Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention
ERIC Educational Resources Information Center
Won, Bo-Yeong; Jiang, Yuhong V.
2015-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…
ERIC Educational Resources Information Center
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie
2009-01-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.
Won, Bo-Yeong; Jiang, Yuhong V
2015-05-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention
Won, Bo-Yeong; Jiang, Yuhong V.
2014-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
ERIC Educational Resources Information Center
Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary
2004-01-01
Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…
Differential Age Effects on Spatial and Visual Working Memory
ERIC Educational Resources Information Center
Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert
2011-01-01
The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Insensitivity of visual short-term memory to irrelevant visual information.
Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud
2002-07-01
Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.
Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.
ERIC Educational Resources Information Center
Chun, Marvin M.; Jiang, Yuhong
1998-01-01
Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)
Sex differences in visual-spatial working memory: A meta-analysis.
Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean
2017-04-01
Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.
Spatial Working Memory Effects in Early Visual Cortex
ERIC Educational Resources Information Center
Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan
2010-01-01
The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valérie
2009-07-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and spatial storage were combined with both visual and spatial on-line processing components in computer-paced working memory span tasks (Experiment 1) and in a selective interference paradigm (Experiment 2). The cognitive load of the processing components was manipulated to investigate its impact on concurrent maintenance for both within-domain and between-domain combinations of processing and storage components. In contrast to both domain- and process-based fractionations of visuo-spatial working memory, the results revealed that recall performance was determined by the cognitive load induced by the processing of items, rather than by the domain to which those items pertained. These findings are interpreted as evidence for a time-based resource-sharing mechanism in visuo-spatial working memory.
Differential verbal, visual, and spatial working memory in written language production.
Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T
2010-02-01
The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.
Crocker, N.; Riley, E.P.; Mattson, S.N.
2014-01-01
Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323
Crocker, Nicole; Riley, Edward P; Mattson, Sarah N
2015-01-01
The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Subjects were 56 children (29 AE, 27 CON) who were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory, and visual memory data were entered together on Step 1 followed by group on Step 2, and the interaction terms on Step 3. Model 1 accounted for a significant amount of variance in both mathematics achievement measures; however, model fit improved with the addition of group on Step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Spatial transposition gradients in visual working memory.
Rerko, Laura; Oberauer, Klaus; Lin, Hsuan-Yu
2014-01-01
In list memory, access to individual items reflects limits of temporal distinctiveness. This is reflected in the finding that neighbouring list items tend to be confused most often. This article investigates the analogous effect of spatial proximity in a visual working-memory task. Items were presented in different locations varying in spatial distance. A retro-cue indicated the location of the item relevant for the subsequent memory test. In two recognition experiments, probes matching spatially close neighbours of the relevant item led to more false alarms than probes matching distant neighbours or non-neighbouring memory items. In two probed-recall experiments, one with simultaneous, the other with sequential memory item presentation, items closer to the cued location were more frequently chosen for recall than more distant items. These results reflect a spatial transposition gradient analogous to the temporal transposition gradient in serial recall and challenge fixed-capacity models of visual working memory (WM).
Rehearsal in serial memory for visual-spatial information: evidence from eye movements.
Tremblay, Sébastien; Saint-Aubin, Jean; Jalbert, Annie
2006-06-01
It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task--a visual-spatial analogue of the classical verbal serial recall task--with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).
ERIC Educational Resources Information Center
Kaufman, Scott Barry
2007-01-01
Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
No Sex Differences in Spatial Location Memory for Abstract Designs
ERIC Educational Resources Information Center
Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan
2011-01-01
Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Van Luit, Johannes E H
2015-04-01
The relative importance of visual-spatial and verbal working memory for mathematics performance and learning seems to vary with age, the novelty of the material, and the specific math domain that is investigated. In this study, the relations between verbal and visual-spatial working memory and performance in four math domains (i.e., addition, subtraction, multiplication, and division) at different ages during primary school are investigated. Children (N = 4337) from grades 2 through 6 participated. Visual-spatial and verbal working memory were assessed using online computerized tasks. Math performance was assessed at the start, middle, and end of the school year using a speeded arithmetic test. Multilevel Multigroup Latent Growth Modeling was used to model individual differences in level and growth in math performance, and examine the predictive value of working memory per grade, while controlling for effects of classroom membership. The results showed that as grade level progressed, the predictive value of visual-spatial working memory for individual differences in level of mathematics performance waned, while the predictive value of verbal working memory increased. Working memory did not predict individual differences between children in their rate of performance growth throughout the school year. These findings are discussed in relation to three, not mutually exclusive, explanations for such age-related findings.
Implied motion language can influence visual spatial memory.
Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick
2017-07-01
How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
ERIC Educational Resources Information Center
Morey, Candice C.; Miron, Monica D.
2016-01-01
Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative…
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen
2012-05-01
Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.
Does visuo-spatial working memory generally contribute to immediate serial letter recall?
Fürstenberg, A; Rummer, R; Schweppe, J
2013-01-01
This work contributes to the understanding of the visual similarity effect in verbal working memory, a finding that suggests that the visuo-spatial sketch pad-the system in Baddeley's working memory model specialised in retaining nonverbal visual information-might be involved in the retention of visually presented verbal materials. Crucially this effect is implicitly interpreted by the most influential theory of multimedia learning as evidence for an obligatory involvement of the visuo-spatial sketch pad. We claim that it is only involved when the functioning of the working memory component normally used for processing verbal material is impaired. In this article we review the studies that give rise to the idea of obligatory involvement of the visuo-spatial sketch pad and suggest that some findings can be understood with reference to orthographic rather than visual similarity. We then test an alternative explanation of the finding that is most apt to serve as evidence for obligatory involvement of the visuo-spatial sketch pad. We conclude that, in healthy adults and under normal learning conditions, the visual similarity effect can be explained within the framework of verbal working memory proposed by Baddeley (e.g., 1986, 2000) without additional premises regarding the visuo-spatial sketch.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Age, gesture span, and dissociations among component subsystems of working memory.
Dolman, R; Roy, E A; Dimeck, P T; Hall, C R
2000-01-01
Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.
Individual Differences in a Spatial-Semantic Virtual Environment.
ERIC Educational Resources Information Center
Chen, Chaomei
2000-01-01
Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…
Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.
Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E
2017-11-06
Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age. Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
A Core Knowledge Architecture of Visual Working Memory
ERIC Educational Resources Information Center
Wood, Justin N.
2011-01-01
Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…
Effects of complete monocular deprivation in visuo-spatial memory.
Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso
2008-09-30
Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.
Dynamic interactions between visual working memory and saccade target selection
Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew
2014-01-01
Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628
Morey, Candice C; Miron, Monica D
2016-12-01
Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative retro-cues. This design isolates interference due specifically to maintenance, which appears most clearly in the uncued trials, from interference due to encoding, which occurs in all dual-task trials. When recall accuracy was comparable between tasks, we found that spatial memory was worse in uncued than in retro-cued trials, whereas verbal memory was not. Our findings bolster proposals that maintenance of spatial serial order, like maintenance of visual materials more broadly, relies on general rather than specialized resources, while maintenance of verbal sequences may rely on domain-specific resources. We argue that this asymmetry should be explicitly incorporated into models of working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.
Pan, Yi; Luo, Qianying; Cheng, Min
2016-08-01
Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.
On the role of working memory in spatial contextual cueing.
Travis, Susan L; Mattingley, Jason B; Dux, Paul E
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.
Spatial resolution in visual memory.
Ben-Shalom, Asaf; Ganel, Tzvi
2015-04-01
Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.
Conscious visual memory with minimal attention.
Pinto, Yair; Vandenbroucke, Annelinde R; Otten, Marte; Sligte, Ilja G; Seth, Anil K; Lamme, Victor A F
2017-02-01
Is conscious visual perception limited to the locations that a person attends? The remarkable phenomenon of change blindness, which shows that people miss nearly all unattended changes in a visual scene, suggests the answer is yes. However, change blindness is found after visual interference (a mask or a new scene), so that subjects have to rely on working memory (WM), which has limited capacity, to detect the change. Before such interference, however, a much larger capacity store, called fragile memory (FM), which is easily overwritten by newly presented visual information, is present. Whether these different stores depend equally on spatial attention is central to the debate on the role of attention in conscious vision. In 2 experiments, we found that minimizing spatial attention almost entirely erases visual WM, as expected. Critically, FM remains largely intact. Moreover, minimally attended FM responses yield accurate metacognition, suggesting that conscious memory persists with limited spatial attention. Together, our findings help resolve the fundamental issue of how attention affects perception: Both visual consciousness and memory can be supported by only minimal attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ouwehand, Kim; van Gog, Tamara; Paas, Fred
2016-10-01
Research showed that source memory functioning declines with ageing. Evidence suggests that encoding visual stimuli with manual pointing in addition to visual observation can have a positive effect on spatial memory compared with visual observation only. The present study investigated whether pointing at picture locations during encoding would lead to better spatial source memory than naming (Experiment 1) and visual observation only (Experiment 2) in young and older adults. Experiment 3 investigated whether response modality during the test phase would influence spatial source memory performance. Experiments 1 and 2 supported the hypothesis that pointing during encoding led to better source memory for picture locations than naming or observation only. Young adults outperformed older adults on the source memory but not the item memory task in both Experiments 1 and 2. In Experiments 1 and 2, participants manually responded in the test phase. Experiment 3 showed that if participants had to verbally respond in the test phase, the positive effect of pointing compared with naming during encoding disappeared. The results suggest that pointing at picture locations during encoding can enhance spatial source memory in both young and older adults, but only if the response modality is congruent in the test phase.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509
Distinct regions of the hippocampus are associated with memory for different spatial locations.
Jeye, Brittany M; MacEvoy, Sean P; Karanian, Jessica M; Slotnick, Scott D
2018-05-15
In the present functional magnetic resonance imaging (fMRI) study, we aimed to evaluate whether distinct regions of the hippocampus were associated with spatial memory for items presented in different locations of the visual field. In Experiment 1, during the study phase, participants viewed abstract shapes in the left or right visual field while maintaining central fixation. At test, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. Accurate spatial memory for shapes in the left visual field was isolated by contrasting accurate versus inaccurate spatial location responses. This contrast produced one hippocampal activation in which the interaction between item type and accuracy was significant. The analogous contrast for right visual field shapes did not produce activity in the hippocampus; however, the contrast of high confidence versus low confidence right-hits produced one hippocampal activation in which the interaction between item type and confidence was significant. In Experiment 2, the same paradigm was used but shapes were presented in each quadrant of the visual field during the study phase. Accurate memory for shapes in each quadrant, exclusively masked by accurate memory for shapes in the other quadrants, produced a distinct activation in the hippocampus. A multi-voxel pattern analysis (MVPA) of hippocampal activity revealed a significant correlation between behavioral spatial location accuracy and hippocampal MVPA accuracy across participants. The findings of both experiments indicate that distinct hippocampal regions are associated with memory for different visual field locations. Copyright © 2018 Elsevier B.V. All rights reserved.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
ERIC Educational Resources Information Center
Shiels, Keri; Hawk, Larry W., Jr.; Lysczek, Cynthia L.; Tannock, Rosemary; Pelham, William E., Jr.; Spencer, Sarah V.; Gangloff, Brian P.; Waschbusch, Daniel A.
2008-01-01
Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of…
Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P
2008-09-01
In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.
The case against specialized visual-spatial short-term memory.
Morey, Candice C
2018-05-24
The dominant paradigm for understanding working memory, or the combination of the perceptual, attentional, and mnemonic processes needed for thinking, subdivides short-term memory (STM) according to whether memoranda are encoded in aural-verbal or visual formats. This traditional dissociation has been supported by examples of neuropsychological patients who seem to selectively lack STM for either aural-verbal, visual, or spatial memoranda, and by experimental research using dual-task methods. Though this evidence is the foundation of assumptions of modular STM systems, the case it makes for a specialized visual STM system is surprisingly weak. I identify the key evidence supporting a distinct verbal STM system-patients with apparent selective damage to verbal STM and the resilience of verbal short-term memories to general dual-task interference-and apply these benchmarks to neuropsychological and experimental investigations of visual-spatial STM. Contrary to the evidence on verbal STM, patients with apparent visual or spatial STM deficits tend to experience a wide range of additional deficits, making it difficult to conclude that a distinct short-term store was damaged. Consistently with this, a meta-analysis of dual-task visual-spatial STM research shows that robust dual-task costs are consistently observed regardless of the domain or sensory code of the secondary task. Together, this evidence suggests that positing a specialized visual STM system is not necessary. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie
2017-05-01
This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596
Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.
Dent, Kevin
2010-01-01
In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.
Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li
2011-04-01
New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.
Remembering the Past and Imagining the Future: A Neural Model of Spatial Memory and Imagery
ERIC Educational Resources Information Center
Byrne, Patrick; Becker, Suzanna; Burgess, Neil
2007-01-01
The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and behavioral data, and address the relationships between long-term memory, short-term memory, and imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term spatial memory is modeled as attractor dynamics…
Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.
Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto
2014-10-01
We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.
Visual distraction and visuo-spatial memory: a sandwich effect.
Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M
2005-01-01
The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.
Maternal Scaffolding and Preterm Toddlers’ Visual-Spatial Processing and Emerging Working Memory
Poehlmann, Julie; Hilgendorf, Amy E; Miller, Kyle; Lambert, Heather
2010-01-01
Objective We examined longitudinal associations among neonatal and socioeconomic risks, maternal scaffolding behaviors, and 24-month visual-spatial processing and working memory in a sample of 73 toddlers born preterm or low birthweight (PT LBW). Methods Risk data were collected at hospital discharge and dyadic play interactions were observed at 16-months postterm. Abbreviated IQ scores, verbal/nonverbal working memory, and verbal/nonverbal visual-spatial processing data were collected at 24-months postterm. Results Higher attention scaffolding and lower emotion scaffolding during 16-month play were associated with 24-month verbal working memory scores. A joint significance test revealed that maternal attention and emotion scaffolding during 16-month play mediated the relationship between socioeconomic risk and 24-month verbal working memory. Conclusions These findings suggest areas for future research and intervention with children born PT LBW who also experience high socioeconomic risk. PMID:19505998
ERIC Educational Resources Information Center
Krajewski, Kristin; Schneider, Wolfgang
2009-01-01
This longitudinal study explored the importance of kindergarten measures of phonological awareness, working memory, and quantity-number competencies (QNC) for predicting mathematical school achievement in third graders (mean age 8 years 8 months). It was found that the impact of phonological awareness and visual-spatial working memory, assessed at…
Delogu, Franco; Lilla, Christopher C
2017-11-01
Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Implicit Learning of Complex Visual Contexts Under Non-Optimal Conditions
2007-07-27
Perception & Performance, 31(6), 1439-1448. 3. Jiang Y, Song J-H, Rigas A (2005). High-capacity spatial contextual memory. Psychonomic Bulletin & Review , 12...Makovski T., & Jiang YV (in press). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review . 8. Rausei V...Implicit learning of ignored visual context. Psychonomic Bulletin & Review , 12(1), 100-106. Jiang, Y. H., & Song, J. H. (2005). Spatial context
ERIC Educational Resources Information Center
Jarrold, Christopher; Phillips, Caroline; Baddeley, Alan D
2007-01-01
A main aim of this study was to test the claim that individuals with Williams syndrome have selectively impaired memory for spatial as opposed to visual information. The performance of 16 individuals with Williams syndrome (six males, 10 females; mean age 18y 7mo [SD 7y 6mo], range 9y 1mo-30y 7mo) on tests of short-term memory for item and…
Borst, Gregoire; Niven, Elaine; Logie, Robert H
2012-04-01
Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.
Neural activity reveals perceptual grouping in working memory.
Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S
2017-03-01
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.
Abu-Akel, A; Reniers, R L E P; Wood, S J
2016-09-01
Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming
2018-05-01
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.
Awh, E; Anllo-Vento, L; Hillyard, S A
2000-09-01
We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.
Overcoming default categorical bias in spatial memory.
Sampaio, Cristina; Wang, Ranxiao Frances
2010-12-01
In the present study, we investigated whether a strong default categorical bias can be overcome in spatial memory by using alternative membership information. In three experiments, we tested location memory in a circular space while providing participants with an alternative categorization. We found that visual presentation of the boundaries of the alternative categories (Experiment 1) did not induce the use of the alternative categories in estimation. In contrast, visual cuing of the alternative category membership of a target (Experiment 2) and unique target feature information associated with each alternative category (Experiment 3) successfully led to the use of the alternative categories in estimation. Taken together, the results indicate that default categorical bias in spatial memory can be overcome when appropriate cues are provided. We discuss how these findings expand the category adjustment model (Huttenlocher, Hedges, & Duncan, 1991) in spatial memory by proposing a retrieval-based category adjustment (RCA) model.
Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry
2015-01-01
Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.
Single Canonical Model of Reflexive Memory and Spatial Attention
Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.
2015-01-01
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
ERIC Educational Resources Information Center
Alescio-Lautier, B.; Michel, B. F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V.
2007-01-01
It has been proposed that visual recognition memory and certain attentional mechanisms are impaired early in Alzheimer disease (AD). Little is known about visuospatial recognition memory in AD. The crucial role of the hippocampus on spatial memory and its damage in AD suggest that visuospatial recognition memory may also be impaired early. The aim…
Readout from iconic memory and selective spatial attention involve similar neural processes.
Ruff, Christian C; Kristjánsson, Arni; Driver, Jon
2007-10-01
Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.
Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes
Ruff, Christian C; Kristjánsson, Árni; Driver, Jon
2007-01-01
Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus. PMID:17894608
Multisensory Integration Affects Visuo-Spatial Working Memory
ERIC Educational Resources Information Center
Botta, Fabiano; Santangelo, Valerio; Raffone, Antonino; Sanabria, Daniel; Lupianez, Juan; Belardinelli, Marta Olivetti
2011-01-01
In the present study, we investigate how spatial attention, driven by unisensory and multisensory cues, can bias the access of information into visuo-spatial working memory (VSWM). In a series of four experiments, we compared the effectiveness of spatially-nonpredictive visual, auditory, or audiovisual cues in capturing participants' spatial…
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions
Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.
2013-01-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.
Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J
2013-03-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Pannebakker, Merel M; Jolicœur, Pierre; van Dam, Wessel O; Band, Guido P H; Ridderinkhof, K Richard; Hommel, Bernhard
2011-09-01
Dual tasks and their associated delays have often been used to examine the boundaries of processing in the brain. We used the dual-task procedure and recorded event-related potentials (ERPs) to investigate how mental rotation of a first stimulus (S1) influences the shifting of visual-spatial attention to a second stimulus (S2). Visual-spatial attention was monitored by using the N2pc component of the ERP. In addition, we examined the sustained posterior contralateral negativity (SPCN) believed to index the retention of information in visual short-term memory. We found modulations of both the N2pc and the SPCN, suggesting that engaging mechanisms of mental rotation impairs the deployment of visual-spatial attention and delays the passage of a representation of S2 into visual short-term memory. Both results suggest interactions between mental rotation and visual-spatial attention in capacity-limited processing mechanisms indicating that response selection is not pivotal in dual-task delays and all three processes are likely to share a common resource like executive control. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.
Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W
2014-04-01
In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.
ERIC Educational Resources Information Center
Takahashi, Junichi; Gyoba, Jiro; Yamawaki, Nozomi
2013-01-01
This report examines effects of the spatial complexity of configurations on visual short-term memory (VSTM) capacity for individuals from the general population differing on autism-spectrum quotient (AQ) scores. During each trial, nine-line segments with various orientations were arrayed in simple or complex configurations and presented in both…
Making memories: the development of long-term visual knowledge in children with visual agnosia.
Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.
Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia
Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment. PMID:24319599
Shiels, Keri; Hawk, Larry W; Lysczek, Cynthia L; Tannock, Rosemary; Pelham, William E; Spencer, Sarah V; Gangloff, Brian P; Waschbusch, Daniel A
2008-08-01
Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of ADHD-combined type. Participants completed a computerized spatial span task designed to assess storage of visual-spatial information (forward span) and manipulation of the stored information (backward span). The spatial span task was completed twice on the same day, once with a performance-based incentive (trial-wise feedback and points redeemable for prizes) and once without incentives. Participants performed significantly better on the backward span when rewarded for correct responses, compared to the no incentive condition. However, incentives had no effect on performance during the forward span. These findings may suggest the use of motivational incentives improved manipulation, but not storage, of visual-spatial information among children with ADHD. Possible explanations for the differential incentive effects are discussed, including the possibility that incentives prevented a vigilance decrement as task difficulty and time on task increased.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A
2012-08-01
Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.
Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline
2007-02-01
Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
ERIC Educational Resources Information Center
Dovis, Sebastiaan; van der Oord, Saskia; Wiers, Reinout W.; Prins, Pier J. M.
2012-01-01
Visual-spatial "Working Memory" (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with-…
Real-world spatial regularities affect visual working memory for objects.
Kaiser, Daniel; Stein, Timo; Peelen, Marius V
2015-12-01
Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.
Working memory subsystems and task complexity in young boys with Fragile X syndrome.
Baker, S; Hooper, S; Skinner, M; Hatton, D; Schaaf, J; Ornstein, P; Bailey, D
2011-01-01
Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual-spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results suggested that boys with FXS showed deficits in phonological loop and visual-spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual-spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual-spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
O'Leary, Timothy P.; Brown, Richard E.
2013-01-01
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…
Shang, Chi-Yung; Gau, Susan Shur-Fen
2012-10-01
Atomoxetine is efficacious in reducing symptoms of attention- deficit/hyperactivity disorder (ADHD), but its effect on visual memory and attention needs more investigation. This study aimed to assess the effect of atomoxetine on visual memory, attention, and school function in boys with ADHD in Taiwan. This was an open-label 12 week atomoxetine treatment trial among 30 drug-naíve boys with ADHD, aged 8-16 years. Before administration of atomoxetine, the participants were assessed using psychiatric interviews, the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), the school function of the Chinese version of the Social Adjustment Inventory for Children and Adolescents (SAICA), the Conners' Continuous Performance Test (CPT), and the tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) involving visual memory and attention: Pattern Recognition Memory, Spatial Recognition Memory, and Reaction Time, which were reassessed at weeks 4 and 12. Our results showed there was significant improvement in pattern recognition memory and spatial recognition memory as measured by the CANTAB tasks, sustained attention and response inhibition as measured by the CPT, and reaction time as measured by the CANTAB after treatment with atomoxetine for 4 weeks or 12 weeks. In addition, atomoxetine significantly enhanced school functioning in children with ADHD. Our findings suggested that atomoxetine was associated with significant improvement in visual memory, attention, and school functioning in boys with ADHD.
Deployment of spatial attention towards locations in memory representations. An EEG study.
Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J
2013-01-01
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.
What does visual suffix interference tell us about spatial location in working memory?
Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D
2015-01-01
A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Grewe, P; Lahr, D; Kohsik, A; Dyck, E; Markowitsch, H J; Bien, C G; Botsch, M; Piefke, M
2014-02-01
Ecological assessment and training of real-life cognitive functions such as visual-spatial abilities in patients with epilepsy remain challenging. Some studies have applied virtual reality (VR) paradigms, but external validity of VR programs has not sufficiently been proven. Patients with focal epilepsy (EG, n=14) accomplished an 8-day program in a VR supermarket, which consisted of learning and buying items on a shopping list. Performance of the EG was compared with that of healthy controls (HCG, n=19). A comprehensive neuropsychological examination was administered. Real-life performance was investigated in a real supermarket. Learning in the VR supermarket was significantly impaired in the EG on different VR measures. Delayed free recall of products did not differ between the EG and the HCG. Virtual reality scores were correlated with neuropsychological measures of visual-spatial cognition, subjective estimates of memory, and performance in the real supermarket. The data indicate that our VR approach allows for the assessment of real-life visual-spatial memory and cognition in patients with focal epilepsy. The multimodal, active, and complex VR paradigm may particularly enhance visual-spatial cognitive resources. Copyright © 2013 Elsevier Inc. All rights reserved.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Prast, Emilie J; Van Luit, Johannes E H
2015-09-01
Working memory is an important predictor of academic performance, and of math performance in particular. Most working memory tasks depend on one-to-one administration by a testing assistant, which makes the use of such tasks in large-scale studies time-consuming and costly. Therefore, an online, self-reliant visual-spatial working memory task (the Lion game) was developed for primary school children (6-12 years of age). In two studies, the validity and reliability of the Lion game were investigated. The results from Study 1 (n = 442) indicated satisfactory six-week test-retest reliability, excellent internal consistency, and good concurrent and predictive validity. The results from Study 2 (n = 5,059) confirmed the results on the internal consistency and predictive validity of the Lion game. In addition, multilevel analysis revealed that classroom membership influenced Lion game scores. We concluded that the Lion game is a valid and reliable instrument for the online computerized and self-reliant measurement of visual-spatial working memory (i.e., updating).
Cross-Sensory Transfer of Reference Frames in Spatial Memory
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Avraamides, Marios N.
2011-01-01
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…
Effects of Hearing Status and Sign Language Use on Working Memory
Sarchet, Thomastine; Trani, Alexandra
2016-01-01
Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential tasks and higher on some visual-spatial tasks than hearing nonsigners. However, hearing status and preferred language modality (signed or spoken) frequently are confounded in such studies. That situation is resolved in the present study by including deaf students who use spoken language and sign language interpreting students (hearing signers) as well as deaf signers and hearing nonsigners. Three complex memory span tasks revealed overall advantages for hearing signers and nonsigners over both deaf signers and deaf nonsigners on 2 tasks involving memory for verbal stimuli (letters). There were no differences among the groups on the task involving visual-spatial stimuli. The results are consistent with and extend recent findings concerning the effects of hearing status and language on memory and are discussed in terms of language modality, hearing status, and cognitive abilities among deaf and hearing individuals. PMID:26755684
The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.
Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan
2016-01-01
Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.
Long-Term Memory Biases Auditory Spatial Attention
ERIC Educational Resources Information Center
Zimmermann, Jacqueline F.; Moscovitch, Morris; Alain, Claude
2017-01-01
Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants…
Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C
2015-10-01
Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.
Retrospective attention enhances visual working memory in the young but not the old: an ERP study
Duarte, Audrey; Hearons, Patricia; Jiang, Yashu; Delvin, Mary Courtney; Newsome, Rachel N.; Verhaeghen, Paul
2013-01-01
Behavioral evidence from the young suggests spatial cues that orient attention toward task relevant items in visual working memory (VWM) enhance memory capacity. Whether older adults can also use retrospective cues (“retro-cues”) to enhance VWM capacity is unknown. In the current event-related potential (ERP) study, young and old adults performed a VWM task in which spatially informative retro-cues were presented during maintenance. Young but not older adults’ VWM capacity benefitted from retro-cueing. The contralateral delay activity (CDA) ERP index of VWM maintenance was attenuated after the retro-cue, which effectively reduced the impact of memory load. CDA amplitudes were reduced prior to retro-cue onset in the old only. Despite a preserved ability to delete items from VWM, older adults may be less able to use retrospective attention to enhance memory capacity when expectancy of impending spatial cues disrupts effective VWM maintenance. PMID:23445536
Falconer, D W; Cleland, J; Fielding, S; Reid, I C
2010-06-01
The cognitive impact of electroconvulsive therapy (ECT) is rarely measured systematically in everyday clinical practice even though patient and clinician acceptance is limited by its adverse affect on memory. If patients are tested it is often with simple paper and pencil tests of visual or verbal memory. There are no reported studies of computerized neuropsychological testing to assess the cognitive impact of ECT on visuospatial memory. Twenty-four patients with severe depression were treated with a course of bilateral ECT and assessed with a battery of visual memory tests within the Cambridge Neuropsychological Test Automated Battery (CANTAB). These included spatial and pattern recognition memory, pattern-location associative learning and a delayed matching to sample test. Testing was carried out before ECT, during ECT, within the week after ECT and 1 month after ECT. Patients showed significant impairments in visual and visuospatial memory both during and within the week after ECT. Most impairments resolved 1 month following ECT; however, significant impairment in spatial recognition memory remained. This is one of only a few studies that have detected anterograde memory deficits more than 2 weeks after treatment. Patients receiving ECT displayed a range of visual and visuospatial deficits over the course of their treatment. These deficits were most prominent for tasks dependent on the use of the right medial temporal lobe; frontal lobe function may also be implicated. The CANTAB appears to be a useful instrument for measuring the adverse cognitive effects of ECT on aspects of visual and visuospatial memory.
Perceptual and academic patterns of learning-disabled/gifted students.
Waldron, K A; Saphire, D G
1992-04-01
This research explored ways gifted children with learning disabilities perceive and recall auditory and visual input and apply this information to reading, mathematics, and spelling. 24 learning-disabled/gifted children and a matched control group of normally achieving gifted students were tested for oral reading, word recognition and analysis, listening comprehension, and spelling. In mathematics, they were tested for numeration, mental and written computation, word problems, and numerical reasoning. To explore perception and memory skills, students were administered formal tests of visual and auditory memory as well as auditory discrimination of sounds. Their responses to reading and to mathematical computations were further considered for evidence of problems in visual discrimination, visual sequencing, and visual spatial areas. Analyses indicated that these learning-disabled/gifted students were significantly weaker than controls in their decoding skills, in spelling, and in most areas of mathematics. They were also significantly weaker in auditory discrimination and memory, and in visual discrimination, sequencing, and spatial abilities. Conclusions are that these underlying perceptual and memory deficits may be related to students' academic problems.
Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh
2004-11-01
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Hemispheric Lateralization of Verbal and Spatial Working Memory during Adolescence
ERIC Educational Resources Information Center
Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien
2013-01-01
Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to…
Visual Place Learning in Drosophila melanogaster
Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.
2011-01-01
The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803
The differential contributions of visual imagery constructs on autobiographical thinking.
Aydin, Cagla
2018-02-01
There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.
ERIC Educational Resources Information Center
Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank
2009-01-01
The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…
Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life
ERIC Educational Resources Information Center
Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier
2015-01-01
Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2012-01-01
This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331
Eye movements, visual search and scene memory, in an immersive virtual environment.
Kit, Dmitry; Katz, Leor; Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary
2014-01-01
Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency.
De Sá Teixeira, Nuno
2016-01-01
Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object’s offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth’s gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects’ location. PMID:26910260
De Sá Teixeira, Nuno
2016-01-01
Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.
Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota
2017-02-01
Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory
ERIC Educational Resources Information Center
Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…
Life-Span Development of Visual Working Memory: When Is Feature Binding Difficult?
ERIC Educational Resources Information Center
Cowan, Nelson; Naveh-Benjamin, Moshe; Kilb, Angela; Saults, J. Scott
2006-01-01
We asked whether the ability to keep in working memory the binding between a visual object and its spatial location changes with development across the life span more than memory for item information. Paired arrays of colored squares were identical or differed in the color of one square, and in the latter case, the changed color was unique on…
Giesbrecht, Barry; Sy, Jocelyn L.; Guerin, Scott A.
2012-01-01
Environmental context learned without awareness can facilitate visual processing of goal-relevant information. According to one view, the benefit of implicitly learned context relies on the neural systems involved in spatial attention and hippocampus-mediated memory. While this view has received empirical support, it contradicts traditional models of hippocampal function. The purpose of the present work was to clarify the influence of spatial context on visual search performance and on brain structures involved memory and attention. Event-related functional magnetic resonance imaging revealed that activity in the hippocampus as well as in visual and parietal cortex was modulated by learned visual context even though participants’ subjective reports and performance on a post-experiment recognition task indicated no explicit knowledge of the learned context. Moreover, the magnitude of the initial selective hippocampus response predicted the magnitude of the behavioral benefit due to context observed at the end of the experiment. The results suggest that implicit contextual learning is mediated by attention and memory and that these systems interact to support search of our environment. PMID:23099047
Maheux, Manon; Jolicœur, Pierre
2017-04-01
We examined the role of attention and visual working memory in the evaluation of the number of target stimuli as well as their relative spatial position using the N2pc and the SPCN. Participants performed two tasks: a simple counting task in which they had to determine if a visual display contained one or two coloured items among grey fillers and one in which they had to identify a specific relation between two coloured items. The same stimuli were used for both tasks. Each task was designed to permit an easier evaluation of either the same-coloured or differently-coloured stimuli. We predicted a greater involvement of attention and visual working memory for more difficult stimulus-task pairings. The results confirmed these predictions and suggest that visuospatial configurations that require more time to evaluate induce a greater (and presumably longer) involvement of attention and visual working memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory Effects in Visual Spatial Information Processing.
ERIC Educational Resources Information Center
Fishbein, Harold D.
1978-01-01
Eight, ten, and twelve year old children were tested on a novel procedure involving the successive presentation of standard and comparision stimuli. Two hypotheses were evaluated: one dealing with memory effects, and the other with children's pretesting of choice responses in spatial information processing. (Editor/RK)
Pan, Yi; Soto, David
2010-07-09
Recent research suggests that visual selection can be automatically biased to those stimuli matching the contents of working memory (WM). However, a complete functional account of the interplay between WM and attention remains to be established. In particular, the boundary conditions of the WM effect on selection are unclear. Here, the authors investigate the influence of the focus of spatial attention (i.e., diffused vs. focused) by assessing the effect of spatial precues on attentional capture by WM. Experiments 1 and 2 showed that relative to a neutral condition without memory-matching stimuli, the presence of a memory distractor can trigger attentional capture despite being entirely irrelevant for the attention task but this happened only when the item was actively maintained in WM and not when it was merely repeated. Experiments 3a, 3b and 3c showed that attentional capture by WM can be modulated by endogenous spatial pre-cueing of the incoming target of selection. The authors conclude that WM-driven capture of visual selection is dependent on the focus of spatial attention. Copyright 2009 Elsevier Ltd. All rights reserved.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Spatial context learning survives interference from working memory load
Vickery, Timothy J.; Sussman, Rachel S.; Jiang, Yuhong V.
2010-01-01
The human visual system is constantly confronted with an overwhelming amount of information, only a subset of which can be processed in complete detail. Attention and implicit learning are two important mechanisms that optimize vision. This study addresses the relationship between these two mechanisms. Specifically we ask: Is implicit learning of spatial context affected by the amount of working memory load devoted to an irrelevant task? We tested observers in visual search tasks where search displays occasionally repeated. Observers became faster searching repeated displays than unrepeated ones, showing contextual cueing. We found that the size of contextual cueing was unaffected by whether observers learned repeated displays under unitary attention or when their attention was divided using working memory manipulations. These results held when working memory was loaded by colors, dot patterns, individual dot locations, or multiple potential targets. We conclude that spatial context learning is robust to interference from manipulations that limit the availability of attention and working memory. PMID:20853996
Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.
Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein
2012-10-15
Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Sanz de la Torre, J C; Pérez-Ríos, M
1996-06-01
In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.
Brébion, G; Ohlsen, R I; Bressan, R A; David, A S
2012-12-01
Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.
The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades
Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan
2016-01-01
Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID:27631767
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Drisdelle, Brandi Lee; Aubin, Sébrina; Jolicoeur, Pierre
2017-01-01
The objective of the present study was to assess the robustness and reliability of independent component analysis (ICA) as a method for ocular artifact correction in electrophysiological studies of visual-spatial attention and memory. The N2pc and sustained posterior contralateral negativity (SPCN), electrophysiological markers of visual-spatial attention and memory, respectively, are lateralized posterior ERPs typically observed following the presentation of lateral stimuli (targets and distractors) along with instructions to maintain fixation on the center of the visual search for the entire trial. Traditionally, trials in which subjects may have displaced their gaze are rejected based on a cutoff threshold, minimizing electrophysiological contamination by saccades. Given the loss of data resulting from rejection, we examined ocular correction by comparing results using standard fixation instructions against a condition where subjects were instructed to shift their gaze toward possible targets. Both conditions were analyzed using a rejection threshold and ICA correction for saccade activity management. Results demonstrate that ICA conserves data that would have otherwise been removed and leaves the underlying neural activity intact, as demonstrated by experimental manipulations previously shown to modulate the N2pc and the SPCN. Not only does ICA salvage and not distort data, but also large eye movements had only subtle effects. Overall, the findings provide convincing evidence for ICA correction for not only special cases (e.g., subjects did not follow fixation instruction) but also as a candidate for standard ocular artifact management in electrophysiological studies interested in visual-spatial attention and memory. © 2016 Society for Psychophysiological Research.
Multiple foci of spatial attention in multimodal working memory.
Katus, Tobias; Eimer, Martin
2016-11-15
The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In the same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile/visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. Our results reveal distinct foci of tactile and visual spatial attention that were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are activated through modality-specific processes that can operate simultaneously and largely independently of each other. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cellard, Caroline; Tremblay, Sebastien; Lehoux, Catherine; Roy, Marc-Andre
2007-01-01
Memory impairment is a core feature in schizophrenia (SZ). The aim of this study was to investigate short-term memory (STM) and its sensitivity to distraction with visual-spatial material. This study comprised 23 recent-onset SZ patients and 23 healthy controls. The degree of disruption upon recall from interleaving irrelevant items within a…
Eye Movements, Visual Search and Scene Memory, in an Immersive Virtual Environment
Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary
2014-01-01
Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency. PMID:24759905
Silvanto, Juha; Cattaneo, Zaira
2010-05-01
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
Mochizuki, Kei
2015-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287
What we remember affects how we see: spatial working memory steers saccade programming.
Wong, Jason H; Peterson, Matthew S
2013-02-01
Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common overlapping circuitry.
Mental object rotation in Parkinson's disease.
Crucian, Gregory P; Barrett, Anna M; Burks, David W; Riestra, Alonso R; Roth, Heidi L; Schwartz, Ronald L; Triggs, William J; Bowers, Dawn; Friedman, William; Greer, Melvin; Heilman, Kenneth M
2003-11-01
Deficits in visual-spatial ability can be associated with Parkinson's disease (PD), and there are several possible reasons for these deficits. Dysfunction in frontal-striatal and/or frontal-parietal systems, associated with dopamine deficiency, might disrupt cognitive processes either supporting (e.g., working memory) or subserving visual-spatial computations. The goal of this study was to assess visual-spatial orientation ability in individuals with PD using the Mental Rotations Test (MRT), along with other measures of cognitive function. Non-demented men with PD were significantly less accurate on this test than matched control men. In contrast, women with PD performed similarly to matched control women, but both groups of women did not perform much better than chance. Further, mental rotation accuracy in men correlated with their executive skills involving mental processing and psychomotor speed. In women with PD, however, mental rotation accuracy correlated negatively with verbal memory, indicating that higher mental rotation performance was associated with lower ability in verbal memory. These results indicate that PD is associated with visual-spatial orientation deficits in men. Women with PD and control women both performed poorly on the MRT, possibly reflecting a floor effect. Although men and women with PD appear to engage different cognitive processes in this task, the reason for the sex difference remains to be elucidated.
Translating Dyslexia across Species
ERIC Educational Resources Information Center
Gabel, Lisa A.; Manglani, Monica; Escalona, Nicholas; Cysner, Jessica; Hamilton, Rachel; Pfaffmann, Jeffrey; Johnson, Evelyn
2016-01-01
Direct relationships between induced mutation in the "DCDC2" candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and…
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Patterson, Rebecca
2012-01-01
Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…
Spatial memory in foraging games.
Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T
2016-03-01
Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.
Remembering the past and imagining the future
Byrne, Patrick; Becker, Suzanna; Burgess, Neil
2009-01-01
The neural mechanisms underlying spatial cognition are modelled, integrating neuronal, systems and behavioural data, and addressing the relationships between long-term memory, short-term memory and imagery, and between egocentric and allocentric and visual and idiothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory as egocentric parietal representations driven by perception, retrieval and imagery, and modulated by directed attention. Both encoding and retrieval/ imagery require translation between egocentric and allocentric representations, mediated by posterior parietal and retrosplenial areas and utilizing head direction representations in Papez’s circuit. Thus hippocampus effectively indexes information by real or imagined location, while Papez’s circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows “spatial updating” of representations, while prefrontal simulated motor efference allows mental exploration. The alternating temporo-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs. PMID:17500630
The development of visuo-spatial working memory.
Pickering, S J
2001-01-01
Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.
Oculomotor preparation as a rehearsal mechanism in spatial working memory.
Pearson, David G; Ball, Keira; Smith, Daniel T
2014-09-01
There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Common Neural Representations for Visually Guided Reorientation and Spatial Imagery
Vass, Lindsay K.; Epstein, Russell A.
2017-01-01
Abstract Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with fMRI, while they performed a judgment of relative direction (JRD) task that required them to retrieve real-world spatial relationships in response to either pictorial or verbal cues. Multivoxel pattern analyses revealed several brain regions that exhibited representations that were independent of the cues to access spatial memory. Specifically, entorhinal cortex in the medial temporal lobe and the retrosplenial complex (RSC) in the medial parietal lobe coded for the heading assumed on a particular trial, whereas the parahippocampal place area (PPA) contained information about the starting location of the JRD. These results demonstrate the existence of spatial representations in RSC, ERC, and PPA that are common to visually guided navigation and spatial imagery. PMID:26759482
Training of Visual-Spatial Working Memory in Preschool Children
Gade, Miriam; Zoelch, Christof; Seitz-Stein, Katja
2017-01-01
Working memory, the ability to store and manipulate information is of great importance for scholastic achievement in children. In this study, we report four studies in which preschoolers were trained on a visual-spatial working memory span task, namely the Corsi Block Task. Across all four studies, we found significant training effects for the intervention groups compared to active control groups. Confirming recent research, no transfer effects to other working memory tasks were found. Most importantly, our training effects were mainly brought about by children performing below the median in the pretest and those showing median performance, thereby closing the gap to children performing above the median (compensation effect). We consider this finding of great interest to ensure comparable starting conditions when entering school with a relatively short intervention. PMID:28713452
Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).
Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P
2016-01-01
Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.
The hippocampus and visual perception
Lee, Andy C. H.; Yeung, Lok-Kin; Barense, Morgan D.
2012-01-01
In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates. PMID:22529794
Proactive interference from items previously stored in visual working memory.
Makovski, Tal; Jiang, Yuhong V
2008-01-01
This study investigates the fate of information that was previously stored in visual working memory but that is no longer needed. Previous research has found inconsistent results, with some showing effective release of irrelevant information and others showing proactive interference. Using change detection tasks of colors or shapes, we show that participants tend to falsely classify a changed item as "no change" if it matches one of the memory items on the preceding trial. The interference is spatially specific: Memory for the preceding trial interferes more if it matches the feature value and the location of a test item than if it does not. Interference results from retaining information in visual working memory, since it is absent when items on the preceding trials are passively viewed, or are attended but not memorized. We conclude that people cannot fully eliminate unwanted visual information from current working memory tasks.
Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A
2013-09-01
Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.
Spatiotemporal Proximity Effects in Visual Short-Term Memory Examined by Target-Nontarget Analysis
ERIC Educational Resources Information Center
Sapkota, Raju P.; Pardhan, Shahina; van der Linde, Ian
2016-01-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, Ann M.
Polybrominated diphenyl ethers (PBDEs) are associated with impaired visual spatial abilities in toxicological studies, but no epidemiologic study has investigated PBDEs and visual spatial abilities in children. The Health Outcomes and Measures of the Environment Study, a prospective birth cohort (2003–2006, Cincinnati, OH), was used to examine prenatal and childhood PBDEs and visual spatial abilities in 199 children. PBDEs were measured at 16±3 weeks gestation and at 1, 2, 3, 5, and 8 years using gas chromatography/isotope dilution high-resolution mass spectrometry. We used the Virtual Morris Water Maze to measure visual spatial abilities at 8 years. In covariate-adjusted models, 10-foldmore » increases in BDE-47, −99, and −100 at 5 years were associated with shorter completion times by 5.2 s (95% Confidence Interval [CI] −9.3, −1.1), 4.5 s (95% CI −8.1, −0.9), and 4.7 s (95% CI −9.0, −0.3), respectively. However, children with higher BDE-153 at 3 years had longer completion times (β=5.4 s, 95% CI −0.3, 11.1). Prenatal PBDEs were associated with improved visual spatial memory retention, with children spending a higher percentage of their search path in the correct quadrant. Child sex modified some associations between PBDEs and visual spatial learning. Longer path lengths were observed among males with increased BDE-47 at 2 and 3 years, while females had shorter paths. In conclusion, prenatal and postnatal BDE-28, −47, −99, and −100 at 5 and 8 years were associated with improved visual spatial abilities, whereas a pattern of impairments in visual spatial learning was noted with early childhood BDE-153 concentrations. - Highlights: • The VMWM test was used to assess visual spatial abilities in children at 8 years. • BDE-153 at 3 years was adversely associated with visual spatial learning. • BDE-47, −99, and −100 at 5 years was associated with better visual spatial learning. • Prenatal PBDEs were associated with improved visual spatial memory retention. • Male children were observed to perform more poorly on the VMWM than females.« less
ERIC Educational Resources Information Center
Nevo, Einat; Bar-Kochva, Irit
2015-01-01
This study investigated the relations of early working-memory abilities (phonological and visual-spatial short-term memory [STM] and complex memory and episodic buffer memory) and later developing reading skills. Sixty Hebrew-speaking children were followed from kindergarten through Grade 5. Working memory was tested in kindergarten and reading in…
Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone
2017-07-19
Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.
Spatiotemporal proximity effects in visual short-term memory examined by target-nontarget analysis.
Sapkota, Raju P; Pardhan, Shahina; van der Linde, Ian
2016-08-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the spatial and temporal separation of real-world memory targets and erroneously selected nontarget items examined during location-recognition and object-recall tasks. In Experiment 1 (the location-recognition task), our test display comprised either the picture or name of 1 previously examined memory stimulus (rendered above as the stimulus-display area), together with numbered square boxes at each of the memory-stimulus locations used in that trial. Participants were asked to report the number inside the square box corresponding to the location at which the cued object was originally presented. In Experiment 2 (the object-recall task), the test display comprised a single empty square box presented at 1 memory-stimulus location. Participants were asked to report the name of the object presented at that location. In both experiments, nontarget objects that were spatially and temporally proximal to the memory target were confused more often than nontarget objects that were spatially and temporally distant (i.e., a spatiotemporal proximity effect); this effect generalized across memory tasks, and the object feature (picture or name) that cued the test-display memory target. Our findings are discussed in terms of spatial and temporal confusion "fields" in VSTM, wherein objects occupy diffuse loci in a spatiotemporal coordinate system, wherein neighboring locations are more susceptible to confusion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Baldwin, C M; Houston, F P; Podgornik, M N; Young, R S; Barnes, C A; Witten, M L
2001-01-01
To determine whether JP-8 jet fuel affects parameters of the Functional Observational Battery (FOB), visual discrimination, or spatial learning and memory, the authors exposed groups of male Fischer Brown Norway hybrid rats for 28 d to aerosol/vapor-delivered JP-8, or to JP-8 followed by 15 min of aerosolized substance P analogue, or to sham-confined fresh room air. Behavioral testing was accomplished with the U.S. Environmental Protection Agency's Functional Observational Battery. The authors used the Morris swim task to test visual and spatial learning and memory testing. The spatial test included examination of memory for the original target location following 15 d of JP-8 exposure, as well as a 3-d new target location learning paradigm implemented the day that followed the final day of exposure. Only JP-8 exposed animals had significant weight loss by the 2nd week of exposure compared with JP-8 with substance P and control rats; this finding compares with those of prior studies of JP-8 jet fuel. Rats exposed to JP-8 with or without substance P exhibited significantly greater rearing and less grooming behavior over time than did controls during Functional Observational Battery open-field testing. Exposed rats also swam significantly faster than controls during the new target location training and testing, thus supporting the increased activity noted during Functional Observational Battery testing. There were no significant differences between the exposed and control groups' performances during acquisition, retention, or learning of the new platform location in either the visual discrimination or spatial version of the Morris swim task. The data suggest that although visual discrimination and spatial learning and memory were not disrupted by JP-8 exposure, arousal indices and activity measures were distinctly different in these animals.
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
Assessment of Attentional Workload while Driving by Eye-fixation-related Potentials
NASA Astrophysics Data System (ADS)
Takeda, Yuji; Yoshitsugu, Noritoshi; Itoh, Kazuya; Kanamori, Nobuhiro
How do drivers cope with the attentional workload of in-vehicle information technology? In the present study, we propose a new psychophysiological measure for assessing drivers' attention: eye-fixation-related potential (EFRP). EFRP is a kind of event-related brain potential measurable at the eye-movement situation that reflects how closely observers examine visual information at the eye-fixated position. In the experiment, the effects of verbal working memory load and spatial working memory load during simulated driving were examined by measuring the number of saccadic eye-movements and EFRP as the indices of drivers' attention. The results showed that the spatial working memory load affected both the number of saccadic eye-movements and the amplitude of the P100 component of EFRP, whereas the verbal working memory load affected only the number of saccadic eye-movements. This implies that drivers can perform time-sharing processing between driving and the verbal working memory task, but the decline of accuracy of visual processing during driving is inescapable when the spatial working memory load is given. The present study suggests that EFRP can provide a new index of drivers' attention, other than saccadic eye-movements.
Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano
2015-01-01
Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.
Madderom, Marlous J; Schiller, Raisa M; Gischler, Saskia J; van Heijst, Arno F J; Tibboel, Dick; Aarsen, Femke K; IJsselstijn, Hanneke
2016-06-01
To assess neuropsychologic outcome in 17- and 18-year-old neonatal extracorporeal membrane oxygenation survivors. A prospective longitudinal follow-up study. Follow-up program at the Erasmus MC-Sophia Children's Hospital in Rotterdam, The Netherlands. Thirty adolescents 17 or 18 years old, treated between 1991 and 1997, underwent neuropsychologic assessment. None. Attention, memory, executive functioning, visual-spatial functions, social-emotional functioning, and behavior were assessed with validated instruments, and data were compared with reference data. Included predictors for analysis of adverse outcome were diagnosis, age at start extracorporeal membrane oxygenation, convulsions, and use of antiepileptics. Adolescents' performance (expressed as mean [SD] z score) was significantly lower than the norm on short-term and long-term verbal memory (z score = -1.40 [1.58], p = 0.016; z score = -1.54 [1.67], p = 0.010, respectively), visual-spatial memory (z score = -1.65 [1.37], p = 0.008; z score = -1.70 [1.23], p = 0.008, respectively), and working memory (32% vs 9% in the norm population). Parents reported more problems for their children regarding organization of materials (z score = -0.60 [0.90]; p = 0.03) and behavior evaluation (z score = -0.53 [0.88]; p = 0.05) on a questionnaire. Patients reported more withdrawn/depressed behavior (z score = -0.47 [0.54]; p = 0.02), somatic complaints (z score = -0.43 [0.48]; p = 0.03), and social problems (z score = -0.41 [0.46]; p = 0.04). Patients reported more positive feelings of self-esteem and an average health status. Adolescents treated with neonatal extracorporeal membrane oxygenation are at risk of verbal, visual-spatial, and working memory problems. Future research should focus on 1) the longitudinal outcome of specific neuropsychologic skills in adolescence and adulthood; 2) identifying risk factors of neuropsychologic dysfunction; 3) evaluating to what extent "severity of illness" is responsible for acquired brain injury; and 4) effects of timely cognitive rehabilitation.
The nature of working memory for Braille.
Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter
2010-05-26
Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.
The Nature of Working Memory for Braille
Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter
2010-01-01
Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents. PMID:20520807
Mochizuki, Kei; Funahashi, Shintaro
2016-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.
Cane, James E; Cauchard, Fabrice; Weger, Ulrich W
2012-01-01
Two experiments examined how interruptions impact reading and how interruption lags and the reader's spatial memory affect the recovery from such interruptions. Participants read paragraphs of text and were interrupted unpredictably by a spoken news story while their eye movements were monitored. Time made available for consolidation prior to responding to the interruption did not aid reading resumption. However, providing readers with a visual cue that indicated the interruption location did aid task resumption substantially in Experiment 2. Taken together, the findings show that the recovery from interruptions during reading draws on spatial memory resources and can be aided by processes that support spatial memory. Practical implications are discussed.
Cogné, Mélanie; Auriacombe, Sophie; Vasa, Louise; Tison, François; Klinger, Evelyne; Sauzéon, Hélène; Joseph, Pierre-Alain; N Kaoua, Bernard
2018-05-01
To evaluate whether visual cues are helpful for virtual spatial navigation and memory in Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI). 20 patients with AD, 18 patients with MCI and 20 age-matched healthy controls (HC) were included. Participants had to actively reproduce a path that included 5 intersections with one landmark at each intersection that they had seen previously during a learning phase. Three cueing conditions for navigation were offered: salient landmarks, directional arrows and a map. A path without additional visual stimuli served as control condition. Navigation time and number of trajectory mistakes were recorded. With the presence of directional arrows, no significant difference was found between groups concerning the number of trajectory mistakes and navigation time. The number of trajectory mistakes did not differ significantly between patients with AD and patients with MCI on the path with arrows, the path with salient landmarks and the path with a map. There were significant correlations between the number of trajectory mistakes under the arrow condition and executive tests, and between the number of trajectory mistakes under the salient landmark condition and memory tests. Visual cueing such as directional arrows and salient landmarks appears helpful for spatial navigation and memory tasks in patients with AD and patients with MCI. This study opens new research avenues for neuro-rehabilitation, such as the use of augmented reality in real-life settings to support the navigational capabilities of patients with MCI and patients with AD. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A computational model of spatial visualization capacity.
Lyon, Don R; Gunzelmann, Glenn; Gluck, Kevin A
2008-09-01
Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to perform it. In this model, developed within the Adaptive Control of Thought-Rational (ACT-R) architecture, visualization capacity is limited by three mechanisms. Two of these (associative interference and decay) are longstanding characteristics of ACT-R's declarative memory. A third (spatial interference) is a new mechanism motivated by spatial proximity effects in our data. We tested the model in two experiments, one with parameter-value fitting, and a replication without further fitting. Correspondence between model and data was close in both experiments, suggesting that the model may be useful for understanding why visualizing new, complex spatial material is so difficult.
Belopolsky, Artem V; Theeuwes, Jan
2009-10-01
The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.
Fiacconi, Chris M; Milliken, Bruce
2012-08-01
The purpose of the present study was to highlight the role of location-identity binding mismatches in obscuring explicit awareness of a strong contingency. In a spatial-priming procedure, we introduced a high likelihood of location-repeat trials. Experiments 1, 2a, and 2b demonstrated that participants' explicit awareness of this contingency was heavily influenced by the local match in location-identity bindings. In Experiment 3, we sought to determine why location-identity binding mismatches produce such low levels of contingency awareness. Our results suggest that binding mismatches can interfere substantially with visual-memory performance. We attribute the low levels of contingency awareness to participants' inability to remember the critical location-identity binding in the prime on a trial-to-trial basis. These results imply a close interplay between object files and visual working memory.
Effects of Anxiety on Memory Storage and Updating in Young Children
ERIC Educational Resources Information Center
Visu-Petra, Laura; Cheie, Lavinia; Benga, Oana; Alloway, Tracy Packiam
2011-01-01
The relationship between trait anxiety and memory functioning in young children was investigated. Two studies were conducted, using tasks tapping verbal and visual-spatial short-term memory (Study 1) and working memory (Study 2) in preschoolers. On the verbal storage tasks, there was a detrimental effect of anxiety on processing efficiency…
Supramodality Effects in Visual and Haptic Spatial Processes
ERIC Educational Resources Information Center
Cattaneo, Zaira; Vecchi, Tomaso
2008-01-01
In this article, the authors investigated unimodal and cross-modal processes in spatial working memory. A number of locations had to be memorized within visual or haptic matrices according to different experimental conditions known to be critical in accounting for the effects of perception on imagery. Results reveal that some characteristics of…
Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B
2013-02-01
Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.
A Cross-Modal Perspective on the Relationships between Imagery and Working Memory
Likova, Lora T.
2013-01-01
Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus ’cutting-off’ any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated. PMID:23346061
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M
2018-02-15
Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.
Potential roles of cholinergic modulation in the neural coding of location and movement speed
Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.
2016-01-01
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935
Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.
Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian
2018-01-15
Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Muthukumaraswamy, Suresh D.; Hibbs, Carina S.; Shapiro, Kimron L.; Bracewell, R. Martyn; Singh, Krish D.; Linden, David E. J.
2011-01-01
The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination. PMID:21940605
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Science and Technology Text Mining: Text Mining of the Journal Cortex
2004-01-01
Amnesia Retrograde Amnesia GENERAL Semantic Memory Episodic Memory Working Memory TEST Serial Position Curve...in Cortex can be reasonably divided into four categories (papers in each category in parenthesis): Semantic Memory (151); Handedness (145); Amnesia ... Semantic Memory (151) is divided into Verbal/ Numerical (76) and Visual/ Spatial (75). Amnesia (119) is divided into Amnesia Symptoms (50) and
The Profile of Memory Function in Children With Autism
Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.
2007-01-01
A clinical memory test was administered to 38 high-functioning children with autism and 38 individually matched normal controls, 8–16 years of age. The resulting profile of memory abilities in the children with autism was characterized by relatively poor memory for complex visual and verbal information and spatial working memory with relatively intact associative learning ability, verbal working memory, and recognition memory. A stepwise discriminant function analysis of the subtests found that the Finger Windows subtest, a measure of spatial working memory, discriminated most accurately between the autism and normal control groups. A principal components analysis indicated that the factor structure of the subtests differed substantially between the children with autism and controls, suggesting differing organizations of memory ability. PMID:16460219
Attentive Tracking Disrupts Feature Binding in Visual Working Memory
Fougnie, Daryl; Marois, René
2009-01-01
One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460
The influence of visual ability on learning and memory performance in 13 strains of mice.
Brown, Richard E; Wong, Aimée A
2007-03-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.
Retinotopic memory is more precise than spatiotopic memory.
