optic nerve-related visual loss in adults after glaucoma. Patients typically present with acute, painless, unilateral loss of vision associated with a variable visual field defect, a relative afferent pupillary defect, a swollen, hyperaemic optic disc, and one or more flame-shaped peripapillary retinal haemorrhages. The pathogenesis of this condition is unknown, but it occurs primarily in patients with structurally small optic discs that have little or no cup and a variety of underlying vascular disorders that may or may not be known at the time of visual loss. There is no consistently beneficial medical or surgical treatment for the condition, but there are now animal models that allow testing of various potential therapies. About 40% of patients experience spontaneous improvement in visual acuity. Patients in whom NAION occurs in one eye have a 15-19% risk of developing a similar event in the opposite eye over the subsequent 5 years.

  13. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy

    PubMed Central

    Miller, N R; Arnold, A C

    2015-01-01

    Nonarteritic anterior ischaemic optic neuropathy (NAION) is the most common acute optic neuropathy in patients over the age of 50 and is the second most common cause of permanent optic nerve-related visual loss in adults after glaucoma. Patients typically present with acute, painless, unilateral loss of vision associated with a variable visual field defect, a relative afferent pupillary defect, a swollen, hyperaemic optic disc, and one or more flame-shaped peripapillary retinal haemorrhages. The pathogenesis of this condition is unknown, but it occurs primarily in patients with structurally small optic discs that have little or no cup and a variety of underlying vascular disorders that may or may not be known at the time of visual loss. There is no consistently beneficial medical or surgical treatment for the condition, but there are now animal models that allow testing of various potential therapies. About 40% of patients experience spontaneous improvement in visual acuity. Patients in whom NAION occurs in one eye have a 15–19% risk of developing a similar event in the opposite eye over the subsequent 5 years. PMID:24993324

  14. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy

    PubMed Central

    Weiss, Jeffrey N.; Levy, Steven; Benes, Susan C.

    2016-01-01

    The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option. PMID:27904503

  15. Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy.

    PubMed

    Liu, James K; Forman, Scott; Hershewe, Gerard L; Moorthy, Chitti R; Benzil, Deborah L

    2002-05-01

    The management of primary optic nerve sheath meningioma (ONSM) is controversial. Surgery often results in postoperative blindness in the affected eye and thus has been abandoned as a treatment option for most patients. When these tumors are left untreated, however, progressive visual impairment ensues, which also leads to blindness. Recently, radiation therapy has gained wider acceptance in the treatment of these lesions. Experience with stereotactic radiotherapy (SRT) in the treatment of ONSMs is limited because of the rare incidence of this tumor. We present a series of patients with ONSM who were treated with SRT. Five patients (three women, two men), ranging in age from 40 to 73 years, presented with progressive visual loss with decreased visual field, visual acuity, and color vision affecting six eyes (one patient had tumor involving both optic nerves). One patient also presented with proptosis and diplopia. Five eyes had functional residual vision (range, 20/20 to 20/40), and one eye was completely blind. All five patients were diagnosed clinically and radiographically to have an ONSM. Three were intraorbital, one was intracanalicular as well as intraorbital, and one was a left ONSM extending through the optic foramen into the intracranial space and involving the right optic nerve. The five functional eyes were treated with SRT by use of 1.8-Gy fractions to a cumulative dose of 45 to 54 Gy. Follow-up ranged from 1 to 7 years, and serial magnetic resonance imaging revealed no changes in the size of the tumor in all five patients. Four patients experienced dramatic improvement in visual acuity, visual field, and color vision within 3 months after SRT. One patient remained stable without evidence of visual deterioration or disease progression. None had radiation-induced optic neuropathy. SRT may be a viable option for treatment of primary ONSM in patients with documented progressive visual deterioration, and it may be effective in improving or stabilizing remaining functional vision.

  16. Joint representation of translational and rotational components of optic flow in parietal cortex

    PubMed Central

    Sunkara, Adhira; DeAngelis, Gregory C.; Angelaki, Dora E.

    2016-01-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  17. Contrast Sensitivity, First-Order Motion and Initial Ocular Following in Demyelinating Optic Neuropathy

    PubMed Central

    Rucker, Janet C.; Sheliga, Boris M.; FitzGibbon, Edmond J.; Miles, Frederick A.; Leigh, R. John

    2008-01-01

    The ocular following response (OFR) is a measure of motion vision elicited at ultra-short latencies by sudden movement of a large visual stimulus. We compared the OFR to vertical sinusoidal gratings (spatial frequency 0.153 cycles/° or 0.458 cycles/°) of each eye in a subject with evidence of left optic nerve demyelination due to multiple sclerosis (MS). The subject showed substantial differences in vision measured with stationary low-contrast Sloan letters (20/63 OD and 20/200 OS at 2.5% contrast) and the Lanthony Desaturated 15-hue color test (Color Confusion Index 1.11 OD and 2.14 OS). Compared with controls, all of the subject's OFR to increasing contrast showed a higher threshold. The OFR of each of the subject's eyes were similar for the 0.153 cycles/° stimulus, and psychophysical measurements of his ability to detect these moving gratings were also similar for each eye. However, with the 0.458 cycles/° stimulus, the subject's OFR was asymmetric and the affected eye showed decreased responses (smaller slope constant as estimated by the Naka-Rushton equation). These results suggest that, in this case, optic neuritis caused a selective deficit that affected parvocellular pathways mediating higher spatial frequencies, lower-contrast, and color vision, but spared the field-holding mechanism underlying the OFR to lower spatial frequencies. The OFR may provide a useful method to study motion vision in individuals with disorders affecting anterior visual pathways. PMID:16649097

  18. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  19. Identification of a novel mutation in the PTCH gene in a patient with Gorlin-Goltz syndrome with unusual ocular disorders.

    PubMed

    Romano, Mary; Iacovello, Daniela; Cascone, Nikhil C; Contestabile, Maria Teresa

    2011-01-01

    To document the clinical, functional, and in vivo microanatomic characteristics of a patient with Gorlin-Goltz syndrome with a novel nonsense mutation in PTCH (patched). Optical coherence tomography (OCT), fluorescein angiography, electrophysiologic testing, visual field, magnetic resonance imaging, and mutation screening of PTCH gene. Visual acuity was 20/20 in the right eye and 20/25 in the left. Fundus examination revealed myelinated nerve fibers in the left eye and bilateral epiretinal membranes with lamellar macular hole also documented with macular OCT. A reduction of the retinal nerve fiber layers in both eyes was found with fiber nervous OCT. Fluorescein angiography showed bilaterally foveal hyperfluorescence and the visual field revealed inferior hemianopia in the right eye. Pattern visual evoked potentials registered a reduction of amplitude in both eyes and latency was delayed in the left eye. Pattern electroretinogram showed a reduction in P50 and N95 peak time and a delay in P50 peak time in the left eye. Flash electroretinogram was reduced in rod response, maximal response, and oscillatory potentials in both eyes. Cone response was normal and 30-Hz flicker was slightly reduced in both eyes. Mutation screening identified a novel nonsense mutation in PTCH. A novel nonsense mutation in the PTCH gene was found. We report the occurrence of epiretinal membranes and the persistence of myelinated nerve fibers. Electrophysiologic and visual field alterations, supporting a neuroretinal dysfunction, were also documented.

  20. Young Public’s Awareness to Refractive Error Deficiency

    PubMed Central

    Aldebasi, Yousef

    2011-01-01

    Background: Visual impairment due to uncorrected refractive error affects 200 – 250 million people in the world. Uncorrected vision represents the 2nd or the 3rd blinding condition in many developing countries. The importance of awareness in dealing with this problem has been shown to reduce the risks of blindness and improve the quality of vision. Methods: Survey questionnaires have been distributed to 2500 randomly selected people from 6 different locations in Riyadh area between late 2003 and early 2004. Only 2039 data sheets (58% female and 42% male) have been analyzed; the remaining 461 data sheets were cancelled whether for biased responses or for ages those were outside the limited range (15–45 years). The questionnaire was designed to show responses according to three levels of education: basic, intermediate and high. Results: 8% of the sample individuals wear spectacle. Of these, 2/3 acknowledges the importance of wearing spectacles. For those who don’t, intellect is a determining factor in how people consider optical correction (21% of basic intellectual backgrounds only think it is important to wear glasses against some 40% of higher intellect). Most of the other results showed the effect of education in increasing the level of awareness in vision related questions. People with higher education are more aware than those with basic intellect in acknowledging: visual symptoms that need care (37% against only 26%), presbyopia condition (23% against 11%), urgency to seek eye care (85% against 29%), factors aggravating refractive errors in children (45% against 29%). Knowledge about the different forms of optical correction showed higher preference for spectacles against both contact lenses and refractive surgery. Conclusion: There is an overall tendency to show that the general public is not aware about most of the problems that concern their visual health. This is even more so in those with basic intellectual levels. In order to reduce the impact of visual problems related to ignorance in society, certain steps directed towards the general public should be undertaken, such as information through media and publicity, public education, screenings for ametropia in schools and at work, government subsidies of optical equipments etc. PMID:22489225

  1. A vertebrate retina with segregated colour and polarization sensitivity.

    PubMed

    Novales Flamarique, Iñigo

    2017-09-13

    Besides colour and intensity, some invertebrates are able to independently detect the polarization of light. Among vertebrates, such separation of visual modalities has only been hypothesized for some species of anchovies whose cone photoreceptors have unusual ultrastructure that varies with retinal location. Here, I tested this hypothesis by performing physiological experiments of colour and polarization discrimination using the northern anchovy, Engraulis mordax Optic nerve recordings showed that the ventro-temporal (VT), but not the ventro-nasal (VN), retina was polarization sensitive, and this coincided with the exclusive presence of polarization-sensitive photoreceptors in the VT retina. Spectral (colour) sensitivity recordings from the VN retina indicated the contribution of two spectral cone mechanisms to the optic nerve response, whereas only one contributed to the VT retina. This was supported by the presence of only one visual pigment in the VT retina and two in the VN retina, suggesting that only the VN retina was associated with colour sensitivity. Behavioural tests further demonstrated that anchovies could discriminate colour and the polarization of light using the ventral retina. Thus, in analogy with the visual system of some invertebrates, the northern anchovy has a retina with segregated retinal pathways for colour and polarization vision. © 2017 The Author(s).

  2. [Hereditary optic neuropathies in pediatric ophthalmology].

    PubMed

    Orssaud, C; Robert, M P; Bremond Gignac, D

    2018-05-17

    Hereditary optic neuropathies (HON) often begin in adulthood. However, some of them can have an early onset. These may have specific clinical features and natural histories. Retrospective study of HON patients with onset before the age of 14 years seen in a referral center. In addition to the age of onset, we evaluated the genetic etiology, visual acuity at 15 years, last best corrected visual acuity, optic disc appearance, visual field and extra-ophthalmological manifestations. Forty-four patients (16 women) were included; i.e. 27.8% of all patients followed for HON. The mean age of onset was 8.5±3.3 years, with an onset earlier than 3 years in 5 patients. An etiology was not found in 8 patients. Of the remaining 36 patients, 12 had Leber's hereditary optic neuropathy (LHON), 11 had dominant optic atrophy, 12 had WS/WS-like syndrome, 2 had recessive optic atrophy and 1 had spastic paraplegia type 7. For 78 eyes of 40 patients (mean age 26.9±14.5 years), the mean last visual acuity was 0.80±0.33 LogMAR, with differences according to genetic forms. Visual acuity was less than or equal to counting fingers for 7 eyes (29.1%) of 4 WS/WS-like patients and one LHON patient. Early onset NOH are not unusual. Their visual prognosis is as severe as adult onset NOH, with variations depending on the underlying genetic causes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Anomalous coagulation factors in non-arteritic anterior ischemic optic neuropathy with central retinal vein occlusion: A case report.

    PubMed

    Kim, Ji Hong; Kang, Min Ho; Seong, Mincheol; Cho, Heeyoon; Shin, Yong Un

    2018-04-01

    Non-arteritic anterior ischemic optic neuropathy (NAION) is characterized by sudden, painless visual loss and optic disc edema. NAION occurs mainly in the presence of cardiovascular disease and hypercoagulability, mainly in patients over 50 years of age. We experienced a case of NAION associated with central retinal vein occlusion (CRVO) in a young man with no underlying disease. A 46-year-old man was referred to our clinic following a sudden loss of vision in his right eye. The patient exhibited no underlying disease and reported no ongoing medication. Significant visual loss and visual disturbance of the right eye were observed. The pupil of the right eye was enlarged and an afferent pupillary defect was observed. On fundus examination, retinal hemorrhage was observed in the peripheral retina; macular edema was observed in optical coherence tomography analysis. However, optic disc edema was not evident. No abnormal findings were found in routine blood tests for hypercoagulability. After 3 days of steroid intravenous injection, macular edema disappeared and visual acuity was improved, but optic disc edema began to appear. One week later, optic disc edema was evident and visual acuity was significantly reduced; thus, the patient was diagnosed with NAION. In fluorescein angiography, peripheral retinal ischemia was observed, suggesting that CRVO was complicated. Blood tests, including analysis of coagulation factors, were performed again, showing that coagulation factors IX and XI were increased. Anomalous coagulation factors in non-arteritic anterior ischemic optic neuropathy with central retinal vein occlusion. Systemic steroids were administered. One month later, optic disc edema and retinal hemorrhage gradually diminished and eventually disappeared; however, visual acuity did not recover. In young patients without underlying disease, cases of NAION require careful screening for coagulation disorders. Even if there is no abnormality in the test for routine coagulation status, it may be necessary to confirm a coagulation defect through an additional coagulation factor assay.

  4. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Clinical characteristics of children with severe visual impairment but favorable retinal structural outcomes from the Early Treatment for Retinopathy of Prematurity (ETROP) study.

    PubMed

    Siatkowski, R Michael; Good, William V; Summers, C Gail; Quinn, Graham E; Tung, Betty

    2013-04-01

    To describe visual function and associated characteristics at the 6-year examination in children enrolled in the Early Treatment for Retinopathy of Prematurity Study who had unfavorable visual outcomes despite favorable structural outcomes in one or both eyes. The clinical examination records of children completing the 6-year follow-up examination were retrospectively reviewed. Eligible subjects were those with visual acuity of ≤20/200 in each eye (where recordable) and a normal fundus or straightening of the temporal retinal vessels with or without macular ectopia in at least one eye. Data regarding visual function, retinal structure, presence of nystagmus, optic atrophy, optic disk cupping, seizures/shunts, and Functional Independence Measure for Children (ie, WeeFIM: pediatric functional independence measure) developmental test scores were reviewed. Of 342 participants who completed the 6-year examination, 39 (11%) met inclusion criteria. Of these, 29 (74%) had normal retinal structure, 18 (46%) had optic atrophy, and 3 (8%) had increased cupping of the optic disk in at least one eye. Latent and/or manifest nystagmus occurred in 30 children (77%). The presence of nystagmus was not related to the presence of optic atrophy. Of the 39 children, 28 (72%) had a below-normal WeeFIM score. In 25 participants (7%) completing the 6-year examination, cortical visual impairment was considered the primary cause of visual loss. The remainder likely had components of both anterior and posterior visual pathway disease. Clinical synthesis of ocular anatomy and visual and neurologic function is required to determine the etiology of poor vision in these children. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  6. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids.

    PubMed

    Zhang, Haijuan; Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Wu, Jianmin

    2017-02-08

    A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0-60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive "fingerprint" in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  8. Central corneal thickness and progression of the visual field and optic disc in glaucoma

    PubMed Central

    Chauhan, B C; Hutchison, D M; LeBlanc, R P; Artes, P H; Nicolela, M T

    2005-01-01

    Aims: To determine whether central corneal thickness (CCT) is a significant predictor of visual field and optic disc progression in open angle glaucoma. Methods: Data were obtained from a prospective study of glaucoma patients tested with static automated perimetry and confocal scanning laser tomography every 6 months. Progression was determined using a trend based approach called evidence of change (EOC) analysis in which sectoral ordinal scores based on the significance of regression coefficients of visual field pattern deviation and neuroretinal rim area over time are summed. Visual field progression was also determined using the event based glaucoma change probability (GCP) analysis using both total and pattern deviation. Results: The sample contained 101 eyes of 54 patients (mean (SD) age 56.5 (9.8) years) with a mean follow up of 9.2 (0.7) years and 20.7 (2.3) sets of examinations every 6 months. Lower CCT was associated with worse baseline visual fields and lower mean IOP in the follow up. In the longitudinal analysis CCT was not correlated with the EOC scores for visual field or optic disc change. In the GCP analyses, there was a tendency for groups classified as progressing to have lower CCT compared to non-progressing groups. In a multivariate analyses accounting for IOP, the opposite was found, whereby higher CCT was associated with visual field progression. None of the independent factors were predictive of optic disc progression. Conclusions: In this cohort of patients with established glaucoma, CCT was not a useful index in the risk assessment of visual field and optic disc progression. PMID:16024855

  9. Standards of quality for river use within the Fort Niobrara wilderness area

    Treesearch

    John B. Davis; Mark Lindvall

    2000-01-01

    The visual survey methodology of Manning and others (1996) was used to measure visitor response to the number of other floaters encountered on the Niobrara River within the Fort Niobrara Wilderness in Nebraska. An optical scanner and photo-editing software were used to produce 12 composite photographs of the Niobrara River, depicting a range of visitor use levels. In a...

  10. Using optical coherence tomography to evaluate glaucoma implant healing response in rabbit eyes

    NASA Astrophysics Data System (ADS)

    Gossage, Kirk W.; Tkaczyk, Tomasz S.; Barton, Jennifer K.

    2002-06-01

    Glaucoma is a set of diseases that cause optic nerve damage and visual field loss. The most important risk factor for the development of glaucoma is elevated intraocular pressure. One approach used to alleviate the pressure increase is to surgically install glaucoma implants. Two standard Ahmed and ten experimental ePTFE implants were evaluated in this study in rabbit eyes. The implants were imaged with optical coherence tomography (OCT) at 0, 7, 15, 30, and 90 days after implantation. Histology was collected at days 7, 15, 30, and 90 and compared to the OCT images. Preliminary analysis of images indicates that OCT can visualize the development of fibrous encapsulation of the implant, tissue erosion, fibrin accumulation in the implant tube, and tube position in the anterior chamber. A new OCT handheld probe was developed to facilitate in vivo imaging in rabbit eye studies. The OCT probe consists of a mechanical scaffold designed to allow the imaging fiber to be held in a fixed position with respect to the rabbit eye, with minimal anesthesia. A piezo electric lateral scanning device allows the imaging fiber to be scanned across the tissue so that 2D images may be acquired.

  11. Visual Rehabilitation of Persons with Leber's Hereditary Optic Neuropathy.

    ERIC Educational Resources Information Center

    Rudanko, S.-L.

    1995-01-01

    This article presents results of a noncontrolled clinical study of 20 persons with Leber's hereditary optic neuropathy who were treated from 1976 to 1990 at the Low Vision Centre of the Finnish Federation of the Visually Handicapped. The importance of early functional visual rehabilitation is emphasized, as is the use of low vision aids to help…

  12. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    NASA Astrophysics Data System (ADS)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  13. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  14. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    PubMed

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  15. Short-latency primate vestibuloocular responses during translation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.

    1999-01-01

    Short-lasting, transient head displacements and near target fixation were used to measure the latency and early response gain of vestibularly evoked eye movements during lateral and fore-aft translations in rhesus monkeys. The latency of the horizontal eye movements elicited during lateral motion was 11.9 +/- 5.4 ms. Viewing distance-dependent behavior was seen as early as the beginning of the response profile. For fore-aft motion, latencies were different for forward and backward displacements. Latency averaged 7.1 +/- 9.3 ms during forward motion (same for both eyes) and 12.5 +/- 6.3 ms for the adducting eye (e.g., left eye during right fixation) during backward motion. Latencies during backward motion were significantly longer for the abducting eye (18.9 +/- 9.8 ms). Initial acceleration gains of the two eyes were generally larger than unity but asymmetric. Specifically, gains were consistently larger for abducting than adducting eye movements. The large initial acceleration gains tended to compensate for the response latencies such that the early eye movement response approached, albeit consistently incompletely, that required for maintaining visual acuity during the movement. These short-latency vestibuloocular responses could complement the visually generated optic flow responses that have been shown to exhibit much longer latencies.

  16. I'll take the low road: the evolutionary underpinnings of visually triggered fear

    PubMed Central

    Carr, James A.

