Sample records for visual targets presented

  1. Study of target and non-target interplay in spatial attention task.

    PubMed

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  2. DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Appelbaum, Meghan

    2010-01-01

    The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.

  3. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    PubMed

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  4. The contents of visual working memory reduce uncertainty during visual search.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2011-05-01

    Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.

  5. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    PubMed Central

    Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218

  6. The Crossmodal Facilitation of Visual Object Representations by Sound: Evidence from the Backward Masking Paradigm

    ERIC Educational Resources Information Center

    Chen, Yi-Chuan; Spence, Charles

    2011-01-01

    We report a series of experiments designed to demonstrate that the presentation of a sound can facilitate the identification of a concomitantly presented visual target letter in the backward masking paradigm. Two visual letters, serving as the target and its mask, were presented successively at various interstimulus intervals (ISIs). The results…

  7. Auditory Emotional Cues Enhance Visual Perception

    ERIC Educational Resources Information Center

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  8. Age-Related Changes in Temporal Allocation of Visual Attention: Evidence from the Rapid Serial Visual Presentation (RSVP) Paradigm

    ERIC Educational Resources Information Center

    Berger, Carole; Valdois, Sylviane; Lallier, Marie; Donnadieu, Sophie

    2015-01-01

    The present study explored the temporal allocation of attention in groups of 8-year-old children, 10-year-old children, and adults performing a rapid serial visual presentation task. In a dual-condition task, participants had to detect a briefly presented target (T2) after identifying an initial target (T1) embedded in a random series of…

  9. Effects of body lean and visual information on the equilibrium maintenance during stance.

    PubMed

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  10. Deployment of spatial attention to words in central and peripheral vision.

    PubMed

    Ducrot, Stéphanie; Grainger, Jonathan

    2007-05-01

    Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.

  11. The effects of bilateral presentations on lateralized lexical decision.

    PubMed

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-06-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the stage of the process in which the distractor is affecting the decision about the target; and third, to determine whether the interaction between the lexicality of the target and the lexicality of the distractor ("lexical redundancy effect") is due to facilitation or inhibition of lexical processing. Unilateral and bilateral trials were presented in separate blocks. Target stimuli were always underlined. Regarding our first goal, we found that bilateral presentations (a) increased the effect of visual hemifield of presentation (right visual field advantage) for words by slowing down the processing of word targets presented to the left visual field, and (b) produced an interaction between visual hemifield of presentation (VF) and target lexicality (TLex), which implies the use of different strategies by the two hemispheres in lexical processing. For our second goal of determining the processing stage that is affected by the distractor, we introduced a third condition in which targets were always accompanied by "perceptual" distractors consisting of sequences of the letter "x" (e.g., xxxx). Performance on these trials indicated that most of the interaction occurs during lexical access (after basic perceptual analysis but before response programming). Finally, a comparison between performance patterns on the trials containing perceptual and lexical distractors indicated that the lexical redundancy effect is mainly due to inhibition of word processing by pseudoword distractors.

  12. Lack of Multisensory Integration in Hemianopia: No Influence of Visual Stimuli on Aurally Guided Saccades to the Blind Hemifield

    PubMed Central

    Ten Brink, Antonia F.; Nijboer, Tanja C. W.; Bergsma, Douwe P.; Barton, Jason J. S.; Van der Stigchel, Stefan

    2015-01-01

    In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia. PMID:25835952

  13. Words, shape, visual search and visual working memory in 3-year-old children.

    PubMed

    Vales, Catarina; Smith, Linda B

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the target. The targets and distractors were pictures of instances of basic-level known categories and the labels were the common name for the target category. We predicted that the label would enhance the visual working memory representation of the target object, guiding attention to objects that better matched the target representation. Experiments 1 and 2 used conjunctive search tasks, and Experiment 3 varied shape discriminability between targets and distractors. Experiment 4 compared the effects of labels to repeated presentations of the visual target, which should also influence the working memory representation of the target. The overall pattern fits contemporary theories of how the contents of visual working memory interact with visual search and attention, and shows that even in very young children heard words affect the processing of visual information. © 2014 John Wiley & Sons Ltd.

  14. Examining competing hypotheses for the effects of diagrams on recall for text.

    PubMed

    Ortegren, Francesca R; Serra, Michael J; England, Benjamin D

    2015-01-01

    Supplementing text-based learning materials with diagrams typically increases students' free recall and cued recall of the presented information. In the present experiments, we examined competing hypotheses for why this occurs. More specifically, although diagrams are visual, they also serve to repeat information from the text they accompany. Both visual presentation and repetition are known to aid students' recall of information. To examine to what extent diagrams aid recall because they are visual or repetitive (or both), we had college students in two experiments (n = 320) read a science text about how lightning storms develop before completing free-recall and cued-recall tests over the presented information. Between groups, we manipulated the format and repetition of target pieces of information in the study materials using a 2 (visual presentation of target information: diagrams present vs. diagrams absent) × 2 (repetition of target information: present vs. absent) between-participants factorial design. Repetition increased both the free recall and cued recall of target information, and this occurred regardless of whether that repetition was in the form of text or a diagram. In contrast, the visual presentation of information never aided free recall. Furthermore, visual presentation alone did not significantly aid cued recall when participants studied the materials once before the test (Experiment 1) but did when they studied the materials twice (Experiment 2). Taken together, the results of the present experiments demonstrate the important role of repetition (i.e., that diagrams repeat information from the text) over the visual nature of diagrams in producing the benefits of diagrams for recall.

  15. Explaining the Colavita visual dominance effect.

    PubMed

    Spence, Charles

    2009-01-01

    The last couple of years have seen a resurgence of interest in the Colavita visual dominance effect. In the basic experimental paradigm, a random series of auditory, visual, and audiovisual stimuli are presented to participants who are instructed to make one response whenever they see a visual target and another response whenever they hear an auditory target. Many studies have now shown that participants sometimes fail to respond to auditory targets when they are presented at the same time as visual targets (i.e., on the bimodal trials), despite the fact that they have no problems in responding to the auditory and visual stimuli when they are presented individually. The existence of the Colavita visual dominance effect provides an intriguing contrast with the results of the many other recent studies showing the superiority of multisensory (over unisensory) information processing in humans. Various accounts have been put forward over the years in order to try and explain the effect, including the suggestion that it reflects nothing more than an underlying bias to attend to the visual modality. Here, the empirical literature on the Colavita visual dominance effect is reviewed and some of the key factors modulating the effect highlighted. The available research has now provided evidence against all previous accounts of the Colavita effect. A novel explanation of the Colavita effect is therefore put forward here, one that is based on the latest findings highlighting the asymmetrical effect that auditory and visual stimuli exert on people's responses to stimuli presented in the other modality.

  16. Effect of Visual Field Presentation on Action Planning (Estimating Reach) in Children

    ERIC Educational Resources Information Center

    Gabbard, Carl; Cordova, Alberto

    2012-01-01

    In this article, the authors examined the effects of target information presented in different visual fields (lower, upper, central) on estimates of reach via use of motor imagery in children (5-11 years old) and young adults. Results indicated an advantage for estimating reach movements for targets placed in lower visual field (LoVF), with all…

  17. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    PubMed Central

    Kamke, Marc R.; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945

  18. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    PubMed

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  19. Where's Wally: the influence of visual salience on referring expression generation.

    PubMed

    Clarke, Alasdair D F; Elsner, Micha; Rohde, Hannah

    2013-01-01

    REFERRING EXPRESSION GENERATION (REG) PRESENTS THE CONVERSE PROBLEM TO VISUAL SEARCH: given a scene and a specified target, how does one generate a description which would allow somebody else to quickly and accurately locate the target?Previous work in psycholinguistics and natural language processing has failed to find an important and integrated role for vision in this task. That previous work, which relies largely on simple scenes, tends to treat vision as a pre-process for extracting feature categories that are relevant to disambiguation. However, the visual search literature suggests that some descriptions are better than others at enabling listeners to search efficiently within complex stimuli. This paper presents a study testing whether participants are sensitive to visual features that allow them to compose such "good" descriptions. Our results show that visual properties (salience, clutter, area, and distance) influence REG for targets embedded in images from the Where's Wally? books. Referring expressions for large targets are shorter than those for smaller targets, and expressions about targets in highly cluttered scenes use more words. We also find that participants are more likely to mention non-target landmarks that are large, salient, and in close proximity to the target. These findings identify a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.

  20. Low Target Prevalence Is a Stubborn Source of Errors in Visual Search Tasks

    ERIC Educational Resources Information Center

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2007-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1%-2%) than at high prevalence (50%). Unfortunately, low prevalence is…

  1. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

    PubMed

    Booth, Ashley J; Elliott, Mark T

    2015-01-01

    The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  2. Postdictive modulation of visual orientation.

    PubMed

    Kawabe, Takahiro

    2012-01-01

    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  3. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.

    PubMed

    Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E

    2008-10-21

    Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.

  4. Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”

    PubMed Central

    Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A.; Feuerstein, Flurin; Gruber, Nicole; Müri, René M.; Mosimann, Urs P.; Nef, Tobias

    2016-01-01

    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view. PMID:27582704

  5. Effects of Alzheimer's Disease on Visual Target Detection: A "Peripheral Bias".

    PubMed

    Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A; Feuerstein, Flurin; Gruber, Nicole; Müri, René M; Mosimann, Urs P; Nef, Tobias

    2016-01-01

    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer's Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view.

  6. Haptic guidance of overt visual attention.

    PubMed

    List, Alexandra; Iordanescu, Lucica; Grabowecky, Marcia; Suzuki, Satoru

    2014-11-01

    Research has shown that information accessed from one sensory modality can influence perceptual and attentional processes in another modality. Here, we demonstrated a novel crossmodal influence of haptic-shape information on visual attention. Participants visually searched for a target object (e.g., an orange) presented among distractor objects, fixating the target as quickly as possible. While searching for the target, participants held (never viewed and out of sight) an item of a specific shape in their hands. In two experiments, we demonstrated that the time for the eyes to reach a target-a measure of overt visual attention-was reduced when the shape of the held item (e.g., a sphere) was consistent with the shape of the visual target (e.g., an orange), relative to when the held shape was unrelated to the target (e.g., a hockey puck) or when no shape was held. This haptic-to-visual facilitation occurred despite the fact that the held shapes were not predictive of the visual targets' shapes, suggesting that the crossmodal influence occurred automatically, reflecting shape-specific haptic guidance of overt visual attention.

  7. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    PubMed

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  8. Effects of audio-visual presentation of target words in word translation training

    NASA Astrophysics Data System (ADS)

    Akahane-Yamada, Reiko; Komaki, Ryo; Kubo, Rieko

    2004-05-01

    Komaki and Akahane-Yamada (Proc. ICA2004) used 2AFC translation task in vocabulary training, in which the target word is presented visually in orthographic form of one language, and the appropriate meaning in another language has to be chosen between two choices. Present paper examined the effect of audio-visual presentation of target word when native speakers of Japanese learn to translate English words into Japanese. Pairs of English words contrasted in several phonemic distinctions (e.g., /r/-/l/, /b/-/v/, etc.) were used as word materials, and presented in three conditions; visual-only (V), audio-only (A), and audio-visual (AV) presentations. Identification accuracy of those words produced by two talkers was also assessed. During pretest, the accuracy for A stimuli was lowest, implying that insufficient translation ability and listening ability interact with each other when aurally presented word has to be translated. However, there was no difference in accuracy between V and AV stimuli, suggesting that participants translate the words depending on visual information only. The effect of translation training using AV stimuli did not transfer to identification ability, showing that additional audio information during translation does not help improve speech perception. Further examination is necessary to determine the effective L2 training method. [Work supported by TAO, Japan.

  9. Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation

    ERIC Educational Resources Information Center

    Potter, Mary C.; Fox, Laura F.

    2009-01-01

    Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…

  10. Examining perceptual and conceptual set biases in multiple-target visual search.

    PubMed

    Biggs, Adam T; Adamo, Stephen H; Dowd, Emma Wu; Mitroff, Stephen R

    2015-04-01

    Visual search is a common practice conducted countless times every day, and one important aspect of visual search is that multiple targets can appear in a single search array. For example, an X-ray image of airport luggage could contain both a water bottle and a gun. Searchers are more likely to miss additional targets after locating a first target in multiple-target searches, which presents a potential problem: If airport security officers were to find a water bottle, would they then be more likely to miss a gun? One hypothetical cause of multiple-target search errors is that searchers become biased to detect additional targets that are similar to a found target, and therefore become less likely to find additional targets that are dissimilar to the first target. This particular hypothesis has received theoretical, but little empirical, support. In the present study, we tested the bounds of this idea by utilizing "big data" obtained from the mobile application Airport Scanner. Multiple-target search errors were substantially reduced when the two targets were identical, suggesting that the first-found target did indeed create biases during subsequent search. Further analyses delineated the nature of the biases, revealing both a perceptual set bias (i.e., a bias to find additional targets with features similar to those of the first-found target) and a conceptual set bias (i.e., a bias to find additional targets with a conceptual relationship to the first-found target). These biases are discussed in terms of the implications for visual-search theories and applications for professional visual searchers.

  11. Crowding with detection and coarse discrimination of simple visual features.

    PubMed

    Põder, Endel

    2008-04-24

    Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.

  12. Distractor-Induced Blindness: A Special Case of Contingent Attentional Capture?

    PubMed Central

    Winther, Gesche N.; Niedeggen, Michael

    2017-01-01

    The detection of a salient visual target embedded in a rapid serial visual presentation (RSVP) can be severely affected if target-like distractors are presented previously. This phenomenon, known as distractor-induced blindness (DIB), shares the prerequisites of contingent attentional capture (Folk, Remington, & Johnston, 1992). In both, target processing is transiently impaired by the presentation of distractors defined by similar features. In the present study, we investigated whether the speeded response to a target in the DIB paradigm can be described in terms of a contingent attentional capture process. In the first experiments, multiple distractors were embedded in the RSVP stream. Distractors either shared the target’s visual features (Experiment 1A) or differed from them (Experiment 1B). Congruent with hypotheses drawn from contingent attentional capture theory, response times (RTs) were exclusively impaired in conditions with target-like distractors. However, RTs were not impaired if only one single target-like distractor was presented (Experiment 2). If attentional capture directly contributed to DIB, the single distractor should be sufficient to impair target processing. In conclusion, DIB is not due to contingent attentional capture, but may rely on a central suppression process triggered by multiple distractors. PMID:28439320

  13. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  14. Contingent capture of involuntary visual spatial attention does not differ between normally hearing children and proficient cochlear implant users.