Golomb, Julie D; Kanwisher, Nancy
2012-01-31
Successful visually guided behavior requires information about spatiotopic (i.e., world-centered) locations, but how accurately is this information actually derived from initial retinotopic (i.e., eye-centered) visual input? We conducted a spatial working memory task in which subjects remembered a cued location in spatiotopic or retinotopic coordinates while making guided eye movements during the memory delay. Surprisingly, after a saccade, subjects were significantly more accurate and precise at reporting retinotopic locations than spatiotopic locations. This difference grew with each eye movement, such that spatiotopic memory continued to deteriorate, whereas retinotopic memory did not accumulate error. The loss in spatiotopic fidelity is therefore not a generic consequence of eye movements, but a direct result of converting visual information from native retinotopic coordinates. Thus, despite our conscious experience of an effortlessly stable spatiotopic world and our lifetime of practice with spatiotopic tasks, memory is actually more reliable in raw retinotopic coordinates than in ecologically relevant spatiotopic coordinates.
Markers of preparatory attention predict visual short-term memory performance.
Murray, Alexandra M; Nobre, Anna C; Stokes, Mark G
2011-05-01
Visual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d'). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability. Copyright © 2011. Published by Elsevier Ltd.
Introduction to the Special Issue on Visual Working Memory
Wolfe, Jeremy M
2014-01-01
Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647
ERIC Educational Resources Information Center
Foisy, Pierre
1994-01-01
Meta analysis of 22 studies testing 1,598 subjects revealed that aging has a great effect on intentional memory for spatial location. However, methodological limits were found: fewer than half of the studies controlled for age differences in visual acuity or did not use a test phase of fixed duration. (SK)
ERIC Educational Resources Information Center
Shimi, Andria; Scerif, Gaia
2015-01-01
What cognitive processes influence how well we maintain information in visual short-term memory (VSTM)? We used a developmentally informed design to delve into the interplay of top-down spatial biases with the nature of the internal memory codes, motivated by documented changes for both factors over childhood. Seven-year-olds, 11-year-olds, and…
The spatiotopic 'visual' cortex of the blind
NASA Astrophysics Data System (ADS)
Likova, Lora
2012-03-01
Visual cortex activity in the blind has been shown in sensory tasks. Can it be activated in memory tasks? If so, are inherent features of its organization meaningfully employed? Our recent results in short-term blindfolded subjects imply that human primary visual cortex (V1) may operate as a modality-independent 'sketchpad' for working memory (Likova, 2010a). Interestingly, the spread of the V1 activation approximately corresponded to the spatial extent of the images in terms of their angle of projection to the subject. We now raise the questions of whether under long-term visual deprivation V1 is also employed in non-visual memory task, in particular in congenitally blind individuals, who have never had visual stimulation to guide the development of the visual area organization, and whether such spatial organization is still valid for the same paradigm that was used in blindfolded individuals. The outcome has implications for an emerging reconceptualization of the principles of brain architecture and its reorganization under sensory deprivation. Methods: We used a novel fMRI drawing paradigm in congenitally and late-onset blind, compared with sighted and blindfolded subjects in three conditions of 20s duration, separated by 20s rest-intervals, (i) Tactile Exploration: raised-line images explored and memorized; (ii) Tactile Memory Drawing: drawing the explored image from memory; (iii) Scribble: mindless drawing movements with no memory component. Results and Conclusions: V1 was strongly activated for Tactile Memory Drawing and Tactile Exploration in these totally blind subjects. Remarkably, after training, even in the memory task, the mapping of V1 activation largely corresponded to the angular projection of the tactile stimuli relative to the ego-center (i.e., the effective visual angle at the head); beyond this projective boundary, peripheral V1 signals were dramatically reduced or even suppressed. The matching extent of the activation in the congenitally blind rules out vision-based explanatory mechanisms, and supports the more radical idea of V1 as a modality-independent 'projection screen' or a 'sketchpad', whose mapping scales to the projective dimensions of objects explored in the peri-personal space.
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S
2002-01-01
Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Working Memory, Visual-Spatial-Intelligence and Their Relationship to Problem-Solving
ERIC Educational Resources Information Center
Buhner, Markus; Kroner, Stephan; Ziegler, Matthias
2008-01-01
The relationship between working memory, intelligence and problem-solving is explored. Wittmann and Suss [Wittmann, W.W., & Suss, H.M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P.L. Ackerman, R.D. Roberts (Ed.), "Learning and individual…
Working Memory Components and Problem-Solving Accuracy: Are There Multiple Pathways?
ERIC Educational Resources Information Center
Swanson, H. Lee; Fung, Wenson
2016-01-01
This study determined the working memory (WM) components (executive, phonological short-term memory [STM], and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy in elementary schoolchildren (N = 392). The battery of tests administered to assess mediators between WM and problem-solving included measures of…
Koenig, Katherine A; Rao, Stephen M; Lowe, Mark J; Lin, Jian; Sakaie, Ken E; Stone, Lael; Bermel, Robert A; Trapp, Bruce D; Phillips, Micheal D
2018-03-01
Episodic memory loss is one of the most common cognitive symptoms in patients with multiple sclerosis (MS), but the pathophysiology of this symptom remains unclear. Both the hippocampus and thalamus have been implicated in episodic memory and show regional atrophy in patients with MS. In this work, we used functional magnetic resonance imaging (fMRI) during a verbal episodic memory task, lesion load, and volumetric measures of the hippocampus and thalamus to assess the relative contributions to verbal and visual-spatial episodic memory. Functional activation, lesion load, and volumetric measures from 32 patients with MS and 16 healthy controls were used in a predictive analysis of episodic memory function. After adjusting for disease duration, immediate recall performance on a visual-spatial episodic memory task was significantly predicted by hippocampal volume ( p < 0.003). Delayed recall on the same task was significantly predicted by volume of the left thalamus ( p < 0.003). For both memory measures, functional activation of the thalamus during encoding was more predictive than that of volume measures ( p < 0.002). Our results suggest that functional activation may be useful as a predictive measure of episodic memory loss in patients with MS.
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.
Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians
Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330
An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information
Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn
2011-01-01
Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871
Neurocognitive Predictors of Academic Outcomes among Childhood Leukemia Survivors
(Ki) Moore, Ida M.; Lupo, Philip J.; Insel, Kathleen; Harris, Lynnette L.; Pasvogel, Alice; Koerner, Kari M.; Adkins, Kristin B.; Taylor, Olga A.; Hockenberry, Marilyn J.
2015-01-01
Background Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and survival approaches 90%. ALL survivors are more likely than healthy peers or siblings to experience academic underachievement yet little is known about neurocognitive predictors of academic outcomes. Objective Objectives were to compare neurocognitive abilities to age-adjusted standardized norms; to examine change over time in neurocognitive abilities; and to establish neurocognitive predictors of academic outcomes. Methods Seventy-one children were followed over the course of therapy. Cognitive abilities were assessed during Induction when the child was in remission (Baseline) and annually for 3 years (Year 1, Year 2, Year 3). Reading and mathematics abilities were assessed at Year 3. Results Fine motor dexterity was significantly below age-adjusted norms at all data points, but showed improvement over time. Baseline visual-motor integration was within the normal range but significantly declined by Year 3, and mean scores at Years 2 and 3 were significantly below age-adjusted norms. Verbal short-term memory was significantly below age-adjusted norms at all assessments. Visual-motor integration predicted reading and mathematic abilities. Verbal short-term memory predicted reading abilities, and visual short-term memory predicted mathematic abilities. Conclusions CNS-directed therapy is associated with specific neurocognitive problems. Visual spatial skills, verbal and visual short term memory predict academic outcomes. Implications for practice Early assessment of visual spatial perception and short-term memory can identify children at risk for academic problems. Children who are at risk for academic problems could benefit from a school based Individual Educational Program and/or educational intervention. PMID:26166361
Attention modulates maintenance of representations in visual short-term memory.
Kuo, Bo-Cheng; Stokes, Mark G; Nobre, Anna Christina
2012-01-01
Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top-down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.
Memory under pressure: secondary-task effects on contextual cueing of visual search.
Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas
2013-11-04
Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.
Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao
2016-01-01
Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247
Cognitive functioning following traumatic brain injury: A five-year follow-up.
Marsh, Nigel V; Ludbrook, Maria R; Gaffaney, Lauren C
2016-01-01
To describe the long-term prevalence and severity of cognitive deficits following significant (i.e., ventilation required for >24 hours) traumatic brain injury. To assess a comprehensive range of cognitive functions using psychometric measures with established normative, reliability, and validity data. A group of 71 adults was assessed at approximately five years (mean = 66 months) following injury. Assessment of cognitive functioning covered the domains of intelligence, attention, verbal and visual memory, visual-spatial construction, and executive functions. Impairment was evident across all domains but prevalence varied both within and between domains. Across aspects of intelligence clinical impairment ranged from 8-25% , attention 39-62% , verbal memory 16-46% , visual memory 23-51% , visual-spatial construction 38% , and executive functions (verbal fluency) 13% . In addition, 3-23% of performances across the measures were in the borderline range, suggesting a high prevalence of subclinical deficit. Although the prevalence of impairment may vary across cognitive domains, long-term follow-up documented deficits in all six domains. These findings provide further evidence that while improvement of cognitive functioning following significant traumatic brain injury may be possible, recovery of function is unlikely.
Imprinting modulates processing of visual information in the visual wulst of chicks.
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-11-14
Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.
Imprinting modulates processing of visual information in the visual wulst of chicks
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-01-01
Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium. PMID:17101060
Berggren, Nick; Eimer, Martin
2016-12-01
During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.
ERIC Educational Resources Information Center
Passolunghi, Maria Chiara; Mammarella, Irene Cristina
2012-01-01
This study examines visual and spatial working memory skills in 35 third to fifth graders with both mathematics learning disabilities (MLD) and poor problem-solving skills and 35 of their peers with typical development (TD) on tasks involving both low and high attentional control. Results revealed that children with MLD, relative to TD children,…
Role of Prefrontal Persistent Activity in Working Memory
Riley, Mitchell R.; Constantinidis, Christos
2016-01-01
The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between BOLD activation and spiking activity findings, and point out that fMRI methods do not currently have the spatial resolution necessary to decode information within the prefrontal cortex, which is likely organized at the micrometer scale. Therefore, we make the case that prefrontal persistent activity is both necessary and sufficient for the maintenance of information in working memory. PMID:26778980
[Working memory and work with memory: visual-spatial and further components of processing].
Velichkovsky, B M; Challis, B H; Pomplun, M
1995-01-01
Empirical and theoretical evidence for the concept of working memory is considered. We argue that the major weakness of this concept is its loose connection with the knowledge about background perceptive and cognitive processes. Results of two relevant experiments are provided. The first study demonstrated the classical chunking effect in a speeded visual search and comparison task, the proper domain of a large-capacity very short term sensory store. Our second study was a kind of extended levels-of-processing experiment. We attempted to manipulate visual, phonological, and (different) executive components of long-term memory in the hope of finding some systematic relationships between these forms of processing. Indeed, the results demonstrated a high degree of systematicity without any apparent need for a concept such as working memory for the explanation. Accordingly, the place for working memory is at all the interfaces where our metacognitive strategies interfere with mostly domain-specific cognitive mechanisms. Working memory is simply our work with memory.
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Yuan, Lei; Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects-the shift account of relation processing-which states that relations such as 'above' or 'below' are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants' voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations.
[Cortical potentials evoked to response to a signal to make a memory-guided saccade].
Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V
2010-01-01
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.
Jakobson, L S; Pearson, P M; Robertson, B
2008-01-15
Cases of hue-selective dyschomatopsias, together with the results of recent optical imaging studies [Xiao, Y., Casti, A. R. R., Xiao, J., & Kaplan, E. (2006). A spatially organized representation of colour in macaque primary visual cortex. Perception, 35, ECVP Abstract Supplement; Xiao, Y., Wang, Y., & Felleman, D. J. (2003). A spatially organized representation of colour in macaque cortical area V2. Nature, 421, 535-539], have provided support for the idea that different colours are processed in spatially distinct regions of extrastriate cortex. In the present report, we provide evidence suggesting that a similar, but distinct, map may exist for representations of colour in memory. This evidence comes from observations of a young woman (QP) who demonstrates an isolated deficit in colour memory secondary to a concussive episode. Despite having normal colour perception and colour naming skills, and above-average memory skills in other domains, QP's ability to recall visually encoded colour information over short retention intervals is dramatically impaired. Her long-term memory for colour and her colour imagery skills are also abnormal. Surprisingly, however, these impairments are not seen with all hues; specifically, her ability to remember or imagine blue shades is spared. This interesting case contributes to the literature suggesting that colour perception, naming, and memory can be clinically dissociated, and provides insights into the organization of colour information in memory.
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2013-06-01
The capacity of visual-spatial working memory (WM) declines from early to late adulthood. Recent attempts at identifying neural correlates of WM capacity decline have focused on the maintenance phase of WM. Here, we investigate neural mechanisms during the encoding phase as another potential mechanism contributing to adult age differences in WM capacity. We used electroencephalography to track neural activity during encoding and maintenance on a millisecond timescale in 35 younger and 35 older adults performing a visual-spatial WM task. As predicted, we observed pronounced age differences in ERP indicators of WM encoding: Younger adults showed attentional selection during item encoding (N2pc component), but this selection mechanism was greatly attenuated in older adults. Conversely, older adults showed more pronounced signs of early perceptual stimulus processing (N1 component) than younger adults. The amplitude modulation of the N1 component predicted WM capacity in older adults, whereas the attentional amplitude modulation of the N2pc component predicted WM capacity in younger adults. Our findings suggest that adult age differences in mechanisms of WM encoding contribute to adult age differences in limits of visual-spatial WM capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of Hearing Status and Sign Language Use on Working Memory
ERIC Educational Resources Information Center
Marschark, Marc; Sarchet, Thomastine; Trani, Alexandra
2016-01-01
Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential…
Working Memory and Intelligence in Children: What Develops?
ERIC Educational Resources Information Center
Swanson, H. Lee
2008-01-01
This study explored the contribution of the phonological and executive working memory (WM) systems to 205 (102 girls, 103 boys, 6 to 9 years old) elementary school children's fluid and crystallized intelligence. The results show that (a) a 3-factor structure (phonological short-term memory [STM], visual-spatial WM, and verbal WM) was comparable…
Reading disabilities in children: A selective meta-analysis of the cognitive literature.
Kudo, Milagros F; Lussier, Cathy M; Swanson, H Lee
2015-05-01
This article synthesizes literature that compares the academic, cognitive, and behavioral performance of children with and without reading disabilities (RD). Forty-eight studies met the criteria for the meta-analysis, yielding 735 effect sizes (ESs) with an overall weighted ES of 0.98. Small to high ESs in favor of children without RD emerged on measures of cognition (rapid naming [ES = 0.89], phonological awareness [ES = 1.00], verbal working memory [ES = 0.79], short-term memory [ES = 0.56], visual-spatial memory [ES = 0.48], and executive processing [ES = 0.67]), academic achievement (pseudoword reading [ES = 1.85], math [ES = 1.20], vocabulary [ES = 0.83], spelling [ES = 1.25], and writing [ES = 1.20]), and behavior skills (ES = 0.80). Hierarchical linear modeling indicated that specific cognitive process measures (verbal working memory, visual-spatial memory, executive processing, and short-term memory) and intelligence measures (general and verbal intelligence) significantly moderated overall group effect size differences. Overall, the results supported the assumption that cognitive deficits in children with RD are persistent. Copyright © 2015. Published by Elsevier Ltd.
Enhancing cognition with video games: a multiple game training study.
Oei, Adam C; Patterson, Michael D
2013-01-01
Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2015-08-12
Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.
Comparison of Neurocognitive Outcomes after Carotid Endarterectomy and Carotid Artery Stenting.
Kim, Jerry J; Schwartz, Samuel; Wen, Johnny; deVirgilio, Christian; Lobue, Abeline; Walot, Irwin; Koopmann, Matthew; Donayre, Carlos; White, Rodney A
2015-10-01
Cognitive and emotional outcomes after carotid endarterectomy (CEA) and carotid artery stenting with embolic protection device (CAS + EPD) are not clear. Patients were entered prospectively into a United States Food and Drug Administration-approved single-center physician-sponsored investigational device exemption between 2004 and 2010 and received either CEA or CAS + EPD. Patients underwent cognitive testing preprocedure and at 6, 12, and 60 months postprocedure. Cognitive domains assessed included attention, memory, executive, motor function, visual spatial functioning, language, and processing speed. Beck Depression and anxiety scales were also compared. There were a total of 38 patients that met conventional indications for carotid surgery (symptomatic with ≥50% stenosis or asymptomatic with ≥70% stenosis)-12 patients underwent CEA, whereas 26 patients underwent CAS + EPD. Both CEA and CAS + EPD patients showed postprocedure improvement in memory and executive function. No differences were seen at follow-up in regards to emotional dysfunction (depression and anxiety), attention, visual spatial functioning, language, motor function, and processing speed. Only two patients underwent neuropsychiatric testing at 60 months-these CAS + EPD patients showed sustained improvement in memory, visual spatial, and executive functions. In conclusion, cognitive and emotional outcomes were similar between CEA and CAS + EPD patients.
Lerch, Rachel A; Sims, Chris R
2016-06-01
Limitations in visual working memory (VWM) have been extensively studied in psychophysical tasks, but not well understood in terms of how these memory limits translate to performance in more natural domains. For example, in reaching to grasp an object based on a spatial memory representation, overshooting the intended target may be more costly than undershooting, such as when reaching for a cup of hot coffee. The current body of literature lacks a detailed account of how the costs or consequences of memory error influence what we encode in visual memory and how we act on the basis of remembered information. Here, we study how externally imposed monetary costs influence behavior in a motor decision task that involves reach planning based on recalled information from VWM. We approach this from a decision theoretic perspective, viewing decisions of where to aim in relation to the utility of their outcomes given the uncertainty of memory representations. Our results indicate that subjects accounted for the uncertainty in their visual memory, showing a significant difference in their reach planning when monetary costs were imposed for memory errors. However, our findings indicate that subjects memory representations per se were not biased by the imposed costs, but rather subjects adopted a near-optimal post-mnemonic decision strategy in their motor planning.
Understanding Language, Hearing Status, and Visual-Spatial Skills
Marschark, Marc; Spencer, Linda J.; Durkin, Andreana; Borgna, Georgianna; Convertino, Carol; Machmer, Elizabeth; Kronenberger, William G.; Trani, Alexandra
2015-01-01
It is frequently assumed that deaf individuals have superior visual-spatial abilities relative to hearing peers and thus, in educational settings, they are often considered visual learners. There is some empirical evidence to support the former assumption, although it is inconsistent, and apparently none to support the latter. Three experiments examined visual-spatial and related cognitive abilities among deaf individuals who varied in their preferred language modality and use of cochlear implants (CIs) and hearing individuals who varied in their sign language skills. Sign language and spoken language assessments accompanied tasks involving visual-spatial processing, working memory, nonverbal logical reasoning, and executive function. Results were consistent with other recent studies indicating no generalized visual-spatial advantage for deaf individuals and suggested that their performance in that domain may be linked to the strength of their preferred language skills regardless of modality. Hearing individuals performed more strongly than deaf individuals on several visual-spatial and self-reported executive functioning measures, regardless of sign language skills or use of CIs. Findings are inconsistent with assumptions that deaf individuals are visual learners or are superior to hearing individuals across a broad range of visual-spatial tasks. Further, performance of deaf and hearing individuals on the same visual-spatial tasks was associated with differing cognitive abilities, suggesting that different cognitive processes may be involved in visual-spatial processing in these groups. PMID:26141071
Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan
2013-02-15
Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Confident false memories for spatial location are mediated by V1.
Karanian, Jessica M; Slotnick, Scott D
2018-06-27
Prior functional magnetic resonance imaging (fMRI) results suggest that true memories, but not false memories, activate early sensory cortex. It is thought that false memories, which reflect conscious processing, do not activate early sensory cortex because these regions are associated with nonconscious processing. We posited that false memories may activate the earliest visual cortical processing region (i.e., V1) when task conditions are manipulated to evoke conscious processing in this region. In an fMRI experiment, abstract shapes were presented to the left or right of fixation during encoding. During retrieval, old shapes were presented at fixation and participants characterized each shape as previously on the "left" or "right" followed by an "unsure"-"sure"-"very sure" confidence rating. False memories for spatial location (i.e., "right"/left or "left"/right trials with "sure" or "very sure" confidence ratings) were associated with activity in bilateral early visual regions, including V1. In a follow-up fMRI-guided transcranial magnetic stimulation (TMS) experiment that employed the same paradigm, we assessed whether V1 activity was necessary for false memory construction. Between the encoding phase and the retrieval phase of each run, TMS (1 Hz, 8 min) was used to target the location of false memory activity (identified in the fMRI experiment) in left V1, right V1, or the vertex (control site). Confident false memories for spatial location were significantly reduced following TMS to V1, as compared to vertex. The results of the present experiments provide convergent evidence that early sensory cortex can contribute to false memory construction under particular task conditions.
Ekkel, M R; van Lier, R; Steenbergen, B
2017-03-01
Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we examined individual factors that are likely to affect learning to echolocate: sustained and divided attention, working memory, and spatial abilities. To that aim, sighted participants with normal hearing performed an echolocation task that was adapted from a previously reported size-discrimination task. In line with existing studies, we found large individual differences in echolocation ability. We also found indications that participants were able to improve their echolocation ability. Furthermore, we found a significant positive correlation between improvement in echolocation and sustained and divided attention, as measured in the PASAT. No significant correlations were found with our tests regarding working memory and spatial abilities. These findings may have implications for the development of guidelines for training echolocation that are tailored to the individual with a visual impairment.
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-10-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.
The lasting memory enhancements of retrospective attention
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-01-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756
Kibby, Michelle Y; Cohen, Morris J
2008-11-01
We examined memory functioning in children with reading disabilities (RD), Attention deficit/hyperactivity disorder (ADHD), and RD/ADHD using a clinic sample with a clinical instrument: the Children's Memory Scale, enhancing its generalizability. Participants included 23 children with RD, 30 with ADHD, 30 with RD/ADHD, and 30 controls. Children with RD presented with reduced verbal short-term memory (STM) but intact visual STM, central executive (CE), and long-term memory (LTM) functioning. Their deficit in STM appeared specific to tasks requiring phonetic coding of material. Children with ADHD displayed intact CE and LTM functioning but reduced visual-spatial STM, especially when off stimulant medication. Children with RD/ADHD had deficits consistent with both disorders.
Saint-Aubin, Jean; Tremblay, Sébastien; Jalbert, Annie
2007-01-01
This research investigated the nature of encoding and its contribution to serial recall for visual-spatial information. In order to do so, we examined the relationship between fixation duration and recall performance. Using the dot task--a series of seven dots spatially distributed on a monitor screen is presented sequentially for immediate recall--performance and eye-tracking data were recorded during the presentation of the to-be-remembered items. When participants were free to move their eyes at their will, both fixation durations and probability of correct recall decreased as a function of serial position. Furthermore, imposing constant durations of fixation across all serial positions had a beneficial impact (though relatively small) on item but not order recall. Great care was taken to isolate the effect of fixation duration from that of presentation duration. Although eye movement at encoding contributes to immediate memory, it is not decisive in shaping serial recall performance. Our results also provide further evidence that the distinction between item and order information, well-established in the verbal domain, extends to visual-spatial information.
ERIC Educational Resources Information Center
Brady, Timothy F.; Alvarez, George A.
2015-01-01
A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…
ERIC Educational Resources Information Center
Robert, Nicole D.; LeFevre, Jo-Anne
2013-01-01
Does solving subtraction problems with negative answers (e.g., 5-14) require different cognitive processes than solving problems with positive answers (e.g., 14-5)? In a dual-task experiment, young adults (N=39) combined subtraction with two working memory tasks, verbal memory and visual-spatial memory. All of the subtraction problems required…
Intrahemispheric theta rhythm desynchronization impairs working memory.
Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter
2017-01-01
There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.
Phenomenological reliving and visual imagery during autobiographical recall in Alzheimer’s disease
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-01-01
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer’s disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a 5-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail – a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features. PMID:27003216
Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease.
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-03-16
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.
Visual selective attention in amnestic mild cognitive impairment.
McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E
2014-11-01
Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Visual-spatial thinking: An aspect of science overlooked by educators
NASA Astrophysics Data System (ADS)
Mathewson, James H.
1999-01-01
Thinking with images plays a central role in scientific creativity and communication but is neglected in science classrooms. This article reviews the fundamental role of imagery in science and technology and our current knowledge of visual-spatial cognition. A novel analogic and thematic organization of images and visualization within science and technology is proposed that can help in the generation and evaluation of classroom activities and materials, and serve as a focus for professional development programs in visual-spatial thinking for science teachers. Visual-spatial thinking includes vision - using the eyes to identify, locate, and think about objects and ourselves in the world, and imagery - the formation, inspection, transformation, and maintenance of images in the mind's eye in the absence of a visual stimulus. A spatial image preserves relationships among a complex set of ideas as a single chunk in working memory, increasing the amount of information that can be maintained in consciousness at a given moment. Vision and imagery are fundamental cognitive processes using specialized pathways in the brain and rely on our memory of prior experience. Visual-spatial thinking develops from birth, together with language and other specialized abilities, through interactions between inherited capabilities and experience. Scientific creativity can be considered as an amalgam of three closely allied mental formats: images; metaphors; and unifying ideas (themes). Combinations of images, analogies, and themes pervade science in the form of master images and visualization techniques. A critique of current practice in education contrasts the subservient role of visual-spatial learning with the dominance of the alphanumeric encoding skills in classroom and textbooks. The lack of coherence in curriculum, pedagogy, and learning theory requires reform that addresses thinking skills, including imagery. Successful integration of information, skills and attitudes into cohesive mental schemata employed by self-aware human beings is a basic goal of education. The current attempt to impose integration using themes is criticized on the grounds that the required underpinning in cognitive skills and content knowledge by teachers and students may be absent. Teaching strategies that employ visual-spatial thinking are reviewed. Master images are recommended as a novel point of departure for a systematic development of programs on visual-spatial thinking in research, teacher education, curriculum, and classroom practice.
A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks
1993-05-01
Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple
Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F
2017-07-01
Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.
Effects of methylphenidate on working memory components: influence of measurement.
Bedard, Anne-Claude; Jain, Umesh; Johnson, Sheilah Hogg; Tannock, Rosemary
2007-09-01
To investigate the effects of methylphenidate (MPH) on components of working memory (WM) in attention-deficit hyperactivity disorder (ADHD) and determine the responsiveness of WM measures to MPH. Participants were a clinical sample of 50 children and adolescents with ADHD, aged 6 to 16 years old, who participated in an acute randomized, double-blind, placebo-controlled, crossover trial with single challenges of three MPH doses. Four components of WM were investigated, which varied in processing demands (storage versus manipulation of information) and modality (auditory-verbal; visual-spatial), each of which was indexed by a minimum of two separate measures. MPH improved the ability to store visual-spatial information irrespective of instrument used, but had no effects on the storage of auditory-verbal information. By contrast, MPH enhanced the ability to manipulate both auditory-verbal and visual-spatial information, although effects were instrument specific in both cases. MPH effects on WM are selective: they vary as a function of WM component and measurement.
Use of spatial information and search strategies in a water maze analog in Drosophila melanogaster.
Foucaud, Julien; Burns, James G; Mery, Frederic
2010-12-03
Learning the spatial organization of the environment is crucial to fitness in most animal species. Understanding proximate and ultimate factors underpinning spatial memory is thus a major goal in the study of animal behavior. Despite considerable interest in various aspects of its behavior and biology, the model species Drosophila melanogaster lacks a standardized apparatus to investigate spatial learning and memory. We propose here a novel apparatus, the heat maze, conceptually based on the Morris water maze used in rodents. Using the heat maze, we demonstrate that D. melanogaster flies are able to use either proximal or distal visual cues to increase their performance in navigating to a safe zone. We also show that flies are actively using the orientation of distal visual cues when relevant in targeting the safe zone, i.e., Drosophila display spatial learning. Parameter-based classification of search strategies demonstrated the progressive use of spatially precise search strategies during learning. We discuss the opportunity to unravel the mechanistic and evolutionary bases of spatial learning in Drosophila using the heat maze.
Kasper, Ryan W; Grafton, Scott T; Eckstein, Miguel P; Giesbrecht, Barry
2015-03-01
Visual search can be facilitated by the learning of spatial configurations that predict the location of a target among distractors. Neuropsychological and functional magnetic resonance imaging (fMRI) evidence implicates the medial temporal lobe (MTL) memory system in this contextual cueing effect, and electroencephalography (EEG) studies have identified the involvement of visual cortical regions related to attention. This work investigated two questions: (1) how memory and attention systems are related in contextual cueing; and (2) how these systems are involved in both short- and long-term contextual learning. In one session, EEG and fMRI data were acquired simultaneously in a contextual cueing task. In a second session conducted 1 week later, EEG data were recorded in isolation. The fMRI results revealed MTL contextual modulations that were correlated with short- and long-term behavioral context enhancements and attention-related effects measured with EEG. An fMRI-seeded EEG source analysis revealed that the MTL contributed the most variance to the variability in the attention enhancements measured with EEG. These results support the notion that memory and attention systems interact to facilitate search when spatial context is implicitly learned. © 2015 New York Academy of Sciences.
Reconstructions of information in visual spatial working memory degrade with memory load.