    2015-01-01

    Although there is general agreement that the central nucleus of the amygdala (CeA) is critical for triggering the neuroendocrine response to visual threats, there is uncertainty about the role of subcortical visual pathways in this process. Primates in general appear to depend less on subcortical visual pathways than other mammals. Yet, imaging studies continue to indicate a role for the superior colliculus and pulvinar nucleus in fear activation, despite disconnects in how these brain structures communicate not only with each other but with the amygdala. Studies in fish and amphibians suggest that the neuroendocrine response to visual threats has remained relatively unchanged for hundreds of millions of years, yet there are still significant data gaps with respect to how visual information is relayed to telencephalic areas homologous to the CeA, particularly in fish. In fact ray finned fishes may have evolved an entirely different mechanism for relaying visual information to the telencephalon. In part because they lack a pathway homologous to the lateral geniculate-striate cortex pathway of mammals, amphibians continue to be an excellent model for studying how stress hormones in turn modulate fear activating visual pathways. Glucocorticoids, melanocortin peptides, and CRF all appear to play some role in modulating sensorimotor processing in the optic tectum. These observations, coupled with data showing control of the hypothalamus-pituitary-adrenal axis by the superior colliculus, suggest a fear/stress/anxiety neuroendocrine circuit that begins with first order synapses in subcortical visual pathways. Thus, comparative studies shed light not only on how fear triggering visual pathways came to be, but how hormones released as a result of this activation modulate these pathways. PMID:26578871

  17. Visual optics and ecomorphology of the growing shark eye: a comparison between deep and shallow water species.

    PubMed

    Litherland, Lenore; Collin, Shaun P; Fritsches, Kerstin A

    2009-11-01

    Elasmobranch fishes utilise their vision as an important source of sensory information, and a range of visual adaptations have been shown to reflect the ecological diversity of this vertebrate group. This study investigates the hypotheses that visual optics can predict differences in habitat and behaviour and that visual optics change with ontogenetic growth of the eye to maintain optical performance. The study examines eye structure, pupillary movement, transmission properties of the ocular media, focal properties of the lens, tapetum structure and variations in optical performance with ontogenetic growth in two elasmobranch species: the carcharhinid sandbar shark, Carcharhinus plumbeus, inhabiting nearshore coastal waters, and the squalid shortspine spurdog, Squalus mitsukurii, inhabiting deeper waters of the continental shelf and slope. The optical properties appear to be well tuned for the visual needs of each species. Eyes continue to grow throughout life, resulting in an ontogenetic shift in the focal ratio of the eye. The eyes of C. plumbeus are optimised for vision under variable light conditions, which change during development as the animal probes new light environments in its search for food and mates. By contrast, the eyes of S. mitsukurii are specifically adapted to enhance retinal illumination within a dim light environment, and the detection of bioluminescent prey may be optimised with the use of lenticular short-wavelength-absorbing filters. Our findings suggest that the light environment strongly influences optical features in this class of vertebrates and that optical properties of the eye may be useful predictors of habitat and behaviour for lesser-known species of this vertebrate group.

  18. Technique development for photoacoustic imaging guided interventions

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding

    2015-03-01

    Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.

  19. Acquired pit of the optic nerve: a risk factor for progression of glaucoma.

    PubMed

    Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J

    1998-04-01

    To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.

  20. Visual recovery from optic atrophy following acute optic neuropathy in the fellow eye.

    PubMed

    Ornek, Kemal; Ornek, Nurgül

    2012-06-01

    The left eye of a 65-year-old male was blind due to optic atrophy and only seeing eye had also dry type age-related macular degeneration. An anterior ischemic optic neuropathy developed in the better seeing eye. Vision recovered in the blind eye in a short time after losing the better eye. Gaining some vision in a blind eye may be an adaptation of visual pathway in such patients.

  1. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in combination with three-dimensional UHR OCT, recently enabled in vivo cellular resolution retinal imaging.

  2. Dissolved organic carbon and unimodal variation in sexual signal coloration in mosquitofish: a role for light limitation?

    PubMed Central

    Layman, Craig A.

    2017-01-01

    Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. PMID:28381625

  3. Dissolved organic carbon and unimodal variation in sexual signal coloration in mosquitofish: a role for light limitation?

    PubMed

    Giery, Sean T; Layman, Craig A

    2017-04-12

    Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. © 2017 The Author(s).

  4. Two visual observations of relevance to the search for optical counterparts of gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Warner, B.

    1986-05-01

    The authors draw attention to a visual observation of a brief flash from ζ Lyrae, observed by Heis in 1850, which resembles the optical burst detected electronically by Wdowiak and Clifton (1985) from β Cam in 1969. Visual observation by the author of a second magnitude flash of very short duration is shown to originate from planar reflection from a very distant satellite. Such flashes will contribute to the "noise" in all-sky searches for optical counterparts of γ-ray bursters.

  5. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  6. Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu

    2015-06-01

    A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.

  7. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  8. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087

  9. Estimating the relative weights of visual and auditory tau versus heuristic-based cues for time-to-contact judgments in realistic, familiar scenes by older and younger adults.

    PubMed

    Keshavarz, Behrang; Campos, Jennifer L; DeLucia, Patricia R; Oberfeld, Daniel

    2017-04-01

    Estimating time to contact (TTC) involves multiple sensory systems, including vision and audition. Previous findings suggested that the ratio of an object's instantaneous optical size/sound intensity to its instantaneous rate of change in optical size/sound intensity (τ) drives TTC judgments. Other evidence has shown that heuristic-based cues are used, including final optical size or final sound pressure level. Most previous studies have used decontextualized and unfamiliar stimuli (e.g., geometric shapes on a blank background). Here we evaluated TTC estimates by using a traffic scene with an approaching vehicle to evaluate the weights of visual and auditory TTC cues under more realistic conditions. Younger (18-39 years) and older (65+ years) participants made TTC estimates in three sensory conditions: visual-only, auditory-only, and audio-visual. Stimuli were presented within an immersive virtual-reality environment, and cue weights were calculated for both visual cues (e.g., visual τ, final optical size) and auditory cues (e.g., auditory τ, final sound pressure level). The results demonstrated the use of visual τ as well as heuristic cues in the visual-only condition. TTC estimates in the auditory-only condition, however, were primarily based on an auditory heuristic cue (final sound pressure level), rather than on auditory τ. In the audio-visual condition, the visual cues dominated overall, with the highest weight being assigned to visual τ by younger adults, and a more equal weighting of visual τ and heuristic cues in older adults. Overall, better characterizing the effects of combined sensory inputs, stimulus characteristics, and age on the cues used to estimate TTC will provide important insights into how these factors may affect everyday behavior.

  10. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  11. Finite Element Modeling Techniques for Analysis of VIIP

    NASA Technical Reports Server (NTRS)

    Feola, Andrew J.; Raykin, J.; Gleason, R.; Mulugeta, Lealem; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.; Ethier, C. Ross

    2015-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.

  12. Hybrid nanoporous silicon optical biosensor architectures for biological sample analysis

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa M.; Zheng, Hong; DeLouise, Lisa A.

    2010-02-01

    This work focuses on demonstrating proof-of-concept for a novel nanoparticle optical signal amplification scheme employing hybrid porous silicon (PSi) sensors. We are investigating the development of target responsive hydrogels integrated with PSi optical transducers. These hybrid-PSi sensors can be designed to provide a tunable material response to target concentration ranging from swelling to complete chain dissolution. The corresponding refractive index changes are significant and readily detected by the PSi transducer. However, to increase signal to noise, lower the limit of detection, and provide a visual read out capability, we are investigating the incorporation of high refractive index nanoparticles (NP) into the hydrogel for optical signal amplification. These NPs can be nonspecifically encapsulated, or functionalized with bioactive ligands to bind polymer chains or participate in cross linking. In this work, we demonstrate encapsulation of high refractive index QD nanoparticles into a 5wt% polyacrylamide hydrogel crosslinked with N,N'-methylenebisacrylamide (BIS) and N,N Bis-acryloyl cystamine (BAC). A QD loading (~0.29 wt%) produced a 2X larger optical shift compared to the control. Dissolution of disulphide crosslinks, using Tris[2-carboxyethyl] phosphine (TCEP) reducing agent, induced gel swelling and efficient QD release. We believe this hybrid sensor concept constitutes a versatile technology platform capable of detecting a wide range of bio/chemical targets provided target analogs can be linked to the polymer backbone and crosslinks can be achieved with target responsive multivalent receptors, such a antibodies. The optical signal amplification scheme will enable a lower limit of detection sensitivity not yet demonstrated with PSi technology and colorimetric readout visible to the naked eye.

  13. Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice.

    PubMed

    Nishimura, Wataru; Sakaue-Sawano, Asako; Takahashi, Satoru; Miyawaki, Atsushi; Yasuda, Kazuki; Noda, Yasuko

    2018-05-04

    Glucose metabolism is regulated by insulin, which is produced from β-cells in the pancreas. Because insulin is secreted into vessels in response to blood glucose, vascular structures of the pancreas, especially the relationship between vessels and β-cells, are important for physiological and pathological glucose metabolism. Here, we developed a system to visualize vessels surrounding mature β-cells expressing transcription factor MafA in a three-dimensional manner. Optical clearing of the pancreas prevented light scattering of fluorescence driven by the bacterial artificial chromosome (BAC)-mafA promoter in β-cells. Reconstruction of confocal images demonstrated mature β-cells and the glomerular-like structures of β-cell vasculatures labeled with DyLight 488-conjugated lectin in normal mice as well as in low-dose streptozotocin-injected diabetes model mice with reduced β-cell mass. This technological innovation of organ imaging can be used to investigate morphological changes in vascular structures during transplantation, regeneration and diabetes development.

  14. Visual optics: an engineering approach

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2010-11-01

    The human eyes' visual system interprets the information from the visible light in order to build a representation of the world surrounding the body. It derives color by comparing the responses to light from the three types of photoreceptor cones in the eyes. These long medium and short cones are sensitive to blue, green and red portions of the visible spectrum. We simulate the color vision for the normal eyes. We see the effects of the dyes, filters, glasses and windows on color perception when the test image is illuminated with the D65 light sources. In addition to colors' perception, the human eyes can suffer from diseases and disorders. The eye can be seen as an optical instrument which has its own eye print. We present aspects of some nowadays methods and technologies which can capture and correct the human eyes' wavefront aberrations. We focus our attention to Siedel aberrations formula, Zenike polynomials, Shack-Hartmann Sensor, LASIK, interferograms fringes aberrations and Talbot effect.

  15. Bilateral Glaucomatous Optic Neuropathy Caused by Eye Rubbing.

    PubMed

    Savastano, Alfonso; Savastano, Maria Cristina; Carlomusto, Laura; Savastano, Silvio

    2015-01-01

    In this report, we describe a particular condition of a 52-year-old man who showed advanced bilateral glaucomatous-like optic disc damage, even though the intraocular pressure resulted normal during all examinations performed. Visual field test, steady-state pattern electroretinogram, retinal nerve fiber layer and retinal tomographic evaluations were performed to evaluate the optic disc damage. Over a 4-year observational period, his visual acuity decreased to 12/20 in the right eye and counting fingers in the left eye. Visual fields were severely compromised, and intraocular pressure values were not superior to 14 mm Hg during routine examinations. An accurate anamnesis and the suspicion of this disease represent a crucial aspect to establish the correct diagnosis. In fact, our patient strongly rubbed his eyes for more than 10 h per day. Recurrent and continuous eye rubbing can induce progressive optic neuropathy, causing severe visual field damage similar to the pathology of advanced glaucoma.

  16. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  17. Mucocele in an Onodi cell with simultaneous bilateral visual disturbance.

    PubMed

    Fukuda, Yoichiro; Chikamatsu, Kazuaki; Ninomiya, Hiroshi; Yasuoka, Yoshihito; Miyashita, Motoaki; Furuya, Nobuhiko

    2006-06-01

    The Onodi cell is a large pneumatized posterior ethmoid cell and closely related to optic nerve. We present an extremely rare case of retrobulbar optic neuropathy caused by mucocele in an Onodi cell. A 79-year-old man complained of headaches and simultaneous bilateral visual disturbance. A computed tomography (CT) scan demonstrated a mucocele in an Onodi cell, which involved bilateral optic nerves. The surgical treatment with a transnasal endoscopic approach was performed, resulting in the improving of visual acuity. The bilateral optic nerves were identified along each lateral wall into an Onodi cell accompanied with bone defect. In an Onodi cell, even if the lesion is isolated and/or small, it may be closely related to ocular symptoms. Imaging studies should be considered for the differential diagnosis because early diagnosis and prompt surgical treatment for mucocele are needed for recovery of visual impairment.

  18. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking

    PubMed Central

    Saunders, Jeffrey A.

    2014-01-01

    Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194

  19. Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.

    PubMed

    Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N

    2018-01-01

    In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.

  20. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  1. In vivo imaging of microvascular changes in inflammatory human skin induced by tape stripping and mosquito saliva using optical microangiography

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Choi, Woo J.; Wang, Ruikang K.

    2015-03-01

    Tape stripping on human skin induces mechanical disruptions of the epidermal barrier that lead to minor skin inflammation which leads to temporary changes in microvasculature. On the other hand, when mosquitoes probe the skin for blood feeding, they inject saliva in dermal tissue. Mosquito saliva is known to exert various biological activities, such as dermal mast cell degranulation, leading to fluid extravasation and neutrophil influx. This inflammatory response remain longer than the tape stripping caused inflammation. In this study, we demonstrate the capabilities of swept-source optical coherence tomography (OCT) in detecting in vivo microvascular response of inflammatory human skin. Optical microangiography (OMAG), noninvasive volumetric microvasculature in vivo imaging method, has been used to track the vascular responses after tape stripping and mosquito bite. Vessel density has been quantified and used to correlate with the degree of skin irritation. The proved capability of OMAG technique in visualizing the microvasculature network under inflamed skin condition can play an important role in clinical trials of treatment and diagnosis of inflammatory skin disorders as well as studying mosquito bite's perception by the immune system and its role in parasite transmission.

  2. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis

    PubMed Central

    Goodkin, Olivia; Altmann, Daniel R.; Jenkins, Thomas M.; Miszkiel, Katherine; Mirigliani, Alessia; Fini, Camilla; Gandini Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga; Toosy, Ahmed T.

    2016-01-01

    Abstract In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T 1 -weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients’ optic radiations decreased ( P = 0.018) and radial diffusivity increased ( P = 0.002) over 1 year following optic neuritis, whereas optic radiation measures were unchanged in controls. Also, smaller cross-sectional areas of affected optic nerves at 3 months post-optic neuritis predicted lower fractional anisotropy and higher radial diffusivity at 1 year ( P = 0.007) in the optic radiations, whereas none of the inflammatory measures of the optic nerve predicted changes in optic radiations. Finally, greater Gd-enhanced lesion length at baseline and greater optic nerve proton density-lesion length at 1 year were associated with worse visual function at 1 year ( P = 0.034 for both). Neither the cross-sectional area of the affected optic nerve after optic neuritis nor the damage in optic radiations was associated with 1-year visual outcome. Our longitudinal study shows that, after optic neuritis, there is progressive damage to the optic radiations, greater in patients with early residual optic nerve atrophy, even after adjusting for optic radiation lesions. These findings provide evidence for trans-synaptic degeneration. PMID:26912640

  3. Bilateral vision loss due to Leber's hereditary optic neuropathy after long-term alcohol, nicotine and drug abuse.

    PubMed

    Maass, Johanna; Matthé, Egbert

    2018-04-01

    Leber's hereditary optic neuropathy is relatively rare, and no clinical pathognomonic signs exist. We present a rare case of bilateral vision loss of a patient with multiple drug abuse in the history. A 31-year-old man presented with a history of progressive, decreased vision in both eyes for 6 month. On examination, his visual acuity was hand motion in both eyes. Funduscopy demonstrated a temporal pallor of the optic disc. Goldmann visual field perimetry showed a crescent visual field in the right eye and a circular decrease to less than 50 ° in the left eye. Electroretinogram showed a scotopic b-wave amplitude reduction. Optical coherence tomographies, Heidelberg Retina tomography, visual evoked potentials, and magnetic resonance imaging with contrast as well as blood tests were normal. The patient reported to consume various kinds of drugs as well as recreational drug use and alcohol consumption since he was 16 years old. We started a hemodilution therapy, believing the patient suffered from a bilateral, toxic optic neuropathy due to his lifestyle. Laboratory results later on showed Leber's hereditary optic neuropathy. Leber's hereditary optic neuropathy is a rare disease without a typical, pathognomonic presentation. Even though the patient gave good reasons for a toxic optic neuropathy, one should never stop to test for other diseases.

  4. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Tabei, Ken-ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions. PMID:26083375

  5. [Age factor in eye regeneration of the gastropod mollusk Achatina fulica].

    PubMed

    Tartakovskaia, O S; Borisenko, S L; Zhukov, V V

    2003-01-01

    The dependence of the ability to regenerate the eye on the age of experimental animals was studied in the snail Achatina fulica. The degree of regeneration was estimated by light-microscopic and electrophysiological methods and by analyzing the motor response to visual stimuli. In older age groups, the number of regenerated eye-bearing tentacles decreased, whereas the period of regeneration increased. The regenerated eyes of the snails operated at the age of more than two months remained smaller than normal eyes even after six months. Regeneration of the distal part of the optic nerve was observed, and the regenerated eyes recovered the ability to respond to stimulation by light. In the electroretinogram, the responses of the regenerated eye, compared to the control, were characterised by a lower amplitude and longer repolarization and refractory periods. Manifestations of the motor response to visual stimuli in the young snails with regenerating eyes could be regarded as evidence for the recovery of connection between the organ of sight and the central ganglia.

  6. There May Be More to Reaching than Meets the Eye: Re-Thinking Optic Ataxia

    ERIC Educational Resources Information Center

    Jackson, Stephen R.; Newport, Roger; Husain, Masud; Fowlie, Jane E.; O'Donoghue, Michael; Bajaj, Nin

    2009-01-01

    Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of…

  7. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  8. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration

    PubMed Central

    Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.

    2013-01-01

    There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254

  9. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration.

    PubMed

    Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N

    2013-04-23

    There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.

  10. A history of the optic nerve and its diseases.

    PubMed

    Reeves, C; Taylor, D

    2004-11-01

    We will trace the history of ideas about optic nerve anatomy and function in the Western world from the ancient Greeks to the early 20th century and show how these influenced causal theories of optic nerve diseases. Greek and Roman humoral physiology needed a hollow optic nerve, the obstruction of which prevented the flow of visual spirit to and from the brain and resulted in blindness. Medieval physicians understood that the presence of a fixed dilated pupil indicated optic nerve obstruction, preventing the passage of visual spirit, and that cataract surgery in such cases would not restore sight. During the Renaissance, the organ of vision was transferred from the lens to the optic nerve, which was generally believed to be on the axis of the eye. The acuity of central vision (at the optic disc) was explained by the concentration of visual spirit where the optic nerve met the retina. The growth of anatomy and influence of mechanical philosophy from the 17th century led to visual spirit being replaced with the concept of nerve force, which later became associated with electricity travelling along nerve fibres. This coincided with discourse about the nature of the nervous system and a shift in orientation from understanding illness holistically in terms of an individual's humoral imbalance to the concept of organ-based diseases. Both the microscope and the ophthalmoscope allowed visualisation of the optic nerve, but problems of interpretation persisted until conceptual transformations in medical science were made.

  11. Changes in White Matter Microstructure Impact Cognition by Disrupting the Ability of Neural Assemblies to Synchronize.

    PubMed

    Bells, Sonya; Lefebvre, Jérémie; Prescott, Steven A; Dockstader, Colleen; Bouffet, Eric; Skocic, Jovanka; Laughlin, Suzanne; Mabbott, Donald J

    2017-08-23

    Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals. SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing. Copyright © 2017 the authors 0270-6474/17/378227-12$15.00/0.

  12. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind

    PubMed Central

    Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129

  13. Steroids versus No Steroids in Nonarteritic Anterior Ischemic Optic Neuropathy: A Randomized Controlled Trial.

    PubMed

    Saxena, Rohit; Singh, Digvijay; Sharma, Medha; James, Mathew; Sharma, Pradeep; Menon, Vimla

    2018-04-25

    To examine the role of oral steroid therapy in the treatment of nondiabetic cases of acute nonarteritic anterior ischemic optic neuropathy (NAAION). Randomized double-blind clinical trial. Thirty-eight patients with acute nondiabetic NAAION divided into 2 arms of 19 patients each. One arm constituted the cases and the other constituted the controls. Cases received oral steroid therapy and were designated the steroid group, whereas controls received placebo and were designated the nonsteroid group. Best-corrected visual acuity (BCVA), visual evoked response (VER), and OCT were performed at baseline, 1 month, 3 months, and 6 months after recruitment into the trial. Best-corrected visual acuity, VER, and retinal nerve fiber layer changes on OCT. Both groups showed significant improvement in BCVA, VER latency, and resolution of disc edema on OCT parameters over 6 months. Final outcome showed no statistically significant difference with regard to visual acuity, although VER was better in the steroid group (P = 0.011). Best-corrected visual acuity, VER amplitude, and VER latency (P = 0.02, P = 0.02, and P = 0.04, respectively) showed a greater percentage improvement in the steroid group, which also saw a faster resolution of disc edema on OCT (1-month follow-up). Oral steroids in acute NAAION did not improve the visual acuity significantly at 6 months. However, they improved resolution of disc edema significantly and enabled a greater improvement in VER parameters. This subtle benefit of oral steroids in NAAION is clinically unimportant and does not provide support for its use. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Modulation of visualized electrical field

    NASA Astrophysics Data System (ADS)

    Chuang, Chin-Jung; Wu, Chi-Chung; Wang, Yi-Ting; Huang, Shiuan-Hau

    2015-10-01

    Polarization is an important concept of electromagnetism, and polarizers were traditionally applied to demonstrate this concept in a laboratory. We set up a optical system with the optical component "axis finder" to visualize the polarization direction immediately. The light phenomena, such as birefringence, circular polarization, and Brewster's angle, can be examined polarization visually. In addition, the principle of different waveplate and optical axis can be presented in a straightforward approach. By means of image analysis, the great precision of polarizing direction can be measured up to 0.01 degree. Modulated polarized light is applied to a few optical devices, like Liquid-crystal display. It is marvelous to trace the light polarization between the backlight module, polarizer, and panel. As seeing is believing, the visualized electrical field allows educators to teach polarization in a smooth and strikingly manifest manner. Without any polarizer and analyzer, we examine the rotary power of different concentration syrup, presenting the relationship with polarization change. We also demonstrate the wide application of polarization light in modern life, and examine the principle through this visualized electrical field system.