    PubMed

    Kamke, Marc R; Van Luyn, Jeanette; Constantinescu, Gabriella; Harris, Jill

    2014-01-01

    Evidence suggests that deafness-induced changes in visual perception, cognition and attention may compensate for a hearing loss. Such alterations, however, may also negatively influence adaptation to a cochlear implant. This study investigated whether involuntary attentional capture by salient visual stimuli is altered in children who use a cochlear implant. Thirteen experienced implant users (aged 8-16 years) and age-matched normally hearing children were presented with a rapid sequence of simultaneous visual and auditory events. Participants were tasked with detecting numbers presented in a specified color and identifying a change in the tonal frequency whilst ignoring irrelevant visual distractors. Compared to visual distractors that did not possess the target-defining characteristic, target-colored distractors were associated with a decrement in visual performance (response time and accuracy), demonstrating a contingent capture of involuntary attention. Visual distractors did not, however, impair auditory task performance. Importantly, detection performance for the visual and auditory targets did not differ between the groups. These results suggest that proficient cochlear implant users demonstrate normal capture of visuospatial attention by stimuli that match top-down control settings.

  15. Role of the posterior parietal cortex in updating reaching movements to a visual target.

    PubMed

    Desmurget, M; Epstein, C M; Turner, R S; Prablanc, C; Alexander, G E; Grafton, S T

    1999-06-01

    The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.

  16. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    PubMed Central

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  17. Why are there eccentricity effects in visual search? Visual and attentional hypotheses.

    PubMed

    Wolfe, J M; O'Neill, P; Bennett, S C

    1998-01-01

    In standard visual search experiments, observers search for a target item among distracting items. The locations of target items are generally random within the display and ignored as a factor in data analysis. Previous work has shown that targets presented near fixation are, in fact, found more efficiently than are targets presented at more peripheral locations. This paper proposes that the primary cause of this "eccentricity effect" (Carrasco, Evert, Chang, & Katz, 1995) is an attentional bias that allocates attention preferentially to central items. The first four experiments dealt with the possibility that visual, and not attentional, factors underlie the eccentricity effect. They showed that the eccentricity effect cannot be accounted for by the peripheral reduction in visual sensitivity, peripheral crowding, or cortical magnification. Experiment 5 tested the attention allocation model and also showed that RT x set size effects can be independent of eccentricity effects. Experiment 6 showed that the effective set size in a search task depends, in part, on the eccentricity of the target because observers search from fixation outward.

  18. Visual search performance among persons with schizophrenia as a function of target eccentricity.

    PubMed

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2010-03-01

    The current study investigated one possible mechanism of impaired visual attention among patients with schizophrenia: a reduced visual span. Visual span is the region of the visual field from which one can extract information during a single eye fixation. This study hypothesized that schizophrenia-related visual search impairment is mediated, in part, by a smaller visual span. To test this hypothesis, 23 patients with schizophrenia and 22 healthy controls completed a visual search task where the target was pseudorandomly presented at different distances from the center of the display. Response times were analyzed as a function of search condition (feature vs. conjunctive), display size, and target eccentricity. Consistent with previous reports, patient search times were more adversely affected as the number of search items increased in the conjunctive search condition. It was important however, that patients' conjunctive search times were also impacted to a greater degree by target eccentricity. Moreover, a significant impairment in patients' visual search performance was only evident when targets were more eccentric and their performance was more similar to healthy controls when the target was located closer to the center of the search display. These results support the hypothesis that a narrower visual span may underlie impaired visual search performance among patients with schizophrenia. Copyright 2010 APA, all rights reserved

  19. Attentional and Perceptual Factors Affecting the Attentional Blink for Faces and Objects

    ERIC Educational Resources Information Center

    Landau, Ayelet N.; Bentin, Shlomo

    2008-01-01

    When 2 different visual targets presented among different distracters in a rapid serial visual presentation (RSVP) are separated by 400 ms or less, detection and identification of the 2nd targets are reduced relative to longer time intervals. This phenomenon, termed the "attentional blink" (AB), is attributed to the temporary engagement…

  20. Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.

    PubMed

    Põder, Endel

    2014-11-06

    Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.

  1. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    NASA Astrophysics Data System (ADS)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  2. Evidence for Deficits in the Temporal Attention Span of Poor Readers

    PubMed Central

    Visser, Troy A. W.

    2014-01-01

    Background While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their “temporal attention span” – that is, their ability to rapidly and accurately process sequences of consecutive target items. Methodology/Principal Findings Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Conclusions/Significance Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span. PMID:24651313

  3. Evidence for deficits in the temporal attention span of poor readers.

    PubMed

    Visser, Troy A W

    2014-01-01

    While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their "temporal attention span"--that is, their ability to rapidly and accurately process sequences of consecutive target items. Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span.

  4. Direction of Auditory Pitch-Change Influences Visual Search for Slope From Graphs.

    PubMed

    Parrott, Stacey; Guzman-Martinez, Emmanuel; Orte, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru

    2015-01-01

    Linear trend (slope) is important information conveyed by graphs. We investigated how sounds influenced slope detection in a visual search paradigm. Four bar graphs or scatter plots were presented on each trial. Participants looked for a positive-slope or a negative-slope target (in blocked trials), and responded to targets in a go or no-go fashion. For example, in a positive-slope-target block, the target graph displayed a positive slope while other graphs displayed negative slopes (a go trial), or all graphs displayed negative slopes (a no-go trial). When an ascending or descending sound was presented concurrently, ascending sounds slowed detection of negative-slope targets whereas descending sounds slowed detection of positive-slope targets. The sounds had no effect when they immediately preceded the visual search displays, suggesting that the results were due to crossmodal interaction rather than priming. The sounds also had no effect when targets were words describing slopes, such as "positive," "negative," "increasing," or "decreasing," suggesting that the results were unlikely due to semantic-level interactions. Manipulations of spatiotemporal similarity between sounds and graphs had little effect. These results suggest that ascending and descending sounds influence visual search for slope based on a general association between the direction of auditory pitch-change and visual linear trend.

  5. The course of visual searching to a target in a fixed location: electrophysiological evidence from an emotional flanker task.

    PubMed

    Dong, Guangheng; Yang, Lizhu; Shen, Yue

    2009-08-21

    The present study investigated the course of visual searching to a target in a fixed location, using an emotional flanker task. Event-related potentials (ERPs) were recorded while participants performed the task. Emotional facial expressions were used as emotion-eliciting triggers. The course of visual searching was analyzed through the emotional effects arising from these emotion-eliciting stimuli. The flanker stimuli showed effects at about 150-250 ms following the stimulus onset, while the effect of target stimuli showed effects at about 300-400 ms. The visual search sequence in an emotional flanker task moved from a whole overview to a specific target, even if the target always appeared at a known location. The processing sequence was "parallel" in this task. The results supported the feature integration theory of visual search.

  6. Implicit short- and long-term memory direct our gaze in visual search.

    PubMed

    Kruijne, Wouter; Meeter, Martijn

    2016-04-01

    Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.

  7. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    PubMed

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts' law for explicit targets with vision ( r 2 = 0.96) and implicit targets ( r 2 = 0.89), but not as well-described for explicit targets without vision ( r 2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts' law to quantify the relative speed-accuracy relationship of any given grasper.

  8. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  9. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  10. Working memory can enhance unconscious visual perception.

    PubMed

    Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying

    2012-06-01

    We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.

  11. Working memory enhances visual perception: evidence from signal detection analysis.

    PubMed

    Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W

    2010-03-01

    We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be re-presented in the display, where it surrounded either the target (on valid trials) or a distractor (on invalid trials). Perceptual identification of the target, as indexed by A', was enhanced on valid relative to invalid trials but only when the cue was kept in WM. There was minimal effect of the cue when it was merely attended and not kept in WM. Verbal cues were as effective as visual cues at modulating perceptual identification, and the effects were independent of the effects of target saliency. Matches to the contents of WM influenced perceptual sensitivity even under conditions that minimized competition for selecting the target. WM cues were also effective when targets were less likely to fall in a repeated WM stimulus than in other stimuli in the search display. There were no effects of WM on decisional criteria, in contrast to sensitivity. The findings suggest that reentrant feedback from WM can affect early stages of perceptual processing.

  12. Evaluating the Performance of a Visually Guided Hearing Aid Using a Dynamic Auditory-Visual Word Congruence Task.

    PubMed

    Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald

    2017-12-15

    The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some individuals showed BEAM benefits relative to KEMAR. Under dynamic conditions, BEAM and BEAMAR performance dropped significantly immediately following a target location transition. However, performance recovered by the second word in the sequence and was sustained until the next transition. When performance was assessed using an auditory-visual word congruence task, the benefits of beamforming reported previously were generally preserved under dynamic conditions in which the target source could move unpredictably from one location to another (i.e., performance recovered rapidly following source transitions) while the observer steered the beamforming via eye gaze, for both young NH and young HI groups.

  13. Auditory emotional cues enhance visual perception.

    PubMed

    Zeelenberg, René; Bocanegra, Bruno R

    2010-04-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by emotional cues as compared to neutral cues. When the cue was presented visually we replicated the emotion-induced impairment found in other studies. Our results suggest emotional stimuli have a twofold effect on perception. They impair perception by reflexively attracting attention at the expense of competing stimuli. However, emotional stimuli also induce a nonspecific perceptual enhancement that carries over onto other stimuli when competition is reduced, for example, by presenting stimuli in different modalities. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Modulation of auditory spatial attention by visual emotional cues: differential effects of attentional engagement and disengagement for pleasant and unpleasant cues.

    PubMed

    Harrison, Neil R; Woodhouse, Rob

    2016-05-01

    Previous research has demonstrated that threatening, compared to neutral pictures, can bias attention towards non-emotional auditory targets. Here we investigated which subcomponents of attention contributed to the influence of emotional visual stimuli on auditory spatial attention. Participants indicated the location of an auditory target, after brief (250 ms) presentation of a spatially non-predictive peripheral visual cue. Responses to targets were faster at the location of the preceding visual cue, compared to at the opposite location (cue validity effect). The cue validity effect was larger for targets following pleasant and unpleasant cues compared to neutral cues, for right-sided targets. For unpleasant cues, the crossmodal cue validity effect was driven by delayed attentional disengagement, and for pleasant cues, it was driven by enhanced engagement. We conclude that both pleasant and unpleasant visual cues influence the distribution of attention across modalities and that the associated attentional mechanisms depend on the valence of the visual cue.

  15. The processing of images of biological threats in visual short-term memory.

    PubMed

    Quinlan, Philip T; Yue, Yue; Cohen, Dale J

    2017-08-30

    The idea that there is enhanced memory for negatively, emotionally charged pictures was examined. Performance was measured under rapid, serial visual presentation (RSVP) conditions in which, on every trial, a sequence of six photo-images was presented. Briefly after the offset of the sequence, two alternative images (a target and a foil) were presented and participants attempted to choose which image had occurred in the sequence. Images were of threatening and non-threatening cats and dogs. The target depicted either an animal expressing an emotion distinct from the other images, or the sequences contained only images depicting the same emotional valence. Enhanced memory was found for targets that differed in emotional valence from the other sequence images, compared to targets that expressed the same emotional valence. Further controls in stimulus selection were then introduced and the same emotional distinctiveness effect obtained. In ruling out possible visual and attentional accounts of the data, an informal dual route topic model is discussed. This places emphasis on how visual short-term memory reveals a sensitivity to the emotional content of the input as it unfolds over time. Items that present with a distinctive emotional content stand out in memory. © 2017 The Author(s).

  16. The Effects of Spatial Endogenous Pre-cueing across Eccentricities

    PubMed Central

    Feng, Jing; Spence, Ian

    2017-01-01

    Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas, how endogenous pre-cues that carry spatial information of targets influence our allocation of attention across a large visual field (especially in the more peripheral areas) remains unclear. We present two experiments examining how the expectation of the location of the target shapes the distribution of attention across eccentricities in the visual field. We measured participants’ ability to pick out a target among distractors in the visual field after the presentation of a highly valid cue indicating the size of the area in which the target was likely to occur, or the likely direction of the target (left or right side of the display). Our first experiment showed that participants had a higher target detection rate with faster responses, particularly at eccentricities of 20° and 30°. There was also a marginal advantage of pre-cueing effects when trials of the same size cue were blocked compared to when trials were mixed. Experiment 2 demonstrated a higher target detection rate when the target occurred at the cued direction. This pre-cueing effect was greater at larger eccentricities and with a longer cue-target interval. Our findings on the endogenous pre-cueing effects across a large visual area were summarized using a simple model to assist in conceptualizing the modifications of the distribution of attention over the visual field. We discuss our finding in light of cognitive penetration of perception, and highlight the importance of examining attentional process across a large area of the visual field. PMID:28638353

  17. The Effects of Spatial Endogenous Pre-cueing across Eccentricities.

    PubMed

    Feng, Jing; Spence, Ian

    2017-01-01

    Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas, how endogenous pre-cues that carry spatial information of targets influence our allocation of attention across a large visual field (especially in the more peripheral areas) remains unclear. We present two experiments examining how the expectation of the location of the target shapes the distribution of attention across eccentricities in the visual field. We measured participants' ability to pick out a target among distractors in the visual field after the presentation of a highly valid cue indicating the size of the area in which the target was likely to occur, or the likely direction of the target (left or right side of the display). Our first experiment showed that participants had a higher target detection rate with faster responses, particularly at eccentricities of 20° and 30°. There was also a marginal advantage of pre-cueing effects when trials of the same size cue were blocked compared to when trials were mixed. Experiment 2 demonstrated a higher target detection rate when the target occurred at the cued direction. This pre-cueing effect was greater at larger eccentricities and with a longer cue-target interval. Our findings on the endogenous pre-cueing effects across a large visual area were summarized using a simple model to assist in conceptualizing the modifications of the distribution of attention over the visual field. We discuss our finding in light of cognitive penetration of perception, and highlight the importance of examining attentional process across a large area of the visual field.