Sprague, Thomas C; Ester, Edward F; Serences, John T
2014-09-22
Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dearborn, Peter J; Elias, Merrill F; Sullivan, Kevin J; Sullivan, Cara E; Robbins, Michael A
2018-06-21
Prior studies have found associations between visual acuity (VA) and cognitive function. However, these studies used a limited range of cognitive measures and did not control for cardiovascular disease risk factors (CVD-RFs) and baseline function. The primary objective of this study was to analyze the associations of VA and cognitive performance using a thorough neuropsychological test battery. This study used community-dwelling sample data across the sixth (2001-2006) and seventh (2006-2010) waves of the Maine-Syracuse Longitudinal Study (n=655). Wave 6 VA as measured by the Snellen Eye Test was the primary predictor of wave 6 and wave 7 Global cognitive performance, Visual-Spatial Organization and Memory, Verbal Episodic Memory, Working Memory, Scanning and Tracking, and Executive Function. Additionally, VA was used to predict longitudinal changes in wave 7 cognitive performance (wave 6 performance adjusted). We analyzed these relationships with multiple linear and logistic regression models adjusted for age, sex, education, ethnicity, depressive symptoms, physical function deficits in addition to CVD-RFs, chronic kidney disease, homocysteine, continuous systolic blood pressure, and hypertension status. Adjusted for demographic covariates and CVD-RFs, poorer VA was associated with concurrent and approximate 5-year declines in Global cognitive function, Visual-Spatial Organization and Memory, and Verbal Episodic Memory. VA may be used in combination with other screening measures to determine risk for cognitive decline. (JINS, 2018, 24, 1-9).
Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M
2016-01-01
The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).
Liu, Lianliang; Cao, Jinxuan; Chen, Jiong; Zhang, Xin; Wu, Zufang; Xiang, Huan
2016-09-19
This study was aimed to evaluate effects of peptides from Phascolosoma esculenta and its ferrous-chelating peptides on spatial learning and memory in mice by Morris water maze test. 100mg/kg peptide on spatial learning and memory function about quadrant time and passing times through the platform better than 50 and 150mg/kg group during exploration period (P<0.05), without body weight between the weight and visual ability. 100mg/kg ferrous-chelating peptide group performed better ability of spatial learning and memory than 100mg/kg peptide group (P<0.05). qRT-PCR results showed that 50 and 100mg/kg administration peptide and 100mg/kg ferrous-chelating peptide can significantly improve mRNA expression of NR2A, NR2B and BDNF with oxidative stress status (GSH-Px, SOD, TAC and MDA), which explained mechanism for improving learning and memory ability in mice via anti-oxidative character. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
ERIC Educational Resources Information Center
Gao, Zaifeng; Bentin, Shlomo
2011-01-01
Face perception studies investigated how spatial frequencies (SF) are extracted from retinal display while forming a perceptual representation, or their selective use during task-imposed categorization. Here we focused on the order of encoding low-spatial frequencies (LSF) and high-spatial frequencies (HSF) from perceptual representations into…
Working memory resources are shared across sensory modalities.
Salmela, V R; Moisala, M; Alho, K
2014-10-01
A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.
Updating visual memory across eye movements for ocular and arm motor control.
Thompson, Aidan A; Henriques, Denise Y P
2008-11-01
Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.
Drawing from Memory: Hand-Eye Coordination at Multiple Scales
Spivey, Michael J.
2013-01-01
Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894
A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.
Simner, Julia; Mayo, Neil; Spiller, Mary-Jane
2009-01-01
Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).
Comparing the Effects of Congenital and Late Visual Impairments on Visuospatial Mental Abilities
ERIC Educational Resources Information Center
Monegato, Maura; Cattaneo, Zaira; Pece, Alfredo; Vecchi, Tomaso
2007-01-01
This study compared participants who were congenitally visually impaired and those who became visually impaired later in life in a spatial memory task. The latter showed less efficient visuospatial processes than did the former. However, these differences were of a quantitative nature only, indicating common cognitive mechanisms that can be…
Understanding Language, Hearing Status, and Visual-Spatial Skills.
Marschark, Marc; Spencer, Linda J; Durkin, Andreana; Borgna, Georgianna; Convertino, Carol; Machmer, Elizabeth; Kronenberger, William G; Trani, Alexandra
2015-10-01
It is frequently assumed that deaf individuals have superior visual-spatial abilities relative to hearing peers and thus, in educational settings, they are often considered visual learners. There is some empirical evidence to support the former assumption, although it is inconsistent, and apparently none to support the latter. Three experiments examined visual-spatial and related cognitive abilities among deaf individuals who varied in their preferred language modality and use of cochlear implants (CIs) and hearing individuals who varied in their sign language skills. Sign language and spoken language assessments accompanied tasks involving visual-spatial processing, working memory, nonverbal logical reasoning, and executive function. Results were consistent with other recent studies indicating no generalized visual-spatial advantage for deaf individuals and suggested that their performance in that domain may be linked to the strength of their preferred language skills regardless of modality. Hearing individuals performed more strongly than deaf individuals on several visual-spatial and self-reported executive functioning measures, regardless of sign language skills or use of CIs. Findings are inconsistent with assumptions that deaf individuals are visual learners or are superior to hearing individuals across a broad range of visual-spatial tasks. Further, performance of deaf and hearing individuals on the same visual-spatial tasks was associated with differing cognitive abilities, suggesting that different cognitive processes may be involved in visual-spatial processing in these groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Visual areas become less engaged in associative recall following memory stabilization.
Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; Fernández, Guillén; Jensen, Ole
2008-04-15
Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas.
A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements
Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J. Douglas
2016-01-01
In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks. PMID:27242452
Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.
Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui
2015-09-01
Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.
Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J
2000-01-01
Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate spatial memory deficit and; (ii) spatial reference memory decline begins at an earlier age in females than in males, a finding that may be related to the cessation of estrous cycling.
Attention and material-specific memory in children with lateralized epilepsy.
Engle, Jennifer A; Smith, Mary Lou
2010-01-01
Epilepsy is frequently associated with attention and memory problems. In adults, lateralization of seizure focus impacts the type of memory affected (left-sided lesions primarily impact verbal memory, while right-sided lesions primarily impact visual memory), but the relationship between seizure focus and the nature of the memory impairment is less clear in children. The current study examines the correlation between parent-reported attention problems and material-specific memory (verbal or visual-spatial) in 65 children (ages 6-16) with medically intractable lateralized epilepsy. There were no significant differences in attention and memory between those with left-lateralized epilepsy (n=25) and those with right-lateralized epilepsy (n=40). However, in the left-lateralized group attention problems were significantly negatively correlated only with delayed visual memory (r=-.450, p<.05), while the right-lateralized group demonstrated the opposite pattern (attention problems significantly negatively correlated with delayed verbal memory; r=-.331, p<.05). These findings suggest that lateralization of seizure focus may in fact impact children's memory in a material-specific manner, while problems with attention may impact memory more globally. Therefore, interventions designed to improve attention in children with epilepsy may have utility in improving certain aspects of memory, but further suggest that in children with lateralized epilepsy, material-specific memory deficits may not resolve with such interventions.
The role of spatial memory and frames of reference in the precision of angular path integration.
Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David
2012-09-01
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.
Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2016-01-01
The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T-G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T-G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T-G delay codes to a "pure" G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory-memory-motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
Visual memory and sustained attention impairment in youths with autism spectrum disorders.
Chien, Y-L; Gau, S S-F; Shang, C-Y; Chiu, Y-N; Tsai, W-C; Wu, Y-Y
2015-08-01
An uneven neurocognitive profile is a hallmark of autism spectrum disorder (ASD). Studies focusing on the visual memory performance in ASD have shown controversial results. We investigated visual memory and sustained attention in youths with ASD and typically developing (TD) youths. We recruited 143 pairs of youths with ASD (males 93.7%; mean age 13.1, s.d. 3.5 years) and age- and sex-matched TD youths. The ASD group consisted of 67 youths with autistic disorder (autism) and 76 with Asperger's disorder (AS) based on the DSM-IV criteria. They were assessed using the Cambridge Neuropsychological Test Automated Battery involving the visual memory [spatial recognition memory (SRM), delayed matching to sample (DMS), paired associates learning (PAL)] and sustained attention (rapid visual information processing; RVP). Youths with ASD performed significantly worse than TD youths on most of the tasks; the significance disappeared in the superior intelligence quotient (IQ) subgroup. The response latency on the tasks did not differ between the ASD and TD groups. Age had significant main effects on SRM, DMS, RVP and part of PAL tasks and had an interaction with diagnosis in DMS and RVP performance. There was no significant difference between autism and AS on visual tasks. Our findings implied that youths with ASD had a wide range of visual memory and sustained attention impairment that was moderated by age and IQ, which supports temporal and frontal lobe dysfunction in ASD. The lack of difference between autism and AS implies that visual memory and sustained attention cannot distinguish these two ASD subtypes, which supports DSM-5 ASD criteria.
Factor Analysis of the WAIS and Twenty French-Kit Reference Tests.
ERIC Educational Resources Information Center
Ramsey, Philip H.
1979-01-01
The Wechsler Adult Intelligence Scale (WAIS) and 20 tests from the French Kit were administered to over 100 undergraduates. Analyses revealed ten factors: verbal comprehension, visualization, memory span, syllogistic reasoning, general reasoning, induction, mechanical knowledge, number facility, spatial orientation, and associative memory.…
Long-term effects of cannabis on oculomotor function in humans.
Huestegge, L; Radach, R; Kunert, H J
2009-08-01
Cannabis is known to affect human cognitive and visuomotor skills directly after consumption. Some studies even point to rather long-lasting effects, especially after chronic tetrahydrocannabinol (THC) abuse. However, it is still unknown whether long-term effects on basic visual and oculomotor processing may exist. In the present study, the performance of 20 healthy long-term cannabis users without acute THC intoxication and 20 control subjects were examined in four basic visuomotor paradigms to search for specific long-term impairments. Subjects were asked to perform: 1) reflexive saccades to visual targets (prosaccades), including gap and overlap conditions, 2) voluntary antisaccades, 3) memory-guided saccades and 4) double-step saccades. Spatial and temporal parameters of the saccades were subsequently analysed. THC subjects exhibited a significant increase of latency in the prosaccade and antisaccade tasks, as well as prolonged saccade amplitudes in the antisaccade and memory-guided task, compared with the control subjects. The results point to substantial and specific long-term deficits in basic temporal processing of saccades and impaired visuo-spatial working memory. We suggest that these impairments are a major contributor to degraded performance of chronic users in a vital everyday task like visual search, and they might potentially also affect spatial navigation and reading.
Krajewski, Kristin; Schneider, Wolfgang
2009-08-01
This longitudinal study explored the importance of kindergarten measures of phonological awareness, working memory, and quantity-number competencies (QNC) for predicting mathematical school achievement in third graders (mean age 8 years 8 months). It was found that the impact of phonological awareness and visual-spatial working memory, assessed at 5 years of age, was mediated by early QNC, which predicted math achievement in third grade. Importantly, and confirming our isolated number words hypothesis, phonological awareness had no impact on higher numerical competencies (i.e., when number words needed to be linked with quantities [QNC Level II and above]) but predicted basic numerical competencies (i.e., when number words were isolated from quantities [QNC Level I]), explaining the moderate relationship between early literacy development and the development of mathematical competencies.
Grubert, Anna; Eimer, Martin
2015-11-11
During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.
The lasting memory enhancements of retrospective attention.
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-07-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.
Distinct neural substrates for visual short-term memory of actions.
Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui
2018-06-26
Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.
Schubert, Torsten; Finke, Kathrin; Redel, Petra; Kluckow, Steffen; Müller, Hermann; Strobach, Tilo
2015-05-01
Experts with video game experience, in contrast to non-experienced persons, are superior in multiple domains of visual attention. However, it is an open question which basic aspects of attention underlie this superiority. We approached this question using the framework of Theory of Visual Attention (TVA) with tools that allowed us to assess various parameters that are related to different visual attention aspects (e.g., perception threshold, processing speed, visual short-term memory storage capacity, top-down control, spatial distribution of attention) and that are measurable on the same experimental basis. In Experiment 1, we found advantages of video game experts in perception threshold and visual processing speed; the latter being restricted to the lower positions of the used computer display. The observed advantages were not significantly moderated by general person-related characteristics such as personality traits, sensation seeking, intelligence, social anxiety, or health status. Experiment 2 tested a potential causal link between the expert advantages and video game practice with an intervention protocol. It found no effects of action video gaming on perception threshold, visual short-term memory storage capacity, iconic memory storage, top-down control, and spatial distribution of attention after 15 days of training. However, observations of a selected improvement of processing speed at the lower positions of the computer screen after video game training and of retest effects are suggestive for limited possibilities to improve basic aspects of visual attention (TVA) with practice. Copyright © 2015 Elsevier B.V. All rights reserved.
Bangirana, Paul; Menk, Jeremiah; John, Chandy C; Boivin, Michael J; Hodges, James S
2013-01-01
The contribution of different cognitive abilities to academic performance in children surviving cerebral insult can guide the choice of interventions to improve cognitive and academic outcomes. This study's objective was to identify which cognitive abilities are associated with academic performance in children after malaria with neurological involvement. 62 Ugandan children with a history of malaria with neurological involvement were assessed for cognitive ability (working memory, reasoning, learning, visual spatial skills, attention) and academic performance (reading, spelling, arithmetic) three months after the illness. Linear regressions were fit for each academic score with the five cognitive outcomes entered as predictors. Adjusters in the analysis were age, sex, education, nutrition, and home environment. Exploratory factor analysis (EFA) and structural equation models (SEM) were used to determine the nature of the association between cognition and academic performance. Predictive residual sum of squares was used to determine which combination of cognitive scores was needed to predict academic performance. In regressions of a single academic score on all five cognitive outcomes and adjusters, only Working Memory was associated with Reading (coefficient estimate = 0.36, 95% confidence interval = 0.10 to 0.63, p<0.01) and Spelling (0.46, 0.13 to 0.78, p<0.01), Visual Spatial Skills was associated with Arithmetic (0.15, 0.03 to 0.26, p<0.05), and Learning was associated with Reading (0.06, 0.00 to 0.11, p<0.05). One latent cognitive factor was identified using EFA. The SEM found a strong association between this latent cognitive ability and each academic performance measure (P<0.0001). Working memory, visual spatial ability and learning were the best predictors of academic performance. Academic performance is strongly associated with the latent variable labelled "cognitive ability" which captures most of the variation in the individual specific cognitive outcome measures. Working memory, visual spatial skills, and learning together stood out as the best combination to predict academic performance.
Toba, Monica N; Rabuffetti, Marco; Duret, Christophe; Pradat-Diehl, Pascale; Gainotti, Guido; Bartolomeo, Paolo
2018-01-31
Visual neglect is a disabling consequence of right hemisphere damage, whereby patients fail to detect left-sided objects. Its precise mechanisms are debated, but there is some consensus that distinct component deficits may variously associate and interact in different patients. Here we used a touch-screen based procedure to study two putative component deficits of neglect, rightward "magnetic" attraction of attention and impaired spatial working memory, in a group of 47 right brain-damaged patients, of whom 33 had signs of left neglect. Patients performed a visual search task on three distinct conditions, whereby touched targets could (1) be tagged, (2) disappear or (3) show no change. Magnetic attraction of attention was defined as more left neglect on the tag condition than on the disappear condition, where right-sided disappeared targets could not capture patients' attention. Impaired spatial working memory should instead produce more neglect on the no change condition, where no external cue indicated that a target had already been explored, than on the tag condition. Using a specifically developed analysis algorithm, we identified significant differences of performance between the critical conditions. Neglect patients as a group performed better on the disappear condition than on the no change condition and also better in the tag condition comparing with the no change condition. No difference was found between the tag condition and the disappear condition. Some of our neglect patients had dissociated patterns of performance, with predominant magnetic attraction or impaired spatial working memory. Anatomical results issued from both grey matter analysis and fiber tracking were consistent with the typical patterns of fronto-parietal and occipito-frontal disconnection in neglect, but did not identify lesional patterns specifically associated with one or another deficit, thus suggesting the possible co-localization of attentional and working memory processes in fronto-parietal networks. These findings give support to the hypothesis of the co-occurrence of distinct cognitive deficits in visual neglect and stress the necessity of multi-component models of visuospatial disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2011-01-01
This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…
Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments.
Leiderman, Eduardo A; Strejilevich, Sergio A
2004-06-01
Object and spatial visual working memory are impaired in schizophrenic patients. It is not clear if the impairments reside in each memory subsystem alone or also in the central executive component that coordinates these processes. In order to elucidate which memory component is impaired, we developed a paradigm with single spatial and object working memory tasks and dual ones with two different delays (5 and 30 s). Fifteen schizophrenic patients and 14 control subjects performed these tests. Schizophrenic patients had a poorer performance compared to normal controls in all tasks and in all time delays. Both schizophrenics and controls performed significantly worse in the object task than in the spatial task. The performance was even worse in the dual task compared to the singles ones in schizophrenic patients but not in controls. These data suggest that visuospatial performance deficits in schizophrenia are due to both visuospatial memory subsystems impairments and central executive ones. The pattern of deficits observed points to a codification or evocation deficit and not to a maintenance one.
Towler, John; Kelly, Maria; Eimer, Martin
2016-06-01
The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Heuer, Anna; Schubö, Anna
2016-01-01
Visual working memory can be modulated according to changes in the cued task relevance of maintained items. Here, we investigated the mechanisms underlying this modulation. In particular, we studied the consequences of attentional selection for selected and unselected items, and the role of individual differences in the efficiency with which attention is deployed. To this end, performance in a visual working memory task as well as the CDA/SPCN and the N2pc, ERP components associated with visual working memory and attentional processes, were analysed. Selection during the maintenance stage was manipulated by means of two successively presented retrocues providing spatial information as to which items were most likely to be tested. Results show that attentional selection serves to robustly protect relevant representations in the focus of attention while unselected representations which may become relevant again still remain available. Individuals with larger retrocueing benefits showed higher efficiency of attentional selection, as indicated by the N2pc, and showed stronger maintenance-associated activity (CDA/SPCN). The findings add to converging evidence that focused representations are protected, and highlight the flexibility of visual working memory, in which information can be weighted according its relevance.
The selective disruption of spatial working memory by eye movements
Postle, Bradley R.; Idzikowski, Christopher; Sala, Sergio Della; Logie, Robert H.; Baddeley, Alan D.
2005-01-01
In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book (Baddeley, 1986), these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations, and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory. PMID:16556561
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Evidence for Intact Memory-Guided Attention in School-Aged Children
ERIC Educational Resources Information Center
Dixon, Matthew L.; Zelazo, Philip David; De Rosa, Eve
2010-01-01
Visual scenes contain many statistical regularities such as the likely identity and location of objects that are present; with experience, such regularities can be encoded and can ultimately facilitate the deployment of spatial attention to important locations. Memory-guided attention has been extensively examined in adults with the "contextual…
The Structure of Visuospatial Memory in Adulthood
ERIC Educational Resources Information Center
Mammarella, Irene C.; Borella, Erika; Pastore, Massimiliano; Pazzaglia, Francesca
2013-01-01
The present study aimed to investigate the structure of visuospatial memory in adulthood. Adults 40-89 years of age (n = 160) performed simple storage and complex visuospatial span tasks. Simple storage tasks were distinguished into three presentation formats: (i) visual, which involved maintaining shapes and textures; (ii) spatial-sequential,…
Biologically-inspired robust and adaptive multi-sensor fusion and active control
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.
Markant, Julie; Worden, Michael S.; Amso, Dima
2015-01-01
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive driving eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location will boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, Rafal, & Choate, 1985; Posner, 1980) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. PMID:25701278
Wang, Chao; Rajagovindan, Rajasimhan; Han, Sahng-Min; Ding, Mingzhou
2016-01-01
Alpha oscillations (8–12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism. PMID:26834601
Does proactive interference play a significant role in visual working memory tasks?
Makovski, Tal
2016-10-01
Visual working memory (VWM) is an online memory buffer that is typically assumed to be immune to source memory confusions. Accordingly, the few studies that have investigated the role of proactive interference (PI) in VWM tasks found only a modest PI effect at best. In contrast, a recent study has found a substantial PI effect in that performance in a VWM task was markedly improved when all memory items were unique compared to the more standard condition in which only a limited set of objects was used. The goal of the present study was to reconcile this discrepancy between the findings, and to scrutinize the extent to which PI is involved in VWM tasks. Experiments 1-2 showed that the robust advantage in using unique memory items can also be found in a within-subject design and is largely independent of set size, encoding duration, or intertrial interval. Importantly, however, PI was found mainly when all items were presented at the same location, and the effect was greatly diminished when the items were presented, either simultaneously (Experiment 3) or sequentially (Experiments 4-5), at distinct locations. These results indicate that PI is spatially specific and that without the assistance of spatial information VWM is not protected from PI. Thus, these findings imply that spatial information plays a key role in VWM, and underscore the notion that VWM is more vulnerable to interference than is typically assumed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Bergström, Fredrik; Eriksson, Johan
2015-01-01
Although non-consciously perceived information has previously been assumed to be short-lived (< 500 ms), recent findings show that non-consciously perceived information can be maintained for at least 15 s. Such findings can be explained as working memory without a conscious experience of the information to be retained. However, whether or not working memory can operate on non-consciously perceived information remains controversial, and little is known about the nature of such non-conscious visual short-term memory (VSTM). Here we used continuous flash suppression to render stimuli non-conscious, to investigate the properties of non-consciously perceived representations in delayed match-to-sample (DMS) tasks. In Experiment I we used variable delays (5 or 15 s) and found that performance was significantly better than chance and was unaffected by delay duration, thereby replicating previous findings. In Experiment II the DMS task required participants to combine information of spatial position and object identity on a trial-by-trial basis to successfully solve the task. We found that the conjunction of spatial position and object identity was retained, thereby verifying that non-conscious, trial-specific information can be maintained for prospective use. We conclude that our results are consistent with a working memory interpretation, but that more research is needed to verify this interpretation.
Enhancing Cognition with Video Games: A Multiple Game Training Study
Oei, Adam C.; Patterson, Michael D.
2013-01-01
Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504
Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia
2016-06-01
Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.
2018-01-01
Many individuals with posttraumatic stress disorder (PTSD) report experiencing frequent intrusive memories of the original traumatic event (e.g., flashbacks). These memories can be triggered by situations or stimuli that reflect aspects of the trauma and may reflect basic processes in learning and memory, such as generalization. It is possible that, through increased generalization, non-threatening stimuli that once evoked normal memories become associated with traumatic memories. Previous research has reported increased generalization in PTSD, but the role of visual discrimination processes has not been examined. To investigate visual discrimination in PTSD, 143 participants (Veterans and civilians) self-assessed for symptom severity were grouped according to the presence of severe PTSD symptoms (PTSS) vs. few/no symptoms (noPTSS). Participants were given a visual match-to-sample pattern separation task that varied trials by spatial separation (Low, Medium, High) and temporal delays (5, 10, 20, 30 s). Unexpectedly, the PTSS group demonstrated better discrimination performance than the noPTSS group at the most difficult spatial trials (Low spatial separation). Further assessment of accuracy and reaction time using diffusion drift modeling indicated that the better performance by the PTSS group on the hardest trials was not explained by slower reaction times, but rather a faster accumulation of evidence during decision making in conjunction with a reduced threshold, indicating a tendency in the PTSS group to decide quickly rather than waiting for additional evidence to support the decision. This result supports the need for future studies examining the precise role of discrimination and generalization in PTSD, and how these cognitive processes might contribute to expression and maintenance of PTSD symptoms. PMID:29736339
Herlitz, Agneta; Kabir, Zarina N
2006-12-01
We investigated the presence and magnitude of sex differences in late adulthood, assessing 426 illiterate Bangladeshis, 239 literate Bangladeshis, and 598 Swedes. The cognitive domains examined included calculation, episodic memory, spatial visualization, and global cognitive ability. In general, men performed at a higher level than women on tasks assessing calculation and spatial visualization, whereas women performed at a higher level than men on the episodic memory task. Notably, the pattern of cognitive sex differences was similar irrespective of nationality and literacy, although the magnitude of the male advantage was inversely related to level of education. Finally, the low performance of the illiterate women demonstrated the penalizing effect restrictions in public exposure might have on cognitive performance.
Miller, Jonathan P; Sweet, Jennifer A; Bailey, Christopher M; Munyon, Charles N; Luders, Hans O; Fastenau, Philip S
2015-07-01
Memory loss after brain injury can be a source of considerable morbidity, but there are presently few therapeutic options for restoring memory function. We have previously demonstrated that burst stimulation of the fornix is able to significantly improve memory in a rodent model of traumatic brain injury. The present study is a preliminary investigation with a small group of cases to explore whether theta burst stimulation of the fornix might improve memory in humans. Four individuals undergoing stereo-electroencephalography evaluation for drug-resistant epilepsy were enrolled. All participants were implanted with an electrode into the proximal fornix and dorsal hippocampal commissure on the language dominant (n = 3) or language non-dominant (n = 1) side, and stimulation of this electrode reliably produced a diffuse evoked potential in the head and body of the ipsilateral hippocampus. Each participant underwent testing of verbal memory (Rey Auditory-Verbal Learning Test), visual-spatial memory (Medical College of Georgia Complex Figure Test), and visual confrontational naming (Boston Naming Test Short Form) once per day over at least two consecutive days using novel test forms each day. For 50% of the trials, the fornix electrode was continuously stimulated using a burst pattern (200 Hz in 100 ms trains, five trains per second, 100 µs, 7 mA) and was compared with sham stimulation. Participants and examiners were blinded to whether stimulation was active or not, and the order of stimulation was randomized. The small sample size precluded use of inferential statistics; therefore, data were analysed using descriptive statistics and graphic analysis. Burst stimulation of the fornix was not perceived by any of the participants but was associated with a robust reversible improvement in immediate and delayed performance on the Medical College of Georgia Complex Figure Test. There were no apparent differences on either Rey Auditory-Verbal Learning Test or Boston Naming Test. There was no apparent relationship between performance and side of stimulation (language dominant or non-dominant). There were no complications. Preliminary evidence in this small sample of patients with drug-resistant epilepsy suggests that theta burst stimulation of the fornix may be associated with improvement in visual-spatial memory. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks
2012-05-01
Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0
Visual working memory and number sense: Testing the double deficit hypothesis in mathematics.
Toll, Sylke W M; Kroesbergen, Evelyn H; Van Luit, Johannes E H
2016-09-01
Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. The aim of this study was to test the DD hypothesis within a longitudinal time span of 2 years. A total of 670 children participated. The mean age was 4.96 years at the start of the study and 7.02 years at the end of the study. At the end of the first year of kindergarten, both visual-spatial working memory and number sense were measured by two different tasks. At the end of first grade, mathematical performance was measured with two tasks, one for math facts and one for math problems. Multiple regressions revealed that both visual working memory and symbolic number sense are predictors of mathematical performance in first grade. Symbolic number sense appears to be the strongest predictor for both math areas (math facts and math problems). Non-symbolic number sense only predicts performance in math problems. Multivariate analyses of variance showed that a combination of visual working memory and number sense deficits (NSDs) leads to the lowest performance on mathematics. Our DD hypothesis was confirmed. Both visual working memory and symbolic number sense in kindergarten are related to mathematical performance 2 years later, and a combination of visual working memory and NSDs leads to low performance in mathematical performance. © 2016 The British Psychological Society.
Eimer, Martin; Kiss, Monika; Nicholas, Susan
2011-12-01
When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.
Lew, Timothy F; Vul, Edward
2015-01-01
People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred
2016-08-01
Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.
Subliminally presented and stored objects capture spatial attention.
Astle, Duncan E; Nobre, Anna C; Scerif, Gaia
2010-03-10
When objects disappear from view, we can still bring them to mind, at least for brief periods of time, because we can represent those objects in visual short-term memory (VSTM) (Sperling, 1960; Cowan, 2001). A defining characteristic of this representation is that it is topographic, that is, it preserves a spatial organization based on the original visual percept (Vogel and Machizawa, 2004; Astle et al., 2009; Kuo et al., 2009). Recent research has also shown that features or locations of visual items that match those being maintained in conscious VSTM automatically capture our attention (Awh and Jonides, 2001; Olivers et al., 2006; Soto et al., 2008). But do objects leave some trace that can guide spatial attention, even without participants intentionally remembering them? Furthermore, could subliminally presented objects leave a topographically arranged representation that can capture attention? We presented objects either supraliminally or subliminally and then 1 s later re-presented one of those objects in a new location, as a "probe" shape. As participants made an arbitrary perceptual judgment on the probe shape, their covert spatial attention was drawn to the original location of that shape, regardless of whether its initial presentation had been supraliminal or subliminal. We demonstrate this with neural and behavioral measures of memory-driven attentional capture. These findings reveal the existence of a topographically arranged store of "visual" objects, the content of which is beyond our explicit awareness but which nonetheless guides spatial attention.
Spatial short-term memory is impaired in dependent betel quid chewers.