  15. Modular Organization of Dynamic Camouflage Body Patterning in Cuttlefish

    DTIC Science & Technology

    2014-11-28

    Final 3. DATES COVERED (From - To) 28 Feb 13 – 19 Sept 14 4. TITLE AND SUBTITLE Modular organization of dynamic camouflage body...responsive areas are positively correlated with increasing voltages and depths of the electrode in the medulla of the optic lobe, and (2) the island- like...aim of using the dynamically changing visual background to study the spatiotemporal expression of body patterns was not successful, we discovered

  16. Optic flow-based collision-free strategies: From insects to robots.

    PubMed

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, G K; Hendrix, J L; Rowe, J

    1998-06-26

    The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debrismore » barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4 th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm 2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.« less

  18. Assessment of visual disability using visual evoked potentials.

    PubMed

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real disability in a range >5.77 μV. The results could be useful, especially in cases of no obvious pale disc with trauma. Visual acuity quantification using absolute value of amplitude in pattern visual evoked potentials was useful in confirming subjective visual acuity for cutoff values >5.77 μV in disability evaluation to discriminate the malingering from real disability.

  19. Assessment of visual disability using visual evoked potentials

    PubMed Central

    2012-01-01

    Background The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years), 19 optic neuritis patients (19 eyes: ages 9–71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real disability in a range >5.77 μV. The results could be useful, especially in cases of no obvious pale disc with trauma. Conclusions Visual acuity quantification using absolute value of amplitude in pattern visual evoked potentials was useful in confirming subjective visual acuity for cutoff values >5.77 μV in disability evaluation to discriminate the malingering from real disability. PMID:22866948

  20. [Neuro-ophthalmology: the eye as a window to the brain].

    PubMed

    Kesler, Anat

    2013-02-01

    Neuro-ophthalmology focuses on the diagnosis and treatment of visual disorders related to the neurological system rather than the globe itself. Being a subspecialty of both neurology and ophthalmology, it requires specialized training and expertise in diseases of the eye, brain, nerves and muscles. Commonly encountered pathologies in neuro-ophthalmology include: optic neuropathies (such as optic neuritis and ischemic optic neuropathy), visual field loss (transient, constant, unexplained), transient visual loss, unspecified visual disturbances, diplopia, abnormal eye movements, thyroid eye disease, myasthenia gravis, anisocoria, and eyelid abnormalities. The current issue of "Harefuah" is dedicated to contemporary knowledge in neuro-opthalmology, and spans from studies of neuromyelitis optica (NMO), ischemic optic neuropathies, and optic neuropathies induced by phosphodiesterase inhibitors, to the management of sight-threatening carotid-cavernous fistulas, and more. These studies emphasize the importance of an interdisciplinary treatment team consisting of a neuro-ophthalmologist, a neuro-radiologist, and sometimes, even a neuro-surgeon. Such an approach may prove to be beneficial to the patient, by optimizing follow-up and treatment decisions. This issue emphasizes how a correct and timely diagnosis is of paramount significance in patients with neuro-ophthalmological disorders.

  1. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    PubMed

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis.

    PubMed

    Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David

    2014-12-01

    Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P < 0.001). Multivariable analysis demonstrated that RNFL thickness measurements were more sensitive at detecting optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  3. The history of optic chiasm from antiquity to the twentieth century.

    PubMed

    Costea, Claudia Florida; Turliuc, Şerban; Buzdugă, Cătălin; Cucu, Andrei Ionuţ; Dumitrescu, Gabriela Florenţa; Sava, Anca; Turliuc, Mihaela Dana

    2017-11-01

    The optic chiasm is an essential structure located at the skull base that stirred over time the curiosity of anatomists, who became more and more interested in its structure and function. Through centuries, the optic chiasm was viewed as a vessel crossing, a way of transporting tears secreted by the brain to the eye, integrating images, or responsible for coordinated eye movements. The paper aims to overview the history of understanding the optic chiasm from the beginnings of antiquity to the twentieth century. We reviewed the literature and studied all the historical sources on optic chiasm and eyes in the works of ancient, medieval, Renaissance authors, and the seventeenth to nineteenth century works. The optic chiasm is a structure that fascinated ancient anatomists and made them develop various theories on its function. In terms of function, the optic chiasm had a history based more on speculation, the seventeenth century bringing its first understanding and reaching the peak in the nineteenth century with the understanding of the anatomical structure of the chiasm and its role in the visual process. The history of the optic chiasm is a fascinating time travel displaying the conceptual transformations that have been made in anatomy and medicine by our forerunners.

  4. Air stepping in response to optic flows that move Toward and Away from the neonate.

    PubMed

    Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle

    2014-07-01

    To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.

  5. Fluid Shifts Before, During, and After Prolonged Space Flight and their Association with Intracranial Pressure and Visual Impairment

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Lee, S.; Platts, S.; Macias, B.; Lui, J.; Ebert, D.; Sargsyan, A.; Dulchavsky, S.; Alferova, I.; Yarmanova, E.; hide

    2013-01-01

    With the conclusion of the Space Shuttle program, NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed in Space Shuttle crewmembers after their short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound changes in vision, some with objective structural and functional findings such as papilledema and choroidal folds on ophthalmologic examination. Globe flattening, optic nerve sheath dilatation, optic nerve tortuosity, and other findings have been noted in imaging studies. This pattern is referred to as visual impairment and intracranial pressure (VIIP) syndrome. The VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) is associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been systematically tested. The purpose of this study is to objectively characterize the fluid distribution and compartmentalization associated with long-duration space flight, and to correlate the findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, can be predicted by crewmember baseline data and responses to acute hemodynamic manipulations (such as head-down tilt tests) obtained before flight. Lastly, we will evaluate the patterns of fluid distribution in astronaut subjects on the ISS during the use of lower body negative pressure (LBNP) and respiratory maneuvers to characterize and explain general and individual responses during space flight.

  6. Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect.

    PubMed

    Han, Sangyoun; Jung, Jong Jin; Kim, Ungsoo Samuel

    2015-12-01

    To investigate the differences in retinal nerve fiber layer (RNFL) change and optic nerve head parameters between non-arteritic anterior ischemic optic neuropathy (NAION) and open angle glaucoma (OAG) with altitudinal visual field defect. Seventeen NAION patients and 26 OAG patients were enrolled prospectively. The standard visual field indices (mean deviation, pattern standard deviation) were obtained from the Humphrey visual field test and differences between the two groups were analyzed. Cirrus HD-OCT parameters were used, including optic disc head analysis, average RNFL thickness, and RNFL thickness of each quadrant. The mean deviation and pattern standard deviation were not significantly different between the groups. In the affected eye, although the disc area was similar between the two groups (2.00 ± 0.32 and 1.99 ± 0.33 mm(2), p = 0.586), the rim area of the OAG group was smaller than that of the NAION group (1.26 ± 0.56 and 0.61 ± 0.15 mm(2), respectively, p < 0.001). RNFL asymmetry was not different between the two groups (p = 0.265), but the inferior RNFL thickness of both the affected and unaffected eyes were less in the OAG group than in the NAION group. In the analysis of optic disc morphology, both affected and unaffected eyes showed significant differences between two groups. To differentiate NAION from OAG in eyes with altitudinal visual field defects, optic disc head analysis of not only the affected eye, but also the unaffected eye, by using spectral domain optical coherence tomography may be helpful.

  7. Pediatric and adult vision restoration after optic nerve sheath decompression for idiopathic intracranial hypertension.

    PubMed

    Bersani, Thomas A; Meeker, Austin R; Sismanis, Dimitrios N; Carruth, Bryant P

    2016-06-01

    To compare presentations of idiopathic intracranial hypertension and efficacy of optic nerve sheath decompression between adult and pediatric patients, a retrospective cohort study was completed All idiopathic intracranial hypertension patients undergoing optic nerve sheath decompression by one surgeon between 1991 and 2012 were included. Pre-operative and post-operative visual fields, visual acuity, color vision, and optic nerve appearance were compared between adult and pediatric (<18 years) populations. Outcome measures included percentage of patients with complications or requiring subsequent interventions. Thirty-one adults (46 eyes) and eleven pediatric patients (18 eyes) underwent optic nerve sheath decompression for vision loss from idiopathic intracranial hypertension. Mean deviation on visual field, visual acuity, color vision, and optic nerve appearance significantly improved across all subjects. Pre-operative mean deviation was significantly worse in children compared to adults (p=0.043); there was no difference in mean deviation post-operatively (p=0.838). Significantly more pediatric eyes (6) presented with light perception only or no light perception than adult eyes (0) (p=0.001). Pre-operative color vision performance in children (19%) was significantly worse than in adults (46%) (p=0.026). Percentage of patients with complications or requiring subsequent interventions did not differ between groups. The consistent improvement after surgery and low rate of complications suggest optic nerve sheath decompression is safe and effective in managing vision loss due to adult and pediatric idiopathic intracranial hypertension. Given the advanced pre-operative visual deficits seen in children, one might consider a higher index of suspicion in diagnosing, and earlier surgical intervention in treating pediatric idiopathic intracranial hypertension.

  8. Magnitude and Causes of Low Vision Disability (Moderate and Severe Visual Impairment) among Students of Al-Noor Institute for the Blind in Al-Hassa, Saudi Arabia: A case series.

    PubMed

    Al-Wadani, Fahad; Khandekar, Rajiv; Al-Hussain, Muneera A; Alkhawaja, Ahmed A; Khan, Mohammed Sarfaraz; Alsulaiman, Ramzy A

    2012-02-01

    This study aimed to estimate the magnitude and causes of low vision disability (severe visual impairment [SVI] and moderate visual impairment [MVI]) among students at Al-Noor Institute for the Blind (NIB) in Al-Hassa, Saudi Arabia in 2006. An optometrist conducted refraction of 122 eyes of the 61 students (27 boys and 34 girls) with MVI (vision <6/18 to 6/60) and SVI (vision <6/60 to 3/60). Ophthalmologists examined the anterior and posterior segments, and analysed the outcomes of additional investigations to finalise the diagnosis. The results were categorised as 'preventable', 'treatable' and 'not amenable to treatment'. The low vision care was also reviewed. In 12 (9.8%) eyes, visual acuity was ≥6/18 and in 28 (23%) eyes, it was <3/60. MVI and SVI were found in 82 eyes (67.2%). Hereditary retinal disorders were found in 68 (55.7%) eyes. Although refractive errors were found in 112 (91.8%) eyes, isolated refractive error was found in only 9 students. Congenital glaucoma and cataract were responsible for visual impairment in 16 (13.1%) and 9 (7.4%) eyes. These students were prescribed optical and non-optical low vision aids. Retinal disease was the main cause of SVI and MVI in our series. Some students at Al-Noor Institute for the Blind have curable low vision conditions. Rehabilitation of low vision disability should be different from that offered to the absolutely blind.

  9. Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.

    PubMed

    Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji

    2017-09-01

    To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Optical coherence tomography patterns as predictors of visual outcome in dengue-related maculopathy.

    PubMed

    Teoh, Stephen C; Chee, Caroline K; Laude, Augustinus; Goh, Kong Y; Barkham, Timothy; Ang, Brenda S

    2010-03-01

    The purpose of this study was to characterize the presentations, long-term outcomes, and visual prognostic factors in dengue-related maculopathy of 41 patients with dengue fever and impaired vision from dengue-related maculopathy in a retrospective noninterventional and observational series. The medical records of patients with dengue-related maculopathy diagnosed over 18 months between July 2004 and December 2005 at The Eye Institute, Tan Tock Seng Hospital and Communicable Disease Center, Singapore, were reviewed and followed up for 24 months. Visual acuity and symptoms (presence of scotoma on automated visual fields and Amsler grid) were correlated with optical coherence tomography evaluation. Mean age was 28.7 years and there were more men (53.7%). The most common visual complaints were blurring of vision (51.2%) and central scotoma (34.1%). Most patients recovered best-corrected visual acuity >20/40. Optical coherence tomography showed 3 patterns of maculopathy: 1) diffuse retinal thickening; 2) cystoid macular edema; and 3) foveolitis. The visual outcome was independent of the extent of edema, but scotomata persisted longest in patients with foveolitis and shortest with those with diffuse retinal thickening. Dengue-associated ocular inflammation is an emerging ophthalmic condition and often involves the posterior segment. Prognosis is variable. Patients usually regain good vision but may retain persistent scotomata even at 2 years despite clinical resolution of the disease. Optical coherence tomography patterns in dengue maculopathy are useful for characterization, monitoring, and prognostication of the visual defect.

  11. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  12. Sensitivity of visual evoked potentials and spectral domain optical coherence tomography in early relapsing remitting multiple sclerosis.

    PubMed

    Behbehani, Raed; Ahmed, Samar; Al-Hashel, Jasem; Rousseff, Rossen T; Alroughani, Raed

    2017-02-01

    Visual evoked potentials and spectral-domain optical coherence tomography are common ancillary studies that assess the visual pathways from a functional and structural aspect, respectively. To compare prevalence of abnormalities of Visual evoked potentials (VEP) and spectral-domain optical coherence tomography (SDOCT) in patients with relapsing remitting multiple sclerosis (RRMS). A cross-sectional study of 100 eyes with disease duration of less than 5 years since the diagnosis. Correlation between retinal nerve fiber layer and ganglion-cell/inner plexiform layer with pattern-reversal visual evoked potentials amplitude and latency and contrast sensitivity was performed. The prevalence of abnormalities in pattern-reversal visual VEP was 56% while that of SOCT was 48% in all eyes. There was significant negative correlations between the average RNFL (r=-0.34, p=0.001) and GCIPL (r=-0.39, p<0.001) with VEP latency. In eyes with prior optic neuritis, a significant negative correlation was seen between average RNFL (r=-0.33, p=0.037) and GCIPL (r=-0.40, p=0.010) with VEP latency. We have found higher prevalence of VEP abnormalities than SCOCT in early relapsing-remitting multiple sclerosis. This suggests that VEP has a higher sensitivity for detecting lesions of the visual pathway in patients with early RRMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Visual focus stimulator aids in study of the eye's focusing action

    NASA Technical Reports Server (NTRS)

    Cornsweet, T. N.; Crane, H. D.

    1970-01-01

    Optical apparatus varies apparent distance of a target image from the eye by means of reflectors that are moved orthogonally to the optical axis between fixed lenses. Apparatus can be pointed at any object, test pattern, or other visual display.

  14. Basic quantitative assessment of visual performance in patients with very low vision.

    PubMed

    Bach, Michael; Wilke, Michaela; Wilhelm, Barbara; Zrenner, Eberhart; Wilke, Robert

    2010-02-01

    A variety of approaches to developing visual prostheses are being pursued: subretinal, epiretinal, via the optic nerve, or via the visual cortex. This report presents a method of comparing their efficacy at genuinely improving visual function, starting at no light perception (NLP). A test battery (a computer program, Basic Assessment of Light and Motion [BaLM]) was developed in four basic visual dimensions: (1) light perception (light/no light), with an unstructured large-field stimulus; (2) temporal resolution, with single versus double flash discrimination; (3) localization of light, where a wedge extends from the center into four possible directions; and (4) motion, with a coarse pattern moving in one of four directions. Two- or four-alternative, forced-choice paradigms were used. The participants' responses were self-paced and delivered with a keypad. The feasibility of the BaLM was tested in 73 eyes of 51 patients with low vision. The light and time test modules discriminated between NLP and light perception (LP). The localization and motion modules showed no significant response for NLP but discriminated between LP and hand movement (HM). All four modules reached their ceilings in the acuity categories higher than HM. BaLM results systematically differed between the very-low-acuity categories NLP, LP, and HM. Light and time yielded similar results, as did localization and motion; still, for assessing the visual prostheses with differing temporal characteristics, they are not redundant. The results suggest that this simple test battery provides a quantitative assessment of visual function in the very-low-vision range from NLP to HM.

  15. [Radial optic neurotomy for severe central retinal vein occlusion: preliminary results].

    PubMed

    Le Rouic, J-F; Becquet, F; Zanlonghi, X; Péronnet, P; Pousset-Decré, C; Hermouet-Leclair, E; Ducournau, D

    2003-06-01

    To describe the results of radial optic neurotomy for the treatment of severe central retinal vein occlusion. Prospective noncomparative single-center study. Analysis of ten eyes of ten consecutive patients whose visual acuity was 0.1 or less. They underwent fluorescein angiography, visual field testing by automated perimetry, and macular thickness analysis by optical coherence tomography preoperatively at 3 months and at 6 months postoperatively. Mean visual acuity on an ETDRS chart increased from 30+/-12 points preoperatively to 42+/-15 points at the 3-month visit, (p=0.03), and mean macular thickness decreased from 580+/-150 micro m to 361+/-52 micro m (p=0.04). All patients had clinical improvement as determined by fundus examination and fluorescein angiography. An improvement in the central visual field was observed in all eyes. Mean visual acuity of the five patients followed-up for 6 months was 52.8+/-20 points. No visual loss was observed. None of the patients underwent laser photocoagulation or has presented with neovascularization so far. Optociliary veins developed in three eyes and a retinochoroidal anastomosis within the disk incision was observed in two eyes. These preliminary results are encouraging when compared to the reported natural progression of severe central retinal vein occlusion. A bypass of the site of occlusion is a possible mechanism for radial optic neurotomy. A randomized study should be conducted to assess the efficacy of radial optic neurotomy and determine the best candidates for surgery.

  16. Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot

    PubMed Central

    Raman, Rajani; Sarkar, Sandip

    2016-01-01

    Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812

  17. Visual Outcomes of Parapapillary Uveal Melanomas Following Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thariat, Juliette, E-mail: jthariat@gmail.com; Grange, Jean-Daniel; Mosci, Carlo

    Purpose: In parapapillary melanoma patients, radiation-induced optic complications are frequent and visual acuity is often compromised. We investigated dose-effect relationships for the optic nerve with respect to visual acuity after proton therapy. Methods and Materials: Of 5205 patients treated between 1991 and 2014, those treated using computed tomography (CT)-based planning to 52 Gy (prescribed dose, not accounting for relative biologic effectiveness correction of 1.1) in 4 fractions, with minimal 6-month follow-up and documented initial and last visual acuity, were included. Deterioration of ≥0.3 logMAR between initial and last visual acuity results was reported. Results: A total of 865 consecutive patients weremore » included. Median follow-up was 69 months, mean age was 61.7 years, tumor abutted the papilla in 35.1% of patients, and tumor-to-fovea distance was ≤3 mm in 74.2% of patients. Five-year relapse-free survival rate was 92.7%. Visual acuity was ≥20/200 in 72.6% of patients initially and 47.2% at last follow-up. A wedge filter was used in 47.8% of the patients, with a positive impact on vision and no impact on relapse. Glaucoma, radiation-induced optic neuropathy, maculopathy were reported in 17.9%, 47.5%, and 33.6% of patients, respectively. On multivariate analysis, age, diabetes, thickness, initial visual acuity and percentage of macula receiving 26 Gy were predictive of visual acuity. Furthermore, patients irradiated to ≥80% of their papilla had better visual acuity when limiting the 50% (30-Gy) and 20% (12-Gy) isodoses to ≤2 mm and 6 mm of optic nerve length, respectively. Conclusions: A personalized proton therapy plan with optic nerve and macular sparing can be used efficiently with good oncological and functional results in parapapillary melanoma patients.« less

  18. Laser optical method of visualizing cutaneous blood vessels and its applications in biometry and photomedicine

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2011-05-01

    We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.

  19. Optical responses evoked by white matter stimulation in rat visual cortical slices and their relation to neural activities.