  18. Dynamic and predictive links between touch and vision.

    PubMed

    Gray, Rob; Tan, Hong Z

    2002-07-01

    We investigated crossmodal links between vision and touch for moving objects. In experiment 1, observers discriminated visual targets presented randomly at one of five locations on their forearm. Tactile pulses simulating motion along the forearm preceded visual targets. At short tactile-visual ISIs, discriminations were more rapid when the final tactile pulse and visual target were at the same location. At longer ISIs, discriminations were more rapid when the visual target was offset in the motion direction and were slower for offsets opposite to the motion direction. In experiment 2, speeded tactile discriminations at one of three random locations on the forearm were preceded by a visually simulated approaching object. Discriminations were more rapid when the object approached the location of the tactile stimulation and discrimination performance was dependent on the approaching object's time to contact. These results demonstrate dynamic links in the spatial mapping between vision and touch.

  19. Priming and the guidance by visual and categorical templates in visual search.

    PubMed

    Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L

    2014-01-01

    Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.

  20. Rapid extraction of gist from visual text and its influence on word recognition.

    PubMed

    Asano, Michiko; Yokosawa, Kazuhiko

    2011-01-01

    Two experiments explored rapid extraction of gist from a visual text and its influence on word recognition. In both, a short text (sentence) containing a target word was presented for 200 ms and was followed by a target recognition task. Results showed that participants recognized contextually anomalous word targets less frequently than contextually consistent counterparts (Experiment 1). This context effect was obtained when sentences contained the same semantic content but with disrupted syntactic structure (Experiment 2). Results demonstrate that words in a briefly presented visual sentence are processed in parallel and that rapid extraction of sentence gist relies on a primitive representation of sentence context (termed protocontext) that is semantically activated by the simultaneous presentation of multiple words (i.e., a sentence) before syntactic processing.

  1. Effects of aging on pointing movements under restricted visual feedback conditions.

    PubMed

    Zhang, Liancun; Yang, Jiajia; Inai, Yoshinobu; Huang, Qiang; Wu, Jinglong

    2015-04-01

    The goal of this study was to investigate the effects of aging on pointing movements under restricted visual feedback of hand movement and target location. Fifteen young subjects and fifteen elderly subjects performed pointing movements under four restricted visual feedback conditions that included full visual feedback of hand movement and target location (FV), no visual feedback of hand movement and target location condition (NV), no visual feedback of hand movement (NM) and no visual feedback of target location (NT). This study suggested that Fitts' law applied for pointing movements of the elderly adults under different visual restriction conditions. Moreover, significant main effect of aging on movement times has been found in all four tasks. The peripheral and central changes may be the key factors for these different characteristics. Furthermore, no significant main effects of age on the mean accuracy rate under condition of restricted visual feedback were found. The present study suggested that the elderly subjects made a very similar use of the available sensory information as young subjects under restricted visual feedback conditions. In addition, during the pointing movement, information about the hand's movement was more useful than information about the target location for young and elderly subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modulation of Target Recollection and Recollection Rejection Networks Due to Retrieval Facilitation and Interference

    ERIC Educational Resources Information Center

    Bowman, Caitlin R.; Sine, Shalome L.; Dennis, Nancy A.

    2017-01-01

    To better understand neural recollection processing, we induced interference in target recollection by presenting related lures before their respective targets and facilitated recollection rejection of lures by presenting targets before their related lures. Target recollection following interference recruited visual and prefrontal cortices,…

  3. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  4. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  5. Visual attention distracter insertion for improved EEG rapid serial visual presentation (RSVP) target stimuli detection

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Martin, Kevin

    2017-05-01

    This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).

  6. Two (or three) is one too many: testing the flexibility of contextual cueing with multiple target locations.

    PubMed

    Zellin, Martina; Conci, Markus; von Mühlenen, Adrian; Müller, Hermann J

    2011-10-01

    Visual search for a target object is facilitated when the object is repeatedly presented within an invariant context of surrounding items ("contextual cueing"; Chun & Jiang, Cognitive Psychology, 36, 28-71, 1998). The present study investigated whether such invariant contexts can cue more than one target location. In a series of three experiments, we showed that contextual cueing is significantly reduced when invariant contexts are paired with two rather than one possible target location, whereas no contextual cueing occurs with three distinct target locations. Closer data inspection revealed that one "dominant" target always exhibited substantially more contextual cueing than did the other, "minor" target(s), which caused negative contextual-cueing effects. However, minor targets could benefit from the invariant context when they were spatially close to the dominant target. In sum, our experiments suggest that contextual cueing can guide visual attention to a spatially limited region of the display, only enhancing the detection of targets presented inside that region.

  7. Decreased visual detection during subliminal stimulation.

    PubMed

    Bareither, Isabelle; Villringer, Arno; Busch, Niko A

    2014-10-17

    What is the perceptual fate of invisible stimuli-are they processed at all and does their processing have consequences for the perception of other stimuli? As has been shown previously in the somatosensory system, even stimuli that are too weak to be consciously detected can influence our perception: Subliminal stimulation impairs perception of near-threshold stimuli and causes a functional deactivation in the somatosensory cortex. In a recent study, we showed that subliminal visual stimuli lead to similar responses, indicated by an increase in alpha-band power as measured with electroencephalography (EEG). In the current study, we investigated whether a behavioral inhibitory mechanism also exists within the visual system. We tested the detection of peripheral visual target stimuli under three different conditions: Target stimuli were presented alone or embedded in a concurrent train of subliminal stimuli either at the same location as the target or in the opposite hemifield. Subliminal stimuli were invisible due to their low contrast, not due to a masking procedure. We demonstrate that target detection was impaired by the subliminal stimuli, but only when they were presented at the same location as the target. This finding indicates that subliminal, low-intensity stimuli induce a similar inhibitory effect in the visual system as has been observed in the somatosensory system. In line with previous reports, we propose that the function underlying this effect is the inhibition of spurious noise by the visual system. © 2014 ARVO.

  8. Audio-visual speech intelligibility benefits with bilateral cochlear implants when talker location varies.

    PubMed

    van Hoesel, Richard J M

    2015-04-01

    One of the key benefits of using cochlear implants (CIs) in both ears rather than just one is improved localization. It is likely that in complex listening scenes, improved localization allows bilateral CI users to orient toward talkers to improve signal-to-noise ratios and gain access to visual cues, but to date, that conjecture has not been tested. To obtain an objective measure of that benefit, seven bilateral CI users were assessed for both auditory-only and audio-visual speech intelligibility in noise using a novel dynamic spatial audio-visual test paradigm. For each trial conducted in spatially distributed noise, first, an auditory-only cueing phrase that was spoken by one of four talkers was selected and presented from one of four locations. Shortly afterward, a target sentence was presented that was either audio-visual or, in another test configuration, audio-only and was spoken by the same talker and from the same location as the cueing phrase. During the target presentation, visual distractors were added at other spatial locations. Results showed that in terms of speech reception thresholds (SRTs), the average improvement for bilateral listening over the better performing ear alone was 9 dB for the audio-visual mode, and 3 dB for audition-alone. Comparison of bilateral performance for audio-visual and audition-alone showed that inclusion of visual cues led to an average SRT improvement of 5 dB. For unilateral device use, no such benefit arose, presumably due to the greatly reduced ability to localize the target talker to acquire visual information. The bilateral CI speech intelligibility advantage over the better ear in the present study is much larger than that previously reported for static talker locations and indicates greater everyday speech benefits and improved cost-benefit than estimated to date.

  9. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  10. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    PubMed Central

    Thumser, Zachary C.; Slifkin, Andrew B.; Beckler, Dylan T.; Marasco, Paul D.

    2018-01-01

    Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts’ law for explicit targets with vision (r2 = 0.96) and implicit targets (r2 = 0.89), but not as well-described for explicit targets without vision (r2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts’ law to quantify the relative speed-accuracy relationship of any given grasper. PMID:29773999

  11. Overt attention in contextual cuing of visual search is driven by the attentional set, but not by the predictiveness of distractors.

    PubMed

    Beesley, Tom; Hanafi, Gunadi; Vadillo, Miguel A; Shanks, David R; Livesey, Evan J

    2018-05-01

    Two experiments examined biases in selective attention during contextual cuing of visual search. When participants were instructed to search for a target of a particular color, overt attention (as measured by the location of fixations) was biased strongly toward distractors presented in that same color. However, when participants searched for targets that could be presented in 1 of 2 possible colors, overt attention was not biased between the different distractors, regardless of whether these distractors predicted the location of the target (repeating) or did not (randomly arranged). These data suggest that selective attention in visual search is guided only by the demands of the target detection task (the attentional set) and not by the predictive validity of the distractor elements. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    PubMed

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  13. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    PubMed

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  14. Effects of Auditory Stimuli in the Horizontal Plane on Audiovisual Integration: An Event-Related Potential Study

    PubMed Central

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097

  15. The role of visual attention in multiple object tracking: evidence from ERPs.

    PubMed

    Doran, Matthew M; Hoffman, James E

    2010-01-01

    We examined the role of visual attention in the multiple object tracking (MOT) task by measuring the amplitude of the N1 component of the event-related potential (ERP) to probe flashes presented on targets, distractors, or empty background areas. We found evidence that visual attention enhances targets and suppresses distractors (Experiment 1 & 3). However, we also found that when tracking load was light (two targets and two distractors), accurate tracking could be carried out without any apparent contribution from the visual attention system (Experiment 2). Our results suggest that attentional selection during MOT is flexibly determined by task demands as well as tracking load and that visual attention may not always be necessary for accurate tracking.

  16. Inhibition of return shortens perceived duration of a brief visual event.

    PubMed

    Osugi, Takayuki; Takeda, Yuji; Murakami, Ikuya

    2016-11-01

    We investigated the influence of attentional inhibition on the perceived duration of a brief visual event. Although attentional capture by an exogenous cue is known to prolong the perceived duration of an attended visual event, it remains unclear whether time perception is also affected by subsequent attentional inhibition at the location previously cued by an exogenous cue, an attentional phenomenon known as inhibition of return. In this study, we combined spatial cuing and duration judgment. After one second from the appearance of an uninformative peripheral cue either to the left or to the right, a target appeared at a cued side in one-third of the trials, which indeed yielded inhibition of return, and at the opposite side in another one-third of the trials. In the remaining trials, a cue appeared at a central box and one second later, a target appeared at either the left or right side. The target at the previously cued location was perceived to last shorter than the target presented at the opposite location, and shorter than the target presented after the central cue presentation. Therefore, attentional inhibition produced by a classical paradigm of inhibition of return decreased the perceived duration of a brief visual event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The integration of temporally shifted visual feedback in a synchronization task: The role of perceptual stability in a visuo-proprioceptive conflict situation.

    PubMed

    Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J

    2010-12-01

    The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks.

    PubMed

    Heath, Matthew; DeSimone, Jesse C

    2016-11-01

    The saccade literature has consistently reported that the presentation of a distractor remote to a target increases reaction time (i.e., the remote distractor effect: RDE). As well, some studies have shown that a proximal distractor facilitates saccade reaction time. The lateral inhibition hypothesis attributes the aforementioned findings to the inhibition/facilitation of target selection mechanisms operating in the intermediate layers of the superior colliculus (SC). Although the impact of remote and proximal distractors has been extensively examined in the saccade literature, a paucity of work has examined whether such findings generalize to reaching responses, and to our knowledge, no work has directly contrasted reaching RTs for remote and proximal distractors. To that end, the present investigation had participants complete reaches in target only trials (i.e., TO) and when distractors were presented at "remote" (i.e., the opposite visual field) and "proximal" (i.e., the same visual field) locations along the same horizontal meridian as the target. As well, participants reached to the target's veridical (i.e., propointing) and mirror-symmetrical (i.e., antipointing) location. The basis for contrasting pro- and antipointing was to determine whether the distractor's visual- or motor-related activity influence reaching RTs. Results demonstrated that remote and proximal distractors, respectively, increased and decreased reaching RTs and the effect was consistent for pro- and antipointing. Accordingly, results evince that the RDE and the facilitatory effects of a proximal distractor are effector independent and provide behavioral support for the contention that the SC serves as a general target selection mechanism. As well, the comparable distractor-related effects for pro- and antipointing trials indicate that the visual properties of remote and proximal distractors respectively inhibit and facilitate target selection.

  19. Visual cortex activation in kinesthetic guidance of reaching.

    PubMed

    Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J

    2007-06-01

    The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.

  20. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  1. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  2. Input Control Processes in Rapid Serial Visual Presentations: Target Selection and Distractor Inhibition

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Watson, Derrick G.

    2006-01-01

    The attentional blink refers to the finding that the 2nd of 2 targets embedded in a stream of rapidly presented distractors is often missed. Whereas most theories of the attentional blink focus on limited-capacity processes that occur after target selection, the present work investigates the selection process itself. Identifying a target letter…

  3. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.

    PubMed

    Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.

  4. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.

    PubMed

    Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M

    2016-06-01

    Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.

  5. Capturing Attention When Attention "Blinks"

    ERIC Educational Resources Information Center

    Wee, Serena; Chua, Fook K.

    2004-01-01

    Four experiments addressed the question of whether attention may be captured when the visual system is in the midst of an attentional blink (AB). Participants identified 2 target letters embedded among distractor letters in a rapid serial visual presentation sequence. In some trials, a square frame was inserted between the targets; as the only…

  6. Monitoring Processes in Visual Search Enhanced by Professional Experience: The Case of Orange Quality-Control Workers

    PubMed Central

    Visalli, Antonino; Vallesi, Antonino

    2018-01-01

    Visual search tasks have often been used to investigate how cognitive processes change with expertise. Several studies have shown visual experts' advantages in detecting objects related to their expertise. Here, we tried to extend these findings by investigating whether professional search experience could boost top-down monitoring processes involved in visual search, independently of advantages specific to objects of expertise. To this aim, we recruited a group of quality-control workers employed in citrus farms. Given the specific features of this type of job, we expected that the extensive employment of monitoring mechanisms during orange selection could enhance these mechanisms even in search situations in which orange-related expertise is not suitable. To test this hypothesis, we compared performance of our experimental group and of a well-matched control group on a computerized visual search task. In one block the target was an orange (expertise target) while in the other block the target was a Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for quality-controllers in those situations in which monitoring was especially involved, that is, when deciding the presence/absence of the target required a more extensive inspection of the search array. Results were consistent with our hypothesis. Quality-controllers were faster in those conditions that extensively required monitoring processes, specifically, the Smurfette-present and both target-absent conditions. No differences emerged in the orange-present condition, which resulted to mainly rely on bottom-up processes. These results suggest that top-down processes in visual search can be enhanced through immersive real-life experience beyond visual expertise advantages. PMID:29497392

  7. Top-down contextual knowledge guides visual attention in infancy.

    PubMed

    Tummeltshammer, Kristen; Amso, Dima

    2017-10-26

    The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.