Chiu, Meng-Chun; Shen, Bin; Li, Shuo-Heng; Ho, Ming-Chou
2016-08-01
Betel quid is regarded as a human carcinogen by the World Health Organization. It remains unknown whether chewing betel quid has a chronic effect on healthy betel quid chewers' memory. The present study aims to investigate whether chewing betel quid can affect short-term memory (STM). Three groups of participants (24 dependent chewers, 24 non-dependent chewers, and 24 non-chewers) were invited to carry out the matrix span task, the object span task, and the digit span task. All span tasks' results were adopted to assess spatial STM, visual STM, and verbal STM, respectively. Besides, there are three set sizes (small, medium, and large) in each span task. For the matrix span task, results showed that the dependent chewers had worse performances than the non-dependent chewers and the non-chewers at medium and large set sizes. For the object span task and digit span task, there were no differences in between groups. In each group, recognition performances were worse with the increasing set size and showing successful manipulation of memory load. The current study provided the first evidence that dependent betel quid chewing can selectively impair spatial STM rather than visual STM and verbal STM. Theoretical and practical implications of this result are discussed.
Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.
Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong
2016-08-01
The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.
Visual memory performance for color depends on spatiotemporal context.
Olivers, Christian N L; Schreij, Daniel
2014-10-01
Performance on visual short-term memory for features has been known to depend on stimulus complexity, spatial layout, and feature context. However, with few exceptions, memory capacity has been measured for abruptly appearing, single-instance displays. In everyday life, objects often have a spatiotemporal history as they or the observer move around. In three experiments, we investigated the effect of spatiotemporal history on explicit memory for color. Observers saw a memory display emerge from behind a wall, after which it disappeared again. The test display then emerged from either the same side as the memory display or the opposite side. In the first two experiments, memory improved for intermediate set sizes when the test display emerged in the same way as the memory display. A third experiment then showed that the benefit was tied to the original motion trajectory and not to the display object per se. The results indicate that memory for color is embedded in a richer episodic context that includes the spatiotemporal history of the display.
Variance in Math Achievement Attributable to Visual Cognitive Constructs
ERIC Educational Resources Information Center
Oehlert, Jeremy J.
2012-01-01
Previous research has reported positive correlations between math achievement and the cognitive constructs of spatial visualization, working memory, and general intelligence; however, no single study has assessed variance in math achievement attributable to all three constructs, examined in combination. The current study fills this gap in the…
Working Memory Components as Predictors of Children's Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.
2011-01-01
This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…
Computer-Based Working Memory Training in Children with Mild Intellectual Disability
ERIC Educational Resources Information Center
Delavarian, Mona; Bokharaeian, Behrouz; Towhidkhah, Farzad; Gharibzadeh, Shahriar
2015-01-01
We designed a working memory (WM) training programme in game framework for mild intellectually disabled students. Twenty-four students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerised Wechsler numerical forward and backward sub-tests and secondary tests, which…
Differential Effects of Alcohol on Working Memory: Distinguishing Multiple Processes
Saults, J. Scott; Cowan, Nelson; Sher, Kenneth J.; Moreno, Matthew V.
2008-01-01
We assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in two properties of materials to be retained in a two-stimulus comparison procedure. Conditions included (1) spatial arrays of colors, (2) temporal sequences of colors, (3) spatial arrays of spoken digits, and (4) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences, but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research into alcohol’s effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. PMID:18179311
Differential effects of alcohol on working memory: distinguishing multiple processes.
Saults, J Scott; Cowan, Nelson; Sher, Kenneth J; Moreno, Matthew V
2007-12-01
The authors assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in 2 properties of materials to be retained in a 2-stimulus comparison procedure. Conditions included (a) spatial arrays of colors, (b) temporal sequences of colors, (c) spatial arrays of spoken digits, and (d) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research on alcohol's effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. (c) 2008 APA, all rights reserved.
Guigueno, Mélanie F.; MacDougall-Shackleton, Scott A.; Sherry, David F.
2015-01-01
Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds’ immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans. PMID:26083573
Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.
Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-05-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).
Shared memories reveal shared structure in neural activity across individuals
Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.
2016-01-01
Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
Task demands determine comparison strategy in whole probe change detection.
Udale, Rob; Farrell, Simon; Kent, Chris
2018-05-01
Detecting a change in our visual world requires a process that compares the external environment (test display) with the contents of memory (study display). We addressed the question of whether people strategically adapt the comparison process in response to different decision loads. Study displays of 3 colored items were presented, followed by 'whole-display' probes containing 3 colored shapes. Participants were asked to decide whether any probed items contained a new feature. In Experiments 1-4, irrelevant changes to the probed item's locations or feature bindings influenced memory performance, suggesting that participants employed a comparison process that relied on spatial locations. This finding occurred irrespective of whether participants were asked to decide about the whole display, or only a single cued item within the display. In Experiment 5, when the base-rate of changes in the nonprobed items increased (increasing the incentive to use the cue effectively), participants were not influenced by irrelevant changes in location or feature bindings. In addition, we observed individual differences in the use of spatial cues. These results suggest that participants can flexibly switch between spatial and nonspatial comparison strategies, depending on interactions between individual differences and task demand factors. These findings have implications for models of visual working memory that assume that the comparison between study and test obligatorily relies on accessing visual features via their binding to location. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Sheremata, Summer L; Somers, David C; Shomstein, Sarah
2018-02-07
Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.
The impact of modality and working memory capacity on achievement in a multimedia environment
NASA Astrophysics Data System (ADS)
Stromfors, Charlotte M.
This study explored the impact of working memory capacity and student learning in a dual modality, multimedia environment titled Visualizing Topography. This computer-based instructional program focused on the basic skills in reading and interpreting topographic maps. Two versions of the program presented the same instructional content but varied the modality of verbal information: the audio-visual condition coordinated topographic maps and narration; the visual-visual condition provided the same topographic maps with readable text. An analysis of covariance procedure was conducted to evaluate the effects due to the two conditions in relation to working memory capacity, controlling for individual differences in spatial visualization and prior knowledge. The scores on the Figural Intersection Test were used to separate subjects into three levels in terms of their measured working memory capacity: low, medium, and high. Subjects accessed Visualizing Topography by way of the Internet and proceeded independently through the program. The program architecture was linear in format. Subjects had a minimum amount of flexibility within each of five segments, but not between segments. One hundred and fifty-one subjects were randomly assigned to either the audio-visual or the visual-visual condition. The average time spent in the program was thirty-one minutes. The results of the ANCOVA revealed a small to moderate modality effect favoring an audio-visual condition. The results also showed that subjects with low and medium working capacity benefited more from the audio-visual condition than the visual-visual condition, while subjects with a high working memory capacity did not benefit from either condition. Although splitting the data reduced group sizes, ANCOVA results by gender suggested that the audio-visual condition favored females with low working memory capacities. The results have implications for designers of educational software, the teachers who select software, and the students themselves. Splitting information into two, non-redundant sources, one audio and one visual, may effectively extend working memory capacity. This is especially significant for the student population encountering difficult science concepts that require the formation and manipulation of mental representations. It is recommended that multimedia environments be designed or selected with attention to modality conditions that facilitate student learning.
Gaze movements and spatial working memory in collision avoidance: a traffic intersection task
Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.
2013-01-01
Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of external (bottom-up) and internal (top-down) cues in a traffic intersection task. PMID:23760667
Spatial working memory function in twins with schizophrenia and bipolar disorder.
Pirkola, Tiia; Tuulio-Henriksson, Annamari; Glahn, David; Kieseppä, Tuula; Haukka, Jari; Kaprio, Jaakko; Lönnqvist, Jouko; Cannon, Tyrone D
2005-12-15
Family studies are in conflict as to whether schizophrenia and bipolar disorder have independent genetic etiologies. Given the relatively low prevalence (approximately 1%) of these disorders, the use of quantitative endophenotypic markers of genetic liability might provide a more sensitive strategy for evaluating their genetic overlap. We have previously demonstrated that spatial working memory deficits increase in a dose-dependent fashion with increasing genetic proximity to a proband among the unaffected co-twins of schizophrenic patients. Here, we evaluated whether such deficits might also mark genetic susceptibility to bipolar disorder. The Wechsler Memory Scale-Revised Visual Memory Span and Digit Span subtests were administered to 46 schizophrenic patients, 32 of their unaffected co-twins, 22 bipolar patients, 16 of their unaffected co-twins, and 100 control twins, representing unselectively nationwide twin samples. Schizophrenic patients and their unaffected co-twins performed significantly worse than control subjects on the spatial working memory task, whereas only the schizophrenic patients performed significantly below the control subjects on the verbal working memory task. Neither bipolar patients nor their unaffected co-twins differed from control subjects on these measures. Our findings support the hypothesis that impairment in spatial working memory might effectively reflect an expression of genetic liability to schizophrenia but less clearly to bipolar disorder.
Spatial Memory Engram in the Mouse Retrosplenial Cortex.
Milczarek, Michal M; Vann, Seralynne D; Sengpiel, Frank
2018-06-18
Memory relies on lasting adaptations of neuronal properties elicited by stimulus-driven plastic changes [1]. The strengthening (and weakening) of synapses results in the establishment of functional ensembles. It is presumed that such ensembles (or engrams) are activated during memory acquisition and re-activated upon memory retrieval. The retrosplenial cortex (RSC) has emerged as a key brain area supporting memory [2], including episodic and topographical memory in humans [3-5], as well as spatial memory in rodents [6, 7]. Dysgranular RSC is densely connected with dorsal stream visual areas [8] and contains place-like and head-direction cells, making it a prime candidate for integrating navigational information [9]. While previous reports [6, 10] describe the recruitment of RSC ensembles during navigational tasks, such ensembles have never been tracked long enough to provide evidence of stable engrams and have not been related to the retention of long-term memory. Here, we used in vivo 2-photon imaging to analyze patterns of activity of over 6,000 neurons within dysgranular RSC. Eight mice were trained on a spatial memory task. Learning was accompanied by the gradual emergence of a context-specific pattern of neuronal activity over a 3-week period, which was re-instated upon retrieval more than 3 weeks later. The stability of this memory engram was predictive of the degree of forgetting; more stable engrams were associated with better performance. This provides direct evidence for the interdependence of spatial memory consolidation and RSC engram formation. Our results demonstrate the participation of RSC in spatial memory storage at the level of neuronal ensembles. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Improving balance by performing a secondary cognitive task.
Swan, Laurie; Otani, Hajime; Loubert, Peter V; Sheffert, Sonya M; Dunbar, Gary L
2004-02-01
Contrary to general findings in the attention and memory literature, some studies have shown that performing a secondary cognitive task produces an improvement in balance performance. The purpose of the present experiment was to investigate under what condition such an improvement would occur. Young and older adults were asked to hold as still as possible on a platform that measured sway while performing or not performing the encoding phase of the Brooks' (1967) spatial or non-spatial memory task. The difficulty of maintaining balance was manipulated by varying the availability of visual input and sway-referenced motion of the platform. Sway scores were computed based on the distance between the individual pressure centres and the average centre of pressure during each 20-s trial. The results indicated that both the spatial and non-spatial memory tasks improved balance for older adults under the most difficult balance condition.
Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis.
Potvin, Stéphane; Pelletier, Julie; Grot, Stéphanie; Hébert, Catherine; Barr, Alasdair M; Lecomte, Tania
2018-05-01
Methamphetamine has long been considered as a neurotoxic substance causing cognitive deficits. Recently, however, the magnitude and the clinical significance of the cognitive effects associated with methamphetamine use disorder (MUD) have been debated. To help clarify this controversy, we performed a meta-analysis of the cognitive deficits associated with MUD. A literature search yielded 44 studies that assessed cognitive dysfunction in 1592 subjects with MUD and 1820 healthy controls. Effect size estimates were calculated using the Comprehensive Meta-Analysis, for the following 12 cognitive domains: attention, executive functions, impulsivity/reward processing, social cognition, speed of processing, verbal fluency/language, verbal learning and memory, visual learning and memory, visuo-spatial abilities and working memory. Findings revealed moderate impairment across most cognitive domains, including attention, executive functions, language/verbal fluency, verbal learning and memory, visual memory and working memory. Deficits in impulsivity/reward processing and social cognition were more prominent, whereas visual learning and visuo-spatial abilities were relatively spared cognitive domains. A publication bias was observed. These results show that MUD is associated with broad cognitive deficits that are in the same range as those associated with alcohol and cocaine use disorder, as recently shown by way of meta-analysis. The prominent effects of MUD on social cognition and impulsivity/reward processing are based on a small number of studies, and as such, these results will need to be replicated. The functional consequences (social and occupational) of the cognitive deficits of methamphetamine will also need to be determined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pictorial communication in virtual and real environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor)
1991-01-01
Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)
Exploratory study of the relations between spatial ability and drawing from memory.
Czarnolewski, Mark Y; Eliot, John
2012-04-01
Test scores of 119 students, attending either a public four-year college or a technical school, were related to their proportionality and detail drawing scores on the Memory for Designs Test. In regression models, the ETS Maze Tracing, Eliot-Price Mental Rotations, and Bender-Gestalt tests were consistent predictors of proportionality scores, with the latter two tests uniquely related to these. The ETS Shapes Memory Test and the Form Board Test were the strongest predictors for detail accuracy scores. The Shapes test predicted proportionality when the CTY Visual Memory Test BB was excluded. The models then provided support for the hypothesis that drawing designs from memory, a critical skill in drawing, regardless of whether one focuses on accuracy for proportionality scores or for detail scores, is jointly related to the measures of recognition, production, and traditional spatial ability measures. This study identified multifaceted skills in drawing from memory.
Sleep-Effects on Implicit and Explicit Memory in Repeated Visual Search
Assumpcao, Leonardo; Gais, Steffen
2013-01-01
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially. PMID:23936363
The role of aging in intra-item and item-context binding processes in visual working memory.
Peterson, Dwight J; Naveh-Benjamin, Moshe
2016-11-01
Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Markant, Julie; Worden, Michael S; Amso, Dima
2015-04-01
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location would boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone. To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, 1980; Posner, Rafal, & Choate, 1985) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. Copyright © 2015 Elsevier Inc. All rights reserved.
Age-related similarities and differences in monitoring spatial cognition.
Ariel, Robert; Moffat, Scott D
2018-05-01
Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.
Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine
NASA Astrophysics Data System (ADS)
Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.
2017-12-01
Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.
Working memory in wayfinding-a dual task experiment in a virtual city.
Meilinger, Tobias; Knauff, Markus; Bülthoff, Heinrich H
2008-06-01
This study examines the working memory systems involved in human wayfinding. In the learning phase, 24 participants learned two routes in a novel photorealistic virtual environment displayed on a 220° screen while they were disrupted by a visual, a spatial, a verbal, or-in a control group-no secondary task. In the following wayfinding phase, the participants had to find and to "virtually walk" the two routes again. During this wayfinding phase, a number of dependent measures were recorded. This research shows that encoding wayfinding knowledge interfered with the verbal and with the spatial secondary task. These interferences were even stronger than the interference of wayfinding knowledge with the visual secondary task. These findings are consistent with a dual-coding approach of wayfinding knowledge. 2008 Cognitive Science Society, Inc.
Brown, Louise A; Brockmole, James R; Gow, Alan J; Deary, Ian J
2012-01-01
BACKGROUND/STUDY CONTEXT: Visual working memory (VWM) has been shown to be particularly age sensitive. Determining which measures share variance with this cognitive ability in older adults may help to elucidate the key factors underlying the effects of aging. Predictors of VWM (measured by a modified Visual Patterns Test) were investigated in a subsample (N = 44, mean age = 73) of older adults from the Lothian Birth Cohort 1936 (LBC1936; Deary et al., 2007 , BMC Geriatrics, 7, 28). Childhood intelligence (Moray House Test) and contemporaneous measures of processing speed (four-choice reaction time), executive function (verbal fluency; block design), and spatial working memory (backward spatial span), were assessed as potential predictors. All contemporaneous measures except verbal fluency were significantly associated with VWM, and processing speed had the largest effect size (r = -.53, p < .001). In linear regression analysis, even after adjusting for childhood intelligence, processing speed and the executive measure associated with visuospatial organization accounted for 35% of the variance in VWM. Processing speed may affect VWM performance in older adults via speed of encoding and/or rate of rehearsal, while executive resources specifically associated with visuospatial material are also important.
Cammisuli, Davide Maria; Sportiello, Marco Timpano
2016-06-01
Memory system turns out to be one of the cognitive domains most severely impaired in schizophrenia. Within the theoretical framework of cognitive psychopathology, we compared the performance of schizophrenia patients on the Wechsler Memory Scale-IV with that in matched patients with Obsessive-compulsive disorder and that in healthy control subjects to establish the specific nature of memory deficits in schizophrenia. 30 schizophrenia patients, 30 obsessive-compulsive disorder patients and 40 healthy controls completed the Wechsler Memory Scale-IV. Schizophrenia symptom severity was assessed by the Positive and Negative Syndrome Scale (PANSS). Performances on memory battery including Indexes and subtests scores were compared by a One-Way ANOVA (Scheffé post-hoc test). Spearman Rank correlations were performed between scores on PANSS subscales and symptoms and WMS-IV Indexes and subtests, respectively. Schizophrenia patients showed a memory profile characterized by mild difficulties in auditory memory and visual working memory and poor functioning of visual, immediate and delayed memory. As expected, schizophrenia patients scored lower than healthy controls on all WMS-IV measures. With regard to the WMS-IV Indexes, schizophrenia patients performed worse on Auditory Memory, Visual Memory, Immediate and Delayed Memory than Obsessive-compulsive disorder patients but not on Visual Working Memory. Such a pattern was made even clearer for specific tasks such as immediate and delayed recall and spatial recall and memory for visual details, as revealed by the lowest scores on Logical Memory (immediate and delayed conditions) and Designs (immediate condition) subtests, respectively. Significant negative correlations between Logical Memory I and II were found with PANSS Excitement symptom as well as between DE I and PANSS Tension symptom. Significant positive correlations between LM II and PANSS Blunted affect and Poor rapport symptoms as well as DE I and PANSS Blunted affect and Mannerism and Posturing symptoms, were found too. Memory damage observed in schizophrenia patients was more severe and wider than that of patients with obsessive-compulsive disorder, except for visual working memory. Memory dysfunction, mainly related to episodic memory damage and reduced efficiency of central executive, is intimately connected to the specific psychopathological processes characterizing schizophrenia. Implications for therapeutics and cognitive remediation techniques are discussed.
Postma, Albert; Zuidhoek, Sander; Noordzij, Matthijs L; Kappers, Astrid M L
2007-01-01
The roles of visual and haptic experience in different aspects of haptic processing of objects in peripersonal space are examined. In three trials, early-blind, late-blind, and blindfolded-sighted individuals had to match ten shapes haptically to the cut-outs in a board as fast as possible. Both blind groups were much faster than the sighted in all three trials. All three groups improved considerably from trial to trial. In particular, the sighted group showed a strong improvement from the first to the second trial. While superiority of the blind remained for speeded matching after rotation of the stimulus frame, coordinate positional-memory scores in a non-speeded free-recall trial showed no significant differences between the groups. Moreover, when assessed with a verbal response, categorical spatial-memory appeared strongest in the late-blind group. The role of haptic and visual experience thus appears to depend on the task aspect tested.
Likova, Lora T.
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or “sketchpad,” for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw. PMID:22593738
Likova, Lora T
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or "sketchpad," for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw.
Visual similarity in short-term recall for where and when.
Jalbert, Annie; Saint-Aubin, Jean; Tremblay, Sébastien
2008-03-01
Two experiments examined the effects of visual similarity on short-term recall for where and when in the visual spatial domain. A series of squares of similar or dissimilar colours were serially presented at various locations on the screen. At recall, all coloured squares were simultaneously presented in a random order at the bottom of the screen, and the locations used for presentation were indicated by white squares. Participants were asked to place the colours at their appropriate location in their presentation order. Performance for location (where) and order (when) was assessed separately. Results revealed that similarity severely hinders both memory for what was where and memory for what was when, under quiet and articulatory suppression conditions. These results provide further evidence that similarity has a major impact on processing relational information in memory.
Spatial abilities across the adult life span.
Borella, Erika; Meneghetti, Chiara; Ronconi, Lucia; De Beni, Rossana
2014-02-01
The study investigates age-related effects across the adult life span on spatial abilities (testing subabilities based on a distinction between spatial visualization, mental rotation, and perspective taking) and spatial self-assessments. The sample consisted of 454 participants (223 women and 231 men) from 20 to 91 years of age. Results showed nonlinear age-related effects for spatial visualization and perspective taking but linear effects for mental rotation; few or no age-related effects were found for spatial self-assessments. Working memory accounted for only a small proportion of the variance in all spatial tasks and had no effect on spatial self-assessments. Overall, our findings suggest that the influence of age on spatial skills across the adult life span is considerable, but the effects of age change as a function of the spatial task considered, and the effect on spatial self-assessment is more marginal.
The effects of sequential attention shifts within visual working memory.
Li, Qi; Saiki, Jun
2014-01-01
Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance.
ERIC Educational Resources Information Center
Hsieh, Po-Jang; Colas, Jaron T.
2012-01-01
The contents of working memory (WM) have predominantly been viewed as necessarily conscious. However, recent findings suggest otherwise. Here we investigate whether visual WM can represent subliminal stimuli, such that the positions of an invisible moving object can be extrapolated or learned about in terms of their task-relevant predictive power.…
ERIC Educational Resources Information Center
Bourke, Lorna; Davies, Simon J.; Sumner, Emma; Green, Carolyn
2014-01-01
Visually mediated processes including, exposure to print (e.g. reading) as well as orthographic transcription and coding skills, have been found to contribute to individual differences in literacy development. The current study examined the role of visuospatial working memory (WM) in underpinning this relationship and emergent writing. One hundred…
ERIC Educational Resources Information Center
Stormer, Viola S.; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen
2012-01-01
Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic…
Working Memory in Wayfinding--A Dual Task Experiment in a Virtual City
ERIC Educational Resources Information Center
Meilinger, Tobias; Knauff, Markus; Bulthoff, Heinrich H.
2008-01-01
This study examines the working memory systems involved in human wayfinding. In the learning phase, 24 participants learned two routes in a novel photorealistic virtual environment displayed on a 220 degrees screen while they were disrupted by a visual, a spatial, a verbal, or--in a control group--no secondary task. In the following wayfinding…
Selective Memories: Infants' Encoding Is Enhanced in Selection via Suppression
ERIC Educational Resources Information Center
Markant, Julie; Amso, Dima
2013-01-01
The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism…
Asperger Syndrome: Tests of Right Hemisphere Functioning and Interhemispheric Communication.
ERIC Educational Resources Information Center
Gunter, Helen L.; Ghaziuddin, Mohammad; Ellis, Hadyn D.
2002-01-01
Eight participants with Asperger syndrome (AS) (ages 10-41) were assessed in the following areas: the pragmatics of language and communication; verbal and visual memory; visual-spatial abilities; and bimanual motor skills. Results confirmed the close similarity in the neuropsychologic profiles of non-verbal learning disabilities syndrome and AS.…
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C
2015-08-19
The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.
The relation between working memory and language comprehension in signers and speakers.
Emmorey, Karen; Giezen, Marcel R; Petrich, Jennifer A F; Spurgeon, Erin; O'Grady Farnady, Lucinda
2017-06-01
This study investigated the relation between linguistic and spatial working memory (WM) resources and language comprehension for signed compared to spoken language. Sign languages are both linguistic and visual-spatial, and therefore provide a unique window on modality-specific versus modality-independent contributions of WM resources to language processing. Deaf users of American Sign Language (ASL), hearing monolingual English speakers, and hearing ASL-English bilinguals completed several spatial and linguistic serial recall tasks. Additionally, their comprehension of spatial and non-spatial information in ASL and spoken English narratives was assessed. Results from the linguistic serial recall tasks revealed that the often reported advantage for speakers on linguistic short-term memory tasks does not extend to complex WM tasks with a serial recall component. For English, linguistic WM predicted retention of non-spatial information, and both linguistic and spatial WM predicted retention of spatial information. For ASL, spatial WM predicted retention of spatial (but not non-spatial) information, and linguistic WM did not predict retention of either spatial or non-spatial information. Overall, our findings argue against strong assumptions of independent domain-specific subsystems for the storage and processing of linguistic and spatial information and furthermore suggest a less important role for serial encoding in signed than spoken language comprehension. Copyright © 2017 Elsevier B.V. All rights reserved.
Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla
2014-01-01
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.
Moletto, Alessandra; Bagnasco, Irene; Dassi, Patrizia; Vigliano, Piernanda
2018-03-21
To study the long-term neurocognitive changes of a right-handed girl with intractable epilepsy after late right hemispherectomy and compare them with data in the literature. The girl was affected by an epileptic encephalopathy associated with right fronto-temporo-parietal polymicrogyria; she was submitted to right hemispherectomy at the age of 5 and examined with cognitive and neuropsychological tests at the age of 17 years. The girl took advantage of neurocognitive rehabilitation for several years; she is currently seizure-free and off therapy. At the end of the follow-up, the full-scale IQ is stable and within the normal range (p = 88). As the discrepancy between verbal IQ (pp = 120) and performance IQ (pp = 71) is significantly high, the girl was subjected to neurocognitive evaluation with the following results: verbal problem solving, verbal short- and long-term memory, and executive functions are within normal range. The most fragile functional areas are visual and spatial reasoning, verbal working memory, short-term visuospatial memory, visual attention, and processing speed, all > 2 SD. The spatial tests, such as coding, matrix reasoning, picture concepts, and arithmetic reasoning (which are favored by other functions such as associative memory and learning ability), are less severely impaired. These findings show that good conceptual skills and verbal reasoning can compensate for some deficits in visual-perceptual and visuospatial functions.
Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.
Katus, Tobias; Andersen, Søren K; Müller, Matthias M
2014-03-01
Orienting attention to locations in mnemonic representations engages processes that functionally and anatomically overlap the neural circuitry guiding prospective shifts of spatial attention. The attention-based rehearsal account predicts that the requirement to withdraw attention from a memorized location impairs memory accuracy. In a dual-task study, we simultaneously presented retro-cues and pre-cues to guide spatial attention in short-term memory (STM) and perception, respectively. The spatial direction of each cue was independent of the other. The locations indicated by the combined cues could be compatible (same hand) or incompatible (opposite hands). Incompatible directional cues decreased lateralized activity in brain potentials evoked by visual cues, indicating interference in the generation of prospective attention shifts. The detection of external stimuli at the prospectively cued location was impaired when the memorized location was part of the perceptually ignored hand. The disruption of attention-based rehearsal by means of incompatible pre-cues reduced memory accuracy and affected encoding of tactile test stimuli at the retrospectively cued hand. These findings highlight the functional significance of spatial attention for spatial STM. The bidirectional interactions between both tasks demonstrate that spatial attention is a shared neural resource of a capacity-limited system that regulates information processing in internal and external stimulus representations.
Protocol for Short- and Longer-term Spatial Learning and Memory in Mice
Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana
2017-01-01
Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878
Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation
ERIC Educational Resources Information Center
Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.
2018-01-01
Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.
Galvanic vestibular stimulation speeds visual memory recall.
Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William
2008-08-01
The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.
Exogenous attention influences visual short-term memory in infants.
Ross-Sheehy, Shannon; Oakes, Lisa M; Luck, Steven J
2011-05-01
Two experiments examined the hypothesis that developing visual attentional mechanisms influence infants' Visual Short-Term Memory (VSTM) in the context of multiple items. Five- and 10-month-old infants (N = 76) received a change detection task in which arrays of three differently colored squares appeared and disappeared. On each trial one square changed color and one square was cued; sometimes the cued item was the changing item, and sometimes the changing item was not the cued item. Ten-month-old infants exhibited enhanced memory for the cued item when the cue was a spatial pre-cue (Experiment 1) and 5-month-old infants exhibited enhanced memory for the cued item when the cue was relative motion (Experiment 2). These results demonstrate for the first time that infants younger than 6 months can encode information in VSTM about individual items in multiple-object arrays, and that attention-directing cues influence both perceptual and VSTM encoding of stimuli in infants as in adults.
JuxtaView - A tool for interactive visualization of large imagery on scalable tiled displays
Krishnaprasad, N.K.; Vishwanath, V.; Venkataraman, S.; Rao, A.G.; Renambot, L.; Leigh, J.; Johnson, A.E.; Davis, B.
2004-01-01
JuxtaView is a cluster-based application for viewing ultra-high-resolution images on scalable tiled displays. We present in JuxtaView, a new parallel computing and distributed memory approach for out-of-core montage visualization, using LambdaRAM, a software-based network-level cache system. The ultimate goal of JuxtaView is to enable a user to interactively roam through potentially terabytes of distributed, spatially referenced image data such as those from electron microscopes, satellites and aerial photographs. In working towards this goal, we describe our first prototype implemented over a local area network, where the image is distributed using LambdaRAM, on the memory of all nodes of a PC cluster driving a tiled display wall. Aggressive pre-fetching schemes employed by LambdaRAM help to reduce latency involved in remote memory access. We compare LambdaRAM with a more traditional memory-mapped file approach for out-of-core visualization. ?? 2004 IEEE.
Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; König, Kristina; Jokeit, Hennric
2015-01-01
Nonvisual spatial navigation functional magnetic resonance imaging (fMRI) may help clinicians determine memory lateralization in blind individuals with refractory mesial temporal lobe epilepsy (MTLE). We report on an exceptional case of a congenitally blind woman with late-onset left MTLE undergoing presurgical memory fMRI. To activate mesial temporal structures despite the lack of visual memory, the patient was requested to recall familiar routes using nonvisual multisensory and verbal cues. Our findings demonstrate the diagnostic value of a nonvisual fMRI task to lateralize MTLE despite congenital blindness and may therefore contribute to the risk assessment for postsurgical amnesia in rare cases with refractory MTLE and accompanying congenital blindness.
[Cognitive disorders in patients with chronic mercury intoxication].
Katamanova, E V; Shevchenko, O I; Lakhman, O L; Denisova, I A
2014-01-01
To assess severity of cognitive disorders in chronic mercury intoxication, the authors performed claster and discrimination analysis of neuropsychologic and neurophysiologic research data from workers exposed to mercury during long length of service, from patients with early and marked stages of chronic mercurial intoxication. Cognitive disorders in chronic mercurial intoxication have three severity degrees, in the light degree disorders patients demonstrate lower amplitude of cognitive evoked potentials, poor long-term memory and associative thinking. Moderate cognitive disorders are characterized by decreased visual, long-term memory, concentration of attention, poor optic and spatial gnosis. Marked cognitive disorders with chronic mercurial intoxication present with more decreased long-term, short-term, picturesque memory, poor intellect, optic and spatial gnosis and associative thinking.
Kibby, Michelle Y.; Dyer, Sarah M.; Vadnais, Sarah A.; Jagger, Audreyana C.; Casher, Gabriel A.; Stacy, Maria
2015-01-01
Whether visual processing deficits are common in reading disorders (RD), and related to reading ability in general, has been debated for decades. The type of visual processing affected also is debated, although visual discrimination and short-term memory (STM) may be more commonly related to reading ability. Reading disorders are frequently comorbid with ADHD, and children with ADHD often have subclinical reading problems. Hence, children with ADHD were used as a comparison group in this study. ADHD and RD may be dissociated in terms of visual processing. Whereas RD may be associated with deficits in visual discrimination and STM for order, ADHD is associated with deficits in visual-spatial processing. Thus, we hypothesized that children with RD would perform worse than controls and children with ADHD only on a measure of visual discrimination and a measure of visual STM that requires memory for order. We expected all groups would perform comparably on the measure of visual STM that does not require sequential processing. We found children with RD or ADHD were commensurate to controls on measures of visual discrimination and visual STM that do not require sequential processing. In contrast, both RD groups (RD, RD/ADHD) performed worse than controls on the measure of visual STM that requires memory for order, and children with comorbid RD/ADHD performed worse than those with ADHD. In addition, of the three visual measures, only sequential visual STM predicted reading ability. Hence, our findings suggest there is a deficit in visual sequential STM that is specific to RD and is related to basic reading ability. The source of this deficit is worthy of further research, but it may include both reduced memory for order and poorer verbal mediation. PMID:26579020
Kibby, Michelle Y; Dyer, Sarah M; Vadnais, Sarah A; Jagger, Audreyana C; Casher, Gabriel A; Stacy, Maria
2015-01-01
Whether visual processing deficits are common in reading disorders (RD), and related to reading ability in general, has been debated for decades. The type of visual processing affected also is debated, although visual discrimination and short-term memory (STM) may be more commonly related to reading ability. Reading disorders are frequently comorbid with ADHD, and children with ADHD often have subclinical reading problems. Hence, children with ADHD were used as a comparison group in this study. ADHD and RD may be dissociated in terms of visual processing. Whereas RD may be associated with deficits in visual discrimination and STM for order, ADHD is associated with deficits in visual-spatial processing. Thus, we hypothesized that children with RD would perform worse than controls and children with ADHD only on a measure of visual discrimination and a measure of visual STM that requires memory for order. We expected all groups would perform comparably on the measure of visual STM that does not require sequential processing. We found children with RD or ADHD were commensurate to controls on measures of visual discrimination and visual STM that do not require sequential processing. In contrast, both RD groups (RD, RD/ADHD) performed worse than controls on the measure of visual STM that requires memory for order, and children with comorbid RD/ADHD performed worse than those with ADHD. In addition, of the three visual measures, only sequential visual STM predicted reading ability. Hence, our findings suggest there is a deficit in visual sequential STM that is specific to RD and is related to basic reading ability. The source of this deficit is worthy of further research, but it may include both reduced memory for order and poorer verbal mediation.
Bogousslavsky, J; Miklossy, J; Deruaz, J P; Assal, G; Regli, F
1987-01-01
A macular-sparing superior altitudinal hemianopia with no visuo-psychic disturbance, except impaired visual learning, was associated with bilateral ischaemic necrosis of the lingual gyrus and only partial involvement of the fusiform gyrus on the left side. It is suggested that bilateral destruction of the lingual gyrus alone is not sufficient to affect complex visual processing. The fusiform gyrus probably has a critical role in colour integration, visuo-spatial processing, facial recognition and corresponding visual imagery. Involvement of the occipitotemporal projection system deep to the lingual gyri probably explained visual memory dysfunction, by a visuo-limbic disconnection. Impaired verbal memory may have been due to posterior involvement of the parahippocampal gyrus and underlying white matter, which may have disconnected the intact speech areas from the left medial temporal structures. Images PMID:3585386
Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.
Liverence, Brandon M; Scholl, Brian J
2015-07-01
Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. © The Author(s) 2015.
Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.
Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho
2017-01-01
How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.
Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.
Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal
2013-03-01
The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.
Robust memory of where from way back when: evidence from behaviour and visual attention.
Bauer, Patricia J; Stewart, Rebekah; Sirkin, Ruth E; Larkina, Marina
2017-09-01
Retention of events typically exhibits a sharp initial decrease followed by levelling off of forgetting. In an apparent exception to this general rule, college students have robust memory for their own locations in obscured versions of photographs of their entering classes taken during orientation-related activities, whether tested 2 months or 42 months after the event. Experiment 1 of the present research was a test for conceptual replication of this finding in photographs depicting more than twice the number of students (and thus potential distracters). There was no difference in memory accuracy for personal spatial location across retention intervals of 6-30 months. Experiment 2 featured 40-h and 2-month retention intervals, thereby providing a more fine-grained test of the forgetting function. The findings replicated Experiment 1. In Experiment 3, eye-tracking measures of visual attention revealed that participants rapidly fixated their own spatial locations within the photographs, even in the absence of explicit awareness. In all three experiments, memory for temporal features of the orientation activities (e.g., day and time the photograph was taken) followed the typical forgetting function. The findings suggest differential preservation of episodic memory for where relative to other aspects of events and experiences, such as when.
Wilkinson, Krista M; Dennis, Nancy A; Webb, Christina E; Therrien, Mari; Stradtman, Megan; Farmer, Jacquelyn; Leach, Raevynn; Warrenfeltz, Megan; Zeuner, Courtney
2015-01-01
Visual aided augmentative and alternative communication (AAC) consists of books or technologies that contain visual symbols to supplement spoken language. A common observation concerning some forms of aided AAC is that message preparation can be frustratingly slow. We explored the uses of fMRI to examine the neural correlates of visual search for line drawings on AAC displays in 18 college students under two experimental conditions. Under one condition, the location of the icons remained stable and participants were able to learn the spatial layout of the display. Under the other condition, constant shuffling of the locations of the icons prevented participants from learning the layout, impeding rapid search. Brain activation was contrasted under these conditions. Rapid search in the stable display was associated with greater activation of cortical and subcortical regions associated with memory, motor learning, and dorsal visual pathways compared to the search in the unpredictable display. Rapid search for line drawings on stable AAC displays involves not just the conceptual knowledge of the symbol meaning but also the integration of motor, memory, and visual-spatial knowledge about the display layout. Further research must study individuals who use AAC, as well as the functional effect of interventions that promote knowledge about array layout.
Estrogen treatment effects on cognition, memory and mood in male-to-female transsexuals.
Miles, Clare; Green, Richard; Hines, Melissa
2006-12-01
Gonadal hormones, particularly estrogens, have been suggested to influence memory and cognitive tasks that show sex differences. Previously, we reported that male-to-female (M-F) transsexuals undergoing estrogen treatment for sex re-assignment scored higher on verbal Paired Associate Learning (PAL) than a transsexual control group awaiting estrogen treatment. The present study used a more robust design to examine further associations between estrogen and cognition. We assessed additional aspects of memory, including visual, spatial, object and location memory, other cognitive abilities that show reliable sex differences, including verbal and visual-spatial abilities, and mood variables that could mediate associations between estrogen and cognition. In addition to comparing groups of individuals on and off estrogen, we used two repeated measures designs (AB and BA). The AB group was tested prior to hormone treatment and then again after treatment had begun; the BA group was tested while on estrogen treatment and then again when hormones had been withdrawn prior to surgery. Few changes in memory or cognition were observed, and changes that were observed were not consistent across study designs. The lack of significant effects did not relate to mood changes or to the sexual orientation of participants. These findings suggest that estrogen treatment associated with sex change for M-F transsexuals has little or no influence on sex-typed aspects of cognition or memory.
Lee, Sylvia E.; Kibby, Michelle Y.; Cohen, Morris J.; Stanford, Lisa; Park, Yong; Strickland, Suzanne
2016-01-01
Prior research has shown that attention-deficit/hyperactivity disorder (ADHD) and epilepsy are frequently comorbid and that both disorders are associated with various attention and memory problems. Nonetheless, limited research has been conducted comparing the two disorders in one sample to determine unique versus shared deficits. Hence, we investigated differences in working memory and short-term and delayed recall between children with ADHD, focal epilepsy of mixed foci, comorbid ADHD/epilepsy and controls. Participants were compared on the Core subtests and the Picture Locations subtest of the Children’s Memory Scale (CMS). Results indicated that children with ADHD displayed intact verbal working memory and long-term memory (LTM), as well as intact performance on most aspects of short-term memory (STM). They performed worse than controls on Numbers Forward and Picture Locations, suggesting problems with focused attention and simple span for visual-spatial material. Conversely, children with epilepsy displayed poor focused attention and STM regardless of modality assessed, which affected encoding into LTM. The only loss over time was found for passages (Stories). Working memory was intact. Children with comorbid ADHD/epilepsy displayed focused attention and STM/LTM problems consistent with both disorders, having the lowest scores across the four groups. Hence, focused attention and visual-spatial span appear to be affected in both disorders, whereas additional STM/encoding problems are specific to epilepsy. Children with comorbid ADHD/epilepsy have deficits consistent with both disorders, with slight additive effects. This study suggests that attention and memory testing should be a regular part of the evaluation of children with epilepsy and ADHD. PMID:26156331
Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein
2015-01-01
Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke.
Kraft, Antje; Irlbacher, Kerstin; Finke, Kathrin; Kaufmann, Christian; Kehrer, Stefanie; Liebermann, Daniela; Bundesen, Claus; Brandt, Stephan A
2015-03-01
Thalamic nuclei act as sensory, motor and cognitive relays between multiple subcortical areas and the cerebral cortex. They play a crucial role in cognitive functions such as executive functioning, memory and attention. In the acute period after thalamic stroke attentional deficits are common. The precise functional relevance of specific nuclei or vascular sub regions of the thalamus for attentional sub functions is still unclear. The theory of visual attention (TVA) allows the measurement of four independent attentional parameters (visual short term memory storage capacity (VSTM), visual perceptual processing speed, selective control and spatial weighting). We combined parameter-based assessment based on TVA with lesion symptom mapping in standard stereotactic space in sixteen patients (mean age 41.2 ± 11.0 SD, 6 females), with focal thalamic lesions in the medial (N = 9), lateral (N = 5), anterior (N = 1) or posterior (N = 1) vascular territories of the thalamus. Compared with an age-matched control group of 52 subjects (mean age 40.1 ± 6.4, 35 females), the patients with thalamic lesions were, on the group level, mildly impaired in visual processing speed and VSTM. Patients with lateral thalamic lesions showed a deficit in processing speed while all other TVA parameters were within the normal range. Medial thalamic lesions can be associated with a spatial bias and extinction of targets either in the ipsilesional or the contralesional field. A posterior case with a thalamic lesion of the pulvinar replicated a finding of Habekost and Rostrup (2006), demonstrating a spatial bias to the ipsilesional field, as suggested by the neural theory of visual attention (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). A case with an anterior-medial thalamic lesion showed reduced selective attentional control. We conclude that lesions in distinct vascular sub regions of the thalamus are associated with distinct attentional syndromes (medial = spatial bias, lateral = processing speed). Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove
2009-01-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…
Moving to higher ground: The dynamic field theory and the dynamics of visual cognition
Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor
2009-01-01
In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013
Martoni, Riccardo Maria; Salgari, Giulia; Galimberti, Elisa; Cavallini, Maria Cristina; O'Neill, Joseph
2015-12-01
Visuospatial working memory (VSWM) is the ability of the brain to transiently store and manipulate visual information. VSWM deficiencies have been reported in obsessive-compulsive disorder (OCD), but not consistently, perhaps due to variability in task design and clinical patient factors. To explore this variability, this study assessed effects of the design factors task difficulty and executive organizational strategy and of the clinical factors gender, OCD symptom dimension, and duration of illness on VSWM in OCD. The CANTAB spatial working memory, spatial recognition memory, delayed matching to sample, and stop signal tasks were administered to 42 adult OCD patients and 42 age- and sex-matched healthy controls. Aims were to detect a possible VSWM deficit in the OCD sample, to evaluate influences of the above task and patient factors, to determine the specificity of the deficit to the visuospatial subdomain, and to examine effects of sustained attention as potential neurocognitive confound. We confirmed previous findings of a VSWM deficit in OCD that was more severe for greater memory load (task difficulty) and that was affected by task strategy (executive function). We failed to demonstrate significant deficits in neighboring or confounding neurocognitive subdomains (visual object recognition or visual object short-term memory, sustained attention). Notably, the VSWM deficit was only significant for female patients, adding to evidence for sexual dimorphism in OCD. Again as in prior work, more severe OCD symptoms in the symmetry dimension (but no other dimension) significantly negatively impacted VSWM. Duration of illness had no significant effect on VSWM. VSWM deficits in OCD appear more severe with higher task load and may be mediated through poor task strategy. Such deficits may present mainly in female patients and in (male and female) patients with symmetry symptoms.
Exploring the Structure of Spatial Representations
Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela
2016-01-01
It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681
Ushitani, Tomokazu; Perry, Clint J; Cheng, Ken; Barron, Andrew B
2016-02-01
Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate. © 2016. Published by The Company of Biologists Ltd.
Goldstein, Kim E; Hazlett, Erin A; Savage, Kimberley R; Berlin, Heather A; Hamilton, Holly K; Zelmanova, Yuliya; Look, Amy E; Koenigsberg, Harold W; Mitsis, Effie M; Tang, Cheuk Y; McNamara, Margaret; Siever, Larry J; Cohen, Barry H; New, Antonia S
2011-04-15
Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values <0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance. Published by Elsevier B.V.
Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M
2010-01-01
Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.
A category adjustment approach to memory for spatial location in natural scenes.
Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F
2010-05-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Cohen, David; Martel, Claire; Wilson, Anna; Déchambre, Nicole; Amy, Céline; Duverger, Ludovic; Guile, Jean-Marc; Pipiras, Eva; Benzacken, Brigitte; Cavé, Hélène; Cohen, Laurent; Héron, Delphine; Plaza, Monique
2007-09-01
Duplications of chromosome 15 may be one of the most common single genetic causes of autism spectrum disorders (ASD), aside from fragile X. Most of the cases are associated with maternally derived interstitial duplication involving 15q11-13. This case report describes a female proband with a maternally derived interstitial duplication of proximal 15q. She did not exhibit any symptoms of ASD apart from some developmental delay. By adolescence, she showed mild dysmorphism, a discrepant profile on the Wechsler Intelligence Scale for Children (Verbal IQ = 87; Performance IQ = 65) and a major deficit in visual-spatial abilities affecting fine motor skills, mathematical reasoning, visual memory and some global reading tasks. This is one of the first reports of a child with a maternal duplication who exhibits a visual-spatial deficit without ASD.
Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying
2016-01-01
Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335
Enhanced verbal abilities in the congenitally blind.
Occelli, Valeria; Lacey, Simon; Stephens, Careese; Merabet, Lotfi B; Sathian, K
2017-06-01
Numerous studies have found that congenitally blind individuals have better verbal memory than their normally sighted counterparts. However, it is not known whether this reflects superiority of verbal or memory abilities. In order to distinguish between these possibilities, we tested congenitally blind participants and normally sighted control participants, matched for age and education, on a range of verbal and spatial tasks. Congenitally blind participants were significantly better than sighted controls on all the verbal tasks but the groups did not differ significantly on the spatial tasks. Thus, the congenitally blind appear to have superior verbal, but not spatial, abilities. This may reflect greater reliance on verbal information and the involvement of visual cortex in language processing in the congenitally blind.
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing
Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914
A new neural framework for visuospatial processing.
Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer
2011-04-01
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.
Ntzouni, Maria P; Skouroliakou, Aikaterini; Kostomitsopoulos, Nikolaos; Margaritis, Lukas H
2013-03-01
This study was designed to investigate the transient and cumulative impairments in spatial and non-spatial memory of C57Bl/6J mice exposed to GSM 1.8 GHz signal for 90 min daily by a typical cellular (mobile) phone at a specific absorption rate value of 0.11 W/kg. Free-moving male mice 2 months old were irradiated in two experimental protocols, lasting for 66 and for 148 days respectively. Each protocol used three groups of animals (n = 8 each for exposed, sham exposed and controls) in combination with two behavioural paradigms, the object recognition task and the object location task sequentially applied at different time points. One-way analysis of variance revealed statistically significant impairments of both types of memory gradually accumulating, with more pronounced effects on the spatial memory. The impairments persisted even 2 weeks after interruption of the 8 weeks daily exposure, whereas the memory of mice as detected by both tasks showed a full recovery approximately 1 month later. Intermittent every other day exposure for 1 month had no effect on both types of memory. The data suggest that visual information processing mechanisms in hippocampus, perirhinal and entorhinal cortex are gradually malfunctioning upon long-term daily exposure, a phenotype that persists for at least 2 weeks after interruption of radiation, returning to normal memory performance levels 4 weeks later. It is postulated that cellular repair mechanisms are operating to eliminate the memory affecting molecules. The overall contribution of several possible mechanisms to the observed cumulative and transient impairments in spatial and non-spatial memory is discussed.
Mania, Katerina; Wooldridge, Dave; Coxon, Matthew; Robinson, Andrew
2006-01-01
Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual and interaction fidelity of immersive virtual environments on memory awareness states. A between groups experiment was carried out to explore the effect of rendering quality on location-based recognition memory for objects and associated states of awareness. The experimental space, consisting of two interconnected rooms, was rendered either flat-shaded or using radiosity rendering. The computer graphics simulations were displayed on a stereo head-tracked Head Mounted Display. Participants completed a recognition memory task after exposure to the experimental space and reported one of four states of awareness following object recognition. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection, and also included guesses. Experimental results revealed variations in the distribution of participants' awareness states across conditions while memory performance failed to reveal any. Interestingly, results revealed a higher proportion of recollections associated with mental imagery in the flat-shaded condition. These findings comply with similar effects revealed in two earlier studies summarized here, which demonstrated that the less "naturalistic" interaction interface or interface of low interaction fidelity provoked a higher proportion of recognitions based on visual mental images.
Circadian timed episodic-like memory - a bee knows what to do when, and also where.
Pahl, Mario; Zhu, Hong; Pix, Waltraud; Tautz, Juergen; Zhang, Shaowu
2007-10-01
This study investigates how the colour, shape and location of patterns could be memorized within a time frame. Bees were trained to visit two Y-mazes, one of which presented yellow vertical (rewarded) versus horizontal (non-rewarded) gratings at one site in the morning, while another presented blue horizontal (rewarded) versus vertical (non-rewarded) gratings at another site in the afternoon. The bees could perform well in the learning tests and various transfer tests, in which (i) all contextual cues from the learning test were present; (ii) the colour cues of the visual patterns were removed, but the location cue, the orientation of the visual patterns and the temporal cue still existed; (iii) the location cue was removed, but other contextual cues, i.e. the colour and orientation of the visual patterns and the temporal cue still existed; (iv) the location cue and the orientation cue of the visual patterns were removed, but the colour cue and temporal cue still existed; (v) the location cue, and the colour cue of the visual patterns were removed, but the orientation cue and the temporal cue still existed. The results reveal that the honeybee can recall the memory of the correct visual patterns by using spatial and/or temporal information. The relative importance of different contextual cues is compared and discussed. The bees' ability to integrate elements of circadian time, place and visual stimuli is akin to episodic-like memory; we have therefore named this kind of memory circadian timed episodic-like memory.
Is the Recall of Verbal-Spatial Information from Working Memory Affected by Symptoms of ADHD?
ERIC Educational Resources Information Center
Caterino, Linda C.; Verdi, Michael P.
2012-01-01
Objective: The Kulhavy model for text learning using organized spatial displays proposes that learning will be increased when participants view visual images prior to related text. In contrast to previous studies, this study also included students who exhibited symptoms of ADHD. Method: Participants were presented with either a map-text or…
ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access
ERIC Educational Resources Information Center
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-01-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one "simultaneously" in a spatially distributed fashion, the other "sequentially" at a single location. To understand their findings in a unified framework, we propose a…
ERIC Educational Resources Information Center
Bomba, Marie D.; Singhal, Anthony
2010-01-01
Previous dual-task research pairing complex visual tasks involving non-spatial cognitive processes during dichotic listening have shown effects on the late component (Ndl) of the negative difference selective attention waveform but no effects on the early (Nde) response suggesting that the Ndl, but not the Nde, is affected by non-spatial…
The effects of sequential attention shifts within visual working memory
Li, Qi; Saiki, Jun
2014-01-01
Previous studies have shown conflicting data as to whether it is possible to sequentially shift spatial attention among visual working memory (VWM) representations. The present study investigated this issue by asynchronously presenting attentional cues during the retention interval of a change detection task. In particular, we focused on two types of sequential attention shifts: (1) orienting attention to one location, and then withdrawing attention from it, and (2) switching the focus of attention from one location to another. In Experiment 1, a withdrawal cue was presented after a spatial retro-cue to measure the effect of withdrawing attention. The withdrawal cue significantly reduced the cost of invalid spatial cues, but surprisingly, did not attenuate the benefit of valid spatial cues. This indicates that the withdrawal cue only triggered the activation of facilitative components but not inhibitory components of attention. In Experiment 2, two spatial retro-cues were presented successively to examine the effect of switching the focus of attention. We observed equivalent benefits of the first and second spatial cues, suggesting that participants were able to reorient attention from one location to another within VWM, and the reallocation of attention did not attenuate memory at the first-cued location. In Experiment 3, we found that reducing the validity of the preceding spatial cue did lead to a significant reduction in its benefit. However, performance was still better at first-cued locations than at uncued and neutral locations, indicating that the first cue benefit might have been preserved both partially under automatic control and partially under voluntary control. Our findings revealed new properties of dynamic attentional control in VWM maintenance. PMID:25237306
A bilateral advantage in controlling access to visual short-term memory.
Holt, Jessica L; Delvenne, Jean-François
2014-01-01
Recent research on visual short-term memory (VSTM) has revealed the existence of a bilateral field advantage (BFA--i.e., better memory when the items are distributed in the two visual fields than if they are presented in the same hemifield) for spatial location and bar orientation, but not for color (Delvenne, 2005; Umemoto, Drew, Ester, & Awh, 2010). Here, we investigated whether a BFA in VSTM is constrained by attentional selective processes. It has indeed been previously suggested that the BFA may be a general feature of selective attention (Alvarez & Cavanagh, 2005; Delvenne, 2005). Therefore, the present study examined whether VSTM for color benefits from bilateral presentation if attentional selective processes are particularly engaged. Participants completed a color change detection task whereby target stimuli were presented either across both hemifields or within one single hemifield. In order to engage attentional selective processes, some trials contained irrelevant stimuli that needed to be ignored. Targets were selected based on spatial locations (Experiment 1) or on a salient feature (Experiment 2). In both cases, the results revealed a BFA only when irrelevant stimuli were presented among the targets. Overall, the findings strongly suggest that attentional selective processes at encoding can constrain whether a BFA is observed in VSTM.
Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning
Lipinski, John; Spencer, John P.; Samuelson, Larissa K.
2010-01-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881
Biased feedback in spatial recall yields a violation of delta rule learning.
Lipinski, John; Spencer, John P; Samuelson, Larissa K
2010-08-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.
Gestalt Effects in Visual Working Memory.
Kałamała, Patrycja; Sadowska, Aleksandra; Ordziniak, Wawrzyniec; Chuderski, Adam
2017-01-01
Four experiments investigated whether conforming to Gestalt principles, well known to drive visual perception, also facilitates the active maintenance of information in visual working memory (VWM). We used the change detection task, which required the memorization of visual patterns composed of several shapes. We observed no effects of symmetry of visual patterns on VWM performance. However, there was a moderate positive effect when a particular shape that was probed matched the shape of the whole pattern (the whole-part similarity effect). Data support the models assuming that VWM encodes not only particular objects of the perceptual scene but also the spatial relations between them (the ensemble representation). The ensemble representation may prime objects similar to its shape and thereby boost access to them. In contrast, the null effect of symmetry relates the fact that this very feature of an ensemble does not yield any useful additional information for VWM.
Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk
2017-07-01
This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.
Central insulin administration improves odor-cued reactivation of spatial memory in young men.
Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica
2015-01-01
Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.
Ryan, Lee; Cox, Christine; Hayes, Scott M; Nadel, Lynn
2008-01-01
Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest.
Ryan, Lee; Cox, Christine; Hayes, Scott M.; Nadel, Lynn
2008-01-01
Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest. PMID:18420234
Posterior parietal cortex mediates encoding and maintenance processes in change blindness.
Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung
2010-03-01
It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754.). Copyright (c) 2009 Elsevier Ltd. All rights reserved.
How Is the Serial Order of a Visual Sequence Represented? Insights from Transposition Latencies
ERIC Educational Resources Information Center
Hurlstone, Mark J.; Hitch, Graham J.
2018-01-01
A central goal of research on short-term memory (STM) over the past 2 decades has been to identify the mechanisms that underpin the representation of serial order, and to establish whether these mechanisms are the same across different modalities and domains (e.g., verbal, visual, spatial). A fruitful approach to addressing this question has…
Task-set inertia and memory-consolidation bottleneck in dual tasks.
Koch, Iring; Rumiati, Raffaella I
2006-11-01
Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.
The Gestalt Principle of Similarity Benefits Visual Working Memory
Peterson, Dwight J.; Berryhill, Marian E.
2013-01-01
Visual working memory (VWM) is essential for many cognitive processes yet it is notably limited in capacity. Visual perception processing is facilitated by Gestalt principles of grouping, such as connectedness, similarity, and proximity. This introduces the question: do these perceptual benefits extend to VWM? If so, can this be an approach to enhance VWM function by optimizing the processing of information? Previous findings demonstrate that several Gestalt principles (connectedness, common region, and spatial proximity) do facilitate VWM performance in change detection tasks (Woodman, Vecera, & Luck, 2003; Xu, 2002a, 2006; Xu & Chun, 2007; Jiang, Olson & Chun, 2000). One prevalent Gestalt principle, similarity, has not been examined with regard to facilitating VWM. Here, we investigated whether grouping by similarity benefits VWM. Experiment 1 established the basic finding that VWM performance could benefit from grouping. Experiment 2 replicated and extended this finding by showing that similarity was only effective when the similar stimuli were proximal. In short, the VWM performance benefit derived from similarity was constrained by spatial proximity such that similar items need to be near each other. Thus, the Gestalt principle of similarity benefits visual perception, but it can provide benefits to VWM as well. PMID:23702981
The Gestalt principle of similarity benefits visual working memory.
Peterson, Dwight J; Berryhill, Marian E
2013-12-01
Visual working memory (VWM) is essential for many cognitive processes, yet it is notably limited in capacity. Visual perception processing is facilitated by Gestalt principles of grouping, such as connectedness, similarity, and proximity. This introduces the question, do these perceptual benefits extend to VWM? If so, can this be an approach to enhance VWM function by optimizing the processing of information? Previous findings have demonstrated that several Gestalt principles (connectedness, common region, and spatial proximity) do facilitate VWM performance in change detection tasks (Jiang, Olson, & Chun, 2000; Woodman, Vecera, & Luck, 2003; Xu, 2002, 2006; Xu & Chun, 2007). However, one prevalent Gestalt principle, similarity, has not been examined with regard to facilitating VWM. Here, we investigated whether grouping by similarity benefits VWM. Experiment 1 established the basic finding that VWM performance could benefit from grouping. Experiment 2 replicated and extended this finding by showing that similarity was only effective when the similar stimuli were proximal. In short, the VWM performance benefit derived from similarity was constrained by spatial proximity, such that similar items need to be near each other. Thus, the Gestalt principle of similarity benefits visual perception, but it can provide benefits to VWM as well.
Enhanced HMAX model with feedforward feature learning for multiclass categorization.
Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu
2015-01-01
In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.