    PubMed

    Tanifuji, M; Yamanaka, A; Sunaba, R; Terakawa, S; Toyama, K

    1996-10-28

    To characterize optical responses (ORs) evoked by white matter (WM) stimulation in slices of rat visual cortex (VC) stained with voltage sensitive dyes, time course of ORs in each layer was investigated by recording ORs with a linearly aligned photodiode array, and the spatial patterns of the ORs at specified time after stimulation were investigated by a CCD camera in combination with stroboscopic illumination. The ORs recorded by the photodiode array were an increase in absorption at 700 nm and a decrease in the wavelength below 650 nm, suggesting that the ORs were dye related. The ORs were compared with field potentials (FPs) to clarify that neural events were represented by the ORs, and in support of this view, we found that the first order spatial differentials of ORs and that of FPs were in good agreement. We further compared ORs with intracellular responses, and found that the ORs mainly represent postsynaptic potentials (PSPs) of VC neurons except for the deeper part of layer VI, where a component representing action potentials in fibers stimulated directly was observed. The time-lapse imaging of ORs showed that excitation first propagated vertically up to layer I and subsequently in the horizontal direction along layers II-III and V-VI as in previous investigations. Spatio-temporal patterns of ORs under blockade of synaptic transmission were also investigated to reveal activity of fibers evoked by WM stimulation which produced such patterns of propagation.

  20. The effect of virtual reality on gait variability.

    PubMed

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  1. Applications of multiphoton microscopy in the field of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  2. Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis.

    PubMed

    Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R

    2010-01-01

    We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.

  3. Structure-Function Analysis of Nonarteritic Anterior Ischemic Optic Neuropathy and Age-Related Differences in Outcome.

    PubMed

    Sun, Ming-Hui; Liao, Yaping Joyce

    2017-09-01

    The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 μm or macular GCC thickness >55 μm significantly correlated with good visual field outcome. We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 μm and mean macular ganglion cell complex thickness >55 μm had better visual outcomes.

  4. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years.

    PubMed

    Garcia-Martin, Elena; Ara, Jose R; Martin, Jesus; Almarcegui, Carmen; Dolz, Isabel; Vilades, Elisa; Gil-Arribas, Laura; Fernandez, Francisco J; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2017-05-01

    To quantify retinal nerve fiber layer (RNFL) changes in patients with multiple sclerosis (MS) and healthy controls with a 5-year follow-up and to analyze correlations between disability progression and RNFL degeneration. Observational and longitudinal study. One hundred patients with relapsing-remitting MS and 50 healthy controls. All participants underwent a complete ophthalmic and electrophysiologic exploration and were re-evaluated annually for 5 years. Visual acuity (Snellen chart), color vision (Ishihara pseudoisochromatic plates), visual field examination, optical coherence tomography (OCT), scanning laser polarimetry (SLP), and visual evoked potentials. Expanded Disability Status Scale (EDSS) scores, disease duration, treatments, prior optic neuritis episodes, and quality of life (QOL; based on the 54-item Multiple Sclerosis Quality of Life Scale score). Optical coherence tomography (OCT) revealed changes in all RNFL thicknesses in both groups. In the MS group, changes were detected in average thickness and in the mean deviation using the GDx-VCC nerve fiber analyzer (Laser Diagnostic Technologies, San Diego, CA) and in the P100 latency of visual evoked potentials; no changes were detected in visual acuity, color vision, or visual fields. Optical coherence tomography showed greater differences in the inferior and temporal RNFL thicknesses in both groups. In MS patients only, OCT revealed a moderate correlation between the increase in EDSS and temporal and superior RNFL thinning. Temporal RNFL thinning based on OCT results was correlated moderately with decreased QOL. Multiple sclerosis patients exhibit a progressive axonal loss in the optic nerve fiber layer. Retinal nerve fiber layer thinning based on OCT results is a useful marker for assessing MS progression and correlates with increased disability and reduced QOL. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  6. Effects of optical blur reduction on equivalent intrinsic blur.

    PubMed

    Kord Valeshabad, Ali; Wanek, Justin; McAnany, J Jason; Shahidi, Mahnaz

    2015-04-01

    To determine the effect of optical blur reduction on equivalent intrinsic blur, an estimate of the blur within the visual system, by comparing optical and equivalent intrinsic blur before and after adaptive optics (AO) correction of wavefront error. Twelve visually normal subjects (mean [±SD] age, 31 [±12] years) participated in this study. Equivalent intrinsic blur (σint) was derived using a previously described model. Optical blur (σopt) caused by high-order aberrations was quantified by Shack-Hartmann aberrometry and minimized using AO correction of wavefront error. σopt and σint were significantly reduced and visual acuity was significantly improved after AO correction (p ≤ 0.004). Reductions in σopt and σint were linearly dependent on the values before AO correction (r ≥ 0.94, p ≤ 0.002). The reduction in σint was greater than the reduction in σopt, although it was marginally significant (p = 0.05). σint after AO correlated significantly with σint before AO (r = 0.92, p < 0.001), and the two parameters were related linearly with a slope of 0.46. Reduction in equivalent intrinsic blur was greater than the reduction in optical blur after AO correction of wavefront error. This finding implies that visual acuity in subjects with high equivalent intrinsic blur can be improved beyond that expected from the reduction in optical blur alone.

  7. Pattern visual evoked potentials in eyes with disc swelling due to cat scratch disease-associated neuroretinitis.

    PubMed

    Chai, Yuzhu; Yamamoto, Shuichi; Hirayama, Atsuko; Yotsukura, Jiro; Yamazaki, Hiroko

    2005-01-01

    To evaluate optic nerve function by pattern visual evoked potentials (VEPs) in eyes with optic disc swelling due to neuroretinitis associated with cat scratch disease (CSD). Four eyes of four patients with marked optic disc swelling resembling optic neuritis but diagnosed serologically as CSD received systemic steroid treatment. VEPs elicited by black and white checkerboard stimuli created on a TV monitor were recorded before the treatment. The visual acuity (VA) in the affected eyes was decreased to 20/50 in two eyes and finger counting in two eyes at their initial visits. Ophthalmoscopic examination revealed neuroretinitis characterized by severe optic disc swelling, chorioretinal exudates, and macular edema in all eyes. Anti-Bartonella henselae serum antibody was markedly elevated in all patients confirming the diagnosis of CSD. The P100 of the transient VEPs was only mildly reduced without a delay in the implicit times in three eyes and only slightly delayed in the other eye. The steady-state VEPs were mildly reduced in two eyes and phase-reversed in other two eyes. The VA fully recovered after systemic steroid treatment in all patients. Although all examined patients showed marked swelling of the optic disc and visual decrease, the pattern VEPs were not affected as severely as in idiopathic optic neuritis. However, the degree of change of the pattern VEPs varied among patients.

  8. Visual receptive field properties of cells in the optic tectum of the archer fish.

    PubMed

    Ben-Tov, Mor; Kopilevich, Ivgeny; Donchin, Opher; Ben-Shahar, Ohad; Giladi, Chen; Segev, Ronen

    2013-08-01

    The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.

  9. Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

    PubMed Central

    Cottereau, Benoit R.; Smith, Andrew T.; Rima, Samy; Fize, Denis; Héjja-Brichard, Yseult; Renaud, Luc; Lejards, Camille; Vayssière, Nathalie; Trotter, Yves; Durand, Jean-Baptiste

    2017-01-01

    Abstract The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion. In all 3 animals, significant selectivity for egomotion-consistent flow was found in several areas previously associated with optic flow processing, and notably dorsal middle superior temporal area, ventral intra-parietal area, and VPS. It was also seen in areas 7a (Opt), STPm, FEFsem, FEFsac and in a region of the cingulate sulcus that may be homologous with human area CSv. Selectivity for egomotion-compatible flow was never total but was particularly strong in VPS and putative macaque CSv. Direct comparison of results with the equivalent human studies reveals several commonalities but also some differences. PMID:28108489

  10. Mechanisms of Optical Regression Following Corneal Laser Refractive Surgery: Epithelial and Stromal Responses

    PubMed Central

    MOSHIRFAR, Majid; DESAUTELS, Jordan D.; WALKER, Brian D.; MURRI, Michael S.; BIRDSONG, Orry C.; HOOPES, Phillip C. Sr

    2018-01-01

    Laser vision correction is a safe and effective method of reducing spectacle dependence. Photorefractive Keratectomy (PRK), Laser In Situ Keratomileusis (LASIK), and Small-Incision Lenticule Extraction (SMILE) can accurately correct myopia, hyperopia, and astigmatism. Although these procedures are nearing optimization in terms of their ability to produce a desired refractive target, the long term cellular responses of the cornea to these procedures can cause patients to regress from the their ideal postoperative refraction. In many cases, refractive regression requires follow up enhancement surgeries, presenting additional risks to patients. Although some risk factors underlying refractive regression have been identified, the exact mechanisms have not been elucidated. It is clear that cellular proliferation events are important mediators of optical regression. This review focused specifically on cellular changes to the corneal epithelium and stroma, which may influence postoperative visual regression following LASIK, PRK, and SMILE procedures. PMID:29644238

  11. Optic variables used to judge future ball arrival position in expert and novice soccer players.

    PubMed

    Craig, Cathy M; Goulon, Cédric; Berton, Eric; Rao, Guillaume; Fernandez, Laure; Bootsma, Reinoud J

    2009-04-01

    Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.

  12. Novel optical methodologies in studying mechanical signal transduction in mammalian cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    1999-01-01

    For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.

  13. Prediction of functional loss in glaucoma from progressive optic disc damage.

    PubMed

    Medeiros, Felipe A; Alencar, Luciana M; Zangwill, Linda M; Bowd, Christopher; Sample, Pamela A; Weinreb, Robert N

    2009-10-01

    To evaluate the ability of progressive optic disc damage detected by assessment of longitudinal stereophotographs to predict future development of functional loss in those with suspected glaucoma. The study included 639 eyes of 407 patients with suspected glaucoma followed up for an average of 8.0 years with annual standard automated perimetry visual field and optic disc stereophotographs. All patients had normal and reliable standard automated perimetry results at baseline. Conversion to glaucoma was defined as development of 3 consecutive abnormal visual fields during follow-up. Presence of progressive optic disc damage was evaluated by grading longitudinally acquired simultaneous stereophotographs. Other predictive factors included age, intraocular pressure, central corneal thickness, pattern standard deviation, and baseline stereophotograph grading. Hazard ratios for predicting visual field loss were obtained by extended Cox models, with optic disc progression as a time-dependent covariate. Predictive accuracy was evaluated using a modified R(2) index. Progressive optic disc damage had a hazard ratio of 25.8 (95% confidence interval, 16.0-41.7) and was the most important risk factor for development of visual field loss with an R(2) of 79%. The R(2)s for other predictive factors ranged from 6% to 26%. Presence of progressive optic disc damage on stereophotographs was a highly predictive factor for future development of functional loss in glaucoma. These findings suggest the importance of careful monitoring of the optic disc appearance and a potential role for longitudinal assessment of the optic disc as an end point in clinical trials and as a reference for evaluation of diagnostic tests in glaucoma.

  14. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF BENIGN FLECK RETINA USING MULTIMODAL IMAGING.

    PubMed

    Neriyanuri, Srividya; Rao, Chetan; Raman, Rajiv

    2017-01-01

    To report structural and functional features in a case series of benign fleck retina using multimodal imaging. Four cases with benign fleck retina underwent complete ophthalmic examination that included detailed history, visual acuity, and refractive error testing, FM-100 hue test, dilated fundus evaluation, full field electroretinogram, fundus photography with autofluorescence, fundus fluorescein angiography, and swept-source optical coherence tomography. Age group of the cases ranged from 19 years to 35 years (3 males and 1 female). Parental consanguinity was reported in two cases. All of them were visually asymptomatic with best-corrected visual acuity of 20/20 (moderate astigmatism) in both the eyes. Low color discrimination was seen in two cases. Fundus photography showed pisciform flecks which were compactly placed on posterior pole and were discrete, diverging towards periphery. Lesions were seen as smaller dots within 1500 microns from fovea and were hyperfluorescent on autofluorescence. Palisading retinal pigment epithelium defects were seen in posterior pole on fundus fluorescein angiography imaging; irregular hyper fluorescence was also noted. One case had reduced cone responses on full field electroretinogram; the other three cases had normal electroretinogram. On optical coherence tomography, level of lesions varied from retinal pigment epithelium, inner segment to outer segment extending till external limiting membrane. Functional and structural deficits in benign fleck retina were picked up using multimodal imaging.

  15. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.

    2017-05-01

    Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.

  16. Modeling visual-based pitch, lift and speed control strategies in hoverflies

    PubMed Central

    Vercher, Jean-Louis

    2018-01-01

    To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude. PMID:29361632

  17. Optical character recognition reading aid for the visually impaired.

    PubMed

    Grandin, Juan Carlos; Cremaschi, Fabian; Lombardo, Elva; Vitu, Ed; Dujovny, Manuel

    2008-06-01

    An optical character recognition (OCR) reading machine is a significant help for visually impaired patients. An OCR reading machine is used. This instrument can provide a significant help in order to improve the quality of life of patients with low vision or blindness.

  18. Complex Visual Adaptations in Squid for Specific Tasks in Different Environments

    PubMed Central

    Chung, Wen-Sung; Marshall, N. Justin

    2017-01-01

    In common with their major competitors, the fish, squid are fast moving visual predators that live over a great range of depths in the ocean. Both squid and fish show a variety of adaptations with respect to optical properties, receptors and their underlying neural circuits, and these adaptations are often linked to the light conditions of their specific niche. In contrast to the extensive investigations of adaptive strategies in fish, vision in response to the varying quantity and quality of available light, our knowledge of visual adaptations in squid remains sparse. This study therefore undertook a comparative study of visual adaptations and capabilities in a number of squid species collected between 0 and 1,200 m. Histology, magnetic resonance imagery (MRI), and depth distributions were used to compare brains, eyes, and visual capabilities, revealing that the squid eye designs reflect the lifestyle and the versatility of neural architecture in its visual system. Tubular eyes and two types of regional retinal deformation were identified and these eye modifications are strongly associated with specific directional visual tasks. In addition, a combination of conventional and immuno-histology demonstrated a new form of a complex retina possessing two inner segment layers in two mid-water squid species which they rhythmically move across a broad range of depths (50–1,000 m). In contrast to their relatives with the regular single-layered inner segment retina live in the upper mesopelagic layer (50–400 m), the new form of retinal interneuronal layers suggests that the visual sensitivity of these two long distance vertical migrants may increase in response to dimmer environments. PMID:28286484

  19. Visualization of fluid turbulence and acoustic cavitation during phacoemulsification.

    PubMed

    Tognetto, Daniele; Sanguinetti, Giorgia; Sirotti, Paolo; Brezar, Edoardo; Ravalico, Giuseppe

    2005-02-01

    To describe a technique for visualizing fluid turbulence and cavitational energy created by ultrasonic phaco tips. University Eye Clinic of Trieste, Trieste, Italy. Generation of cavitational energy by the phaco tip was visualized using an optical test bench comprising several components. The technique uses a telescope system to expand a laser light source into a coherent, collimated beam of light with a diameter of approximately 50.0 mm. The expanded laser beam shines on the test tube containing the tip activated in a medium of water or ophthalmic viscosurgical device (OVD). Two precision optical collimators complete the optical test bench and form the system used to focus data onto a charge-coupled device television camera connected to a recorder. Images of irrigation, irrigation combined with aspiration, irrigation/aspiration, and phacosonication were obtained with the tip immersed in a tube containing water or OVD. Optical image processing enabled acoustic cavitation to be visualized during phacosonication. The system is a possible means of evaluating a single phaco apparatus power setting and comparing phaco machines and techniques.

  20. Long-term study of patients with congenital pit of the optic nerve and persistent macular detachment.

    PubMed

    Theodossiadis, G P; Panopoulos, M; Kollia, A K; Georgopoulos, G

    1992-08-01

    During the period 1970-87 we evaluated the changes of the optic disc, peripapillary area, detached macula and visual acuity in 16 cases with congenital pit of the optic nerve and macular detachment. The study revealed in 9 of the 16 cases (56%) an increase of the dimension of the pit or changes in its color, findings which were directly related to the duration of the macular detachment. Chorioretinal scarring, pigment migration, or both, were also noted mainly at the temporal margin of optic disc. In 5/16 cases we found during the follow-up an extension of macular elevation. In altogether 10 out of 16 cases the retinal elevation covered the larger portion of the mid-periphery temporally. In 7/16 cases the final visual acuity remained unchanged, in 9/16 cases deteriorated. The difference, however, in the latter 9 cases between initial and final visual acuity was negligible. During the follow-up period deterioration of the visual fields was also noted.

  1. Direct Surgery of Previously Coiled Large Internal Carotid Ophthalmic Aneurysm for the Purpose of Optic Nerve Decompression

    PubMed Central

    Kawabata, Shuhei; Toyota, Shingo; Kumagai, Tetsuya; Goto, Tetsu; Mori, Kanji; Taki, Takuyu

    2017-01-01

    Background Progressive visual loss after coil embolization of a large internal carotid ophthalmic aneurysm has been widely reported. It is generally accepted that the primary strategy for this complication should be conservative, including steroid therapy; however, it is not well known as to what approach to take when the conservative therapy is not effective. Case Presentation We report a case of a 55-year-old female presenting with progressive visual loss after the coiling of a ruptured large internal carotid ophthalmic aneurysm. As the conservative therapy had not been effective, we performed neck clipping of the aneurysm with optic canal unroofing, anterior clinoidectomy, and partial removal of the embolized coils for the purpose of optic nerve decompression. After the surgery, the visual symptom was improved markedly. Conclusions It is suggested that direct surgery for the purpose of optic nerve decompression may be one of the options when conservative therapy is not effective for progressive visual disturbance after coil embolization. PMID:28229036

  2. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

    PubMed

    Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-08-11

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.

  3. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma

    PubMed Central

    Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  4. Retinal projections in the electric catfish (Malapterurus electricus).

    PubMed

    Ebbesson, S O; O'Donnel, D

    1980-01-01

    The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.

  5. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its analysis through expansion in Zernike polynomials.

  6. Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zientek, John; Maj, Jozef; Navrotski, Gary

    2015-01-02

    The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTUmore » has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.« less

  7. Breaking cover: neural responses to slow and fast camouflage-breaking motion.

    PubMed

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei

    2015-08-22

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.

  8. Breaking cover: neural responses to slow and fast camouflage-breaking motion

    PubMed Central

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei

    2015-01-01

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500

  9. Optical and neural anisotropy in peripheral vision

    PubMed Central

    Zheleznyak, Len; Barbot, Antoine; Ghosh, Atanu; Yoon, Geunyoung

    2016-01-01

    Optical blur in the peripheral retina is known to be highly anisotropic due to nonrotationally symmetric wavefront aberrations such as astigmatism and coma. At the neural level, the visual system exhibits anisotropies in orientation sensitivity across the visual field. In the fovea, the visual system shows higher sensitivity for cardinal over diagonal orientations, which is referred to as the oblique effect. However, in the peripheral retina, the neural visual system becomes more sensitive to radially-oriented signals, a phenomenon known as the meridional effect. Here, we examined the relative contributions of optics and neural processing to the meridional effect in 10 participants at 0°, 10°, and 20° in the temporal retina. Optical anisotropy was quantified by measuring the eye's habitual wavefront aberrations. Alternatively, neural anisotropy was evaluated by measuring contrast sensitivity (at 2 and 4 cyc/deg) while correcting the eye's aberrations with an adaptive optics vision simulator, thus bypassing any optical factors. As eccentricity increased, optical and neural anisotropy increased in magnitude. The average ratio of horizontal to vertical optical MTF (at 2 and 4 cyc/deg) at 0°, 10°, and 20° was 0.96 ± 0.14, 1.41 ± 0.54 and 2.15 ± 1.38, respectively. Similarly, the average ratio of horizontal to vertical contrast sensitivity with full optical correction at 0°, 10°, and 20° was 0.99 ± 0.15, 1.28 ± 0.28 and 1.75 ± 0.80, respectively. These results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation. These findings support the neural origin of the meridional effect and raise important questions regarding the role of peripheral anisotropic optical quality in developing the meridional effect and emmetropization. PMID:26928220

  10. SPECTRAL DOMAIN VERSUS SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE RETINAL CAPILLARY PLEXUSES IN SICKLE CELL MACULOPATHY.

    PubMed

    Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S

    2018-01-01

    To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.

  11. Rapid diagnosis of retina and optic nerve abnormalities in canine patients with and without cataracts using chromatic pupil light reflex testing.

    PubMed

    Grozdanic, Sinisa D; Kecova, Helga; Lazic, Tatjana

    2013-09-01

    To develop fast and reliable testing routines for diagnosing retina and optic nerve diseases in canine cataract patients based on chromatic properties of the pupillary light reflex response. Seventy-seven canine patients with a history of cataract and decreased vision (43 patients with cataracts and no evidence of retina or optic nerve disease, 21 patients with cataracts and retinal degeneration [RD], 13 patients with cataracts and retinal detachment [RDT]), 11 canine patients with optic neuritis (ON) and 23 healthy dogs were examined using chromatic pupillary light reflex (cPLR) analysis with red and blue light and electroretinography. Electroretinography analysis showed statistically significant deficits in a- and b-wave amplitudes in dogs with cataracts and RD, or cataracts and RDT, when compared to dogs with cataracts without evidence of retinal abnormalities. Evaluation of b-wave amplitudes showed that presence of 78.5-μV (or lower) amplitudes had high sensitivity of 100% (95% CI: 87.2-100%) and high specificity of 96.7% (95% CI: 88.4-100%) in RD and RDT. Evaluation of cPLR responses using red light showed that presence of the pupil end constriction diameter of 5.5 mm (or higher) had moderately high sensitivity of 76.5% (95% CI: 50.1-93.2%) and high specificity of 100% (95% CI: 91.2-100%) in detecting RD and RDT. Optic neuritis patients had absent cPLR responses, regardless of the visual status. Chromatic evaluation of the pupillary light reflex is a rapid and accurate test for diagnosing retina and optic nerve diseases in canine patients. © 2012 American College of Veterinary Ophthalmologists.