  8. Investigating saccade programming in the praying mantis Tenodera aridifolia using distracter interference paradigms.

    PubMed

    Yamawaki, Yoshifumi

    2006-10-01

    To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.

  9. Salient sounds activate human visual cortex automatically

    PubMed Central

    McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.

    2013-01-01

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530

  10. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Visual search accelerates during adolescence.

    PubMed

    Burggraaf, Rudolf; van der Geest, Jos N; Frens, Maarten A; Hooge, Ignace T C

    2018-05-01

    We studied changes in visual-search performance and behavior during adolescence. Search performance was analyzed in terms of reaction time and response accuracy. Search behavior was analyzed in terms of the objects fixated and the duration of these fixations. A large group of adolescents (N = 140; age: 12-19 years; 47% female, 53% male) participated in a visual-search experiment in which their eye movements were recorded with an eye tracker. The experiment consisted of 144 trials (50% with a target present), and participants had to decide whether a target was present. Each trial showed a search display with 36 Gabor patches placed on a hexagonal grid. The target was a vertically oriented element with a high spatial frequency. Nontargets differed from the target in spatial frequency, orientation, or both. Search performance and behavior changed during adolescence; with increasing age, fixation duration and reaction time decreased. Response accuracy, number of fixations, and selection of elements to fixate upon did not change with age. Thus, the speed of foveal discrimination increases with age, while the efficiency of peripheral selection does not change. We conclude that the way visual information is gathered does not change during adolescence, but the processing of visual information becomes faster.

  12. Failures of Perception in the Low-Prevalence Effect: Evidence From Active and Passive Visual Search

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Goldinger, Stephen D.; Wolfe, Jeremy M.

    2017-01-01

    In visual search, rare targets are missed disproportionately often. This low-prevalence effect (LPE) is a robust problem with demonstrable societal consequences. What is the source of the LPE? Is it a perceptual bias against rare targets or a later process, such as premature search termination or motor response errors? In 4 experiments, we examined the LPE using standard visual search (with eye tracking) and 2 variants of rapid serial visual presentation (RSVP) in which observers made present/absent decisions after sequences ended. In all experiments, observers looked for 2 target categories (teddy bear and butterfly) simultaneously. To minimize simple motor errors, caused by repetitive absent responses, we held overall target prevalence at 50%, with 1 low-prevalence and 1 high-prevalence target type. Across conditions, observers either searched for targets among other real-world objects or searched for specific bears or butterflies among within-category distractors. We report 4 main results: (a) In standard search, high-prevalence targets were found more quickly and accurately than low-prevalence targets. (b) The LPE persisted in RSVP search, even though observers never terminated search on their own. (c) Eye-tracking analyses showed that high-prevalence targets elicited better attentional guidance and faster perceptual decisions. And (d) even when observers looked directly at low-prevalence targets, they often (12%–34% of trials) failed to detect them. These results strongly argue that low-prevalence misses represent failures of perception when early search termination or motor errors are controlled. PMID:25915073

  13. Masking reduces orientation selectivity in rat visual cortex

    PubMed Central

    Alwis, Dasuni S.; Richards, Katrina L.

    2016-01-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373

  14. Hybrid foraging search: Searching for multiple instances of multiple types of target.

    PubMed

    Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S

    2016-02-01

    This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hybrid foraging search: Searching for multiple instances of multiple types of target

    PubMed Central

    Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.

    2016-01-01

    This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644

  16. Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.

    ERIC Educational Resources Information Center

    Amerson, Marie J.

    1999-01-01

    Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…

  17. Eye Choice for Acquisition of Targets in Alternating Strabismus

    PubMed Central

    Economides, John R.; Adams, Daniel L.

    2014-01-01

    In strabismus, potentially either eye can inform the brain about the location of a target so that an accurate saccade can be made. Sixteen human subjects with alternating exotropia were tested dichoptically while viewing stimuli on a tangent screen. Each trial began with a fixation cross visible to only one eye. After the subject fixated the cross, a peripheral target visible to only one eye flashed briefly. The subject's task was to look at it. As a rule, the eye to which the target was presented was the eye that acquired the target. However, when stimuli were presented in the far nasal visual field, subjects occasionally performed a “crossover” saccade by placing the other eye on the target. This strategy avoided the need to make a large adducting saccade. In such cases, information about target location was obtained by one eye and used to program a saccade for the other eye, with a corresponding latency increase. In 10/16 subjects, targets were presented on some trials to both eyes. Binocular sensory maps were also compiled to delineate the portions of the visual scene perceived with each eye. These maps were compared with subjects' pattern of eye choice for target acquisition. There was a correspondence between suppression scotoma maps and the eye used to acquire peripheral targets. In other words, targets were fixated by the eye used to perceive them. These studies reveal how patients with alternating strabismus, despite eye misalignment, manage to localize and capture visual targets in their environment. PMID:25355212

  18. I can see what you are saying: Auditory labels reduce visual search times.

    PubMed

    Cho, Kit W

    2016-10-01

    The present study explored the self-directed-speech effect, the finding that relative to silent reading of a label (e.g., DOG), saying it aloud reduces visual search reaction times (RTs) for locating a target picture among distractors. Experiment 1 examined whether this effect is due to a confound in the differences in the number of cues in self-directed speech (two) vs. silent reading (one) and tested whether self-articulation is required for the effect. The results showed that self-articulation is not required and that merely hearing the auditory label reduces visual search RTs relative to silent reading. This finding also rules out the number of cues confound. Experiment 2 examined whether hearing an auditory label activates more prototypical features of the label's referent and whether the auditory-label benefit is moderated by the target's imagery concordance (the degree to which the target picture matches the mental picture that is activated by a written label for the target). When the target imagery concordance was high, RTs following the presentation of a high prototypicality picture or auditory cue were comparable and shorter than RTs following a visual label or low prototypicality picture cue. However, when the target imagery concordance was low, RTs following an auditory cue were shorter than the comparable RTs following the picture cues and visual-label cue. The results suggest that an auditory label activates both prototypical and atypical features of a concept and can facilitate visual search RTs even when compared to picture primes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. What are the Shapes of Response Time Distributions in Visual Search?

    PubMed Central

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure reaction time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search. PMID:21090905

  20. The development of organized visual search

    PubMed Central

    Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.

    2013-01-01

    Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560

  1. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  2. Qualitative Differences in the Representation of Abstract versus Concrete Words: Evidence from the Visual-World Paradigm

    ERIC Educational Resources Information Center

    Dunabeitia, Jon Andoni; Aviles, Alberto; Afonso, Olivia; Scheepers, Christoph; Carreiras, Manuel

    2009-01-01

    In the present visual-world experiment, participants were presented with visual displays that included a target item that was a semantic associate of an abstract or a concrete word. This manipulation allowed us to test a basic prediction derived from the qualitatively different representational framework that supports the view of different…

  3. Contextual Cueing in Multiconjunction Visual Search Is Dependent on Color- and Configuration-Based Intertrial Contingencies

    ERIC Educational Resources Information Center

    Geyer, Thomas; Shi, Zhuanghua; Muller, Hermann J.

    2010-01-01

    Three experiments examined memory-based guidance of visual search using a modified version of the contextual-cueing paradigm (Jiang & Chun, 2001). The target, if present, was a conjunction of color and orientation, with target (and distractor) features randomly varying across trials (multiconjunction search). Under these conditions, reaction times…

  4. Repetition Priming within and between the Two Cerebral Hemispheres

    ERIC Educational Resources Information Center

    Weems, S.A.; Zaidel, E.

    2005-01-01

    Two experiments explored repetition priming benefits in the left and right cerebral hemispheres. In both experiments, a lateralized lexical decision task was employed using repeated target stimuli. In the first experiment, all targets were repeated in the same visual field, and in the second experiment the visual field of presentation was switched…

  5. Inverse Target- and Cue-Priming Effects of Masked Stimuli

    ERIC Educational Resources Information Center

    Mattler, Uwe

    2007-01-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses…

  6. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.

    PubMed

    Wykowska, Agnieszka; Schubö, Anna

    2011-03-01

    It is not clear how salient distractors affect visual processing. The debate concerning the issue of whether irrelevant salient items capture spatial attention [e.g., Theeuwes, J., Atchley, P., & Kramer, A. F. On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive performance (pp. 105-124). Cambridge, MA: MIT Press, 2000] or produce only nonspatial interference in the form of, for example, filtering costs [Folk, Ch. L., & Remington, R. Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445-465, 2006] has not yet been settled. The present ERP study examined deployment of attention in visual search displays that contained an additional irrelevant singleton. Display-locked N2pc showed that attention was allocated to the target and not to the irrelevant singleton. However, the onset of the N2pc to the target was delayed when the irrelevant singleton was presented in the opposite hemifield relative to the same hemifield. Thus, although attention was successfully focused on the target, the irrelevant singleton produced some interference resulting in a delayed allocation of attention to the target. A subsequent probe discrimination task allowed for locking ERPs to probe onsets and investigating the dynamics of sensory gain control for probes appearing at relevant (target) or irrelevant (singleton distractor) positions. Probe-locked P1 showed sensory gain for probes positioned at the target location but no such effect for irrelevant singletons in the additional singleton condition. Taken together, the present data support the claim that irrelevant singletons do not capture attention. If they produce any interference, it is rather due to nonspatial filtering costs.

  7. Behold the voice of wrath: cross-modal modulation of visual attention by anger prosody.

    PubMed

    Brosch, Tobias; Grandjean, Didier; Sander, David; Scherer, Klaus R

    2008-03-01

    Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined within-modality effects, most frequently using pictures of emotional stimuli to modulate visual attention. In this study, we used simultaneously presented utterances with emotional and neutral prosody as cues for a visually presented target in a cross-modal dot probe task. Response times towards targets were faster when they appeared at the location of the source of the emotional prosody. Our results show for the first time a cross-modal attentional modulation of visual attention by auditory affective prosody.

  8. Heightened attentional capture by visual food stimuli in anorexia nervosa.

    PubMed

    Neimeijer, Renate A M; Roefs, Anne; de Jong, Peter J

    2017-08-01

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent generation of craving, which might enable AN patients to maintain their strict diet. Participants were 66 restrictive AN spectrum patients and 55 healthy controls. A single-target rapid serial visual presentation task was used with food and disorder-neutral cues as critical distracter stimuli and disorder-neutral pictures as target stimuli. AN spectrum patients showed diminished task performance when visual food cues were presented in close temporal proximity of the to-be-identified target. In contrast to our hypothesis, results indicate that food cues automatically capture AN spectrum patients' attention. One explanation could be that the enhanced attentional capture of food cues in AN is driven by the relatively high threat value of food items in AN. Implications and suggestions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Goal-directed action is automatically biased towards looming motion

    PubMed Central

    Moher, Jeff; Sit, Jonathan; Song, Joo-Hyun

    2014-01-01

    It is known that looming motion can capture attention regardless of an observer’s intentions. Real-world behavior, however, frequently involves not just attentional selection, but selection for action. Thus, it is important to understand the impact of looming motion on goal-directed action to gain a broader perspective on how stimulus properties bias human behavior. We presented participants with a visually-guided reaching task in which they pointed to a target letter presented among non-target distractors. On some trials, one of the pre-masks at the location of the upcoming search objects grew rapidly in size, creating the appearance of a “looming” target or distractor. Even though looming motion did not predict the target location, the time required to reach to the target was shorter when the target loomed compared to when a distractor loomed. Furthermore, reach movement trajectories were pulled towards the location of a looming distractor when one was present, a pull that was greater still when the looming motion was on a collision path with the participant. We also contrast reaching data with data from a similarly designed visual search task requiring keypress responses. This comparison underscores the sensitivity of visually-guided reaching data, as some experimental manipulations, such as looming motion path, affected reach trajectories but not keypress measures. Together, the results demonstrate that looming motion biases visually-guided action regardless of an observer’s current behavioral goals, affecting not only the time required to reach to targets but also the path of the observer’s hand movement itself. PMID:25159287

  10. Right hemispheric dominance and interhemispheric cooperation in gaze-triggered reflexive shift of attention.

    PubMed

    Okada, Takashi; Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi; Murai, Toshiya

    2012-03-01

    The neural substrate for the processing of gaze remains unknown. The aim of the present study was to clarify which hemisphere dominantly processes and whether bilateral hemispheres cooperate with each other in gaze-triggered reflexive shift of attention. Twenty-eight normal subjects were tested. The non-predictive gaze cues were presented either in unilateral or bilateral visual fields. The subjects localized the target as soon as possible. Reaction times (RT) were shorter when gaze-cues were congruent toward than away from targets, whichever visual field they were presented in. RT were shorter in left than right visual field presentations. RT in mono-directional bilateral presentations were shorter than both of those in left and right presentations. When bi-directional bilateral cues were presented, RT were faster when valid cues were presented in the left than right visual fields. The right hemisphere appears to be dominant, and there is interhemispheric cooperation in gaze-triggered reflexive shift of attention. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  11. Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency.

    PubMed

    Holmes, Nicholas P; Dakwar, Azar R

    2015-12-01

    Movements aimed towards objects occasionally have to be adjusted when the object moves. These online adjustments can be very rapid, occurring in as little as 100ms. More is known about the latency and neural basis of online control of movements to visual than to auditory target objects. We examined the latency of online corrections in reaching-to-point movements to visual and auditory targets that could change side and/or modality at movement onset. Visual or auditory targets were presented on the left or right sides, and participants were instructed to reach and point to them as quickly and as accurately as possible. On half of the trials, the targets changed side at movement onset, and participants had to correct their movements to point to the new target location as quickly as possible. Given different published approaches to measuring the latency for initiating movement corrections, we examined several different methods systematically. What we describe here as the optimal methods involved fitting a straight-line model to the velocity of the correction movement, rather than using a statistical criterion to determine correction onset. In the multimodal experiment, these model-fitting methods produced significantly lower latencies for correcting movements away from the auditory targets than away from the visual targets. Our results confirm that rapid online correction is possible for auditory targets, but further work is required to determine whether the underlying control system for reaching and pointing movements is the same for auditory and visual targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory

    PubMed Central

    Feredoes, Eva; Heinen, Klaartje; Weiskopf, Nikolaus; Ruff, Christian; Driver, Jon

    2011-01-01

    Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction. PMID:21987824

  13. Target-present guessing as a function of target prevalence and accumulated information in visual search.

    PubMed

    Peltier, Chad; Becker, Mark W

    2017-05-01

    Target prevalence influences visual search behavior. At low target prevalence, miss rates are high and false alarms are low, while the opposite is true at high prevalence. Several models of search aim to describe search behavior, one of which has been specifically intended to model search at varying prevalence levels. The multiple decision model (Wolfe & Van Wert, Current Biology, 20(2), 121--124, 2010) posits that all searches that end before the observer detects a target result in a target-absent response. However, researchers have found very high false alarms in high-prevalence searches, suggesting that prevalence rates may be used as a source of information to make "educated guesses" after search termination. Here, we further examine the ability for prevalence level and knowledge gained during visual search to influence guessing rates. We manipulate target prevalence and the amount of information that an observer accumulates about a search display prior to making a response to test if these sources of evidence are used to inform target present guess rates. We find that observers use both information about target prevalence rates and information about the proportion of the array inspected prior to making a response allowing them to make an informed and statistically driven guess about the target's presence.