Lyon, Louisa; Burnet, Philip WJ; Kew, James NC; Corti, Corrado; Rawlins, J Nicholas P; Lane, Tracy; De Filippis, Bianca; Harrison, Paul J; Bannerman, David M
2011-01-01
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3−/−) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3−/− mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal–cognition relationship in GRM2/3−/− mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3−/− mice. GRM2/3−/− mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders. PMID:21832989
NASA Astrophysics Data System (ADS)
Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina
1995-04-01
This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.
Aging memories: differential decay of episodic memory components.
Talamini, Lucia M; Gorree, Eva
2012-05-17
Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.
Foerster, Rebecca M
2018-03-01
Before acting humans saccade to a target object to extract relevant visual information. Even when acting on remembered objects, locations previously occupied by relevant objects are fixated during imagery and memory tasks - a phenomenon called "looking-at-nothing". While looking-at-nothing was robustly found in tasks encouraging declarative memory built-up, results are mixed in the case of procedural sensorimotor tasks. Eye-guidance to manual targets in complete darkness was observed in a task practiced for days beforehand, while investigations using only a single session did not find fixations to remembered action targets. Here, it is asked whether looking-at-nothing can be found in a single sensorimotor session and thus independent from sleep consolidation, and how it progresses when visual information is repeatedly unavailable. Eye movements were investigated in a computerized version of the trail making test. Participants clicked on numbered circles in ascending sequence. Fifty trials were performed with the same spatial arrangement of 9 visual targets to enable long-term memory consolidation. During 50 consecutive trials, participants had to click the remembered target sequence on an empty screen. Participants scanned the visual targets and also the empty target locations sequentially with their eyes, however, the latter less precise than the former. Over the course of the memory trials, manual and oculomotor sequential target scanning became more similar to the visual trials. Results argue for robust looking-at-nothing during procedural sensorimotor tasks provided that long-term memory information is sufficient. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Core neuropsychological characteristics of children and adolescents with 22q11.2 deletion.
Jacobson, C; Shearer, J; Habel, A; Kane, F; Tsakanikos, E; Kravariti, E
2010-08-01
The 22q11.2 deletion syndrome (22qDS) confers high risk for intellectual disability and neuropsychological/academic impairment, although a minority of patients show average intelligence. Intellectual heterogeneity and the high prevalence of psychiatric diagnoses in earlier studies may have obscured the prototypical neuropsychological profile in 22qDS. We examined intelligence, memory, reading and mathematical processes in 31 children/adolescents with 22qDS, selected for educational underachievement and an absence of psychiatric diagnoses, using standardised, psychometrically matched instruments that specify how typical a score is for a given intelligence quotient (IQ). Corroborating earlier findings, verbal IQ was significantly superior to performance IQ; verbal memory and basic reading were relative strengths; and visual/spatial memory was a relative weakness. All four findings transcended performance characteristics that are typical of low-IQ individuals. Rote learning yielded the highest score; reading comprehension, numerical operations and mathematical reasoning were among the lowest-performed academic domains. Albeit in the expected direction, performance in the respective components could not be clearly differentiated from what is IQ-appropriate. A superiority of verbal intelligence over non-verbal intelligence, relative strengths in verbal memory and basic reading, and a relative weakness in visual/spatial memory are likely to be core characteristics of children/adolescents with 22qDS, transcending performance features that are typical of individuals with low IQ.
Neuropsychological impairments on the NEPSY-II among children with FASD.
Rasmussen, Carmen; Tamana, Sukhpreet; Baugh, Lauren; Andrew, Gail; Tough, Suzanne; Zwaigenbaum, Lonnie
2013-01-01
We examined the pattern of neuropsychological impairments of children with FASD (compared to controls) on NEPSY-II measures of attention and executive functioning, language, memory, visuospatial processing, and social perception. Participants included 32 children with FASD and 30 typically developing control children, ranging in age from 6 to 16 years. Children were tested on the following subtests of the NEPSY-II: Attention and Executive Functioning (animal sorting, auditory attention/response set, and inhibition), Language (comprehension of instructions and speeded naming), Memory (memory for names/delayed memory for names), Visual-Spatial Processing (arrows), and Social Perception (theory of mind). Groups were compared using MANOVA. Children with FASD were impaired relative to controls on the following subtests: animal sorting, response set, inhibition (naming and switching conditions), comprehension of instructions, speeded naming, and memory for names total and delayed, but group differences were not significant on auditory attention, inhibition (inhibition condition), arrows, and theory of mind. Among the FASD group, IQ scores were not correlated with performance on the NEPSY-II subtests, and there were no significant differences between those with and without comorbid ADHD. The NEPSY-II is an effective and useful tool for measuring a variety of neuropsychological impairments among children with FASD. Children with FASD displayed a pattern of results with impairments (relative to controls) on measures of executive functioning (set shifting, concept formation, and inhibition), language, and memory, and relative strengths on measures of basic attention, visual spatial processing, and social perception.
Human short-term spatial memory: precision predicts capacity.
Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre
2015-03-01
Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information. Copyright © 2015 Elsevier Inc. All rights reserved.
A new neural framework for visuospatial processing
Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer
2012-01-01
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848
Enhanced Verbal Abilities in The Congenitally Blind
Occelli, Valeria; Lacey, Simon; Stephens, Careese; Merabet, Lotfi B.; Sathian, K.
2017-01-01
Numerous studies have found that congenitally blind individuals have better verbal memory than their normally sighted counterparts. However, it is not known whether this reflects superiority of verbal or memory abilities. In order to distinguish between these possibilities, we tested congenitally blind participants and normally sighted control participants, matched for age and education, on a range of verbal and spatial tasks. Congenitally blind participants were significantly better than sighted controls on all the verbal tasks but the groups did not differ significantly on the spatial tasks. Thus, the congenitally blind appear to have superior verbal, but not spatial, abilities. This may reflect greater reliance on verbal information and the involvement of visual cortex in language processing in the congenitally blind. PMID:28280879
Borg, Céline; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Antérion, Catherine
2011-06-01
The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on short-term memory in ageing and Alzheimer's disease (AD). Fourteen patients with mild AD, 14 healthy older participants (NC), and 14 younger adults (YA) performed two tasks. In the first task, involving visual short-term memory, participants were asked to remember a picture among four different pictures (negative or neutral) following a brief delay. The second task, a binding memory task, required the recognition by participants of a picture according to its spatial location. The attentional cost involved was higher than for the first task. The pattern of results showed that visual memory performance was better for negative stimuli than for neutral ones, irrespective of the group. In contrast, binding memory performance was essentially poorer for the location of negative pictures in the NC group, and for the location of both negative and neutral stimuli in the AD group, in comparison to the YA group. Taken together, these results show that emotion has beneficial effects on visual short-term memory in ageing and AD. In contrast, emotion does not improve their performances in the binding condition. Copyright © 2011 Elsevier Inc. All rights reserved.
Ghosts in the machine: memory interference from the previous trial.
Papadimitriou, Charalampos; Ferdoash, Afreen; Snyder, Lawrence H
2015-01-15
Previous memoranda can interfere with the memorization or storage of new information, a concept known as proactive interference. Studies of proactive interference typically use categorical memoranda and match-to-sample tasks with categorical measures such as the proportion of correct to incorrect responses. In this study we instead train five macaques in a spatial memory task with continuous memoranda and responses, allowing us to more finely probe working memory circuits. We first ask whether the memoranda from the previous trial result in proactive interference in an oculomotor delayed response task. We then characterize the spatial and temporal profile of this interference and ask whether this profile can be predicted by an attractor network model of working memory. We find that memory in the current trial shows a bias toward the location of the memorandum of the previous trial. The magnitude of this bias increases with the duration of the memory period within which it is measured. Our simulations using standard attractor network models of working memory show that these models easily replicate the spatial profile of the bias. However, unlike the behavioral findings, these attractor models show an increase in bias with the duration of the previous rather than the current memory period. To model a bias that increases with current trial duration we posit two separate memory stores, a rapidly decaying visual store that resists proactive interference effects and a sustained memory store that is susceptible to proactive interference. Copyright © 2015 the American Physiological Society.
Ghosts in the machine: memory interference from the previous trial
Ferdoash, Afreen; Snyder, Lawrence H.
2014-01-01
Previous memoranda can interfere with the memorization or storage of new information, a concept known as proactive interference. Studies of proactive interference typically use categorical memoranda and match-to-sample tasks with categorical measures such as the proportion of correct to incorrect responses. In this study we instead train five macaques in a spatial memory task with continuous memoranda and responses, allowing us to more finely probe working memory circuits. We first ask whether the memoranda from the previous trial result in proactive interference in an oculomotor delayed response task. We then characterize the spatial and temporal profile of this interference and ask whether this profile can be predicted by an attractor network model of working memory. We find that memory in the current trial shows a bias toward the location of the memorandum of the previous trial. The magnitude of this bias increases with the duration of the memory period within which it is measured. Our simulations using standard attractor network models of working memory show that these models easily replicate the spatial profile of the bias. However, unlike the behavioral findings, these attractor models show an increase in bias with the duration of the previous rather than the current memory period. To model a bias that increases with current trial duration we posit two separate memory stores, a rapidly decaying visual store that resists proactive interference effects and a sustained memory store that is susceptible to proactive interference. PMID:25376781
Flexible cognitive resources: competitive content maps for attention and memory
Franconeri, Steven L.; Alvarez, George A.; Cavanagh, Patrick
2013-01-01
The brain has finite processing resources so that, as tasks become harder, performance degrades. Where do the limits on these resources come from? We focus on a variety of capacity-limited buffers related to attention, recognition, and memory that we claim have a two-dimensional ‘map’ architecture, where individual items compete for cortical real estate. This competitive format leads to capacity limits that are flexible, set by the nature of the content and their locations within an anatomically delimited space. We contrast this format with the standard ‘slot’ architecture and its fixed capacity. Using visual spatial attention and visual short-term memory as case studies, we suggest that competitive maps are a concrete and plausible architecture that limits cognitive capacity across many domains. PMID:23428935
An Attention-Sensitive Memory Trace in Macaque MT Following Saccadic Eye Movements
Yao, Tao; Treue, Stefan; Krishna, B. Suresh
2016-01-01
We experience a visually stable world despite frequent retinal image displacements induced by eye, head, and body movements. The neural mechanisms underlying this remain unclear. One mechanism that may contribute is transsaccadic remapping, in which the responses of some neurons in various attentional, oculomotor, and visual brain areas appear to anticipate the consequences of saccades. The functional role of transsaccadic remapping is actively debated, and many of its key properties remain unknown. Here, recording from two monkeys trained to make a saccade while directing attention to one of two spatial locations, we show that neurons in the middle temporal area (MT), a key locus in the motion-processing pathway of humans and macaques, show a form of transsaccadic remapping called a memory trace. The memory trace in MT neurons is enhanced by the allocation of top-down spatial attention. Our data provide the first demonstration, to our knowledge, of the influence of top-down attention on the memory trace anywhere in the brain. We find evidence only for a small and transient effect of motion direction on the memory trace (and in only one of two monkeys), arguing against a role for MT in the theoretically critical yet empirically contentious phenomenon of spatiotopic feature-comparison and adaptation transfer across saccades. Our data support the hypothesis that transsaccadic remapping represents the shift of attentional pointers in a retinotopic map, so that relevant locations can be tracked and rapidly processed across saccades. Our results resolve important issues concerning the perisaccadic representation of visual stimuli in the dorsal stream and demonstrate a significant role for top-down attention in modulating this representation. PMID:26901857
Influence of schooling and age on cognitive performance in healthy older adults
Bento-Torres, N.V.O.; Bento-Torres, J.; Tomás, A.M.; Costa, V.O.; Corrêa, P.G.R.; Costa, C.N.M.; Jardim, N.Y.V.; Picanço-Diniz, C.W.
2017-01-01
Few studies have examined the influence of a low level of schooling on age-related cognitive decline in countries with wide social and economic inequalities by using the Cambridge Automated Neuropsychological Test Battery (CANTAB). The aim of the present study was to assess the influence of schooling on age-related cognitive decline using unbiased cognitive tests. CANTAB allows cognitive assessment across cultures and education levels with reduced interference of the examiner during data acquisition. Using two-way ANOVA, we assessed the influences of age and education on test scores of old adults (61–84 years of age). CANTAB tests included: Visual Sustained Attention, Reaction Time, Spatial Working Memory, Learning and Episodic Memory. All subjects had a minimum visual acuity of 20/30 (Snellen Test), no previous or current history of traumatic brain/head trauma, stroke, language impairment, chronic alcoholism, neurological diseases, memory problems or depressive symptoms, and normal scores on the Mini Mental State Examination (MMSE). Subjects were grouped according to education level (1 to 7 and ≥8 years of schooling) and age (60–69 and ≥70 years). Low schooling level was associated with significantly lower performance on visual sustained attention, learning and episodic memory, reaction time, and spatial working memory. Although reaction time was influenced by age, no significant results on post hoc analysis were detected. Our findings showed a significantly worse cognitive performance in volunteers with lower levels of schooling and suggested that formal education in early life must be included in the preventive public health agenda. In addition, we suggest that CANTAB may be useful to detect subtle cognitive changes in healthy aging. PMID:28355353
How does experience modulate auditory spatial processing in individuals with blindness?
Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C
2015-05-01
Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.
Lee, Sylvia E; Kibby, Michelle Y; Cohen, Morris J; Stanford, Lisa; Park, Yong; Strickland, Suzanne
2016-01-01
Prior research has shown that attention-deficit/hyperactivity disorder (ADHD) and epilepsy are frequently comorbid and that both disorders are associated with various attention and memory problems. Nonetheless, limited research has been conducted comparing the two disorders in one sample to determine unique versus shared deficits. Hence, we investigated differences in working memory (WM) and short-term and delayed recall between children with ADHD, focal epilepsy of mixed foci, comorbid ADHD/epilepsy and controls. Participants were compared on the Core subtests and the Picture Locations subtest of the Children's Memory Scale (CMS). Results indicated that children with ADHD displayed intact verbal WM and long-term memory (LTM), as well as intact performance on most aspects of short-term memory (STM). They performed worse than controls on Numbers Forward and Picture Locations, suggesting problems with focused attention and simple span for visual-spatial material. Conversely, children with epilepsy displayed poor focused attention and STM regardless of the modality assessed, which affected encoding into LTM. The only loss over time was found for passages (Stories). WM was intact. Children with comorbid ADHD/epilepsy displayed focused attention and STM/LTM problems consistent with both disorders, having the lowest scores across the four groups. Hence, focused attention and visual-spatial span appear to be affected in both disorders, whereas additional STM/encoding problems are specific to epilepsy. Children with comorbid ADHD/epilepsy have deficits consistent with both disorders, with slight additive effects. This study suggests that attention and memory testing should be a regular part of the evaluation of children with epilepsy and ADHD.
Scanpath memory binding: multiple read-out experiments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.; Privitera, Claudio M.; Yang, Huiyang; Azzariti, Michela; Ho, Yeuk F.; Chan, Angie; Krischer, Christof; Weinberger, Adam
1999-05-01
The scanpath theory proposed that an internal spatial- cognitive model controls perception and the active looking eye movements, EMs, of the scanpath sequence. Evidence for this came from new quantitative methods, experiments with ambiguous figures and visual imagery and from MRI studies, all on cooperating human subjects. Besides recording EMs, we introduce other experimental techniques wherein the subject must depend upon memory bindings as in visual imagery, but may call upon other motor behaviors than EMs to read-out the remembered patterns. How is the internal model distributed and operationally assembled. The concept of binding speaks to the assigning of values for the model and its execution in various parts of the brain. Current neurological information helps to localize different aspects of the spatial-cognitive model in the brain. We suppose that there are several levels of 'binding' -- semantic or symbolic binding, structural binding for the spatial locations of the regions-of-interest and sequential binding for the dynamic execution program that yields the sequence of EMs. Our aim is to dissect out respective contributions of these different forms of binding.
Expressive writing in people with traumatic brain injury and learning disability.
Wheeler, Lisa; Nickerson, Sherry; Long, Kayla; Silver, Rebecca
2014-01-01
There is a dearth of systematic studies of expressive writing disorder (EWD) in persons with Traumatic Brain Injury (TBI). It is unclear if TBI survivors' written expression differs significantly from that experienced by persons with learning disabilities. It is also unclear which cognitive or neuropsychological variables predict problems with expressive writing (EW) or the EWD. This study investigated the EW skill, and the EWD in adults with mild traumatic brain injuries (TBI) relative to those with learning disabilities (LD). It also determined which of several cognitive variables predicted EW and EWD. Principle Component Analysis (PCA) of writing samples from 28 LD participants and 28 TBI survivors revealed four components of expressive writing skills: Reading Ease, Sentence Fluency, Grammar and Spelling, and Paragraph Fluency. There were no significant differences between the LD and TBI groups on any of the expressive writing components. Several neuropsychological variables predicted skills of written expression. The best predictors included measures of spatial perception, verbal IQ, working memory, and visual memory. TBI survivors and persons with LD do not differ markedly in terms of expressive writing skill. Measures of spatial perception, visual memory, verbal intelligence, and working memory predict writing skill in both groups. Several therapeutic interventions are suggested that are specifically designed to improve deficits in expressive writing skills in individuals with TBI and LD.
Midline thalamic reuniens lesions improve executive behaviors.
Prasad, J A; Abela, A R; Chudasama, Y
2017-03-14
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention. Published by Elsevier Ltd.
Finke, Kathrin; Schwarzkopf, Wolfgang; Müller, Ulrich; Frodl, Thomas; Müller, Hermann J; Schneider, Werner X; Engel, Rolf R; Riedel, Michael; Möller, Hans-Jürgen; Hennig-Fast, Kristina
2011-11-01
Attention deficit hyperactivity disorder (ADHD) persists frequently into adulthood. The decomposition of endophenotypes by means of experimental neuro-cognitive assessment has the potential to improve diagnostic assessment, evaluation of treatment response, and disentanglement of genetic and environmental influences. We assessed four parameters of attentional capacity and selectivity derived from simple psychophysical tasks (verbal report of briefly presented letter displays) and based on a "theory of visual attention." These parameters are mathematically independent, quantitative measures, and previous studies have shown that they are highly sensitive for subtle attention deficits. Potential reductions of attentional capacity, that is, of perceptual processing speed and working memory storage capacity, were assessed with a whole report paradigm. Furthermore, possible pathologies of attentional selectivity, that is, selection of task-relevant information and bias in the spatial distribution of attention, were measured with a partial report paradigm. A group of 30 unmedicated adult ADHD patients and a group of 30 demographically matched healthy controls were tested. ADHD patients showed significant reductions of working memory storage capacity of a moderate to large effect size. Perceptual processing speed, task-based, and spatial selection were unaffected. The results imply a working memory deficit as an important source of behavioral impairments. The theory of visual attention parameter working memory storage capacity might constitute a quantifiable and testable endophenotype of ADHD.
Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.
Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C
2016-01-01
It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Common capacity-limited neural mechanisms of selective attention and spatial working memory encoding
Fusser, Fabian; Linden, David E J; Rahm, Benjamin; Hampel, Harald; Haenschel, Corinna; Mayer, Jutta S
2011-01-01
One characteristic feature of visual working memory (WM) is its limited capacity, and selective attention has been implicated as limiting factor. A possible reason why attention constrains the number of items that can be encoded into WM is that the two processes share limited neural resources. Functional magnetic resonance imaging (fMRI) studies have indeed demonstrated commonalities between the neural substrates of WM and attention. Here we investigated whether such overlapping activations reflect interacting neural mechanisms that could result in capacity limitations. To independently manipulate the demands on attention and WM encoding within one single task, we combined visual search and delayed discrimination of spatial locations. Participants were presented with a search array and performed easy or difficult visual search in order to encode one, three or five positions of target items into WM. Our fMRI data revealed colocalised activation for attention-demanding visual search and WM encoding in distributed posterior and frontal regions. However, further analysis yielded two patterns of results. Activity in prefrontal regions increased additively with increased demands on WM and attention, indicating regional overlap without functional interaction. Conversely, the WM load-dependent activation in visual, parietal and premotor regions was severely reduced during high attentional demand. We interpret this interaction as indicating the sites of shared capacity-limited neural resources. Our findings point to differential contributions of prefrontal and posterior regions to the common neural mechanisms that support spatial WM encoding and attention, providing new imaging evidence for attention-based models of WM encoding. PMID:21781193
Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity.
Horwitz, Anna; Mortensen, Erik L; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (Δ C ).The correlation is most pronounced for the anterior brain region (Δ C A ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of Δ C A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (Δ C ) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. Δ C in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between Δ C and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (Δ C A ) is a better predictor of memory than power in multivariate models. The sensitivity of Δ C A for detecting low memory capacity is 92%. Finally, Δ C A was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the Δ C is a predictor of memory performance may be useful in cognitive neuropsychological testing.
Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity
Horwitz, Anna; Mortensen, Erik L.; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina
2017-01-01
HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC).The correlation is most pronounced for the anterior brain region (ΔCA).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (ΔC) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory performance may be useful in cognitive neuropsychological testing. PMID:29311868
Visual Predictions in the Orbitofrontal Cortex Rely on Associative Content
Chaumon, Maximilien; Kveraga, Kestutis; Barrett, Lisa Feldman; Bar, Moshe
2014-01-01
Predicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it. Is the OFC automatically engaged to analyze any LSF information for meaning? Or is it engaged only when LSF information matches preexisting memory associations? We tested these hypotheses and show that only LSF information that could be linked to memory associations engages the OFC. Specifically, LSF stimuli activated the OFC in 2 distinct medial and lateral regions only if they resembled known visual objects. More identifiable objects increased activity in the medial OFC, known for its function in affective responses. Furthermore, these objects also increased the connectivity of the lateral OFC with the ventral visual cortex, a crucial region for object identification. At the interface between sensory, memory, and affective processing, the OFC thus appears to be attuned to the associative content of visual information and to play a central role in visuo-affective prediction. PMID:23771980
Right-hemispheric dominance of spatial memory in split-brain mice.
Shinohara, Yoshiaki; Hosoya, Aki; Yamasaki, Nobuyuki; Ahmed, Hassan; Hattori, Satoko; Eguchi, Megumi; Yamaguchi, Shun; Miyakawa, Tsuyoshi; Hirase, Hajime; Shigemoto, Ryuichi
2012-02-01
Left-right asymmetry of human brain function has been known for a century, although much of molecular and cellular basis of brain laterality remains to be elusive. Recent studies suggest that hippocampal CA3-CA1 excitatory synapses are asymmetrically arranged, however, the functional implication of the asymmetrical circuitry has not been studied at the behavioral level. In order to address the left-right asymmetry of hippocampal function in behaving mice, we analyzed the performance of "split-brain" mice in the Barnes maze. The "split-brain" mice received ventral hippocampal commissure and corpus callosum transection in addition to deprivation of visual input from one eye. In such mice, the hippocampus in the side of visual deprivation receives sensory-driven input. Better spatial task performance was achieved by the mice which were forced to use the right hippocampus than those which were forced to use the left hippocampus. In two-choice spatial maze, forced usage of left hippocampus resulted in a comparable performance to the right counterpart, suggesting that both hippocampal hemispheres are capable of conducting spatial learning. Therefore, the results obtained from the Barnes maze suggest that the usage of the right hippocampus improves the accuracy of spatial memory. Performance of non-spatial yet hippocampus-dependent tasks (e.g. fear conditioning) was not influenced by the laterality of the hippocampus. Copyright © 2010 Wiley Periodicals, Inc.
Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.
Mizuhara, Hiroaki; Yamaguchi, Yoko
2011-05-01
The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Effects of lorazepam on visual perceptual abilities.
Pompéia, S; Pradella-Hallinan, M; Manzano, G M; Bueno, O F A
2008-04-01
To evaluate the effects of an acute dose of the benzodiazepine (BZ) lorazepam in young healthy volunteers on five distinguishable visual perception abilities determined by previous factor-analytic studies. This was a double-blind, cross-over design study of acute oral doses of lorazepam (2 mg) and placebo in young healthy volunteers. We focused on a set of paper-and-pencil tests of visual perceptual abilities that load on five correlated but distinguishable factors (Spatial Visualization, Spatial Relations, Perceptual Speed, Closure Speed, and Closure Flexibility). Some other tests (DSST, immediate and delayed recall of prose; measures of subjective mood alterations) were used to control for the classic BZ-induced effects. Lorazepam impaired performance in the DSST and delayed recall of prose, increased subjective sedation and impaired tasks of all abilities except Spatial Visualization and Closure Speed. Only impairment in Perceptual Speed (Identical Pictures task) and delayed recall of prose were not explained by sedation. Acute administration of lorazepam, in a dose that impaired episodic memory, selectively affected different visual perceptual abilities before and after controlling for sedation. Central executive demands and sedation did not account for results, so impairment in the Identical Pictures task may be attributed to lorazepam's visual processing alterations. 2008 John Wiley & Sons, Ltd.
Single unit approaches to human vision and memory.
Kreiman, Gabriel
2007-08-01
Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.
Tobia, Valentina; Marzocchi, Gian Marco
2014-01-01
This study investigates the role of linguistic and visuospatial attentional processes in predicting reading fluency in typical Italian readers attending primary school. Tasks were administered to 651 children with reading fluency z scores > -1.5 standard deviation to evaluate their phonological awareness, rapid automatized naming (RAN), verbal short-term memory, vocabulary, visual search skills, verbal-visual recall, and visual-spatial attention. Hybrid models combining confirmatory factor analysis and path analysis were used to evaluate the data obtained from younger (first and second grade) and older (third-fifth grade) children, respectively. The results showed that phonological awareness and RAN played a significant role among younger children, while also vocabulary, verbal short-term memory, and visuospatial attention were significant factors among older children.
Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica
2016-10-01
This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic functional connectivity shapes individual differences in associative learning.
Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal
2016-11-01
Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Setting and changing feature priorities in visual short-term memory.
Kalogeropoulou, Zampeta; Jagadeesh, Akshay V; Ohl, Sven; Rolfs, Martin
2017-04-01
Many everyday tasks require prioritizing some visual features over competing ones, both during the selection from the rich sensory input and while maintaining information in visual short-term memory (VSTM). Here, we show that observers can change priorities in VSTM when, initially, they attended to a different feature. Observers reported from memory the orientation of one of two spatially interspersed groups of black and white gratings. Using colored pre-cues (presented before stimulus onset) and retro-cues (presented after stimulus offset) predicting the to-be-reported group, we manipulated observers' feature priorities independently during stimulus encoding and maintenance, respectively. Valid pre-cues reliably increased observers' performance (reduced guessing, increased report precision) as compared to neutral ones; invalid pre-cues had the opposite effect. Valid retro-cues also consistently improved performance (by reducing random guesses), even if the unexpected group suddenly became relevant (invalid-valid condition). Thus, feature-based attention can reshape priorities in VSTM protecting information that would otherwise be forgotten.
The Use of Spatial Cognition in Graph Interpretation
2007-08-01
Mathematics has emphasized the importance of proactively teaching students of all ages to interpret graphs and use them to make inferences ( NCTM ... Mathematics . Reston, VA: National Council of Teachers of Mathematics . Oh, S., & Kim, M. (2004). The role of spatial working memory in visual...in learning science (Schunn et al, in press). Not coincidentally, in developing its recent national standards, the National Council of Teachers of
Eye and hand movements during reconstruction of spatial memory.
Burke, Melanie R; Allen, Richard J; Gonzalez, Claudia
2012-01-01
Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (e.g., Awh et al, 2006 Neuroscience 139 201-208). This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change) from an array presented either simultaneously or sequentially. The time delay between target presentation and recall (0, 5, or 10 s) and the number of locations to be remembered (2-5) were also manipulated. Analysis of the response phase revealed subjects were less accurate (touch data) and fixated longer (eye data) when responding to sequentially presented targets suggesting higher cognitive effort. Fixation duration on target at recall was also influenced by whether spatial location was initially signalled by colour or shape change. Finally, we found that the sequence tasks encouraged longer fixations on the signalled targets than simultaneous viewing during encoding, but no difference was observed during recall. We conclude that the attentional manipulations (colour/shape) mainly affected the eye movement parameters, whereas the memory manipulation (sequential versus simultaneous, number of items) mainly affected the performance of the hand during recall, and thus the latter is more important for ascertaining if an item is remembered or forgotten. In summary, the nature of the stimuli that is used and how it is presented play key roles in determining subject performance and behaviour during spatial memory tasks.
Episodic memory for spatial context biases spatial attention.
Ciaramelli, Elisa; Lin, Olivia; Moscovitch, Morris
2009-01-01
The study explores the bottom-up attentional consequences of episodic memory retrieval. Individuals studied words (Experiment 1) or pictures (Experiment 2) presented on the left or on the right of the screen. They then viewed studied and new stimuli in the centre of the screen. One-second after the appearance of each stimulus, participants had to respond to a dot presented on the left or on the right of the screen. The dot could follow a stimulus that had been presented, during the study phase, on the same side as the dot (congruent condition), a stimulus that had been presented on the opposite side (incongruent condition), or a new stimulus (neutral condition). Subjects were faster to respond to the dot in the congruent compared to the incongruent condition, with an overall right visual field advantage in Experiment 1. The memory-driven facilitation effect correlated with subjects' re-experiencing of the encoding context (R responses; Experiment 1), but not with their explicit memory for the side of items' presentation (source memory; Experiment 2). The results indicate that memory contents are attended automatically and can bias the deployment of attention. The degree to which memory and attention interact appears related to subjective but not objective indicators of memory strength.