  12. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  13. Outcome of endoscopic trans-ethmosphenoid optic canal decompression for indirect traumatic optic neuropathy in children.

    PubMed

    Yu, Bo; Chen, Yingbai; Ma, Yingjie; Tu, Yunhai; Wu, Wencan

    2018-06-26

    To evaluate the safety and outcomes of endoscopic trans-ethmosphenoid optic canal decompression (ETOCD) for children with indirect traumatic optic neuropathy (ITON). From July 1st, 2008 to July 1st, 2015, 62 children diagnosed with ITON who underwent ETOCD were reviewed. Main outcome measure was improvement in visual acuity after treatment. Altogether 62 children (62 eyes) with a mean age of 11.26 ± 4.14 years were included. Thirty-three (53.2%) of them had residual vision before surgery while 29 (46.8%) had no light perception (NLP). The overall visual acuity improvement rate after surgery was 54.84%. The improvement rate of patients with residual vision (69.70%) was significant higher than that of patients with no light perception (NLP) (37.9%) (P = 0.012). However, no significant difference was shown among patients with different residual vision (P = 0.630). Presence of orbital and/ or optic canal fracture and hemorrhage within the post-ethmoid and/or sphenoid sinus resulted in poor postoperative visual acuity, duration of presenting complaints did not affect final visual acuity or did not effect outcomes. Intervention performed in children presenting even after 7 days from the injury did not influence the final visual outcome. Three patients developed cerebrospinal fluid rhinorrhea and one encountered cavernous sinus hemorrhage during surgery. No other severe complications were observed. Children with residual vision had better postoperative visual prognosis and benefited more from ETOCD than children with NLP. Intervention performed in children presenting even after 7 days from the injury did not influence the final visual outcome, however, this needs to be reassessed in children presenting long after the injury.Treatment should still be recommended even for cases of delayed presentation to hospital.

  14. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.; Stone, L. S.

    1998-01-01

    We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.

  15. Optical instrument employing reticle having preselected visual response pattern formed thereon

    NASA Technical Reports Server (NTRS)

    Haines, R. F. (Inventor)

    1977-01-01

    An optical instrument for use in locating indicator lights or the like on a work surface is described. It comprises a tubular housing, a lens mounted within the housing and including an inner surface coated with a dichroic material that is capable of reflecting a portion of the light incident thereon, a plate mounted within the housing opposite the lens and having a central aperture, a transparent substrate disposed within the housing intermediate the lens and the plate, the substrate including a first surface disposed in a facing relationship to the dichroic material, and a reticle formed on the first surface and comprised of a material capable of reflecting light.

  16. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  17. Challenges in automated estimation of capillary refill time in dogs

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Spigulis, Janis

    2018-02-01

    Capillary refill time (CRT) is a part of the cardiorespiratory examination in dogs. Changes in CRT can reflect pathological conditions like shock or anemia. Visual CRT estimation has low repeatability; therefore, optical systems for automated estimation have recently appeared. Since existing systems are unsuitable for use in dogs, we designed a simple, small and portable device, which could be easily used at veterinary clinic. The device was preliminarily tested on several measurement sites in two dogs. Not all measurement sites were suitable for CRT measurements due to underlying tissue optical and mechanical properties. The CRT measurements were possible on the labial mucosa, above the sternum and on the digit where CRT was in the range of values, retrieved from the color video of the visual CRT measurement. It seems that light penetration predominantly governs tissue optical response when the pressure is applied. Therefore, it is important to select a proper light, which reaches only superficial capillaries and does not penetrate deeper. Blue or green light is probably suitable for light skin or mucosa, on the other hand, red or near-infrared might be used for skin with pigmented or thick epidermis. Additionally, further improvements of the device design are considered, like adding a calibrated spring, which would insure application of consistent pressure.

  18. Macular function and morphological features in juvenile Stargardt disease: Longitudinal study

    PubMed Central

    Testa, Francesco; Melillo, Paolo; Iorio, Valentina Di; Orrico, Ada; Attanasio, Marcella; Rossi, Settimio; Simonelli, Francesca

    2014-01-01

    Purpose to evaluate disease progression in a cohort of patients with clinical and genetic diagnosis of Stargardt disease. Design longitudinal cohort study. Subjects 56 selected patients with a clinical and molecular diagnosis of Stargardt disease, an early age of onset and a median follow-up length of two years. Methods patients underwent routine examination including full-field electroretinography, microperimetry and optical coherence tomography. Main Outcome Measures best corrected visual acuity, mean retinal sensitivity, fixation stability, preferred retinal locus, inner-outer segment (IS/OS) junction loss, atrophic lesion area. Results 56 patients with a mean age of disease onset of 15.3 years (range: 3 - 28 years), a mean disease length of 12.1 years and a mean age at baseline of 27.4 years were analyzed. The median best corrected visual acuity was 20/200 in both eyes. Optical coherence tomography parameters (IS/OS alteration and retinal pigment epithelium lesion area) were obtained in 49 patients because signal quality was poor in the remaining 7 patients. Optical coherence tomography revealed a mean retinal pigment epithelium lesion area of 2.6 mm2, preserved foveal IS/OS in 4.1% of patients, loss of foveal IS/OS in 59.2%, and extensive loss of macular IS/OS in 36.7%. Microperimetric findings showed a reduced macular sensitivity (mean 10 dB) and an unstable fixation in half of the patient cohort. The longitudinal analysis showed a significant progressive reduction of best corrected visual acuity and macular sensitivity (at an estimated rate of 0.04 decimals and 1.19 dB per year, respectively) associated with a significant enlargement of retinal pigment epithelium lesion area (0.282 mm2 per year). No significant changes in ophthalmoscopic findings and electroretinographic responses were detected. Conclusions this study highlights the importance of microperimetry and optical coherence tomography in monitoring Stargardt patients. In fact, quantifying the decline of visual functionality and detecting morphological macular changes proves useful to evaluate disease progression over a short-term follow-up and should be taken into account for the design of future gene therapy clinical trials to treat retinal dystrophy. PMID:25097154

  19. Improvement in conduction velocity after optic neuritis measured with the multifocal VEP.

    PubMed

    Yang, E Bo; Hood, Donald C; Rodarte, Chris; Zhang, Xian; Odel, Jeffrey G; Behrens, Myles M

    2007-02-01

    To test the efficacy of the multifocal visual evoked potential (mfVEP) technique after long-term latency changes in optic neuritis (ON)/multiple sclerosis (MS), mfVEPs were recorded in 12 patients with ON/MS. Sixty local VEP responses were recorded simultaneously. mfVEP was recorded from both eyes of 12 patients with ON/MS. Patients were tested twice after recovery from acute ON episodes, which occurred in 14 of the 24 eyes. After recovery, all eyes had 20/20 or better visual acuity and normal visual fields as measured with static automated perimetry (SAP). The time between the two postrecovery tests varied from 6 to 56 months. Between test days, the visual fields obtained with SAP remained normal. Ten of the 14 affected eyes showed improvement in median latency on the mfVEP. Six of these eyes fell at or below (improved latency) the 96% confidence interval for the control eyes. None of the 10 initially unaffected eyes fell below the 96% lower limit. Although the improvement was widespread across the field, it did not include all regions. For the six eyes showing clear improvement, on average, 78% of the points had latencies that were shorter on test 2 than on test 1. A substantial percentage of ON/MS patients show a long-term improvement in conduction velocity. Because this improvement can be local, the mfVEP should allow these improvements to be monitored in patients with ON/MS.

  20. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.

    PubMed

    Lewis, Philip M; Ackland, Helen M; Lowery, Arthur J; Rosenfeld, Jeffrey V

    2015-01-21

    The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  2. Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics

    NASA Astrophysics Data System (ADS)

    Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-06-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.

  3. Image projection optical system for measuring pattern electroretinograms

    NASA Astrophysics Data System (ADS)

    Starkey, Douglas E.; Taboada, John; Peters, Daniel

    1994-06-01

    The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.

  4. Visual function in anterior ischemic optic neuropathy: effect of Vision Restoration Therapy--a pilot study.

    PubMed

    Jung, Cecilia S; Bruce, Beau; Newman, Nancy J; Biousse, Valérie

    2008-05-15

    To evaluate the effects of Vision Restoration Therapy (VRT) on the visual function of patients with anterior ischemic optic neuropathy. Randomized controlled double-blind pilot trial. 10 patients with stable anterior ischemic optic neuropathy (AION). All patients were evaluated before VRT and after 3 and 6 months of treatment by Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, contrast sensitivity, reading speed, 24-2 SITA-standard Humphrey visual field (HVF), High Resolution Perimetry (HRP) (perimetry obtained during VRT), and vision-based quality of life questionnaire. Patients were randomized between two VRT strategies (5 in each group): I) VRT in which stimulation was performed in the seeing VF of the affected eye ("seeing field-VRT"); II) VRT in which stimulation was performed along the area of central fixation and in the ARV (areas of residual vision) of the affected eye ("ARV-VRT"). The results of the HRP, HVF, and clinical assessment of visual function were compared for each patient and between the two groups at each evaluation. Visual acuity qualitatively improved in the ARV-VRT group, however the change was not statistically significant (p=0.28). Binocular reading speed significantly improved in the ARV-VRT group (p=0.03). HVF foveal sensitivity increased mildly in both groups (p=0.059). HRP analysis showed a similar increase in stimulus accuracy in both groups (mean improvement of about 15%). All patients reported functional improvement after VRT. Despite a small sample, the study showed a trend toward improvement of visual function in the ARV-VRT group. Improvement of HRP in both groups may reflect diffusely increased visual attention (neuronal activation), or improvement of an underlying sub-clinical abnormality in the "seeing" visual field of patients with optic neuropathies.

  5. The correlation between visual acuity and color vision as an indicator of the cause of visual loss.

    PubMed

    Almog, Yehoshua; Nemet, Arie

    2010-06-01

    To explore the correlation between visual acuity (VA) and color vision and to establish a guide for the diagnosis of the cause of visual loss based on this correlation. Retrospective comparative evaluation of a diagnostic test. A total of 259 patients with visual impairment caused by 1 of 4 possible disease categories were included. Patients were divided into 4 groups according to the etiology of visual loss: 1) optic neuropathies, 2) macular diseases, 3) media opacities, and 4) amblyopia. The best-corrected VA was established and a standard Ishihara 15 color plates was tested and correlated to the VA in every group separately. Correlation between the VA and the color vision along the different etiologies was evaluated. Frequency of each combination of color vision and VA in every disease category was established. VA is correlated with color vision in all 4 disease categories. For the same degree of VA loss, patients with optic neuropathy are most likely and patients with amblyopia are the least expected to have a significant color vision loss. Patients with optic neuropathy had considerably worse average color vision (6.7/15) compared to patients in the other 3 disease categories: 11.1/15 (macular diseases), 13.2/15 (media opacities), and 13.4/15 (amblyopia). Diseases of the optic nerve affect color vision earlier and more profoundly than other diseases. When the cause of visual loss is uncertain, the correlation between the severity of color vision and VA loss can imply the possible etiology of the visual loss. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Fractionated Stereotactic Radiotherapy in Patients With Optic Nerve Sheath Meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsen, Frank, E-mail: frank.paulsen@med.uni-tuebingen.de; Doerr, Stefan; Wilhelm, Helmut

    Purpose: To evaluate the effectiveness of fractionated stereotactic radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1993 and 2005, 109 patients (113 eyes) with primary (n = 37) or secondary (n = 76) ONSM were treated according to a prospective protocol with SFRT to a median dose of 54 Gy. All patients underwent radiographic, ophthalmologic, and endocrine analysis before and after SFRT. Radiographic response, visual control, and late side effects were endpoints of the analysis. Results: Median time to last clinical, radiographic, and ophthalmologic follow up was 30.2 months (n = 113), 42.7more » months (n = 108), and 53.7 months (n = 91), respectively. Regression of the tumor was observed in 5 eyes and progression in 4 eyes, whereas 104 remained stable. Visual acuity improved in 12, deteriorated in 11, and remained stable in 68 eyes. Mean visual field defects reduced from 33.6% (n = 90) to 17.8% (n = 56) in ipsilateral and from 10% (n = 94) to 6.7% (n = 62) in contralateral eyes. Ocular motility improved in 23, remained stable in 65, and deteriorated in 3 eyes. Radiographic tumor control was 100% at 3 years and 98% at 5 years. Visual acuity was preserved in 94.8% after 3 years and in 90.9% after 5 years. Endocrine function was normal in 90.8% after 3 years and in 81.3% after 5 years. Conclusions: SFRT represents a highly effective treatment for ONSM. Interdisciplinary counseling of the patients is recommended. Because of the high rate of preservation of visual acuity we consider SFRT the standard approach for the treatment of ONSM. Prolonged observation is warranted to more accurately assess late visual impairment. Moderate de-escalation of the radiation dose might improve the preservation of visual acuity and pituitary gland function.« less

  7. Visual White Matter Integrity in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Hoptman, Matthew J.; Nierenberg, Jay; Foxe, John J.; Javitt, Daniel C.; Lim, Kelvin O.

    2007-01-01

    Objective Patients with schizophrenia have visual-processing deficits. This study examines visual white matter integrity as a potential mechanism for these deficits. Method Diffusion tensor imaging was used to examine white matter integrity at four levels of the visual system in 17 patients with schizophrenia and 21 comparison subjects. The levels examined were the optic radiations, the striate cortex, the inferior parietal lobule, and the fusiform gyrus. Results Schizophrenia patients showed a significant decrease in fractional anisotropy in the optic radiations but not in any other region. Conclusions This finding indicates that white matter integrity is more impaired at initial input, rather than at higher levels of the visual system, and supports the hypothesis that visual-processing deficits occur at the early stages of processing. PMID:17074957

  8. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults.

    PubMed

    Tse, Chun-Yu; Gordon, Brian A; Fabiani, Monica; Gratton, Gabriele

    2010-09-01

    Relatively high frequency activity (>4Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not been applied to study high frequency brain oscillations because of its relatively low signal-to-noise ratio. Here we investigate the sensitivity of FOS to relatively high-frequency brain oscillations. We measured the steady-state optical response elicited in medial and lateral occipital cortex by checkerboard reversals occurring at 4, 6, and 8Hz in younger and older adults. Stimulus-dependent oscillations were observed at the predicted stimulation frequency. In addition, in the younger adults the FOS steady-state response was smaller in lateral than medial areas, whereas in the older adults it was reversed in these two cortical regions. This may reflect diminished top-down inhibitory control in the older adults. The results indicate that FOS can be used to study the modulation of relatively high-frequency brain oscillations in adjacent cortical regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Electrooptical model of the first retina layers of a visual analyzer

    NASA Technical Reports Server (NTRS)

    Chibalashvili, Y. L.; Riabinin, A. D.; Svechnikov, S. V.; Chibalashvili, Y. L.; Shkvar, A. M.

    1979-01-01

    An electrooptical principle of converting and transmitting optical signals is proposed and used as the basis for constructing a model of the upper layers of the retina of the visual analyzer of animals. An evaluation of multichannel fibrous optical systems, in which the conversion of optical signals is based on the electrooptical principle, to model the upper retina layers is presented. The symbolic circuit of the model and its algorithm are discussed.

  10. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  11. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure

    NASA Astrophysics Data System (ADS)

    Yang, Haowei; Pan, Lei; Han, Yingping; Ma, Lihua; Li, Yao; Xu, Hongbo; Zhao, Jiupeng

    2017-11-01

    In study, we proposed a simple yet fast optical sensing motif based on thimbleful of polyvinyl alcohol (PVA) infiltrated photonic crystal (PC), which allows for high efficiency in vapor sensing through changes in their inter-layer space. Linear response to a broad dynamic range of vapor concentration was realized. Ultrafast response time (<1 s) and excellent recyclability were also demonstrated. Selective response to a vapor was exhibited, reflecting well the characteristic sorption properties of PVA, with which colorimetric reporting was readily achieved. These substantial improvements in performance are attributed to the efficacy of signal transduction and the enhanced signal transduction because of thimbleful PVA infiltrated space between adjacent SiO2 nanospheres.

  12. Visualization of Sliding and Deformation of Orbital Fat During Eye Rotation

    PubMed Central

    Hötte, Gijsbert J.; Schaafsma, Peter J.; Botha, Charl P.; Wielopolski, Piotr A.; Simonsz, Huibert J.

    2016-01-01

    Purpose Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. Methods Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. Results Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. Conclusion B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. Translational Relevance Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan. PMID:27540495

  13. Local statistics of retinal optic flow for self-motion through natural sceneries.

    PubMed

    Calow, Dirk; Lappe, Markus

    2007-12-01

    Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.

  14. Examination of soldier target recognition with direct view optics

    NASA Astrophysics Data System (ADS)

    Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.

    2017-10-01

    Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.

  15. How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation.

    PubMed

    Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul

    2016-02-01

    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.

  16. Syringomyelia presenting with unilateral optic neuropathy: a case report.

    PubMed

    Ngoo, Qi Zhe; Tai, Evelyn Li Min; Wan Hitam, Wan Hazabbah

    2017-01-01

    In this case report, we present two cases of syringomyelia with optic neuropathy. In Case 1, a 36-year-old Malay lady presented to our clinic with acute onset of blurring of vision in her left eye that she experienced since past 1 month. She was diagnosed with syringomyelia 12 years ago and was on conservative management. Her visual acuity was 6/6 in the right eye and counting fingers at 1 m in the left. There was a positive relative afferent pupillary defect in her left eye. Optic nerve functions of her left eye were reduced. Visual field showed a left inferior field defect. Her extraocular muscle movements were full. Magnetic resonance imaging of the brain and spine showed syringomyelia at the level of C2-C6 and T2-T9. Both of her optic nerves were normal. Her condition improved with intravenous and oral corticosteroids. In Case 2, a 44-year-old Malay lady presented to our clinic with a progressive central scotoma in her right eye that she experienced since past 1 month. She had previous history of recurrent episodes of weakness in both of her lower limbs from past 8 months. Visual acuity in her right and left eye was 6/9 and 6/6, respectively. The relative afferent pupillary defect in her right eye was positive. Optic nerve functions of her right eye were affected. Visual field showed a central scotoma in her right eye. Her extraocular muscle movements were full. Fundoscopy of her right eye showed a pale optic disc. Her left eye fundus was normal. Magnetic resonance imaging of the brain and spine showed syringomyelia at T3-T6. Both of her optic nerves were normal. A diagnosis of syringomyelia with right optic atrophy was performed. Her condition improved with intravenous and oral corticosteroids. Optic neuropathy is a rare neuro-ophthalmic manifestation in patients with syringomyelia. Prompt diagnosis and timely management are essential to avoid a poor visual outcome. Intravenous corticosteroids are beneficial in the treatment of early optic neuropathy in syringomyelia.

  17. Evaluation of transcranial surgical decompression of the optic canal as a treatment option for traumatic optic neuropathy.

    PubMed

    He, Zhenhua; Li, Qiang; Yuan, Jingmin; Zhang, Xinding; Gao, Ruiping; Han, Yanming; Yang, Wenzhen; Shi, Xuefeng; Lan, Zhengbo

    2015-07-01

    Traumatic optic neuropathy (TON) is a serious complication of head trauma, with the incidence rate ranging from 0.5% to 5%. The two treatment options widely practiced for TON are: (i) high-dose corticosteroid therapy and (ii) surgical decompression. However, till date, there is no consensus on the treatment protocol. This study aimed to evaluate the therapeutic efficacy of transcranial decompression of optic canal in TON patients. A total of 39 patients with visual loss resulting from TON between January 2005 and June 2013 were retrospectively reviewed for preoperative vision, preoperative image, visual evoked potential (VEP), surgical approach, postoperative visual acuity, complications, and follow-up results. All these patients underwent transcranial decompression of optic canal. During the three-month follow-up period, among the 39 patients, 21 showed an improvement in their eyesight, 6 recovered to standard logarithmic visual acuity chart "visible," 10 could count fingers, 2 could see hand movement, and 3 regained light sensation. Visual evoked potential could be used as an important preoperative and prognostic evaluation parameter for TON patients. Once TON was diagnosed, surgery is a promising therapeutic option, especially when a VEP wave is detected, irrespective of the HRCT scan findings. Operative time between trauma and operation is not necessary reference to assess the therapeutic effect of surgical decompression. The poor results of this procedure may be related to the severity of optic nerve injury. The patient's age is an important factor affecting the surgical outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Herpes Zoster Optic Neuropathy.