  14. The Role of Color in Search Templates for Real-world Target Objects.

    PubMed

    Nako, Rebecca; Smith, Tim J; Eimer, Martin

    2016-11-01

    During visual search, target representations (attentional templates) control the allocation of attention to template-matching objects. The activation of new attentional templates can be prompted by verbal or pictorial target specifications. We measured the N2pc component of the ERP as a temporal marker of attentional target selection to determine the role of color signals in search templates for real-world search target objects that are set up in response to word or picture cues. On each trial run, a word cue (e.g., "apple") was followed by three search displays that contained the cued target object among three distractors. The selection of the first target was based on the word cue only, whereas selection of the two subsequent targets could be controlled by templates set up after the first visual presentation of the target (picture cue). In different trial runs, search displays either contained objects in their natural colors or monochromatic objects. These two display types were presented in different blocks (Experiment 1) or in random order within each block (Experiment 2). RTs were faster, and target N2pc components emerged earlier for the second and third display of each trial run relative to the first display, demonstrating that pictures are more effective than word cues in guiding search. N2pc components were triggered more rapidly for targets in the second and third display in trial runs with colored displays. This demonstrates that when visual target attributes are fully specified by picture cues, the additional presence of color signals in target templates facilitates the speed with which attention is allocated to template-matching objects. No such selection benefits for colored targets were found when search templates were set up in response to word cues. Experiment 2 showed that color templates activated by word cues can even impair the attentional selection of noncolored targets. Results provide new insights into the status of color during the guidance of visual search for real-world target objects. Color is a powerful guiding feature when the precise visual properties of these objects are known but seems to be less important when search targets are specified by word cues.

  15. Putative pyramidal neurons and interneurons in the monkey parietal cortex make different contributions to the performance of a visual grouping task.

    PubMed

    Yokoi, Isao; Komatsu, Hidehiko

    2010-09-01

    Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.

  16. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  17. Selection Difficulty and Interitem Competition Are Independent Factors in Rapid Visual Stream Perception

    ERIC Educational Resources Information Center

    Kawahara, Jun-ichiro; Enns, James T.

    2009-01-01

    When observers try to identify successive targets in a visual stream at a rate of 100 ms per item, accuracy for the 2nd target is impaired for intertarget lags of 100-500 ms. Yet, when the same stream is presented more rapidly (e.g., 50 ms per item), this pattern reverses and a 1st-target deficit is obtained. M. C. Potter, A. Staub, and D. H.…

  18. Auditory and visual capture during focused visual attention.

    PubMed

    Koelewijn, Thomas; Bronkhorst, Adelbert; Theeuwes, Jan

    2009-10-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets presented at a nontarget (invalid) location and possible performance benefits occurring when the target location is (validly) cued. In this study, the authors modulated the degree of attentional focus by presenting endogenous cues with varying reliability and by displaying placeholders indicating the precise areas where the target stimuli could occur. By using not only valid and invalid exogenous cues but also neutral cues that provide temporal but no spatial information, they found performance benefits as well as costs when attention is not strongly focused. The benefits disappear when the attentional focus is increased. These results indicate that there is bottom-up capture of visual attention by irrelevant auditory and visual stimuli that cannot be suppressed by top-down attentional control. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  19. Comparative Effectiveness of Targeted Prostate Biopsy Using Magnetic Resonance Imaging Ultrasound Fusion Software and Visual Targeting: a Prospective Study.

    PubMed

    Lee, Daniel J; Recabal, Pedro; Sjoberg, Daniel D; Thong, Alan; Lee, Justin K; Eastham, James A; Scardino, Peter T; Vargas, Hebert Alberto; Coleman, Jonathan; Ehdaie, Behfar

    2016-09-01

    We compared the diagnostic outcomes of magnetic resonance-ultrasound fusion and visually targeted biopsy for targeting regions of interest on prostate multiparametric magnetic resonance imaging. Patients presenting for prostate biopsy with regions of interest on multiparametric magnetic resonance imaging underwent magnetic resonance imaging targeted biopsy. For each region of interest 2 visually targeted cores were obtained, followed by 2 cores using a magnetic resonance-ultrasound fusion device. Our primary end point was the difference in the detection of high grade (Gleason 7 or greater) and any grade cancer between visually targeted and magnetic resonance-ultrasound fusion, investigated using McNemar's method. Secondary end points were the difference in detection rate by biopsy location using a logistic regression model and the difference in median cancer length using the Wilcoxon signed rank test. We identified 396 regions of interest in 286 men. The difference in the detection of high grade cancer between magnetic resonance-ultrasound fusion biopsy and visually targeted biopsy was -1.4% (95% CI -6.4 to 3.6, p=0.6) and for any grade cancer the difference was 3.5% (95% CI -1.9 to 8.9, p=0.2). Median cancer length detected by magnetic resonance-ultrasound fusion and visually targeted biopsy was 5.5 vs 5.8 mm, respectively (p=0.8). Magnetic resonance-ultrasound fusion biopsy detected 15% more cancers in the transition zone (p=0.046) and visually targeted biopsy detected 11% more high grade cancer at the prostate base (p=0.005). Only 52% of all high grade cancers were detected by both techniques. We found no evidence of a significant difference in the detection of high grade or any grade cancer between visually targeted and magnetic resonance-ultrasound fusion biopsy. However, the performance of each technique varied in specific biopsy locations and the outcomes of both techniques were complementary. Combining visually targeted biopsy and magnetic resonance-ultrasound fusion biopsy may optimize the detection of prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Time-compressed spoken word primes crossmodally enhance processing of semantically congruent visual targets.

    PubMed

    Mahr, Angela; Wentura, Dirk

    2014-02-01

    Findings from three experiments support the conclusion that auditory primes facilitate the processing of related targets. In Experiments 1 and 2, we employed a crossmodal Stroop color identification task with auditory color words (as primes) and visual color patches (as targets). Responses were faster for congruent priming, in comparison to neutral or incongruent priming. This effect also emerged for different levels of time compression of the auditory primes (to 30 % and 10 % of the original length; i.e., 120 and 40 ms) and turned out to be even more pronounced under high-perceptual-load conditions (Exps. 1 and 2). In Experiment 3, target-present or -absent decisions for brief target displays had to be made, thereby ruling out response-priming processes as a cause of the congruency effects. Nevertheless, target detection (d') was increased by congruent primes (30 % compression) in comparison to incongruent or neutral primes. Our results suggest semantic object-based auditory-visual interactions, which rapidly increase the denoted target object's salience. This would apply, in particular, to complex visual scenes.

  1. Working Memory Enhances Visual Perception: Evidence from Signal Detection Analysis

    ERIC Educational Resources Information Center

    Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W.

    2010-01-01

    We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be…

  2. Toward the influence of temporal attention on the selection of targets in a visual search task: An ERP study.

    PubMed

    Rolke, Bettina; Festl, Freya; Seibold, Verena C

    2016-11-01

    We used ERPs to investigate whether temporal attention interacts with spatial attention and feature-based attention to enhance visual processing. We presented a visual search display containing one singleton stimulus among a set of homogenous distractors. Participants were asked to respond only to target singletons of a particular color and shape that were presented in an attended spatial position. We manipulated temporal attention by presenting a warning signal before each search display and varying the foreperiod (FP) between the warning signal and the search display in a blocked manner. We observed distinctive ERP effects of both spatial and temporal attention. The amplitudes for the N2pc, SPCN, and P3 were enhanced by spatial attention indicating a processing benefit of relevant stimulus features at the attended side. Temporal attention accelerated stimulus processing; this was indexed by an earlier onset of the N2pc component and a reduction in reaction times to targets. Most importantly, temporal attention did not interact with spatial attention or stimulus features to influence visual processing. Taken together, the results suggest that temporal attention fosters visual perceptual processing in a visual search task independently from spatial attention and feature-based attention; this provides support for the nonspecific enhancement hypothesis of temporal attention. © 2016 Society for Psychophysiological Research.

  3. Object formation in visual working memory: Evidence from object-based attention.

    PubMed

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The Effects of Bilateral Presentations on Lateralized Lexical Decision

    ERIC Educational Resources Information Center

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-01-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the…

  5. What Are the Shapes of Response Time Distributions in Visual Search?

    ERIC Educational Resources Information Center

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure response time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays…

  6. [Eccentricity-dependent influence of amodal completion on visual search].

    PubMed

    Shirama, Aya; Ishiguchi, Akira

    2009-06-01

    Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.

  7. Attention modulates perception of visual space

    PubMed Central

    Zhou, Liu; Deng, Chenglong; Ooi, Teng Leng; He, Zijiang J.

    2017-01-01

    Attention readily facilitates the detection and discrimination of objects, but it is not known whether it helps to form the vast volume of visual space that contains the objects and where actions are implemented. Conventional wisdom suggests not, given the effortless ease with which we perceive three-dimensional (3D) scenes on opening our eyes. Here, we show evidence to the contrary. In Experiment 1, the observer judged the location of a briefly presented target, placed either on the textured ground or ceiling surface. Judged location was more accurate for a target on the ground, provided that the ground was visible and that the observer directed attention to the lower visual field, not the upper field. This reveals that attention facilitates space perception with reference to the ground. Experiment 2 showed that judged location of a target in mid-air, with both ground and ceiling surfaces present, was more accurate when the observer directed their attention to the lower visual field; this indicates that the attention effect extends to visual space above the ground. These findings underscore the role of attention in anchoring visual orientation in space, which is arguably a primal event that enhances one’s ability to interact with objects and surface layouts within the visual space. The fact that the effect of attention was contingent on the ground being visible suggests that our terrestrial visual system is best served by its ecological niche. PMID:29177198

  8. Here Today, Gone Tomorrow – Adaptation to Change in Memory-Guided Visual Search

    PubMed Central

    Zellin, Martina; Conci, Markus; von Mühlenen, Adrian; Müller, Hermann J.

    2013-01-01

    Visual search for a target object can be facilitated by the repeated presentation of an invariant configuration of nontargets (‘contextual cueing’). Here, we tested adaptation of learned contextual associations after a sudden, but permanent, relocation of the target. After an initial learning phase targets were relocated within their invariant contexts and repeatedly presented at new locations, before they returned to the initial locations. Contextual cueing for relocated targets was neither observed after numerous presentations nor after insertion of an overnight break. Further experiments investigated whether learning of additional, previously unseen context-target configurations is comparable to adaptation of existing contextual associations to change. In contrast to the lack of adaptation to changed target locations, contextual cueing developed for additional invariant configurations under identical training conditions. Moreover, across all experiments, presenting relocated targets or additional contexts did not interfere with contextual cueing of initially learned invariant configurations. Overall, the adaptation of contextual memory to changed target locations was severely constrained and unsuccessful in comparison to learning of an additional set of contexts, which suggests that contextual cueing facilitates search for only one repeated target location. PMID:23555038

  9. Infants' Visual Localization of Visual and Auditory Targets.

    ERIC Educational Resources Information Center

    Bechtold, A. Gordon; And Others

    This study is an investigation of 2-month-old infants' abilities to visually localize visual and auditory peripheral stimuli. Each subject (N=40) was presented with 50 trials; 25 of these visual and 25 auditory. The infant was placed in a semi-upright infant seat positioned 122 cm from the center speaker of an arc formed by five loudspeakers. At…

  10. Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott

    2010-01-01

    The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.

  11. Color priming in pop-out search depends on the relative color of the target

    PubMed Central

    Becker, Stefanie I.; Valuch, Christian; Ansorge, Ulrich

    2014-01-01

    In visual search for pop-out targets, search times are shorter when the target and non-target colors from the previous trial are repeated than when they change. This priming effect was originally attributed to a feature weighting mechanism that biases attention toward the target features, and away from the non-target features. However, more recent studies have shown that visual selection is strongly context-dependent: according to a relational account of feature priming, the target color is always encoded relative to the non-target color (e.g., as redder or greener). The present study provides a critical test of this hypothesis, by varying the colors of the search items such that either the relative color or the absolute color of the target always remained constant (or both). The results clearly show that color priming depends on the relative color of a target with respect to the non-targets but not on its absolute color value. Moreover, the observed priming effects did not change over the course of the experiment, suggesting that the visual system encodes colors in a relative manner from the start of the experiment. Taken together, these results strongly support a relational account of feature priming in visual search, and are inconsistent with the dominant feature-based views. PMID:24782795

  12. Systematic distortions of perceptual stability investigated using immersive virtual reality

    PubMed Central

    Tcheang, Lili; Gilson, Stuart J.; Glennerster, Andrew

    2010-01-01

    Using an immersive virtual reality system, we measured the ability of observers to detect the rotation of an object when its movement was yoked to the observer's own translation. Most subjects had a large bias such that a static object appeared to rotate away from them as they moved. Thresholds for detecting target rotation were similar to those for an equivalent speed discrimination task carried out by static observers, suggesting that visual discrimination is the predominant limiting factor in detecting target rotation. Adding a stable visual reference frame almost eliminated the bias. Varying the viewing distance of the target had little effect, consistent with observers under-estimating distance walked. However, accuracy of walking to a briefly presented visual target was high and not consistent with an under-estimation of distance walked. We discuss implications for theories of a task-independent representation of visual space. PMID:15845248

  13. Effects of Presentation Mode on Veridical and False Memory in Individuals with Intellectual Disability

    ERIC Educational Resources Information Center

    Carlin, Michael; Toglia, Michael P.; Belmonte, Colleen; DiMeglio, Chiara

    2012-01-01

    In the present study the effects of visual, auditory, and audio-visual presentation formats on memory for thematically constructed lists were assessed in individuals with intellectual disability and mental age-matched children. The auditory recognition test included target items, unrelated foils, and two types of semantic lures: critical related…

  14. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  15. Hemisphere division and its effect on selective attention: a generality examination of Lavie's load theory.