Working, declarative and procedural memory in specific language impairment
Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.
2012-01-01
According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923
An integrated theory of attention and decision making in visual signal detection.
Smith, Philip L; Ratcliff, Roger
2009-04-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved
Memory-related brain lateralisation in birds and humans.
Moorman, Sanne; Nicol, Alister U
2015-03-01
Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. Copyright © 2014. Published by Elsevier Ltd.
Sexual orientation and spatial position effects on selective forms of object location memory.
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-04-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.
Dovis, Sebastiaan; Van der Oord, Saskia; Wiers, Reinout W; Prins, Pier J M
2012-07-01
Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD.
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
Transfer after process-based object-location memory training in healthy older adults.
Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne
2016-11-01
A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher
2012-03-01
The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pilfering Eurasian jays use visual and acoustic information to locate caches.
Shaw, Rachael C; Clayton, Nicola S
2014-11-01
Pilfering corvids use observational spatial memory to accurately locate caches that they have seen another individual make. Accordingly, many corvid cache-protection strategies limit the transfer of visual information to potential thieves. Eurasian jays (Garrulus glandarius) employ strategies that reduce the amount of visual and auditory information that is available to competitors. Here, we test whether or not the jays recall and use both visual and auditory information when pilfering other birds' caches. When jays had no visual or acoustic information about cache locations, the proportion of available caches that they found did not differ from the proportion expected if jays were searching at random. By contrast, after observing and listening to a conspecific caching in gravel or sand, jays located a greater proportion of caches, searched more frequently in the correct substrate type and searched in fewer empty locations to find the first cache than expected. After only listening to caching in gravel and sand, jays also found a larger proportion of caches and searched in the substrate type where they had heard caching take place more frequently than expected. These experiments demonstrate that Eurasian jays possess observational spatial memory and indicate that pilfering jays may gain information about cache location merely by listening to caching. This is the first evidence that a corvid may use recalled acoustic information to locate and pilfer caches.
A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.
Riby, Leigh M; Orme, Elizabeth
2013-03-01
In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
AlRyalat, Saif Aldeen
2017-01-01
Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.
Smith, Yolanda R.; Love, Tiffany; Persad, Carol C.; Tkaczyk, Anne; Nichols, Thomas E.; Zubieta, Jon-Kar
2007-01-01
Context Hormones regulate neuronal function in brain regions critical to cognition; however the cognitive effects of postmenopausal hormone therapy are controversial. Objective The goal was to evaluate the effect of postmenopausal hormone therapy on neural circuitry involved in spatial working memory. Design A randomized, double-blind placebo-controlled cross-over study was performed. Setting The study was performed in a tertiary care university medical center. Participants Ten healthy postmenopausal women of average age 56.9 years were recruited. Interventions Volunteers were randomized to the order they received hormone therapy, 5 ug ethinyl estradiol and 1 mg norethindrone acetate. Subjects received hormone therapy or placebo for 4 weeks, followed by a one month washout period with no medications, and then received the other treatment for 4 weeks. At the end of each 4 week treatment period a functional magnetic resonance imaging (fMRI) study was performed utilizing a nonverbal (spatial) working memory task, the Visual Delayed Matching to Sample task. Main Outcome Measure The effects of hormone therapy on brain activation patterns were compared to placebo. Results Compared to the placebo condition, hormone therapy was associated with a more pronounced activation in the prefrontal cortex (BA 44 and 45), bilaterally (p<0.001). Conclusions Hormone therapy was associated with more effective activation of a brain region critical in primary visual working memory tasks. The data suggest a functional plasticity of memory systems in older women that can be altered by hormones. PMID:16912129
Intact short-term memory and impaired executive functions in obsessive compulsive disorder.
Demeter, Gyula; Racsmány, Mihály; Csigó, Katalin; Harsányi, András; Németh, Attila; Döme, László
2013-01-30
Previous neuropsychological studies produced inconsistent results with tasks tapping short-term verbal and visual-spatial memory and executive functions in obsessive compulsive disorder (OCD). The aim of this study was to investigate the presence of deficits in these cognitive domains. A further goal was to describe the distribution of patients in different impairment ranges for all functions, and clarify the relationship between symptom severity and cognitive impairments. Thirty patients with OCD (DSM-IV) and 30 healthy volunteers were compared using well-known neuropsychological tasks. We assessed short-term verbal memory with the Digit Span Forward and Digit Span Backward Tasks, short-term visual-spatial memory with the Corsi Block Tapping Task, while we measured the level of executive functions with the StroopTask and the Wisconsin Card Sorting Test (WCST). Compared with a matched healthy control group, the performance of OCD patients was in the impaired range only in the two executive tasks. We find a significant positive correlations between the Y-BOCS (Yale-Brown Obsessive Compulsive Scale) total scores and the number of perseverative responses (r(28) = 0.409, p < 0.05) and perseverative errors (r(28) = 0.385, p < 0.05) in the WCST. Our results gave evidence that executive functions are impaired while short-term memory is intact in OCD. This is in line with neuropsychological model of OCD that the deficit of cognitive and behavioral inhibition are responsible for the main cognitive findings of this disorder, most prevalently the deficit in set shifting and prepotent response inhibition.
Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung
2017-01-01
The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by alterations in activity patterns of the visual association areas, their connectivity with the prefrontal cortex, and their relationship with core clinical characteristics. These results highlight the role of information updating deficits in the cognitive control and symptomatology of depression.
Beneficial effects of enriched environment following status epilepticus in immature rats.
Faverjon, S; Silveira, D C; Fu, D D; Cha, B H; Akman, C; Hu, Y; Holmes, G L
2002-11-12
There is increasing evidence that enriching the environment can improve cognitive and motor deficits following a variety of brain injuries. Whether environmental enrichment can improve cognitive impairment following status epilepticus (SE) is not known. To determine whether the environment in which animals are raised influences cognitive function in normal rats and rats subjected to SE. Rats (n = 100) underwent lithium-pilocarpine-induced SE at postnatal (P) day 20 and were then placed in either an enriched environment consisting of a large play area with toys, climbing objects, and music, or in standard vivarium cages for 30 days. Control rats (n = 32) were handled similarly to the SE rats but received saline injections instead of lithium-pilocarpine. Rats were then tested in the water maze, a measure of visual-spatial memory. A subset of the rats were killed during exposure to the enriched or nonenriched environment and the brains examined for dentate granule cell neurogenesis using bromodeoxyuridine (BrdU) and phosphorylated cyclic AMP response element binding protein (pCREB) immunostaining, a brain transcription factor important in long-term memory. Both control and SE rats exposed to the enriched environment performed significantly better than the nonenriched group in the water maze. There was a significant increase in neurogenesis and pCREB immunostaining in the dentate gyrus in both control and SE animals exposed to the enriched environment compared to the nonenriched groups. Environmental enrichment resulted in no change in SE-induced histologic damage. Exposure to an enriched environment in weanling rats significantly improves visual-spatial learning. Even following SE, an enriched environment enhances cognitive function. An increase in neurogenesis and activation of transcription factors may contribute to this enhanced visual-spatial memory.
Plescia, Fulvio; Marino, Rosa A M; Cannizzaro, Emanuele; Brancato, Anna; Cannizzaro, Carla
2013-10-01
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study, we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10 mg/Kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of spatial information-acquisition during the baseline training, and of memory retention in the longitudinal study. Furthermore, on the basis of PREGS pharmacological profile, the modulation of depressive-like behaviour was also evaluated in the forced swim test (FST). Our results indicate that acute PREGS induces: an improvement in spatial orientation-acquisition and in reference memory, during the baseline training; a strengthening effect on reference and working memory during the longitudinal study. A decrease in immobility time in the FST has also been recorded. In conclusion, PREGS exerts enhancing properties on acquisition, consolidation and retrieval of spatial information, probably due of improved hippocampal-dependent memory processes. The additional antidepressant effect observed in the FST can provide further evidence in support of the potential of PREGS as a therapeutic tool for the treatment of cognitive deficits associated with mood disorders. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.
Conscious experience and episodic memory: hippocampus at the crossroads.
Behrendt, Ralf-Peter
2013-01-01
If an instance of conscious experience of the seemingly objective world around us could be regarded as a newly formed event memory, much as an instance of mental imagery has the content of a retrieved event memory, and if, therefore, the stream of conscious experience could be seen as evidence for ongoing formation of event memories that are linked into episodic memory sequences, then unitary conscious experience could be defined as a symbolic representation of the pattern of hippocampal neuronal firing that encodes an event memory - a theoretical stance that may shed light into the mind-body and binding problems in consciousness research. Exceedingly detailed symbols that describe patterns of activity rapidly self-organizing, at each cycle of the θ rhythm, in the hippocampus are instances of unitary conscious experience that jointly constitute the stream of consciousness. Integrating object information (derived from the ventral visual stream and orbitofrontal cortex) with contextual emotional information (from the anterior insula) and spatial environmental information (from the dorsal visual stream), the hippocampus rapidly forms event codes that have the informational content of objects embedded in an emotional and spatiotemporally extending context. Event codes, formed in the CA3-dentate network for the purpose of their memorization, are not only contextualized but also allocentric representations, similarly to conscious experiences of events and objects situated in a seemingly objective and observer-independent framework of phenomenal space and time. Conscious perception, creating the spatially and temporally extending world that we perceive around us, is likely to be evolutionarily related to more fleeting and seemingly internal forms of conscious experience, such as autobiographical memory recall, mental imagery, including goal anticipation, and to other forms of externalized conscious experience, namely dreaming and hallucinations; and evidence pointing to an important contribution of the hippocampus to these conscious phenomena will be reviewed.
Piérard, Christophe; Béracochéa, Daniel; Pérès, Michel; Jouanin, Jean-Claude; Liscia, Pierrette; Satabin, Pascale; Martin, Serge; Testylier, Guy; Guézennec, Charles Yannick; Beaumont, Maurice
2004-01-01
The aim of this study was to investigate the impact on several forms of memory and metabolism of a 5-day combat course including heavy and continuous physical activities and sleep deprivation. Mnemonic performance and biochemical parameters of 21 male soldiers were examined before and at the end of the course. Our results showed that short-term memory (memory span, visual memory, audiovisual association) and long-term memory were significantly impaired, whereas short-term spatial memory and planning tasks were spared. Parallel biochemical analysis showed an adaptation of energy metabolism. The observed decrease in glycaemia may be partly responsible for the long-term memory impairment, whereas the decreases in plasma cholinesterases and choline may be involved in the short-term memory deterioration. However, there are also many other reasons for the observed memory changes, one of them being chronic sleep deprivation. Copyright 2004 S. Karger AG, Basel
The Effects of Restricted Peripheral Field-of-View on Spatial Learning while Navigating.
Barhorst-Cates, Erica M; Rand, Kristina M; Creem-Regehr, Sarah H
2016-01-01
Recent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction. Second, we tested the hypothesis that navigation under these different levels of restriction would use additional attentional resources. Normally sighted participants walked on novel real-world paths wearing goggles that restricted the field-of-view (FOV) to severe (15°, 10°, 4°, or 0°) or mild angles (60°) and then pointed to remembered target locations using a verbal reporting measure. They completed a concurrent auditory reaction time task throughout each path to measure cognitive load. Only the most severe restrictions (4° and blindfolded) showed impairment in pointing error compared to the mild restriction (within-subjects). The 10° and 4° conditions also showed an increase in reaction time on the secondary attention task, suggesting that navigating with these extreme peripheral field restrictions demands the use of limited cognitive resources. This comparison of different levels of field restriction suggests that although peripheral field loss requires the actor to use more attentional resources while navigating starting at a less extreme level (10°), spatial memory is not negatively affected until the restriction is very severe (4°). These results have implications for understanding of the mechanisms underlying spatial learning during navigation and the approaches that may be taken to develop assistance for navigation with visual impairment.
Distortions in recall from visual memory: two classes of attractors at work.
Huang, Jie; Sekuler, Robert
2010-02-24
In a trio of experiments, a matching procedure generated direct, analogue measures of short-term memory for the spatial frequency of Gabor stimuli. Experiment 1 showed that when just a single Gabor was presented for study, a retention interval of just a few seconds was enough to increase the variability of matches, suggesting that noise in memory substantially exceeds that in vision. Experiment 2 revealed that when a pair of Gabors was presented on each trial, the remembered appearance of one of the Gabors was influenced by: (1) the relationship between its spatial frequency and the spatial frequency of the accompanying, task-irrelevant non-target stimulus; and (2) the average spatial frequency of Gabors seen on previous trials. These two influences, which work on very different time scales, were approximately additive in their effects, each operating as an attractor for remembered appearance. Experiment 3 showed that a timely pre-stimulus cue allowed selective attention to curtail the influence of a task-irrelevant non-target, without diminishing the impact of the stimuli seen on previous trials. It appears that these two separable attractors influence distinct processes, with perception being influenced by the non-target stimulus and memory being influenced by stimuli seen on previous trials.
Savage, Robert; Cornish, Kim; Manly, Tom; Hollis, Chris
2006-08-01
Children experiencing attention difficulties have documented cognitive deficits in working memory (WM), response inhibition and dual tasks. Recent evidence suggests however that these same cognitive processes are also closely associated with reading acquisition. This paper therefore explores whether these variables predicted attention difficulties or reading among 123 children with and without significant attention problems sampled from the school population. Children were screened using current WM and attention task measures. Three factors explained variance in WM and attention tasks. Response inhibition tasks loaded mainly with central executive measures, but a dual processing task loaded with the visual-spatial WM measures. Phonological loop measures loaded independently of attention measures. After controls for age, IQ and attention-group membership, phonological loop and 'central processing' measures both predicted reading ability. A 'visual memory/dual-task' factor predicted attention group membership after controls for age, IQ and reading ability. Results thus suggest that some of the processes previously assumed to be predictive of attention problems may reflect processes involved in reading acquisition. Visual memory and dual-task functioning are, however, purer indices of cognitive difficulty in children experiencing attention problems.
Anticipatory eye movements and long-term memory in early infancy.
Wong-Kee-You, Audrey M B; Adler, Scott A
2016-11-01
Advances in our understanding of long-term memory in early infancy have been made possible by studies that have used the Rovee-Collier's mobile conjugate reinforcement paradigm and its variants. One function that has been attributed to long-term memory is the formation of expectations (Rovee-Collier & Hayne, 1987); consequently, a long-term memory representation should be established during expectation formation. To examine this prediction and potentially open the door on a new paradigm for exploring infants' long-term memory, using the Visual Expectation Paradigm (Haith, Hazan, & Goodman, 1988), 3-month-old infants were trained to form an expectation for predictable color and spatial information of picture events and emit anticipatory eye movements to those events. One day later, infants' anticipatory eye movements decreased in number relative to the end of training when the predictable colors were changed but not when the spatial location of the predictable color events was changed. These findings confirm that information encoded during expectation formation are stored in long-term memory, as hypothesized by Rovee-Collier and colleagues. Further, this research suggests that eye movements are potentially viable measures of long-term memory in infancy, providing confirmatory evidence for early mnemonic processes. © 2016 Wiley Periodicals, Inc.
Memory and visual search in naturalistic 2D and 3D environments
Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.
2016-01-01
The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769
Smid, Henderikus G. O. M.; Bruggeman, Richard; Martens, Sander
2013-01-01
Background Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Method Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Results Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. Conclusions deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory. PMID:23536901
Smid, Henderikus G O M; Bruggeman, Richard; Martens, Sander
2013-01-01
Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory.
Exploring Neuropsychology: Seeking Evidence of Added Worth to School Psychology Practice
ERIC Educational Resources Information Center
Sassu, Kari A.; Gelbar, Nicholas W.; Bray, Melissa A.; Kehle, Thomas J.; Patwa, Shamim
2015-01-01
Historically, school psychological assessment has included the core elements of cognitive, academic, and behavioral indices. Neuropsychological assessment has included these and the additional elements of attention, memory, language, visual-spatial, motor, sensory, and executive functioning (American Psychological Association, 2006). With the…
A pilot study of working memory and academic achievement in college students with ADHD.
Gropper, Rachel J; Tannock, Rosemary
2009-05-01
To investigate working memory (WM), academic achievement, and their relationship in university students with attention-deficit/hyperactivity disorder (ADHD). Participants were university students with previously confirmed diagnoses of ADHD (n = 16) and normal control (NC) students (n = 30). Participants completed 3 auditory-verbal WM measures, 2 visual-spatial WM measures, and 1 control executive function task. Also, they self-reported grade point averages (GPAs) based on university courses. The ADHD group displayed significant weaknesses on auditory-verbal WM tasks and 1 visual-spatial task. They also showed a nonsignificant trend for lower GPAs. Within the entire sample, there was a significant relationship between GPA and auditory-verbal WM. WM impairments are evident in a subgroup of the ADHD population attending university. WM abilities are linked with, and thus may compromise, academic attainment. Parents and physicians are advised to counsel university-bound students with ADHD to contact the university accessibility services to provide them with academic guidance.
Effects of glucose load on cognitive functions in elderly people.
van der Zwaluw, Nikita L; van de Rest, Ondine; Kessels, Roy P C; de Groot, Lisette C P G M
2015-02-01
Glucose is the main fuel for the brain, and manipulation of the glucose supply may consequently affect brain function. The present review was conducted to provide an overview of studies that investigated the acute effects of glucose load on memory and other cognitive functions in elderly people. The effects of sucrose on cognition and suggested mechanisms were also explored. A total of twenty studies met the inclusion criteria. In the majority of studies, episodic memory was investigated and a beneficial role for glucose in that specific cognitive domain was suggested. Other cognitive domains, i.e., working memory, semantic memory, visual memory, information-processing speed, attention, executive function, and visual/spatial function, have been studied less frequently and evidence for a beneficial effect of glucose was equivocal. Mechanisms are suggested to be mainly related to the human body's need for glucose as a metabolic substrate for physiological mechanisms in both central and peripheral processes. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Wang, Min; Yang, Ping; Wan, Chaoyang; Jin, Zhenlan; Zhang, Junjun; Li, Ling
2018-01-01
The contents of working memory (WM) can affect the subsequent visual search performance, resulting in either beneficial or cost effects, when the visual search target is included in or spatially dissociated from the memorized contents, respectively. The right dorsolateral prefrontal cortex (rDLPFC) and the right posterior parietal cortex (rPPC) have been suggested to be associated with the congruence/incongruence effects of the WM content and the visual search target. Thus, in the present study, we investigated the role of the dorsolateral prefrontal cortex and the PPC in controlling the interaction between WM and attention during a visual search, using repetitive transcranial magnetic stimulation (rTMS). Subjects maintained a color in WM while performing a search task. The color cue contained the target (valid), the distractor (invalid) or did not reappear in the search display (neutral). Concurrent stimulation with the search onset showed that relative to rTMS over the vertex, rTMS over rPPC and rDLPFC further decreased the search reaction time, when the memory cue contained the search target. The results suggest that the rDLPFC and the rPPC are critical for controlling WM biases in human visual attention.
Short-term Memory in Childhood Dyslexia: Deficient Serial Order in Multiple Modalities.
Cowan, Nelson; Hogan, Tiffany P; Alt, Mary; Green, Samuel; Cabbage, Kathryn L; Brinkley, Shara; Gray, Shelley
2017-08-01
In children with dyslexia, deficits in working memory have not been well-specified. We assessed second-grade children with dyslexia, with and without concomitant specific language impairment, and children with typical development. Immediate serial recall of lists of phonological (non-word), lexical (digit), spatial (location) and visual (shape) items were included. For the latter three modalities, we used not only standard span but also running span tasks, in which the list length was unpredictable to limit mnemonic strategies. Non-word repetition tests indicated a phonological memory deficit in children with dyslexia alone compared with those with typical development, but this difference vanished when these groups were matched for non-verbal intelligence and language. Theoretically important deficits in serial order memory in dyslexic children, however, persisted relative to matched typically developing children. The deficits were in recall of (1) spoken digits in both standard and running span tasks and (2) spatial locations, in running span only. Children with dyslexia with versus without language impairment, when matched on non-verbal intelligence, had comparable serial order memory, but differed in phonology. Because serial orderings of verbal and spatial elements occur in reading, the careful examination of order memory may allow a deeper understanding of dyslexia and its relation to language impairment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.
Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh
2017-12-01
Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.
Soman, Smijin; Korah, P K; Jayanarayanan, S; Mathew, Jobin; Paulose, C S
2012-09-01
In the present study we investigate the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring spatial memory deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. We demonstrate significant cellular loss in hippocampus of epileptic rats, visualized through decreased TOPRO stained neurons. Impaired spatial memory was observed in epileptic rats after Radial arm maze test. Treatment with WS and WA has resulted in increased number of TOPRO stained neurons. Enhanced performance of epileptic rats treated with WS and WA was observed in Radial arm maze test. The antioxidant activity of WS and WA was studied using superoxide dismutase (SOD) and Catalase (CAT) assays in the hippocampus of experimental rats. The SOD activity and CAT activity decreased significantly in epileptic group, treatment with WS and WA significantly reversed the enzymatic activities to near control. Real time gene expression studies of SOD and GPx showed significant up-regulation in epileptic group compared to control. Treatment with WS and WA showed significant reversal to near control. Lipid peroxidation quantified using TBARS assay, significantly increased in epileptic rats. Treatment with WS and WA showed significant reversal to near control. NMDA receptor expression decreased in epileptic rats. The treatment with WS and WA resulted in physiological expression of NMDA receptors. This data suggests that oxidative stress effects membrane constitution resulting in decreased NMDA receptor density leading to impaired spatial memory. Treatment with WS and WA has ameliorated spatial memory deficits by enhancing antioxidant system and restoring altered NMDA receptor density.
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet
Rolls, Edmund T.
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.
Rolls, Edmund T
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.
van Lamsweerde, Amanda E; Johnson, Jeffrey S
2017-07-01
Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Cognitive Processes that Underlie Mathematical Precociousness in Young Children
ERIC Educational Resources Information Center
Swanson, H. Lee
2006-01-01
The working memory (WM) processes that underlie young children's (ages 6-8 years) mathematical precociousness were examined. A battery of tests that assessed components of WM (phonological loop, visual-spatial sketchpad, and central executive), naming speed, random generation, and fluency was administered to mathematically precocious and…
A Process Model for the Comprehension of Organic Chemistry Notation
ERIC Educational Resources Information Center
Havanki, Katherine L.
2012-01-01
This dissertation examines the cognitive processes individuals use when reading organic chemistry equations and factors that affect these processes, namely, visual complexity of chemical equations and participant characteristics (expertise, spatial ability, and working memory capacity). A six stage process model for the comprehension of organic…
Long-term memory biases auditory spatial attention.
Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude
2017-10-01
Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Feature-based and spatial attentional selection in visual working memory.
Heuer, Anna; Schubö, Anna
2016-05-01
The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Selecting and perceiving multiple visual objects
Xu, Yaoda; Chun, Marvin M.
2010-01-01
To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882
Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J
2011-03-01
Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.
Memory and Obstructive Sleep Apnea: A Meta-Analysis
Wallace, Anna; Bucks, Romola S.
2013-01-01
Study Objectives: To examine episodic memory performance in individuals with obstructive sleep apnea (OSA). Design Meta-analysis was used to synthesize results from individual studies examining the impact of OSA on episodic memory performance. The performance of individuals with OSA was compared to healthy controls or normative data. Participants Forty-two studies were included, comprising 2,294 adults with untreated OSA and 1,364 healthy controls. Studies that recorded information about participants at baseline prior to treatment interventions were included in the analysis. Measurements Participants were assessed with tasks that included a measure of episodic memory: immediate recall, delayed recall, learning, and/or recognition memory. Results: The results of the meta-analyses provide evidence that individuals with OSA are significantly impaired when compared to healthy controls on verbal episodic memory (immediate recall, delayed recall, learning, and recognition) and visuo-spatial episodic memory (immediate and delayed recall), but not visual immediate recall or visuo-spatial learning. When patients were compared to norms, negative effects of OSA were found only in verbal immediate and delayed recall. Conclusions: This meta-analysis contributes to understanding of the nature of episodic memory deficits in individuals with OSA. Impairments to episodic memory are likely to affect the daily functioning of individuals with OSA. Citation Wallace A; Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. SLEEP 2013;36(2):203-220. PMID:23372268
Binding in visual working memory: the role of the episodic buffer.
Baddeley, Alan D; Allen, Richard J; Hitch, Graham J
2011-05-01
The episodic buffer component of working memory is assumed to play a central role in the binding of features into objects, a process that was initially assumed to depend upon executive resources. Here, we review a program of work in which we specifically tested this assumption by studying the effects of a range of attentionally demanding concurrent tasks on the capacity to encode and retain both individual features and bound objects. We found no differential effect of concurrent load, even when the process of binding was made more demanding by separating the shape and color features spatially, temporally or across visual and auditory modalities. Bound features were however more readily disrupted by subsequent stimuli, a process we studied using a suffix paradigm. This suggested a need to assume a feature-based attentional filter followed by an object based storage process. Our results are interpreted within a modified version of the multicomponent working memory model. We also discuss work examining the role of the hippocampus in visual feature binding. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of serotonin 5-HT2A receptors in memory and cognition
Zhang, Gongliang; Stackman, Robert W.
2015-01-01
Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553
Fine-grained, local maps and coarse, global representations support human spatial working memory.
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.
Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601
Yoo, Seung-Woo; Lee, Inah
2017-01-01
How visual scene memory is processed differentially by the upstream structures of the hippocampus is largely unknown. We sought to dissociate functionally the lateral and medial subdivisions of the entorhinal cortex (LEC and MEC, respectively) in visual scene-dependent tasks by temporarily inactivating the LEC and MEC in the same rat. When the rat made spatial choices in a T-maze using visual scenes displayed on LCD screens, the inactivation of the MEC but not the LEC produced severe deficits in performance. However, when the task required the animal to push a jar or to dig in the sand in the jar using the same scene stimuli, the LEC but not the MEC became important. Our findings suggest that the entorhinal cortex is critical for scene-dependent mnemonic behavior, and the response modality may interact with a sensory modality to determine the involvement of the LEC and MEC in scene-based memory tasks. DOI: http://dx.doi.org/10.7554/eLife.21543.001 PMID:28169828
Acoustic behavior of echolocating bats in complex environments
NASA Astrophysics Data System (ADS)
Moss, Cynthia; Ghose, Kaushik; Jensen, Marianne; Surlykke, Annemarie
2004-05-01
The echolocating bat controls the direction of its sonar beam, just as visually dominant animals control the movement of their eyes to foveate targets of interest. The sonar beam aim of the echolocating bat can therefore serve as an index of the animal's attention to objects in the environment. Until recently, spatial attention has not been studied in the context of echolocation, perhaps due to the difficulty in obtaining an objective measure. Here, we describe measurements of the bat's sonar beam aim, serving as an index of acoustic gaze and attention to objects, in tasks that require localization of obstacles and insect prey. Measurements of the bat's sonar beam aim are taken from microphone array recordings of vocal signals produced by a free-flying bat under experimentally controlled conditions. In some situations, the animal relies on spatial memory over reflected sounds, perhaps because its perceptual system cannot easily organize cascades of echoes from obstacles and prey. This highlights the complexity of the bat's orientation behavior, which can alternate between active sensing and spatial memory systems. The bat's use of spatial memory for orientation also will be addressed in this talk. [Work supported by NSF-IBN-0111973 and the Danish Research Council.
Visual short-term memory load reduces retinotopic cortex response to contrast.
Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli
2012-11-01
Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.
On the Role of Working Memory in Spatial Contextual Cueing
ERIC Educational Resources Information Center
Travis, Susan L.; Mattingley, Jason B.; Dux, Paul E.
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the…
Spatial Context Learning Survives Interference from Working Memory Load
ERIC Educational Resources Information Center
Vickery, Timothy J.; Sussman, Rachel S.; Jiang, Yuhong V.
2010-01-01
The human visual system is constantly confronted with an overwhelming amount of information, only a subset of which can be processed in complete detail. Attention and implicit learning are two important mechanisms that optimize vision. This study addressed the relationship between these two mechanisms. Specifically we asked, Is implicit learning…
Role of early visual cortex in trans-saccadic memory of object features.
Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas
2015-08-01
Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.
Visual short-term memory for sequential arrays.
Kumar, Arjun; Jiang, Yuhong
2005-04-01
The capacity of visual short-term memory (VSTM) for a single visual display has been investigated in past research, but VSTM for multiple sequential arrays has been explored only recently. In this study, we investigate the capacity of VSTM across two sequential arrays separated by a variable stimulus onset asynchrony (SOA). VSTM for spatial locations (Experiment 1), colors (Experiments 2-4), orientations (Experiments 3 and 4), and conjunction of color and orientation (Experiment 4) were tested, with the SOA across the two sequential arrays varying from 100 to 1,500 msec. We find that VSTM for the trailing array is much better than VSTM for the leading array, but when averaged across the two arrays VSTM has a constant capacity independent of the SOA. We suggest that multiple displays compete for retention in VSTM and that separating information into two temporally discrete groups does not enhance the overall capacity of VSTM.