    PubMed

    Kaufman, Aaron R; Myers, Eileen M; Moster, Mark L; Stanley, Jordan; Kline, Lanning B; Golnik, Karl C

    2018-06-01

    Herpes zoster optic neuropathy (HZON) is a rare manifestation of herpes zoster ophthalmicus (HZO). The aim of our study was to better characterize the clinical features, therapeutic choices, and visual outcomes in HZON. A retrospective chart review was performed at multiple academic eye centers with the inclusion criteria of all eyes presenting with optic neuropathy within 1 month of cutaneous zoster of the ipsilateral trigeminal dermatome. Data were collected regarding presenting features, treatment regimen, and visual acuity outcomes. Six patients meeting the HZON inclusion criteria were identified. Mean follow-up was 2.75 months (range 0.5-4 months). Herpes zoster optic neuropathy developed at a mean of 14.1 days after initial rash (range 6-30 days). Optic neuropathy was anterior in 2 eyes and retrobulbar in 4 eyes. Other manifestations of HZO included keratoconjunctivitis (3 eyes) and iritis (4 eyes). All patients were treated with systemic antiviral therapy in addition to topical and/or systemic corticosteroids. At the last follow-up, visual acuity in 3 eyes had improved relative to presentation, 2 eyes had worsened, and 1 eye remained the same. The 2 eyes that did not receive systemic corticosteroids had the best observed final visual acuity. Herpes zoster optic neuropathy is an unusual but distinctive complication of HZO. Visual recovery after HZON is variable. Identification of an optimal treatment regiment for HZON could not be identified from our patient cohort. Systemic antiviral agents are a component of HZON treatment regimens. Efficacy of systemic corticosteroids for HZON remains unclear and should be considered on a case-by-case basis.

  19. A nanostructural basis for gloss of avian eggshells

    PubMed Central

    Igic, Branislav; Fecheyr-Lippens, Daphne; Xiao, Ming; Chan, Andrew; Hanley, Daniel; Brennan, Patricia R. L.; Grim, Tomas; Waterhouse, Geoffrey I. N.; Hauber, Mark E.; Shawkey, Matthew D.

    2015-01-01

    The role of pigments in generating the colour and maculation of birds' eggs is well characterized, whereas the effects of the eggshell's nanostructure on the visual appearance of eggs are little studied. Here, we examined the nanostructural basis of glossiness of tinamou eggs. Tinamou eggs are well known for their glossy appearance, but the underlying mechanism responsible for this optical effect is unclear. Using experimental manipulations in conjunction with angle-resolved spectrophotometry, scanning electron microscopy, atomic force microscopy and chemical analyses, we show that the glossy appearance of tinamou eggshells is produced by an extremely smooth cuticle, composed of calcium carbonate, calcium phosphate and, potentially, organic compounds such as proteins and pigments. Optical calculations corroborate surface smoothness as the main factor producing gloss. Furthermore, we reveal the presence of weak iridescence on eggs of the great tinamou (Tinamus major), an optical effect never previously documented for bird eggs. These data highlight the need for further exploration into the nanostructural mechanisms for the production of colour and other optical effects of avian eggshells. PMID:25505139

  20. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    NASA Astrophysics Data System (ADS)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  1. Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica.

    PubMed

    Burton, Brian G; Laughlin, Simon B

    2003-11-01

    Male houseflies use a sex-specific frontal eye region, the lovespot, to detect and pursue mates. We recorded the electrical responses of photoreceptors to optical stimuli that simulate the signals received by a male or female photoreceptor as a conspecific passes through its field of view. We analysed the ability of male and female frontal photoreceptors to code conspecifics over the range of speeds and distances encountered during pursuit, and reconstructed the neural images of these targets in photoreceptor arrays. A male's lovespot photoreceptor detects a conspecific at twice the distance of a female photoreceptor, largely through better optics. This detection distance greatly exceeds those reported in previous behavioural studies. Lovespot photoreceptors respond more strongly than female photoreceptors to targets tracked during pursuit, with amplitudes reaching 25 mV. The male photoreceptor also has a faster response, exhibits a unique preference for stimuli of 20-30 ms duration that selects for conspecifics and deblurs moving images with response transients. White-noise analysis substantially underestimates these improvements. We conclude that in the lovespot, both optics and phototransduction are specialised to enhance and deblur the neural images of moving targets, and propose that analogous mechanisms may sharpen the neural image still further as it is transferred to visual interneurones.

  2. Two cases of bilateral amiodarone-associated optic neuropathy.

    PubMed

    Chassang, B; Bonnin, N; Moisset, X; Citron, B; Clavelou, P; Chiambaretta, F

    2014-03-01

    The widespread use of amiodarone is limited by its toxicity, notably to the optic nerve. We report two cases of bilateral optic nerve neuropathy due to amiodarone, and provide a detailed description of the disease. The first case was a 59-year-old man complaining from insidious monocular loss of vision within ten months of initiating amiodarone. Funduscopy and optical coherence tomography showed bilateral optic disc edema. The second case was a 72-year-old man presenting with a decrease in visual acuity in his left eye for a month. Funduscopy showed a left optic nerve edema, and fluorescein angiography showed bilateral papillitis. In both cases, the clinical presentation was not suggestive of ischemic neuropathy, because of the preservation of visual acuity and the insidious onset. In addition, both cardiovascular and inflammatory work-up were normal. An amiodarone-associated neuropathy was suspected, and amiodarone was discontinued with the approval of the cardiologist, with complete regression of the papilledema and a stabilization of visual symptoms. Differentiating between amiodarone-associated optic neuropathy and anterior ischemic optic neuropathy may be complicated by the cardiovascular background of such patients. The major criterion is the absence of a severe decrease in visual acuity; other criteria are the normality of cardiovascular and inflammatory work-up, and the improvement or the absence of worsening of symptoms after discontinuation of amiodarone. Amiodarone-associated neuropathy remains a diagnosis of exclusion, and requires amiodarone discontinuation, which can only be done with the approval of a cardiologist, and sometimes requires replacement therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Optical functional performance of the osteo-odonto-keratoprosthesis.

    PubMed

    Lee, Richard M H; Ong, Gek L; Lam, Fook Chang; White, Joy; Crook, David; Liu, Christopher S C; Hull, Chris C

    2014-10-01

    The aim of this study was to evaluate optical and visual functional performance of the osteo-odonto-keratoprosthesis (OOKP). Optical design and analysis was performed with customized optical design software. Nine patients with implanted OOKP devices and 9 age-matched control patients were assessed. Contrast sensitivity was assessed and glare effect was measured with a brightness acuity test. All OOKP patients underwent kinetic Goldmann perimetry and wavefront aberrometry and completed the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Optical analysis showed that the optical cylinder is near diffraction-limited. A reduction in median visual acuity (VA) with increasing glare settings was observed from 0.04 logMAR (without glare) to 0.20 logMAR (with glare at "high" setting) and significantly reduced statistically when compared with the control group at all levels of glare (P < 0.05). Contrast sensitivity was significantly reduced when compared with age-matched controls at medium and high spatial frequencies (P < 0.05). Median Goldmann perimetry was 65 degrees (interquartile range, 64-74 degrees; V-4e isopters) and 69 degrees excluding 2 glaucomatous subjects. Several vision-related NEI VFQ-25 subscales correlated significantly with VA at various brightness acuity test levels and contrast sensitivity at medium spatial frequencies, including dependency, general vision, near activities and distance activities. The OOKP optical cylinder provides patients with a good level of VA that is significantly reduced by glare. We have shown in vivo that updates to the optical cylinder design have improved the patient's field of view. Reduction of glare and refinement of cylinder alignment methods may further improve visual function and patient satisfaction.

  4. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    NASA Astrophysics Data System (ADS)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  5. Self-visualization of transparent microscopic objects in optical glasses under the conditions of the thermal self-action of an illuminating laser beam

    NASA Astrophysics Data System (ADS)

    Bubis, E. L.; Palashov, O. V.; Kuz'min, I. V.; Snetkov, I. L.; Gusev, S. A.

    2017-03-01

    We demonstrate the process of adaptive self-visualization of small-scale transparent objects and structures in weakly absorbing optical glasses (a glass plate made of K8 and an NS-1 neutral density filter) placed in the Fourier plane of the optical system under the conditions of thermal self-action of the illuminating laser beam. The process is based on the ideology of the classical Zernike phase contrast method. The process is implemented at the level of power of radiation of the illuminated object varying from several milliwatts to tens of watts in the visible and IR spectral ranges. The conducted experiments indicate that the visualization takes place in all glasses and optical elements fabricated from them at an appropriate level of the radiation power.

  6. Validation of an automated tractography method for the optic radiations as a biomarker of visual acuity in neurofibromatosis-associated optic pathway glioma.

    PubMed

    de Blank, Peter; Fisher, Michael J; Gittleman, Haley; Barnholtz-Sloan, Jill S; Badve, Chaitra; Berman, Jeffrey I

    2018-01-01

    Fractional anisotropy (FA) of the optic radiations has been associated with vision deficit in multiple intrinsic brain pathologies including NF1 associated optic pathway glioma, but hand-drawn regions of interest used in previous tractography methods limit consistency of this potential biomarker. We created an automated method to identify white matter tracts in the optic radiations and compared this method to previously reported hand-drawn tractography. Automated tractography of the optic radiation using probabilistic streamline fiber tracking between the lateral geniculate nucleus of the thalamus and the occipital cortex was compared to the hand-drawn method between regions of interest posterior to Meyer's loop and anterior to tract branching near the calcarine cortex. Reliability was assessed by two independent raters in a sample of 20 healthy child controls. Among 50 children with NF1-associated optic pathway glioma, the association of FA and visual acuity deficit was compared for both tractography methods. Hand-drawn tractography methods required 2.6±0.9min/participant; automated methods were performed in <1min of operator time for all participants. Cronbach's alpha was 0.83 between two independent raters for FA in hand-drawn tractography, but repeated automated tractography resulted in identical FA values (Cronbach's alpha=1). On univariate and multivariate analyses, FA was similarly associated with visual acuity loss using both methods. Receiver operator characteristic curves of both multivariate models demonstrated that both automated and hand-drawn tractography methods were equally able to distinguish normal from abnormal visual acuity. Automated tractography of the optic radiations offers a fast, reliable and consistent method of tract identification that is not reliant on operator time or expertise. This method of tract identification may be useful as DTI is developed as a potential biomarker for visual acuity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Eccentric correction for off-axis vision in central visual field loss.

    PubMed

    Gustafsson, Jörgen; Unsbo, Peter

    2003-07-01

    Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.

  8. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    PubMed

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  9. Efficacy for Sustained Use of Topical Dorzolamide Therapy for Cystic Macular Lesions in Patients with Retinitis Pigmentosa and Usher Syndrome

    PubMed Central

    Genead, Mohamed A.; Fishman, Gerald A.

    2013-01-01

    Objectives To determine the efficacy for sustained use of topical therapy with dorzolamide hydrochloride 2% on visual acuity and cystic macular lesions in retinitis pigmentosa (RP) and Usher (USH) syndrome patients. Design Retrospective case series. Setting University hospital. Patients Sixty-four eyes of 32 patients with RP or USH syndrome who received treatment with topical dorzolamide formulation for a duration ranging from 6–58 months were enrolled. Main Outcome Measures Changes in visual acuity (ETDRS) and central foveal zone thickness on optical coherence tomography during follow-up for the duration of treatment. Results Among the study cohort, a positive response occurred in 20 of 32 patients (63%) in at least one eye and in 13 patients (41%) in both eyes. Four patients (20%) showed an initial response and a subsequent rebound of macular cysts. In 8 patients (25%) there was no response to treatment and the macular cysts worsened when compared with the pretreatment level. Ten patients (31%) had improvement in visual acuity by ≥7 letters in at least one eye at the most recent follow-up visit. Sixteen patients (67%) showed a reduction of >11% in the central foveal zone thickness in at least one eye when compared with the pretreatment level. Conclusion Treatment of cystoid macular edema with topical dorzolamide in patients with either RP or USH syndrome and followed by an OCT-guided strategy showed a decrease in central foveal zone thickness in the majority of cases. Visual acuity improved in almost 1/3 of the cases, suggesting a potential corresponding visual benefit. PMID:20837798

  10. Optic nerve lesion following neuroborreliosis: a case report.

    PubMed

    Burkhard, C; Gleichmann, M; Wilhelm, H

    2001-01-01

    Neuroborreliosis may cause various neuro-ophthalmological complications. We describe a case with a bilateral optic neuropathy. A 58-year-old female developed facial paresis six weeks after an insect bite. One week later she developed bilateral optic disc swelling with haemorrhages and nerve fibre bundle defects in the lower visual field of the left eye. In CSF and serum, raised IgM and IgG titres to Borrelia burgdorferi were found. Systemic antibiotic treatment led to improvement of the vision and facial paresis, but not all visual field defects resolved, probably due to ischemic lesions of the optic disc. In optic nerve lesions due to neuroborreliosis it is difficult to distinguish between inflammatory and ischemic lesions. This patient demonstrated features of an ischemic optic nerve lesion.

  11. Matching optical flow to motor speed in virtual reality while running on a treadmill

    PubMed Central

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  12. Matching optical flow to motor speed in virtual reality while running on a treadmill.

    PubMed

    Caramenti, Martina; Lafortuna, Claudio L; Mugellini, Elena; Abou Khaled, Omar; Bresciani, Jean-Pierre; Dubois, Amandine

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed-i.e., treadmill's speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care.

  13. The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains

    PubMed Central

    2017-01-01

    Nocturnal insects have evolved remarkable visual capacities, despite small eyes and tiny brains. They can see colour, control flight and land, react to faint movements in their environment, navigate using dim celestial cues and find their way home after a long and tortuous foraging trip using learned visual landmarks. These impressive visual abilities occur at light levels when only a trickle of photons are being absorbed by each photoreceptor, begging the question of how the visual system nonetheless generates the reliable signals needed to steer behaviour. In this review, I attempt to provide an answer to this question. Part of the answer lies in their compound eyes, which maximize light capture. Part lies in the slow responses and high gains of their photoreceptors, which improve the reliability of visual signals. And a very large part lies in the spatial and temporal summation of these signals in the optic lobe, a strategy that substantially enhances contrast sensitivity in dim light and allows nocturnal insects to see a brighter world, albeit a slower and coarser one. What is abundantly clear, however, is that during their evolution insects have overcome several serious potential visual limitations, endowing them with truly extraordinary night vision. This article is part of the themed issue ‘Vision in dim light’. PMID:28193808

  14. Simulation and visualization of fundamental optics phenomenon by LabVIEW

    NASA Astrophysics Data System (ADS)

    Lyu, Bohan

    2017-08-01

    Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.

  15. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.

    PubMed

    Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G

    2016-12-01

    Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.

  16. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    PubMed

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  17. Auditory and visual health after ten years of exposure to metal-on-metal hip prostheses: a cross-sectional study follow up.

    PubMed

    Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark

    2014-01-01

    Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.

  18. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    PubMed

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Optic neuropathy following an altitude exposure.

    PubMed

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case.

  20. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.

    PubMed

    Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

    2018-06-01

    Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

  1. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle

    NASA Astrophysics Data System (ADS)

    Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

    2018-06-01

    Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

  2. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  3. The schemes and methods for producing of the visual security features used in the color hologram stereography

    NASA Astrophysics Data System (ADS)

    Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.

    2017-05-01

    Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.

  4. Teaching Optics to Blind Pupils

    ERIC Educational Resources Information Center

    Azevedo, A. C.; Santos, A. C. F.

    2014-01-01

    We focus on the difficulties that visually impaired students have when dealing with graphics and diagrams in their study of geometrical optics. This case study suggests practices that use low cost materials, easy to find and to handle, and that provide a tactile perception for visually impaired students. The activities employ light and easy to…

  5. Temporary Blinding Limits versus Maximum Permissible Exposure - A Paradigm Change in Risk Assessment for Visible Optical Radiation

    NASA Astrophysics Data System (ADS)

    Reidenbach, Hans-Dieter

    Safety considerations in the field of laser radiation have traditionally been restricted to maximum permissible exposure levels defined as a function of wavelength and exposure duration. But in Europe according to the European Directive 2006/25/EC on artificial optical radiation the employer has to include in his risk assessment indirect effects from temporary blinding. Whereas sufficient knowledge on various deterministic risks exists, only sparse quantitative data is available for the impairment of visual functions due to temporary blinding from visible optical radiation. The consideration of indirect effects corresponds to a paradigm change in risk assessment when situations have to be treated, where intrabeam viewing of low-power laser radiation is likely or other non-coherent visible radiation might influence certain visual tasks. In order to obtain a sufficient basis for the assessment of certain situations, investigations of the functional relationships between wavelength, exposure time and optical power and the resulting interference on visual functions have been performed and the results are reported. The duration of a visual disturbance is thus predictable. In addition, preliminary information on protective measures is given.

  6. Longitudinal changes in the visual field and optic disc in glaucoma.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C

    2005-05-01

    The nature and mode of functional and structural progression in open-angle glaucoma is a subject of considerable debate in the literature. While there is a traditionally held viewpoint that optic disc and/or nerve fibre layer changes precede visual field changes, there is surprisingly little published evidence from well-controlled prospective studies in this area, specifically with modern perimetric and imaging techniques. In this paper, we report on clinical data from both glaucoma patients and normal controls collected prospectively over several years, to address the relationship between visual field and optic disc changes in glaucoma using standard automated perimetry (SAP), high-pass resolution perimetry (HRP) and confocal scanning laser tomography (CSLT). We use several methods of analysis of longitudinal data and describe a new technique called "evidence of change" analysis which facilitates comparison between different tests. We demonstrate that current clinical indicators of visual function (SAP and HRP) and measures of optic disc structure (CSLT) provide largely independent measures of progression. We discuss the reasons for these findings as well as several methodological issues that pose challenges to elucidating the true structure-function relationship in glaucoma.

  7. Effects of 30-Day Head-Down Bed Rest on Ocular Structures and Visual Function in a Healthy Subject

    PubMed Central

    Taibbi, Giovanni; Kaplowitz, Kevin; Cromwell, Ronita L.; Godley, Bernard F.; Zanello, Susana B.; Vizzeri, Gianmarco

    2013-01-01

    Introduction We report ocular changes occurring in a healthy human subject enrolled in a bed rest (BR) study designed to replicate the effects of a low-gravity environment. Case report A 25-year-old Caucasian male spent 30 consecutive days in a 6° head-down-tilt position at the NASA Flight Analogs Research Unit. Comprehensive ophthalmologic exams, optic disc stereo-photography, Standard Automated Perimetry (SAP) and optic disc Spectralis OCT scans were performed at baseline, immediately post-BR (BR+0) and 6 months post-BR. Main outcome measures: changes in best-corrected visual acuity, intraocular pressure (IOP), cycloplegic refraction, SAP and Spectralis OCT measures. At BR+0 IOP was 11 and 10 mmHg in the right (OD) and left eye (OS), respectively (a bilateral 4 mmHg decrease compared to baseline); SAP documented a possible bilateral symmetrical inferior scotoma; Spectralis OCT showed an average 19.4 μm (+5.2%) increase in peripapillary retinal thickness, and an average 0.03 mm3 (+5.0%) increase in peripapillary retinal volume bilaterally. However, there were no clinically detectable signs of optic disc edema. 6 months post-BR, IOP was 13 and 14 mmHg in OD and OS, respectively, and the scotoma had resolved. Spectralis OCT measurements matched the ones recorded at baseline. Discussion In this subject, a reduction in IOP associated with subtle structural and functional changes compared to baseline were documented after prolonged head-down BR. These changes may be related to cephalad fluid shifts in response to tilt. Further studies should clarify whether decreased translaminar pressure (i.e., the difference between IOP and intracranial pressure) may be responsible for these findings. PMID:23447853

  8. Do you see what I see? Optical morphology and visual capability of ‘disco’ clams (Ctenoides ales)

    PubMed Central

    Dubielzig, Richard R.; Schobert, Charles S.; Teixeira, Leandro B.; Li, Jingchun

    2017-01-01

    ABSTRACT The ‘disco’ clam Ctenoides ales (Finlay, 1927) is a marine bivalve that has a unique, vivid flashing display that is a result of light scattering by silica nanospheres and rapid mantle movement. The eyes of C. ales were examined to determine their visual capabilities and whether the clams can see the flashing of conspecifics. Similar to the congener C. scaber, C. ales exhibits an off-response (shadow reflex) and an on-response (light reflex). In field observations, a shadow caused a significant increase in flash rate from a mean of 3.9 Hz to 4.7 Hz (P=0.0016). In laboratory trials, a looming stimulus, which increased light intensity, caused a significant increase in flash rate from a median of 1.8 Hz to 2.2 Hz (P=0.0001). Morphological analysis of the eyes of C. ales revealed coarsely-packed photoreceptors lacking sophisticated structure, resulting in visual resolution that is likely too low to detect the flashing of conspecifics. As the eyes of C. ales are incapable of perceiving conspecific flashing, it is likely that their vision is instead used to detect predators. PMID:28396488

  9. Severe optic neuritis in infectious mononucleosis.

    PubMed

    Jones, J; Gardner, W; Newman, T

    1988-04-01

    Because the presentation and clinical features of infectious mononucleosis can be misleading in the elderly, a significant number of infections may go unrecognized. We report an unusual case of infectious mononucleosis in a 61-year-old man in whom marked visual impairment was the presenting complaint and severe optic neuritis was the only prominent finding. Confirmation of the diagnosis was made by serologic testing for Epstein-Barr virus antibody. Recovery of visual function was near complete, but optic atrophy persisted. We reviewed the English literature and collected seven cases of well-documented optic neuritis associated with infectious mononucleosis. A clinical profile of parainfectious optic neuritis is discussed along with the likely pathogenesis for this complication.