    PubMed

    Nishimura, Ritsuko; Yoshizaki, Kazuhito; Kato, Kimiko; Hatta, Takeshi

    2009-01-01

    The present study examined the role of visual presentation mode (unilateral vs. bilateral visual fields) on attentional modulation. We examined whether or not the presentation mode affects the compatibility effect, using a paradigm involving two task-relevant letter arrays. Sixteen participants identified a target letter among task-relevant letters while ignoring either a compatible or incompatible distracter letter that was presented to both hemispheres. Two letters arrays were presented to visual fields, either unilaterally or bilaterally. Results indicated that the compatibility effect was greater in bilateral than in unilateral visual field conditions. Findings support the assumption that the two hemispheres have separate attentional resources.

  16. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  17. Image visualization of hyperspectral spectrum for LWIR

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Jeong, Young-Su; Lee, Jai-Hoon; Park, Dong Jo; Kim, Ju Hyun

    2015-07-01

    The image visualization of a real-time hyperspectral spectrum in the long-wave infrared (LWIR) range of 900-1450 cm-1 by a color-matching function is addressed. It is well known that the absorption spectra of main toxic industrial chemical (TIC) and chemical warfare agent (CWA) clouds are detected in this spectral region. Furthermore, a significant spectral peak due to various background species and unknown targets are also present. However, those are dismissed as noise, resulting in utilization limit. Herein, we applied a color-matching function that uses the information from hyperspectral data, which is emitted from the materials and surfaces of artificial or natural backgrounds in the LWIR region. This information was used to classify and differentiate the background signals from the targeted substances, and the results were visualized as image data without additional visual equipment. The tristimulus value based visualization information can quickly identify the background species and target in real-time detection in LWIR.

  18. The Role of the Magnocellular Visual Pathway in the Attentional Blink

    ERIC Educational Resources Information Center

    Stuart, Geoffrey W.; Lambeth, Sandra E.; Day, Ross H.; Gould, Ian C.; Castles, Anne E.

    2012-01-01

    Visual attention has temporal limitations. In the attentional blink (AB) a stream of stimuli such as letters or digits are presented to a participant on a computer monitor at a rapid rate. Embedded in the stream are two targets that the participant must try to identify. Identification of the second target is severely impaired if it is presented…

  19. Electrophysiological evidence for parallel and serial processing during visual search.

    PubMed

    Luck, S J; Hillyard, S A

    1990-12-01

    Event-related potentials were recorded from young adults during a visual search task in order to evaluate parallel and serial models of visual processing in the context of Treisman's feature integration theory. Parallel and serial search strategies were produced by the use of feature-present and feature-absent targets, respectively. In the feature-absent condition, the slopes of the functions relating reaction time and latency of the P3 component to set size were essentially identical, indicating that the longer reaction times observed for larger set sizes can be accounted for solely by changes in stimulus identification and classification time, rather than changes in post-perceptual processing stages. In addition, the amplitude of the P3 wave on target-present trials in this condition increased with set size and was greater when the preceding trial contained a target, whereas P3 activity was minimal on target-absent trials. These effects are consistent with the serial self-terminating search model and appear to contradict parallel processing accounts of attention-demanding visual search performance, at least for a subset of search paradigms. Differences in ERP scalp distributions further suggested that different physiological processes are utilized for the detection of feature presence and absence.

  20. Awareness in contextual cueing of visual search as measured with concurrent access- and phenomenal-consciousness tasks.

    PubMed

    Schlagbauer, Bernhard; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2012-10-25

    In visual search, context information can serve as a cue to guide attention to the target location. When observers repeatedly encounter displays with identical target-distractor arrangements, reaction times (RTs) are faster for repeated relative to nonrepeated displays, the latter containing novel configurations. This effect has been termed "contextual cueing." The present study asked whether information about the target location in repeated displays is "explicit" (or "conscious") in nature. To examine this issue, observers performed a test session (after an initial training phase in which RTs to repeated and nonrepeated displays were measured) in which the search stimuli were presented briefly and terminated by visual masks; following this, observers had to make a target localization response (with accuracy as the dependent measure) and indicate their visual experience and confidence associated with the localization response. The data were examined at the level of individual displays, i.e., in terms of whether or not a repeated display actually produced contextual cueing. The results were that (a) contextual cueing was driven by only a very small number of about four actually learned configurations; (b) localization accuracy was increased for learned relative to nonrepeated displays; and (c) both consciousness measures were enhanced for learned compared to nonrepeated displays. It is concluded that contextual cueing is driven by only a few repeated displays and the ability to locate the target in these displays is associated with increased visual experience.

  1. Cognitive processes facilitated by contextual cueing: evidence from event-related brain potentials.

    PubMed

    Schankin, Andrea; Schubö, Anna

    2009-05-01

    Finding a target in repeated search displays is faster than finding the same target in novel ones (contextual cueing). It is assumed that the visual context (the arrangement of the distracting objects) is used to guide attention efficiently to the target location. Alternatively, other factors, e.g., facilitation in early visual processing or in response selection, may play a role as well. In a contextual cueing experiment, participant's electrophysiological brain activity was recorded. Participants identified the target faster and more accurately in repeatedly presented displays. In this condition, the N2pc, a component reflecting the allocation of visual-spatial attention, was enhanced, indicating that attention was allocated more efficiently to those targets. However, also response-related processes, reflected by the LRP, were facilitated, indicating that guidance of attention cannot account for the entire contextual cueing benefit.

  2. No Evidence for a Saccadic Range Effect for Visually Guided and Memory-Guided Saccades in Simple Saccade-Targeting Tasks

    PubMed Central

    Vitu, Françoise; Engbert, Ralf; Kliegl, Reinhold

    2016-01-01

    Saccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task. PMID:27658191

  3. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    PubMed

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  4. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    PubMed

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  5. Behavioural benefits of multisensory processing in ferrets.

    PubMed

    Hammond-Kenny, Amy; Bajo, Victoria M; King, Andrew J; Nodal, Fernando R

    2017-01-01

    Enhanced detection and discrimination, along with faster reaction times, are the most typical behavioural manifestations of the brain's capacity to integrate multisensory signals arising from the same object. In this study, we examined whether multisensory behavioural gains are observable across different components of the localization response that are potentially under the command of distinct brain regions. We measured the ability of ferrets to localize unisensory (auditory or visual) and spatiotemporally coincident auditory-visual stimuli of different durations that were presented from one of seven locations spanning the frontal hemifield. During the localization task, we recorded the head movements made following stimulus presentation, as a metric for assessing the initial orienting response of the ferrets, as well as the subsequent choice of which target location to approach to receive a reward. Head-orienting responses to auditory-visual stimuli were more accurate and faster than those made to visual but not auditory targets, suggesting that these movements were guided principally by sound alone. In contrast, approach-to-target localization responses were more accurate and faster to spatially congruent auditory-visual stimuli throughout the frontal hemifield than to either visual or auditory stimuli alone. Race model inequality analysis of head-orienting reaction times and approach-to-target response times indicates that different processes, probability summation and neural integration, respectively, are likely to be responsible for the effects of multisensory stimulation on these two measures of localization behaviour. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Changes in the distribution of sustained attention alter the perceived structure of visual space.

    PubMed

    Fortenbaugh, Francesca C; Robertson, Lynn C; Esterman, Michael

    2017-02-01

    Visual spatial attention is a critical process that allows for the selection and enhanced processing of relevant objects and locations. While studies have shown attentional modulations of perceived location and the representation of distance information across multiple objects, there remains disagreement regarding what influence spatial attention has on the underlying structure of visual space. The present study utilized a method of magnitude estimation in which participants must judge the location of briefly presented targets within the boundaries of their individual visual fields in the absence of any other objects or boundaries. Spatial uncertainty of target locations was used to assess perceived locations across distributed and focused attention conditions without the use of external stimuli, such as visual cues. Across two experiments we tested locations along the cardinal and 45° oblique axes. We demonstrate that focusing attention within a region of space can expand the perceived size of visual space; even in cases where doing so makes performance less accurate. Moreover, the results of the present studies show that when fixation is actively maintained, focusing attention along a visual axis leads to an asymmetrical stretching of visual space that is predominantly focused across the central half of the visual field, consistent with an expansive gradient along the focus of voluntary attention. These results demonstrate that focusing sustained attention peripherally during active fixation leads to an asymmetrical expansion of visual space within the central visual field. Published by Elsevier Ltd.

  8. The forward masking effects of low-level laser glare on target location performance in a visual search task

    NASA Astrophysics Data System (ADS)

    Reddix, M. D.; Dandrea, J. A.; Collyer, P. D.

    1992-01-01

    The present study examined the effects of low-intensity laser glue, far below a level that would cause ocular damage or flashblindness, on the visually guided performance of aviators. With a forward-masking paradigm, this study showed that the time at which laser glare is experienced, relative to initial acquisition of visual information, differentially affects the speed and accuracy of target-location performance. Brief exposure (300 ms) to laser glare, terminating with a visual scene's onset, produced significant decrements in target-location performance relative to a no-glare control whereas a 150 and 300-ms delay of display onset (DDO) had very little effect. The intensity of the light entering the eye and producing these effects was far below the Maximum Permissible Exposure (MPE) limit for safe viewing of coherent light produced by an argon laser. In addition, these effects were modulated by the distance of the target from the center of the visual display. This study demonstrated that the presence of laser glare is not sufficient, in and of itself, to diminish target-location performance. The time at which laser glare is experienced is an important factor in determining the probability and extent of visually mediated performance decrements.

  9. Reward-associated features capture attention in the absence of awareness: Evidence from object-substitution masking.

    PubMed

    Harris, Joseph A; Donohue, Sarah E; Schoenfeld, Mircea A; Hopf, Jens-Max; Heinze, Hans-Jochen; Woldorff, Marty G

    2016-08-15

    Reward-associated visual features have been shown to capture visual attention, evidenced in faster and more accurate behavioral performance, as well as in neural responses reflecting lateralized shifts of visual attention to those features. Specifically, the contralateral N2pc event-related-potential (ERP) component that reflects attentional shifting exhibits increased amplitude in response to task-relevant targets containing a reward-associated feature. In the present study, we examined the automaticity of such reward-association effects using object-substitution masking (OSM) in conjunction with MEG measures of visual attentional shifts. In OSM, a visual-search array is presented, with the target item to be detected indicated by a surrounding mask (here, four surrounding squares). Delaying the offset of the target-surrounding four-dot mask relative to the offset of the rest of the target/distracter array disrupts the viewer's awareness of the target (masked condition), whereas simultaneous offsets do not (unmasked condition). Here we manipulated whether the color of the OSM target was or was not of a previously reward-associated color. By tracking reward-associated enhancements of behavior and the N2pc in response to masked targets containing a previously rewarded or unrewarded feature, the automaticity of attentional capture by reward could be probed. We found an enhanced N2pc response to targets containing a previously reward-associated color feature. Moreover, this enhancement of the N2pc by reward did not differ between masking conditions, nor did it differ as a function of the apparent visibility of the target within the masked condition. Overall, these results underscore the automaticity of attentional capture by reward-associated features, and demonstrate the ability of feature-based reward associations to shape attentional capture and allocation outside of perceptual awareness. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing

    PubMed Central

    Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias

    2018-01-01

    Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637

  11. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.

    PubMed

    Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf

    2017-11-01

    In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults.

    PubMed

    Lee, Ahreum; Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju

    2018-04-11

    Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standar Desviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition.

  13. Masked Priming Is Abstract in the Left and Right Visual Fields

    ERIC Educational Resources Information Center

    Bowers, Jeffrey S.; Turner, Emma L.

    2005-01-01

    Two experiments assessed masked priming for words presented to the left and right visual fields in a lexical decision task. In both Experiments, the same magnitude and pattern of priming was obtained for visually similar ("kiss"-"KISS") and dissimilar ("read"-"READ") prime-target pairs. These findings…

  14. Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.

    PubMed

    Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H

    2013-07-01

    Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.

  15. Positional priming of visual pop-out search is supported by multiple spatial reference frames

    PubMed Central

    Gokce, Ahu; Müller, Hermann J.; Geyer, Thomas

    2015-01-01

    The present study investigates the representations(s) underlying positional priming of visual ‘pop-out’ search (Maljkovic and Nakayama, 1996). Three search items (one target and two distractors) were presented at different locations, in invariant (Experiment 1) or random (Experiment 2) cross-trial sequences. By these manipulations it was possible to disentangle retinotopic, spatiotopic, and object-centered priming representations. Two forms of priming were tested: target location facilitation (i.e., faster reaction times – RTs– when the trial n target is presented at a trial n-1 target relative to n-1 blank location) and distractor location inhibition (i.e., slower RTs for n targets presented at n-1 distractor compared to n-1 blank locations). It was found that target locations were coded in positional short-term memory with reference to both spatiotopic and object-centered representations (Experiment 1 vs. 2). In contrast, distractor locations were maintained in an object-centered reference frame (Experiments 1 and 2). We put forward the idea that the uncertainty induced by the experiment manipulation (predictable versus random cross-trial item displacements) modulates the transition from object- to space-based representations in cross-trial memory for target positions. PMID:26136718

  16. Impact of age-related macular degeneration on object searches in realistic panoramic scenes.

    PubMed

    Thibaut, Miguel; Tran, Thi-Ha-Chau; Szaffarczyk, Sebastien; Boucart, Muriel

    2018-05-01

    This study investigated whether realistic immersive conditions with dynamic indoor scenes presented on a large, hemispheric panoramic screen covering 180° of the visual field improved the visual search abilities of participants with age-related macular degeneration (AMD). Twenty-one participants with AMD, 16 age-matched controls and 16 young observers were included. Realistic indoor scenes were presented on a panoramic five metre diameter screen. Twelve different objects were used as targets. The participants were asked to search for a target object, shown on paper before each trial, within a room composed of various objects. A joystick was used for navigation within the scene views. A target object was present in 24 trials and absent in 24 trials. The percentage of correct detection of the target, the percentage of false alarms (that is, the detection of the target when it was absent), the number of scene views explored and the search time were measured. The search time was slower for participants with AMD than for the age-matched controls, who in turn were slower than the young participants. The participants with AMD were able to accomplish the task with a performance of 75 per cent correct detections. This was slightly lower than older controls (79.2 per cent) while young controls were at ceiling (91.7 per cent). Errors were mainly due to false alarms resulting from confusion between the target object and another object present in the scene in the target-absent trials. The outcomes of the present study indicate that, under realistic conditions, although slower than age-matched, normally sighted controls, participants with AMD were able to accomplish visual searches of objects with high accuracy. © 2017 Optometry Australia.

  17. The effect of linguistic and visual salience in visual world studies.

    PubMed

    Cavicchio, Federica; Melcher, David; Poesio, Massimo

    2014-01-01

    Research using the visual world paradigm has demonstrated that visual input has a rapid effect on language interpretation tasks such as reference resolution and, conversely, that linguistic material-including verbs, prepositions and adjectives-can influence fixations to potential referents. More recent research has started to explore how this effect of linguistic input on fixations is mediated by properties of the visual stimulus, in particular by visual salience. In the present study we further explored the role of salience in the visual world paradigm manipulating language-driven salience and visual salience. Specifically, we tested how linguistic salience (i.e., the greater accessibility of linguistically introduced entities) and visual salience (bottom-up attention grabbing visual aspects) interact. We recorded participants' eye-movements during a MapTask, asking them to look from landmark to landmark displayed upon a map while hearing direction-giving instructions. The landmarks were of comparable size and color, except in the Visual Salience condition, in which one landmark had been made more visually salient. In the Linguistic Salience conditions, the instructions included references to an object not on the map. Response times and fixations were recorded. Visual Salience influenced the time course of fixations at both the beginning and the end of the trial but did not show a significant effect on response times. Linguistic Salience reduced response times and increased fixations to landmarks when they were associated to a Linguistic Salient entity not present itself on the map. When the target landmark was both visually and linguistically salient, it was fixated longer, but fixations were quicker when the target item was linguistically salient only. Our results suggest that the two types of salience work in parallel and that linguistic salience affects fixations even when the entity is not visually present.

  18. Visual search for feature and conjunction targets with an attention deficit.

    PubMed

    Arguin, M; Joanette, Y; Cavanagh, P

    1993-01-01

    Abstract Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or color) or for a conjunction target (orientation and color) in unilateral displays in which the number of items presented was variable. Ocular fixation was controlled so that trials on which eye movements occurred were cancelled. While brain-damaged subjects with a visual attention disorder (VAD subjects) performed similarly to normal controls in feature search tasks, they showed a marked deficit in conjunction search. Specifically, VAD subjects exhibited an important reduction of their serial search rates for a conjunction target with contralesional displays. In support of Treisman's feature integration theory, a visual attention deficit leads to a marked impairment in feature integration whereas it does not appear to affect feature encoding.

  19. Semantic congruence affects hippocampal response to repetition of visual associations.

    PubMed

    McAndrews, Mary Pat; Girard, Todd A; Wilkins, Leanne K; McCormick, Cornelia

    2016-09-01

    Recent research has shown complementary engagement of the hippocampus and medial prefrontal cortex (mPFC) in encoding and retrieving associations based on pre-existing or experimentally-induced schemas, such that the latter supports schema-congruent information whereas the former is more engaged for incongruent or novel associations. Here, we attempted to explore some of the boundary conditions in the relative involvement of those structures in short-term memory for visual associations. The current literature is based primarily on intentional evaluation of schema-target congruence and on study-test paradigms with relatively long delays between learning and retrieval. We used a continuous recognition paradigm to investigate hippocampal and mPFC activation to first and second presentations of scene-object pairs as a function of semantic congruence between the elements (e.g., beach-seashell versus schoolyard-lamp). All items were identical at first and second presentation and the context scene, which was presented 500ms prior to the appearance of the target object, was incidental to the task which required a recognition response to the central target only. Very short lags 2-8 intervening stimuli occurred between presentations. Encoding the targets with congruent contexts was associated with increased activation in visual cortical regions at initial presentation and faster response time at repetition, but we did not find enhanced activation in mPFC relative to incongruent stimuli at either presentation. We did observe enhanced activation in the right anterior hippocampus, as well as regions in visual and lateral temporal and frontal cortical regions, for the repetition of incongruent scene-object pairs. This pattern demonstrates rapid and incidental effects of schema processing in hippocampal, but not mPFC, engagement during continuous recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Deployment of spatial attention towards locations in memory representations. An EEG study.

    PubMed

    Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  1. The use of visual cues in gravity judgements on parabolic motion.

    PubMed

    Jörges, Björn; Hagenfeld, Lena; López-Moliner, Joan

    2018-06-21

    Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s 2 . This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone. Copyright © 2018. Published by Elsevier Ltd.

  2. The Role of Motor Learning in Spatial Adaptation near a Tool

    PubMed Central

    Brown, Liana E.; Doole, Robert; Malfait, Nicole

    2011-01-01

    Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944

  3. Dynamic interactions between visual working memory and saccade target selection

    PubMed Central

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  4. Contextual cueing of pop-out visual search: when context guides the deployment of attention.

    PubMed

    Geyer, Thomas; Zehetleitner, Michael; Müller, Hermann J

    2010-05-01

    Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.

  5. Dissociation between visual perception of allocentric distance and visually directed walking of its extent.

    PubMed

    Kudoh, Nobuo

    2005-01-01

    Walking without vision to previously viewed targets was compared with visual perception of allocentric distance in two experiments. Experimental evidence had shown that physically equal distances in a sagittal plane on the ground were perceptually underestimated as compared with those in a frontoparallel plane, even under full-cue conditions. In spite of this perceptual anisotropy of space, Loomis et al (1992 Journal of Experimental Psychology. Human Perception and Performance 18 906-921) found that subjects could match both types of distances in a blind-walking task. In experiment 1 of the present study, subjects were required to reproduce the extent of allocentric distance between two targets by either walking towards the targets, or by walking in a direction incompatible with the locations of the targets. The latter condition required subjects to derive an accurate allocentric distance from information based on the perceived locations of the two targets. The walked distance in the two conditions was almost identical whether the two targets were presented in depth (depth-presentation condition) or in the frontoparallel plane (width-presentation condition). The results of a perceptual-matching task showed that the depth distances had to be much greater than the width distances in order to be judged to be equal in length (depth compression). In experiment 2, subjects were required to reproduce the extent of allocentric distance from the viewing point by blindly walking in a direction other than toward the targets. The walked distance in the depth-presentation condition was shorter than that in the width-presentation condition. This anisotropy in motor responses, however, was mainly caused by apparent overestimation of length oriented in width, not by depth compression. In addition, the walked distances were much better scaled than those in experiment 1. These results suggest that the perceptual and motor systems share a common representation of the location of targets, whereas a dissociation in allocentric distance exists between the two systems in full-cue conditions.

  6. Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans

    PubMed Central

    Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni

    2012-01-01

    The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759

  7. Picture Detection in Rapid Serial Visual Presentation: Features or Identity?

    ERIC Educational Resources Information Center

    Potter, Mary C.; Wyble, Brad; Pandav, Rijuta; Olejarczyk, Jennifer

    2010-01-01

    A pictured object can be readily detected in a rapid serial visual presentation sequence when the target is specified by a superordinate category name such as "animal" or "vehicle". Are category features the initial basis for detection, with identification of the specific object occurring in a second stage (Evans &…

  8. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  9. Absence of distracting information explains the redundant signals effect for a centrally presented categorization task.

    PubMed

    Mishler, Ada D; Neider, Mark B

    2017-11-01

    The redundant signals effect, a speed-up in response times with multiple targets compared to a single target in one display, is well-documented, with some evidence suggesting that it can occur even in conceptual processing when targets are presented bilaterally. The current study was designed to determine whether or not category-based redundant signals can speed up processing even without bilateral presentation. Toward that end, participants performed a go/no-go visual task in which they responded only to members of the target category (i.e., they responded only to numbers and did not respond to letters). Numbers and letters were presented along an imaginary vertical line in the center of the visual field. When the single signal trials contained a nontarget letter (Experiment 1), there was a significant redundant signals effect. The effect was not significant when the single-signal trials did not contain a nontarget letter (Experiments 2 and 3). The results indicate that, when targets are defined categorically and not presented bilaterally, the redundant signals effect may be an effect of reducing the presence of information that draws attention away from the target. This suggests that redundant signals may not speed up conceptual processing when interhemispheric presentation is not available. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    PubMed

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  11. Rover-based visual target tracking validation and mission infusion

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  12. Modulation of neuronal responses during covert search for visual feature conjunctions

    PubMed Central

    Buracas, Giedrius T.; Albright, Thomas D.

    2009-01-01

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385

  13. Modulation of neuronal responses during covert search for visual feature conjunctions.

    PubMed

    Buracas, Giedrius T; Albright, Thomas D

    2009-09-29

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.

  14. Attractive faces temporally modulate visual attention

    PubMed Central

    Nakamura, Koyo; Kawabata, Hideaki

    2014-01-01

    Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994

  15. The perception of visual images encoded in musical form: a study in cross-modality information transfer.

    PubMed Central

    Cronly-Dillon, J; Persaud, K; Gregory, R P

    1999-01-01

    This study demonstrates the ability of blind (previously sighted) and blindfolded (sighted) subjects in reconstructing and identifying a number of visual targets transformed into equivalent musical representations. Visual images are deconstructed through a process which selectively segregates different features of the image into separate packages. These are then encoded in sound and presented as a polyphonic musical melody which resembles a Baroque fugue with many voices, allowing subjects to analyse the component voices selectively in combination, or separately in sequence, in a manner which allows a subject to patch together and bind the different features of the object mentally into a mental percept of a single recognizable entity. The visual targets used in this study included a variety of geometrical figures, simple high-contrast line drawings of man-made objects, natural and urban scenes, etc., translated into sound and presented to the subject in polyphonic musical form. PMID:10643086

  16. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NASA Astrophysics Data System (ADS)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.

    2012-08-01

    Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.

  17. Different predictors of multiple-target search accuracy between nonprofessional and professional visual searchers.

    PubMed

    Biggs, Adam T; Mitroff, Stephen R

    2014-01-01

    Visual search, locating target items among distractors, underlies daily activities ranging from critical tasks (e.g., looking for dangerous objects during security screening) to commonplace ones (e.g., finding your friends in a crowded bar). Both professional and nonprofessional individuals conduct visual searches, and the present investigation is aimed at understanding how they perform similarly and differently. We administered a multiple-target visual search task to both professional (airport security officers) and nonprofessional participants (members of the Duke University community) to determine how search abilities differ between these populations and what factors might predict accuracy. There were minimal overall accuracy differences, although the professionals were generally slower to respond. However, the factors that predicted accuracy varied drastically between groups; variability in search consistency-how similarly an individual searched from trial to trial in terms of speed-best explained accuracy for professional searchers (more consistent professionals were more accurate), whereas search speed-how long an individual took to complete a search when no targets were present-best explained accuracy for nonprofessional searchers (slower nonprofessionals were more accurate). These findings suggest that professional searchers may utilize different search strategies from those of nonprofessionals, and that search consistency, in particular, may provide a valuable tool for enhancing professional search accuracy.

  18. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    PubMed Central

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2010-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: 1) the categorical relationship between the target and the distracters and 2) the visual field in which the target was presented. Similar to controls, the RH patients were faster in detecting targets in the right visual field when the target and distracters had different color names compared to when their names were the same. This effect was absent in the LH patients, consistent with the hypothesis that injury to the left hemisphere handicaps the automatic activation of lexical codes. Moreover, the LH patients showed a reversed effect, such that the advantage of different target-distracter names was now evident for targets in the left visual field. This reversal may suggest a reorganization of the color lexicon in the right hemisphere following left hemisphere brain injury and/or the unmasking of a heightened right hemisphere sensitivity to color categories. PMID:21216454

  19. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  20. Heterogeneity effects in visual search predicted from the group scanning model.

    PubMed

    Macquistan, A D

    1994-12-01

    The group scanning model of feature integration theory (Treisman & Gormican, 1988) suggests that subjects search visual displays serially by groups, but process items within each group in parallel. The size of these groups is determined by the discriminability of the targets in the background of distractors. When the target is poorly discriminable, the size of the scanned group will be small, and search will be slow. The model predicts that group size will be smallest when targets of an intermediate value on a perceptual dimension are presented in a heterogeneous background of distractors that have higher and lower values on the same dimension. Experiment 1 demonstrates this effect. Experiment 2 controls for a possible confound of decision complexity in Experiment 1. For simple feature targets, the group scanning model provides a good account of the visual search process.

  1. Effect of travel speed on the visual control of steering toward a goal.

    PubMed

    Chen, Rongrong; Niehorster, Diederick C; Li, Li

    2018-03-01

    Previous studies have proposed that people can use visual cues such as the instantaneous direction (i.e., heading) or future path trajectory of travel specified by optic flow or target visual direction in egocentric space to steer or walk toward a goal. In the current study, we examined what visual cues people use to guide their goal-oriented locomotion and whether their reliance on such visual cues changes as travel speed increases. We presented participants with optic flow displays that simulated their self-motion toward a target at various travel speeds under two viewing conditions in which we made target egocentric direction available or unavailable for steering. We found that for both viewing conditions, participants did not steer along a curved path toward the target such that the actual and the required path curvature to reach the target would converge when approaching the target. At higher travel speeds, participants showed a faster and larger reduction in target-heading angle and more accurate and precise steady-state control of aligning their heading specified by optic flow with the target. These findings support the claim that people use heading and target egocentric direction but not path for goal-oriented locomotion control, and their reliance on heading increases at higher travel speeds. The increased reliance on heading for goal-oriented locomotion control could be due to an increased reliability in perceiving heading from optic flow as the magnitude of flow increases with travel speed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.

    PubMed

    Chang, Acer Y C; Kanai, Ryota; Seth, Anil K

    2015-01-01

    Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Value associations of irrelevant stimuli modify rapid visual orienting.