  10. Infectious optic neuropathies: a clinical update

    PubMed Central

    Kahloun, Rim; Abroug, Nesrine; Ksiaa, Imen; Mahmoud, Anis; Zeghidi, Hatem; Zaouali, Sonia; Khairallah, Moncef

    2015-01-01

    Different forms of optic neuropathy causing visual impairment of varying severity have been reported in association with a wide variety of infectious agents. Proper clinical diagnosis of any of these infectious conditions is based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular findings. Diagnosis is confirmed by serologic testing and polymerase chain reaction in selected cases. Treatment of infectious optic neuropathies involves the use of specific anti-infectious drugs and corticosteroids to suppress the associated inflammatory reaction. The visual prognosis is generally good, but persistent severe vision loss with optic atrophy can occur. This review presents optic neuropathies caused by specific viral, bacterial, parasitic, and fungal diseases. PMID:28539795

  11. Adaptive Optics for the Human Eye

    NASA Astrophysics Data System (ADS)

    Williams, D. R.

    2000-05-01

    Adaptive optics can extend not only the resolution of ground-based telescopes, but also the human eye. Both static and dynamic aberrations in the cornea and lens of the normal eye limit its optical quality. Though it is possible to correct defocus and astigmatism with spectacle lenses, higher order aberrations remain. These aberrations blur vision and prevent us from seeing at the fundamental limits set by the retina and brain. They also limit the resolution of cameras to image the living retina, cameras that are a critical for the diagnosis and treatment of retinal disease. I will describe an adaptive optics system that measures the wave aberration of the eye in real time and compensates for it with a deformable mirror, endowing the human eye with unprecedented optical quality. This instrument provides fresh insight into the ultimate limits on human visual acuity, reveals for the first time images of the retinal cone mosaic responsible for color vision, and points the way to contact lenses and laser surgical methods that could enhance vision beyond what is currently possible today. Supported by the NSF Science and Technology Center for Adaptive Optics, the National Eye Institute, and Bausch and Lomb, Inc.

  12. Bilateral vision loss in a captive cheetah (Acinonyx jubatus).

    PubMed

    Walser-Reinhardt, Ladina; Wernick, Morena B; Hatt, Jean-Michel; Spiess, Bernhard M

    2010-09-01

    The following case report describes a 1-year-old female cheetah (Acinonyx jubatus) with bilateral blindness and unresponsive pupils. For comparison, a second healthy 2.5-year-old male cheetah without visual deficits was also examined. Clinical examination of both animals included biomicroscopy, indirect ophthalmoscopy, tonometry, and electroretinography. The young female cheetah showed no menace response, no direct or indirect pupillary light reflex, and no dazzle reflex in either eye. Fundus lesions, as detected by indirect ophthalmoscopy, are described for the female animal. In both eyes, the fundus color was green/turquoise/yellow with multiple hyperpigmented linear lesions in the tapetal area around the optic nerve. The optic nerve head was dark gray and about half the normal size suggesting bilateral optic nerve hypoplasia and retinal dysplasia or differentially optic nerve atrophy and chorioretinal scarring. The ERG had low amplitudes in the right eye but appeared normal in the left eye compared with the male cheetah. Blood levels did not suggest current taurine deficiency. This is addressed to some degree in the discussion. Bilateral optic nerve hypoplasia or optic nerve atrophy is a rare anomaly in cats and has not yet been described in a cheetah.

  13. Optical approach to the salivary pellicle

    NASA Astrophysics Data System (ADS)

    Baek, Jae Ho; Krasieva, Tatiana; Tang, Shuo; Ahn, Yehchan; Kim, Chang Soo; Vu, Diana; Chen, Zhongping; Wilder-Smith, Petra

    2009-07-01

    The salivary pellicle plays an important role in oral physiology, yet noninvasive in situ characterization and mapping of this layer remains elusive. The goal of this study is to develop an optical approach for the real-time, noninvasive mapping and characterization of salivary pellicles using optical coherence tomography (OCT) and optical coherence microscopy (OCM). The long-term goals are to improve diagnostic capabilities in the oral cavity, gain a better understanding of physiological and pathological processes related to the oral hard tissues, and monitor treatment responses. A salivary pellicle is incubated on small enamel cubes using human whole saliva. OCT and OCM imaging occurs at 0, 10, 30, 60 min, and 24 h. For some imaging, spherical gold nanoparticles (15 nm) are added to determine whether this would increase the optical signal from the pellicle. Multiphoton microscopy (MPM) provides the baseline information. In the saliva-incubated samples, a surface signal from the developing pellicle is visible in OCT images. Pellicle ``islands'' form, which increase in complexity over time until they merge to form a continuous layer over the enamel surface. Noninvasive, in situ time-based pellicle formation on the enamel surface is visualized and characterized using optical imaging.

  14. Age-related macular degeneration: using morphological predictors to modify current treatment protocols.

    PubMed

    Ashraf, Mohammed; Souka, Ahmed; Adelman, Ron A

    2018-03-01

    To assess predictors of treatment response in neovascular age-related macular degeneration (AMD) in an attempt to develop a patient-centric treatment algorithm. We conducted a systematic search using PubMed, EMBASE and Web of Science for prognostic indicators/predictive factors with the key words: 'age related macular degeneration', 'neovascular AMD', 'choroidal neovascular membrane (CNV)', 'anti-vascular endothelial growth factor (anti-VEGF)', 'aflibercept', 'ranibizumab', 'bevacizumab', 'randomized clinical trials', 'post-hoc', 'prognostic', 'predictive', 'response' 'injection frequency, 'treat and extend (TAE), 'pro re nata (PRN)', 'bi-monthly' and 'quarterly'. We only included studies that had an adequate period of follow-up (>1 year), a single predefined treatment regimen with a predetermined re-injection criteria, an adequate number of patients, specific morphological [optical coherence tomography (OCT)] criteria that predicted final visual outcomes and injection frequency and did not include switching from one drug to the other. We were able to identify seven prospective studies and 16 retrospective studies meeting our inclusion criteria. There are several morphological and demographic prognostic indicators that can predict response to therapy in wet AMD. Smaller CNV size, subretinal fluid (SRF), retinal angiomatous proliferation (RAP) and response to therapy at 12 weeks (visual, angiographic or OCT) can all predict good visual outcomes in patients receiving anti-VEGF therapy. Patients with larger CNV, older age, pigment epithelial detachment (PED), intraretinal cysts (IRC) and vitreomacular adhesion (VMA) achieved less visual gains. Patients having VMA/VMT required more intensive treatment with increased treatment frequency. Patients with both posterior vitreous detachment (PVD) and SRF require infrequent injections. Patients with PED are prone to recurrences of fluid activity with a reduction in visual acuity (VA). A regimen that involves less intensive therapy and extended follow-up intervals (4 weekly) can be suggested for patients who show adequate visual response and have both SRF and PVD at baseline. In addition, patients with poor prognostic indicators such as IRC, VMA, large CNV size, older age and poor response at 12 weeks should be extended very cautiously with the possibility of fixed monthly/bimonthly (every 2 months) treatments if they fail to achieve dryness. Patients with PED at baseline should receive monthly/bimonthly injections of anti-VEGF therapy or can be extended very cautiously (two weekly intervals) using a TAE protocol. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Light curve of the optical counterpart of 2A0311-227

    NASA Technical Reports Server (NTRS)

    Williams, G.; Hiltner, W. A.

    1980-01-01

    Visual and blue light curves are presented for the optical counterpart of the X-ray source 2A0311-227. This system, which is the newest member of the AM Herculis class of binaries, has an orbital period of 81 minutes which also modulates the visual light curve. A Fourier analysis of the data has revealed the presence of a 6-minute oscillation, at least in the visual light curve. Whether or not it is also present in the blue light curve is unclear.

  16. Estimates of underwater and aerial visual acuity in the European beaver Castor fiber L. based on morphological data.

    PubMed

    Mass, A M; Supin, A Ya

    2017-03-01

    The eye optics and topographic distribution of ganglion cells were studied using whole mount preparations from European beaver Castor fiber L. The beaver eye optics provides emmetropia in air and hypermetropia in water. The optometrical measurements predict retinal resolution of the beaver eye around 17' in air and 9' in water. In air, retinal resolution corresponds to the real visual acuity, whereas in water, visual acuity is below the retinal resolution because of the non-precise focusing.

  17. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  18. Optical devices in highly myopic eyes with low vision: a prospective study.

    PubMed

    Scassa, C; Cupo, G; Bruno, M; Iervolino, R; Capozzi, S; Tempesta, C; Giusti, C

    2012-01-01

    To compare, in relation to the cause of visual impairment, the possibility of rehabilitation, the corrective systems already in use and the finally prescribed optical devices in highly myopic patients with low vision. Some considerations about the rehabilitation of these subjects, especially in relation to their different pathologies, have also been made. 25 highly myopic subjects were enrolled. We evaluated both visual acuity and retinal sensitivity by Scanning Laser Ophthalmoscope (SLO) microperimetry. 20 patients (80%) were rehabilitated by means of monocular optical devices while five patients (20%) were rehabilitated binocularly. We found a good correlation between visual acuity and retinal sensitivity only when the macular pathology did not induce large areas of chorioretinal atrophy that cause lack of stabilization of the preferential retinal locus. In fact, the best results in reading and performing daily visual tasks were obtained by maximizing the residual vision in patients with retinal sensitivity greater than 10 dB. A well circumscribed area of absolute scotoma with a defined new retinal fixation locus could be considered as a positive predictive factor for the final rehabilitation process. A more careful evaluation of visual acuity, retinal sensitivity and preferential fixation locus is necessary in order to prescribe the best optical devices to patients with low vision, thus reducing the impact of the disability on their daily life.

  19. Optical needs of students with low vision in integrated schools of Nepal.

    PubMed

    Gnyawali, Subodh; Shrestha, Jyoti Baba; Bhattarai, Dipesh; Upadhyay, Madan

    2012-12-01

    To identify the optical needs of students with low vision studying in the integrated schools for the blind in Nepal. A total of 779 blind and vision-impaired students studying in 67 integrated schools for the blind across Nepal were examined using the World Health Organization/Prevention of Blindness Eye Examination Record for Children with Blindness and Low Vision. Glasses and low-vision devices were provided to the students with low vision who showed improvement in visual acuity up to a level that was considered sufficient for classroom learning. Follow-up on the use and maintenance of device provided was done after a year. Almost 78% of students studying in the integrated schools for the blind were not actually blind; they had low vision. Five students were found to be wrongly enrolled. Avoidable causes of blindness were responsible for 41% of all blindness. Among 224 students who had visual acuity 1/60 or better, distance vision could be improved in 18.7% whereas near vision could be improved in 41.1% students. Optical intervention provided improved vision in 48.2% of students who were learning braille. Only 34.8% students were found to be using the devices regularly after assessment 1 year later; the most common causes for nonuse were damage or misplacement of the device. A high proportion of students with low vision in integrated schools could benefit from optical intervention. A system of comprehensive eye examination at the time of school enrollment would allow students with low vision to use their available vision to the fullest, encourage print reading over braille, ensure appropriate placement, and promote timely adoption and proper usage of optical device.

  20. DETECTION OF TYPE 1 CHOROIDAL NEOVASCULAR MEMBRANES USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN TUBERCULAR POSTERIOR UVEITIS.

    PubMed

    Aggarwal, Kanika; Agarwal, Aniruddha; Sharma, Aman; Sharma, Kusum; Gupta, Vishali

    2018-04-23

    To study optical coherence tomography angiography (OCTA) and multimodal imaging features of Type 1 inflammatory choroidal neovascularization (CNV) in tubercular serpiginous-like choroiditis and response to anti-vascular endothelial growth factor therapy. In this study, multimodal imaging was performed using OCTA, enhanced-depth imaging optical coherence tomography, fluorescein angiography, and indocyanine green angiography. Correlation of OCTA with other imaging modalities in the detection of CNV was performed. The changes in CNV configuration after anti-vascular endothelial growth factor therapy were assessed. In this study, nine eyes (8 patients; 5 females; mean age: 32.5 ± 11.57 years) with diagnosis of tubercular serpiginous-like choroiditis were included. All the eyes had presence of low-lying pigment epithelial detachments on enhanced-depth imaging optical coherence tomography. Using OCTA, it was possible to detect Type 1 CNV in all eyes. Type 1 CNV networks comprised fine anastomotic network of vessels, some of which had a hairpin loop configuration. After anti-vascular endothelial growth factor therapy, there was a decrease in branching and anastomosis. The visual acuity significantly improved from 0.49 ± 0.26 (20/60 Snellen equivalent) at baseline to 0.26 ± 0.17 (20/36 Snellen equivalent) (P = 0.03) in all eyes. Type 1 CNV can occur among patients with tubercular serpiginous-like choroiditis, leading to significant visual loss even in the healed stages of the disease. Optical coherence tomography angiography can help in the detection of Type 1 CNV where conventional multimodal imaging, including fluorescein angiography and OCT, fails to make a definitive diagnosis and thereby guide the initiation of anti-vascular endothelial growth factor therapy.

  1. SOURCES OF BINOCULAR SUPRATHRESHOLD VISUAL FIELD LOSS IN A COHORT OF OLDER WOMEN BEING FOLLOWED FOR RISK OF FALLS (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Coleman, Anne Louise

    2007-01-01

    Purpose To determine the sources of binocular visual field loss most strongly associated with falls in a cohort of older women. Methods In the Study of Osteoporotic Fractures, women with severe binocular visual field loss had an increased risk of two or more falls during the 12 months following the eye examination. The lens and fundus photographs of the 422 women with severe binocular visual field loss, plus a random sample of 141 white women with no, mild, or moderate binocular visual field loss—47 white women with no binocular visual field loss, 46 white women with mild binocular visual field loss, and 48 white women with moderate binocular visual field loss —were evaluated for lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, and diabetic retinopathy. Results Eighty-four percent of the women with severe binocular visual field loss had ocular disease in one or both eyes. Bilateral cataracts and glaucomatous optic nerve damage were the most common sources of this severe binocular visual field loss. Approximately 15.2% of women had no evidence of lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, or diabetic retinopathy. Conclusion Severe binocular visual field loss due primarily to cataracts, glaucoma, and age-related macular degeneration explains 33.3% of the falls among women who fell frequently. Because binocular visual field loss may be treatable and/or preventable, screening programs for binocular visual field loss and subsequent referral for intervention and treatment are recommended as a strategy for preventing falls among the elderly. PMID:18427619

  2. Chronic optic disc swelling overlooked in a diabetic patient with a devastating outcome

    PubMed Central

    Braithwaite, Tasanee; Plant, Gordon T

    2010-01-01

    We present a case of asymmetrical but bilateral, progressive, painless visual deterioration over 5 years to no perception of light, in a 61-year-old male diabetic patient referred for a second opinion. The patient had a chronic history of bilateral diabetic maculopathy and unexplained swelling of the optic discs. He was diagnosed with optic atrophy secondary to pseudotumour cerebri (termed idiopathic intracranial hypertension when underlying causes have been excluded), which was associated with obstructive sleep apnoea. The case highlights the critical importance of identifying and investigating chronic papilloedema for reversible causes; the sometimes subtle presentation of pseudotumour cerebri; and the vital role of visual field testing and diagnostic lumbar puncture for timely diagnosis. It also reminds us that chronic bilateral optic disc swelling is not a normal feature of diabetic eye disease, and that alarm bells should sound if reduced visual acuity seems disproportionate to the degree of maculopathy. PMID:22442651

  3. Anterior ischemic optic neuropathy in a patient with Churg-Strauss syndrome.

    PubMed

    Lee, Ji Eun; Lee, Seung Uk; Kim, Soo Young; Jang, Tae Won; Lee, Sang Joon

    2012-12-01

    We describe a patient with Churg-Strauss syndrome who developed unilateral anterior ischemic optic neuropathy. A 54-year-old man with a history of bronchial asthma, allergic rhinitis, and sinusitis presented with sudden decreased visual acuity in his right eye that had begun 2 weeks previously. The visual acuity of his right eye was 20 / 50. Ophthalmoscopic examination revealed a diffusely swollen right optic disc and splinter hemorrhages at its margin. Goldmann perimetry showed central scotomas in the right eye and fluorescein angiography showed remarkable hyperfluorescence of the right optic nerve head. Marked peripheral eosinphilia, extravascular eosinophils in a bronchial biopsy specimen, and an increased sedimentation rate supported the diagnosis of Churg-Strauss syndrome. Therapy with methylprednisolone corrected the laboratory abnormalities, improved clinical features, and preserved vision, except for the right central visual field defect. Early recognition of this systemic disease by ophthalmologists may help in preventing severe ocular complications.

  4. Anterior Ischemic Optic Neuropathy in a Patient with Churg-Strauss Syndrome

    PubMed Central

    Lee, Ji Eun; Lee, Seung Uk; Kim, Soo Young; Jang, Tae Won

    2012-01-01

    We describe a patient with Churg-Strauss syndrome who developed unilateral anterior ischemic optic neuropathy. A 54-year-old man with a history of bronchial asthma, allergic rhinitis, and sinusitis presented with sudden decreased visual acuity in his right eye that had begun 2 weeks previously. The visual acuity of his right eye was 20 / 50. Ophthalmoscopic examination revealed a diffusely swollen right optic disc and splinter hemorrhages at its margin. Goldmann perimetry showed central scotomas in the right eye and fluorescein angiography showed remarkable hyperfluorescence of the right optic nerve head. Marked peripheral eosinphilia, extravascular eosinophils in a bronchial biopsy specimen, and an increased sedimentation rate supported the diagnosis of Churg-Strauss syndrome. Therapy with methylprednisolone corrected the laboratory abnormalities, improved clinical features, and preserved vision, except for the right central visual field defect. Early recognition of this systemic disease by ophthalmologists may help in preventing severe ocular complications. PMID:23204805

  5. Anatomical evidence for the influence of degenerating pathways on regenerating optic fibers following surgical manipulations in the visual system of the goldfish.

    PubMed

    Lo, R Y; Levine, R L

    1981-04-06

    We have used [3H]proline radioautography to trace regenerating optic fibers in the goldfish following: (1) the removal of the right tectal lobe and the right eye, and (2) the removal of both tectal lobes. Our results indicate that following the removal of the right tectal lobe and the right eye, both the denervated tectal efferent pathways, and the denervated visual pathways and terminal zones of the enucleated eye were penetrated by the regenerating optic fibers. In addition, following bilateral lobectomy, the denervated tectal efferent pathways were bilaterally penetrated by the regenerating fibers. Since, in both types of operations, these denervated pathways and terminal zones should undergo degeneration, our results support the suggestion that the presence of degenerating axonal debris and proliferating glia may play an important role in guiding regenerating optic fibers in the visual system of the goldfish.

  6. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user’s guide to the dynamic morphology of the developing optic lobe

    PubMed Central

    Ngo, Kathy T.; Andrade, Ingrid; Hartenstein, Volker

    2018-01-01

    Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates. PMID:28533086

  7. Efficacy of sustained topical dorzolamide therapy for cystic macular lesions in patients with X-linked retinoschisis.

    PubMed

    Genead, Mohamed A; Fishman, Gerald A; Walia, Saloni

    2010-02-01

    To determine the efficacy of sustained topical therapy with dorzolamide hydrochloride, 2%, on visual acuity and cystic macular lesions in patients with juvenile X-linked retinoschisis (XLRS). Retrospective analysis. University hospital, tertiary care referral center. Twenty-nine eyes of 15 patients with XLRS receiving treatment with the topical dorzolamide formulation for 4 to 41 months were enrolled. Changes in visual acuity, cystic macular lesions, and central foveal zone thickness on optical coherence tomography during follow-up for the duration of treatment. Among the 15 patients with XLRS, 20 eyes (69%) of 11 patients showed a positive response to treatment. Five of the 20 eyes (25%) in 3 of the 11 patients showed an initial response and a subsequent rebound of macular cysts. In 4 eyes (14%) of 3 patients, there was no response to treatment, but the macular cysts did not worsen compared with the baseline level. In 5 additional eyes (17%) of 4 patients, there was no response to treatment, and the macular cysts worsened when compared with the baseline level. Sixteen eyes (55%) of 12 patients had improvement in best-corrected visual acuity by at least 7 letters in at least 1 eye at the most recent follow-up visit. Seventeen eyes (59%) of 10 patients showed a reduction in the central foveal zone thickness in at least 1 eye when compared with the pretreatment level. Patients with XLRS have the potential to experience a beneficial effect from sustained treatment with dorzolamide, 2%.

  8. Retinitis and optic neuritis in a child with chickenpox: case report and review of literature.

    PubMed

    Tappeiner, Christoph; Aebi, Christoph; Garweg, Justus G

    2010-12-01

    In immunocompetent individuals, necrotizing retinopathy is a rare complication of chickenpox. Herein, we report on a 3-year-old immunocompetent boy who developed retinitis and optic neuritis 3 days after the onset of chickenpox and compare the findings to published cases. Since macula and optic nerve were affected, visual acuity remained poor. An early diagnosis and treatment of ocular manifestations in chickenpox is imperative for the preservation of a residual visual function and prevention of blinding secondary complications.

  9. Arterial spin labeling fMRI measurements of decreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma.

    PubMed

    Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M

    2012-05-01

    Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging.

    PubMed

    Hilderbrand, Scott A; Kelly, Kimberly A; Niedre, Mark; Weissleder, Ralph

    2008-08-01

    Fluorogenic imaging agents emitting in the near-infrared are becoming important research tools for disease investigation in vivo. Often pathophysiological states such as cancer and cystic fibrosis are associated with disruptions in acid/base homeostasis. The development of optical sensors for pH imaging would facilitate the investigation of these diseased conditions. In this report, the design and synthesis of a ratiometric near-infrared emitting probe for pH quantification is detailed. The pH-responsive probe is prepared by covalent attachment of pH-sensitive and pH-insensitive fluorophores to a bacteriophage particle scaffold. The pH-responsive cyanine dye, HCyC-646, used to construct the probe, has a fluorogenic pKa of 6.2, which is optimized for visualization of acidic pH often associated with tumor hypoxia and other diseased states. Incorporation of pH-insensitive reference dyes enables the ratiometric determination of pH independent of the probe concentration. With the pH-responsive construct, measurement of intracellular pH and accurate determination of pH through optically diffuse biological tissue is demonstrated.

  11. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT

    PubMed Central

    Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2015-01-01

    Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747

  12. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  13. Caspases in retinal ganglion cell death and axon regeneration

    PubMed Central

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  14. On the response of alloyed ZnCdSeS quantum dot films

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Fountzoula, C.; Tseles, D.; Yannakopoulos, P.; Nikolopoulos, D.; Bakas, A.; Fountos, G.; Saatsakis, G.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G.

    The aim of this work was to prepare composite ZnCdSeS quantum dot (QD) flexible films and to examine their optical properties under ultraviolet excitation. PMMA/QD ZnCdSeS composite films, with emission covering the visual spectrum (480-630 nm) were prepared with concentrations 10 mg/mL and 20 mg/mL by homogenously diluting dry powder QD samples in toluene and subsequently mixing with a PMMA/MMA polymer solution to the final ZnCdSeS/Toluene mixture. Scanning electron microscopy (SEM) images of the produced films were obtained. The ZnCdSeS films were excited by ultraviolet light of varying intensities and the spectral matching with various optical detectors was estimated.

  15. A visual horizon affects steering responses during flight in fruit flies.

    PubMed

    Caballero, Jorge; Mazo, Chantell; Rodriguez-Pinto, Ivan; Theobald, Jamie C

    2015-09-01

    To navigate well through three-dimensional environments, animals must in some way gauge the distances to objects and features around them. Humans use a variety of visual cues to do this, but insects, with their small size and rigid eyes, are constrained to a more limited range of possible depth cues. For example, insects attend to relative image motion when they move, but cannot change the optical power of their eyes to estimate distance. On clear days, the horizon is one of the most salient visual features in nature, offering clues about orientation, altitude and, for humans, distance to objects. We set out to determine whether flying fruit flies treat moving features as farther off when they are near the horizon. Tethered flies respond strongly to moving images they perceive as close. We measured the strength of steering responses while independently varying the elevation of moving stimuli and the elevation of a virtual horizon. We found responses to vertical bars are increased by negative elevations of their bases relative to the horizon, closely correlated with the inverse of apparent distance. In other words, a bar that dips far below the horizon elicits a strong response, consistent with using the horizon as a depth cue. Wide-field motion also had an enhanced effect below the horizon, but this was only prevalent when flies were additionally motivated with hunger. These responses may help flies tune behaviors to nearby objects and features when they are too far off for motion parallax. © 2015. Published by The Company of Biologists Ltd.

  16. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2013-01-01

    To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex) was performed. Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05) than controls (4 had scores in the clinically significant range). Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively). There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic radiations of children with mild to moderate or no visual impairment raises questions as to the pathogenesis of these changes which will need to be addressed by future studies.

  17. Long-term results of repeated anti-vascular endothelial growth factor therapy in eyes with retinal pigment epithelial tears.

    PubMed

    Moreira, Carlos A; Arana, Luis A; Zago, Rommel J

    2013-02-01

    To evaluate the long-term results of retinal pigment epithelium tears in eyes treated with repeated anti-vascular endothelial growth factor (VEGF) therapy. Five patients with retinal pigment epithelial tears (without foveal center involvement) after anti-VEGF injection were studied retrospectively. Mean follow-up time was 52 months, with measurements of visual acuity and evaluation of macular findings by angiography and optical coherence tomography during this period. All eyes had a persistent submacular neovascular membrane 30 days after the tear. An anti-VEGF drug was reinjected until the membranes stopped leaking. The mean initial visual acuity immediately after the tear was 20/160, and the mean final visual acuity was 20/60. The number of anti-VEGF reinjections varied from two to eight during the follow-up period. Long-term optical coherence tomography analysis showed reduced fluid and remodeling of the torn retinal pigment epithelium. Long-term visual results with repeated anti-VEGF therapy are not as devastating as suggested previously. Visual acuity and metamorphopsia improve with time as long as the neovascular membrane is inactive. Optical coherence tomography changes in the macular area reflect the visual acuity improvement.

  18. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object

    PubMed Central

    Dokka, Kalpana; DeAngelis, Gregory C.

    2015-01-01

    Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214

  19. OVEREXPRESSION OF SERUM RESPONSE FACTOR IN ASTROCYTES IMPROVES NEURONAL PLASTICITY IN A MODEL OF EARLY ALCOHOL EXPOSURE

    PubMed Central

    PAUL, ARCO P.; MEDINA, ALEXANDRE E.

    2012-01-01

    Neuronal plasticity deficits underlie many of the cognitive problems seen in Fetal Alcohol Spectrum Disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF−) or control GFP. After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF− or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD. PMID:22742904

  20. Treatment of nonneovascular idiopathic macular telangiectasia type 2 with intravitreal ranibizumab: results of a phase II clinical trial.

    PubMed

    Toy, Brian C; Koo, Euna; Cukras, Catherine; Meyerle, Catherine B; Chew, Emily Y; Wong, Wai T

    2012-05-01

    To evaluate the safety and preliminary efficacy of intravitreal ranibizumab for nonneovascular idiopathic macular telangiectasia Type 2. Single-center, open-label Phase II clinical trial enrolling five participants with bilateral nonneovascular idiopathic macular telangiectasia Type 2. Intravitreal ranibizumab (0.5 mg) was administered every 4 weeks in the study eye for 12 months with the contralateral eye observed. Outcome measures included changes in best-corrected visual acuity, area of late-phase leakage on fluorescein angiography, and retinal thickness on optical coherence tomography. The study treatment was well tolerated and associated with few adverse events. Change in best-corrected visual acuity at 12 months was not significantly different between treated study eyes (0.0 ± 7.5 letters) and control fellow eyes (+2.2 ± 1.9 letters). However, decreases in the area of late-phase fluorescein angiography leakage (-33 ± 20% for study eyes, +1 ± 8% for fellow eyes) and in optical coherence tomography central subfield retinal thickness (-11.7 ± 7.0% for study eyes and -2.9 ± 3.5% for fellow eyes) were greater in study eyes compared with fellow eyes. Despite significant anatomical responses to treatment, functional improvement in visual acuity was not detected. Intravitreal ranibizumab administered monthly over a time course of 12 months is unlikely to provide a general and significant benefit to patients with nonneovascular idiopathic macular telangiectasia Type 2.

  1. EDITORIAL: Recent developments in biomedical optics

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Hebden, Jeremy C.; Tuchin, Valery V.

    2004-04-01

    The rapid growth in laser and photonic technology has resulted in new tools being proposed and developed for use in the medical and biological sciences. Specifically, a discipline known as biomedical optics has emerged which is providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. New laser sources, detectors and measurement techniques are yielding powerful new methods for the study of diseases on all scales, from single molecules, to specific tissues and whole organs. For example, novel laser microscopes permit spectroscopic and force measurements to be performed on single protein molecules; new optical devices provide information on molecular dynamics and structure to perform `optical biopsy' non-invasively and almost instantaneously; and optical coherence tomography and diffuse optical tomography allow visualization of specific tissues and organs. Using genetic promoters to derive luciferase expression, bioluminescence methods can generate molecular light switches, which serve as functional indicator lights reporting cellular conditions and responses in living animals. This technique could allow rapid assessment of and response to the effects of anti-tumour drugs, antibiotics, or antiviral drugs. This issue of Physics in Medicine and Biology highlights recent research in biomedical optics, and is based on invited contributions to the International Conference on Advanced Laser Technology (Focused on Biomedical Optics) held at Cranfield University at Silsoe on 19--23 September 2003. This meeting included sessions devoted to: diffuse optical imaging and spectroscopy; optical coherence tomography and coherent domain techniques; optical sensing and applications in life science; microscopic, spectroscopic and opto-acoustic imaging; therapeutic and diagnostic applications; and laser interaction with organic and inorganic materials. Twenty-one papers are included in this special issue. The first paper gives an overview on the current status of scanning laser ophthalmoscopy and its role in bioscience and medicine, while the second paper describes the current problems in tissue engineering and the potential role for optical coherence tomography. The following seven papers present and discuss latest developments in infrared spectroscopy and diffuse optical tomography for medical diagnostics. Eight further papers report recent advances in optical coherence tomography, covering new and evolving methods and instrumentation, theoretical and numerical modelling, and its clinical applications. The remaining papers cover miscellaneous topics in biomedical optics, including new developments in opto-acoustic imaging techniques, laser speckle imaging of blood flow in microcirculations, and potential of hollow-core photonic-crystal fibres for laser dentistry. We thank all the authors for their valuable contributions and their prompt responses to reviewers' comments. We are also very grateful to the reviewers for their hard work and their considerable efforts to meet tight deadlines.

  2. Optical Phonetics and Visual Perception of Lexical and Phrasal Stress in English

    ERIC Educational Resources Information Center

    Scarborough, Rebecca; Keating, Patricia; Mattys, Sven L.; Cho, Taehong; Alwan, Abeer

    2009-01-01

    In a study of optical cues to the visual perception of stress, three American English talkers spoke words that differed in lexical stress and sentences that differed in phrasal stress, while video and movements of the face were recorded. The production of stressed and unstressed syllables from these utterances was analyzed along many measures of…

  3. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    PubMed

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  4. Visually evoked changes in the rat retinal blood flow measured with Doppler optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka

    2017-02-01

    Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.

  5. An insect-inspired model for visual binding II: functional analysis and visual attention.

    PubMed

    Northcutt, Brandon D; Higgins, Charles M

    2017-04-01

    We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

  6. Blind source separation in retinal videos

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; Truitt, Paul W.; Pattichis, Marios S.; Tüso, Dan; Kwon, Young H.; Kardon, Randy H.; Soliz, Peter

    2003-05-01

    An optical imaging device of retina function (OID-RF) has been developed to measure changes in blood oxygen saturation due to neural activity resulting from visual stimulation of the photoreceptors in the human retina. The video data that are collected represent a mixture of the functional signal in response to the retinal activation and other signals from undetermined physiological activity. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1.0% of the total reflected intensity level which makes the functional signal difficult to detect by standard methods since it is masked by the other signals that are present. In this paper, we apply principal component analysis (PCA), blind source separation (BSS), using Extended Spatial Decorrelation (ESD) and independent component analysis (ICA) using the Fast-ICA algorithm to extract the functional signal from the retinal videos. The results revealed that the functional signal in a stimulated retina can be detected through the application of some of these techniques.

  7. Biocular image misalignment tolerance

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; van de Pol, Corina; Rowe, Terri L.; Lont, Lisa M.; Peterson, R. David

    2003-09-01

    Biocular helmet-mounted display (HMD) design flexibility and cost are directly related to image misalignment tolerance standards. Currently recommended tolerance levels are based on highly variable data from a number of studies. This paper presents progress of an ongoing study to evaluate optometric measures sensitive to misalignment in partial-overlap biocular optical systems like that proposed for the Comanche RAH-66 helicopter helmet integrated display sighting system (HIDSS). Horizontal divergent and relative vertical misalignments (offsets) of see-through biocular symbology viewed against a simulated daytime background were chosen for this study. Misalignments within and just beyond current tolerance recommendations were evaluated using pre, pre and post, and during measures of visual performance. Data were obtained from seven experimental and four control subjects. The diplopia responses from experimental and control subjects were essentially the same. However, accommodative facility showed a rate decrement following exposure to both types of misalignment. Horizontal heterophorias showed definite post-misalignment increases. Subject responses to questionnaires universally indicated increased adaptation to (ease with) visual tasks over the testing period.

  8. Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms

    PubMed Central

    Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe

    2017-01-01

    Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233

  9. Visual just noticeable differences

    NASA Astrophysics Data System (ADS)

    Nankivil, Derek; Chen, Minghan; Wooley, C. Benjamin

    2018-02-01

    A visual just noticeable difference (VJND) is the amount of change in either an image (e.g. a photographic print) or in vision (e.g. due to a change in refractive power of a vision correction device or visually coupled optical system) that is just noticeable when compared with the prior state. Numerous theoretical and clinical studies have been performed to determine the amount of change in various visual inputs (power, spherical aberration, astigmatism, etc.) that result in a just noticeable visual change. Each of these approaches, in defining a VJND, relies on the comparison of two visual stimuli. The first stimulus is the nominal or baseline state and the second is the perturbed state that results in a VJND. Using this commonality, we converted each result to the change in the area of the modulation transfer function (AMTF) to provide a more fundamental understanding of what results in a VJND. We performed an analysis of the wavefront criteria from basic optics, the image quality metrics, and clinical studies testing various visual inputs, showing that fractional changes in AMTF resulting in one VJND range from 0.025 to 0.075. In addition, cycloplegia appears to desensitize the human visual system so that a much larger change in the retinal image is required to give a VJND. This finding may be of great import for clinical vision tests. Finally, we present applications of the VJND model for the determination of threshold ocular aberrations and manufacturing tolerances of visually coupled optical systems.

  10. Numerical Modeling of Ocular Dysfunction in Space

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.

    2014-01-01

    Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.

  11. Tactile stimulation partially prevents neurodevelopmental changes in visual tract caused by early iron deficiency.

    PubMed

    Horiquini-Barbosa, Everton; Gibb, Robbin; Kolb, Bryan; Bray, Douglas; Lachat, Joao-Jose

    2017-02-15

    Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The optic nerve: A “mito-window” on mitochondrial neurodegeneration

    PubMed Central

    Maresca, Alessandra; la Morgia, Chiara; Caporali, Leonardo; Valentino, Maria Lucia; Carelli, Valerio

    2013-01-01

    Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled ‘Mitochondrial function and dysfunction in neurodegeneration’. PMID:22960139

  13. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception

    PubMed Central

    Liu, Sheng; Angelaki, Dora E.

    2009-01-01

    Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631

  14. Effect of visual field locus and oscillation frequencies on posture control in an ecological environment.

    PubMed

    Piponnier, Jean-Claude; Hanssens, Jean-Marie; Faubert, Jocelyn

    2009-01-14

    To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.

  15. [A rare cause of optic neuropathy: Cassava].

    PubMed

    Zeboulon, P; Vignal-Clermont, C; Baudouin, C; Labbé, A

    2016-06-01

    Cassava root is a staple food for almost 500 million people worldwide. Excessive consumption of it is a rare cause of optic neuropathy. Ten patients diagnosed with cassava root related optic neuropathy were included in this retrospective study. Diagnostic criteria were a bilateral optic neuropathy preceded by significant cassava root consumption. Differential diagnoses were excluded through a neuro-ophthalmic examination, blood tests and a brain MRI. All patients had visual field examination and OCT retinal nerve fiber layer (RNFL) analysis as well as an evaluation of their cassava consumption. All patients had a bilateral optic nerve head atrophy or pallor predominantly located into the temporal sector. Visual field defects consisted of a central or cecocentral scotoma for all patients. RNFL showed lower values only in the temporal sector. Mean duration of cassava consumption prior to the appearance of visual symptoms was 22.7±11.2 years with a mean of 2.57±0.53 cassava-based meals per week. Cassava related optic neuropathy is possibly due to its high cyanide content and enabled by a specific amino-acid deficiency. Cassava root chronic consumption is a rare, underappreciated cause of optic neuropathy and its exact mechanism is still uncertain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. A Sticky Situation.

    PubMed

    Weng, Christina Y; Khimani, Karima S; Foroozan, Rod; Gospe, Sidney M; Bhatti, M Tariq

    2018-04-26

    An 81-year-old man with bilateral progressively blurry vision and optic disc swelling was referred for evaluation. Examination and ancillary testing confirmed a diagnosis of bilateral vitreopapillary traction (VPT) accompanied by unilateral tractional retinoschisis in the right eye. Pars plana vitrectomy was performed to release the traction in both eyes. Visual acuity improved in the right eye and stabilized in the left eye. Retinoschisis in the right eye resolved. The visual field improved in both eyes, although the left eye demonstrated a persistent hemifield defect likely attributable to a prior optic neuropathy. Distinguishing VPT optic neuropathy (VPTON) from nonarteritic anterior ischemic optic neuropathy (NAION) is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Using perceptual cues for brake response to a lead vehicle: Comparing threshold and accumulator models of visual looming.

    PubMed

    Xue, Qingwan; Markkula, Gustav; Yan, Xuedong; Merat, Natasha

    2018-06-18

    Previous studies have shown the effect of a lead vehicle's speed, deceleration rate and headway distance on drivers' brake response times. However, how drivers perceive this information and use it to determine when to apply braking is still not quite clear. To better understand the underlying mechanisms, a driving simulator experiment was performed where each participant experienced nine deceleration scenarios. Previously reported effects of the lead vehicle's speed, deceleration rate and headway distance on brake response time were firstly verified in this paper, using a multilevel model. Then, as an alternative to measures of speed, deceleration rate and distance, two visual looming-based metrics (angular expansion rate θ˙ of the lead vehicle on the driver's retina, and inverse tau τ -1 , the ratio between θ˙ and the optical size θ), considered to be more in line with typical human psycho-perceptual responses, were adopted to quantify situation urgency. These metrics were used in two previously proposed mechanistic models predicting brake onset: either when looming surpasses a threshold, or when the accumulated evidence (looming and other cues) reaches a threshold. Results showed that the looming threshold model did not capture the distribution of brake response time. However, regardless of looming metric, the accumulator models fitted the distribution of brake response times better than the pure threshold models. Accumulator models, including brake lights, provided a better model fit than looming-only versions. For all versions of the mechanistic models, models using τ -1 as the measure of looming fitted better than those using θ˙, indicating that the visual cues drivers used during rear-end collision avoidance may be more close to τ -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Vitrectomy and gas-fluid exchange for the treatment of serous macular detachment due to optic disc pit: long-term evaluation].

    PubMed

    Moreira Neto, Carlos Augusto; Moreira Junior, Carlos Augusto

    2013-01-01

    To evaluate 5 patients with serous macular detachment due to optic disc pit that were submitted to pars plana vitrectomy and were followed for at least 7 years. Patients were submitted to pars plana vitrectomy, posterior hyaloid removal, autologous serum injection and gas-fluid exchange, without laser photocoagulation, and were evaluated pre and post-operatively with visual acuity and Amsler grid testing, retinography, and recently, with autofluorescence imaging and high resolution OCT. All 5 eyes improved visual acuity significantly following the surgical procedure maintaining good vision throughout the follow-up period. Mean pre-operative visual acuity was 20/400 and final visual acuity was 20/27 with a mean follow-up time of 13.6 years. No recurrences of serous detachments were observed. OCT examinations demonstrated an attached retina up to the margin of the pit. Serous macular detachments due to optic disc pits were adequately treated with pars plana vitrectomy and gas fluid exchange, without the need for laser photocoagulation, maintaining excellent visual results for a long period of time.

  19. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).

    PubMed

    Barron, Andrew; Srinivasan, Mandyam V

    2006-03-01

    There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.

  20. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good agreement with the numerical simulations. The mechanically tunable plasmonic nanostructure could serve as a platform for dynamically tunable nanophotonic devices such as sensors and tunable filters.

Top