    PubMed

    Rutherford, Helena J V; O'Brien, Jennifer L; Raymond, Jane E

    2010-08-01

    In familiar environments, goal-directed visual behavior is often performed in the presence of objects with strong, but task-irrelevant, reward or punishment associations that are acquired through prior, unrelated experience. In a two-phase experiment, we asked whether such stimuli could affect speeded visual orienting in a classic visual orienting paradigm. First, participants learned to associate faces with monetary gains, losses, or no outcomes. These faces then served as brief, peripheral, uninformative cues in an explicitly unrewarded, unpunished, speeded, target localization task. Cues preceded targets by either 100 or 1,500 msec and appeared at either the same or a different location. Regardless of interval, reward-associated cues slowed responding at cued locations, as compared with equally familiar punishment-associated or no-value cues, and had no effect when targets were presented at uncued locations. This localized effect of reward-associated cues is consistent with adaptive models of inhibition of return and suggests rapid, low-level effects of motivation on visual processing.

  4. What You See Isn’t Always What You Get: Auditory Word Signals Trump Consciously Perceived Words in Lexical Access

    PubMed Central

    Ostrand, Rachel; Blumstein, Sheila E.; Ferreira, Victor S.; Morgan, James L.

    2016-01-01

    Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021

  5. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  6. The effect of visual context on manual localization of remembered targets

    NASA Technical Reports Server (NTRS)

    Barry, S. R.; Bloomberg, J. J.; Huebner, W. P.

    1997-01-01

    This paper examines the contribution of egocentric cues and visual context to manual localization of remembered targets. Subjects pointed in the dark to the remembered position of a target previously viewed without or within a structured visual scene. Without a remembered visual context, subjects pointed to within 2 degrees of the target. The presence of a visual context with cues of straight ahead enhanced pointing performance to the remembered location of central but not off-center targets. Thus, visual context provides strong visual cues of target position and the relationship of body position to target location. Without a visual context, egocentric cues provide sufficient input for accurate pointing to remembered targets.

  7. Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults

    PubMed Central

    Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju

    2018-01-01

    Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standard Deviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition. PMID:29641462

  8. Exploring conflict- and target-related movement of visual attention.

    PubMed

    Wendt, Mike; Garling, Marco; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2014-01-01

    Intermixing trials of a visual search task with trials of a modified flanker task, the authors investigated whether the presentation of conflicting distractors at only one side (left or right) of a target stimulus triggers shifts of visual attention towards the contralateral side. Search time patterns provided evidence for lateral attention shifts only when participants performed the flanker task under an instruction assumed to widen the focus of attention, demonstrating that instruction-based control settings of an otherwise identical task can impact performance in an unrelated task. Contrasting conditions with response-related and response-unrelated distractors showed that shifting attention does not depend on response conflict and may be explained as stimulus-conflict-related withdrawal or target-related deployment of attention.

  9. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    PubMed

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. Copyright © 2015 the American Physiological Society.

  10. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus

    PubMed Central

    Levy, Ron; Munoz, Douglas P.

    2015-01-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. PMID:26063770

  11. The Effects of Context, Meaning Frequency, and Associative Strength on Semantic Selection: Distinct Contributions from each Cerebral Hemisphere

    PubMed Central

    Meyer, Aaron M.; Federmeier, Kara D.

    2008-01-01

    The visual half-field procedure was used to examine hemispheric asymmetries in meaning selection. Event-related potentials were recorded as participants decided if a lateralized ambiguous or unambiguous prime was related in meaning to a centrally-presented target. Prime-target pairs were preceded by a related or unrelated centrally-presented context word. To separate the effects of meaning frequency and associative strength, unambiguous words were paired with concordant weakly-related context words and strongly-related targets (e.g., taste-sweet-candy) that were similar in associative strength to discordant subordinate-related context words and dominant-related targets (e.g., river-bank-deposit) in the ambiguous condition. Context words and targets were reversed in a second experiment. In an unrelated (neutral) context, N400 responses were more positive than baseline (facilitated) in all ambiguous conditions except when subordinate targets were presented on left visual field-right hemisphere (LVF-RH) trials. Thus, in the absence of biasing context information, the hemispheres seem to be differentially affected by meaning frequency, with the left maintaining multiple meanings and the right selecting the dominant meaning. In the presence of discordant context information, N400 facilitation was absent in both visual fields, indicating that the contextually-consistent meaning of the ambiguous word had been selected. In contrast, N400 facilitation occurred in all of the unambiguous conditions; however, the left hemisphere (LH) showed less facilitation for the weakly-related target when a strongly-related context was presented. These findings indicate that both hemispheres use context to guide meaning selection, but that the LH is more likely to focus activation on a single, contextually-relevant sense. PMID:17936727

  12. A computational investigation of feedforward and feedback processing in metacontrast backward masking

    PubMed Central

    Silverstein, David N.

    2015-01-01

    In human perception studies, visual backward masking has been used to understand the temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus is followed by a masking stimulus after a short interval of <100 ms, performance on the target is impaired when the target and mask are in close spatial proximity. While the psychophysical properties of backward masking have been studied extensively, there is still debate on the underlying cortical dynamics. One prevailing theory suggests that the impairment of target performance due to the mask is the result of lateral inhibition between the target and mask in feedforward processing. Another prevailing theory suggests that this impairment is due to the interruption of feedback processing of the target by the mask. This computational study demonstrates that both aspects of these theories may be correct. Using a biophysical model of V1 and V2, visual processing was modeled as interacting neocortical attractors, which must propagate up the visual stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before becoming fully active and progressing through V2 and beyond. Results are presented which simulate metacontrast backward masking with an increasing stimulus interval and with the presence and absence of feedback activity. This showed that recurrent feedback diminishes backward masking effects and can make conscious perception more likely. One model configuration presented a metacontrast noise mask in the same hypercolumns as the target, and produced type-A masking. A second model configuration presented a target line with two parallel adjacent masking lines, and produced type-B masking. Future work should examine how the model extends to more complex spatial mask configurations. PMID:25759672

  13. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Global and local processing near the left and right hands

    PubMed Central

    Langerak, Robin M.; La Mantia, Carina L.; Brown, Liana E.

    2013-01-01

    Visual targets can be processed more quickly and reliably when a hand is placed near the target. Both unimodal and bimodal representations of hands are largely lateralized to the contralateral hemisphere, and since each hemisphere demonstrates specialized cognitive processing, it is possible that targets appearing near the left hand may be processed differently than targets appearing near the right hand. The purpose of this study was to determine whether visual processing near the left and right hands interacts with hemispheric specialization. We presented hierarchical-letter stimuli (e.g., small characters used as local elements to compose large characters at the global level) near the left or right hands separately and instructed participants to discriminate the presence of target letters (X and O) from non-target letters (T and U) at either the global or local levels as quickly as possible. Targets appeared at either the global or local level of the display, at both levels, or were absent from the display; participants made foot-press responses. When discriminating target presence at the global level, participants responded more quickly to stimuli presented near the left hand than near either the right hand or in the no-hand condition. Hand presence did not influence target discrimination at the local level. Our interpretation is that left-hand presence may help participants discriminate global information, a right hemisphere (RH) process, and that the left hand may influence visual processing in a way that is distinct from the right hand. PMID:24194725

  15. Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults

    ERIC Educational Resources Information Center

    Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie

    2016-01-01

    Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…

  16. The role of object categories in hybrid visual and memory search

    PubMed Central

    Cunningham, Corbin A.; Wolfe, Jeremy M.

    2014-01-01

    In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054

  17. On the spatial specificity of audiovisual crossmodal exogenous cuing effects.

    PubMed

    Lee, Jae; Spence, Charles

    2017-06-01

    It is generally-accepted that the presentation of an auditory cue will direct an observer's spatial attention to the region of space from where it originates and therefore facilitate responses to visual targets presented there rather than from a different position within the cued hemifield. However, to date, there has been surprisingly limited evidence published in support of such within-hemifield crossmodal exogenous spatial cuing effects. Here, we report two experiments designed to investigate within- and between-hemifield spatial cuing effects in the case of audiovisual exogenous covert orienting. Auditory cues were presented from one of four frontal loudspeakers (two on either side of central fixation). There were eight possible visual target locations (one above and another below each of the loudspeakers). The auditory cues were evenly separated laterally by 30° in Experiment 1, and by 10° in Experiment 2. The potential cue and target locations were separated vertically by approximately 19° in Experiment 1, and by 4° in Experiment 2. On each trial, the participants made a speeded elevation (i.e., up vs. down) discrimination response to the visual target following the presentation of a spatially-nonpredictive auditory cue. Within-hemifield spatial cuing effects were observed only when the auditory cues were presented from the inner locations. Between-hemifield spatial cuing effects were observed in both experiments. Taken together, these results demonstrate that crossmodal exogenous shifts of spatial attention depend on the eccentricity of both the cue and target in a way that has not been made explicit by previous research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Categorical information influences conscious perception: An interaction between object-substitution masking and repetition blindness.

    PubMed

    Goodhew, Stephanie C; Greenwood, John A; Edwards, Mark

    2016-05-01

    The visual system is constantly bombarded with dynamic input. In this context, the creation of enduring object representations presents a particular challenge. We used object-substitution masking (OSM) as a tool to probe these processes. In particular, we examined the effect of target-like stimulus repetitions on OSM. In visual crowding, the presentation of a physically identical stimulus to the target reduces crowding and improves target perception, whereas in spatial repetition blindness, the presentation of a stimulus that belongs to the same category (type) as the target impairs perception. Across two experiments, we found an interaction between spatial repetition blindness and OSM, such that repeating a same-type stimulus as the target increased masking magnitude relative to presentation of a different-type stimulus. These results are discussed in the context of the formation of object files. Moreover, the fact that the inducer only had to belong to the same "type" as the target in order to exacerbate masking, without necessarily being physically identical to the target, has important implications for our understanding of OSM per se. That is, our results show the target is processed to a categorical level in OSM despite effective masking and, strikingly, demonstrate that this category-level content directly influences whether or not the target is perceived, not just performance on another task (as in priming).

  19. Surprise-Induced Blindness: A Stimulus-Driven Attentional Limit to Conscious Perception

    ERIC Educational Resources Information Center

    Asplund, Christopher L.; Todd, J. Jay; Snyder, A. P.; Gilbert, Christopher M.; Marois, Rene

    2010-01-01

    The cost of attending to a visual event can be the failure to consciously detect other events. This processing limitation is well illustrated by the attentional blink paradigm, in which searching for and attending to a target presented in a rapid serial visual presentation stream of distractors can impair one's ability to detect a second target…

  20. Sound Affects the Speed of Visual Processing

    ERIC Educational Resources Information Center

    Keetels, Mirjam; Vroomen, Jean

    2011-01-01

    The authors examined the effects of a task-irrelevant sound on visual processing. Participants were presented with revolving clocks at or around central fixation and reported the hand position of a target clock at the time an exogenous cue (1 clock turning red) or an endogenous cue (a line pointing toward 1 of the clocks) was presented. A…

  1. Spatial Probability Dynamically Modulates Visual Target Detection in Chickens

    PubMed Central

    Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.

    2013-01-01

    The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188

  2. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  3. The role of edges in the selection of a jump target in Mantis religiosa.

    PubMed

    Hyden, Karin; Kral, Karl

    2005-09-30

    Before jumping to a landing object, praying mantids determine the distance, using information obtained from retinal image motion resulting from horizontal peering movements. The present study investigates the peering-jump behaviour of Mantis religiosa larvae with regard to jump targets differing in shape and size. The experimental animals were presented with square, triangular and round target objects with visual extensions of 20 degrees and 40 degrees. The cardboard objects, presented against a uniform white background, were solid black or shaded with a gradation from white to black. It was found that larger objects were preferred to smaller ones as jump targets, and that the square and triangle were preferred to the round disk. When two objects were presented, no preference was exhibited between square and triangular objects. However, when three objects were presented, the square was preferred. For targets with a visual angle of 40 degrees, the amplitude and velocity of the horizontal peering movements were greater for the round disk than for the square or triangle. This amplification of the peering movements suggests that weaker motion signals are generated in the case of curved edges. This may help to account for the preference for the square and triangle as jump targets.

  4. Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search

    ERIC Educational Resources Information Center

    Calvo, Manuel G.; Nummenmaa, Lauri

    2008-01-01

    In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…

  5. Salient sounds activate human visual cortex automatically.

    PubMed

    McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A

    2013-05-22

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.

  6. Experimental test of visuomotor updating models that explain perisaccadic mislocalization.

    PubMed

    Van Wetter, Sigrid M C I; Van Opstal, A John

    2008-10-23

    Localization of a brief visual target is inaccurate when presented around saccade onset. Perisaccadic mislocalization is maximal in the saccade direction and varies systematically with the target-saccade onset disparity. It has been hypothesized that this effect is either due to a sluggish representation of eye position, to low-pass filtering of the visual event, to saccade-induced compression of visual space, or to a combination of these effects. Despite their differences, these schemes all predict that the pattern of localization errors varies systematically with the saccade amplitude and kinematics. We tested these predictions for the double-step paradigm by analyzing the errors for saccades of widely varying amplitudes. Our data show that the measured error patterns are only mildly influenced by the primary-saccade amplitude over a large range of saccade properties. An alternative possibility, better accounting for the data, assumes that around saccade onset perceived target location undergoes a uniform shift in the saccade direction that varies with amplitude only for small saccades. The strength of this visual effect saturates at about 10 deg and also depends on target duration. Hence, we propose that perisaccadic mislocalization results from errors in visual-spatial perception rather than from sluggish oculomotor feedback.

  7. Adaptability and specificity of inhibition processes in distractor-induced blindness.

    PubMed

    Winther, Gesche N; Niedeggen, Michael

    2017-12-01

    In a rapid serial visual presentation task, inhibition processes cumulatively impair processing of a target possessing distractor properties. This phenomenon-known as distractor-induced blindness-has thus far only been elicited using dynamic visual features, such as motion and orientation changes. In three ERP experiments, we used a visual object feature-color-to test for the adaptability and specificity of the effect. In Experiment I, participants responded to a color change (target) in the periphery whose onset was signaled by a central cue. Presentation of irrelevant color changes prior to the cue (distractors) led to reduced target detection, accompanied by a frontal ERP negativity that increased with increasing number of distractors, similar to the effects previously found for dynamic targets. This suggests that distractor-induced blindness is adaptable to color features. In Experiment II, the target consisted of coherent motion contrasting the color distractors. Correlates of distractor-induced blindness were found neither in the behavioral nor in the ERP data, indicating a feature specificity of the process. Experiment III confirmed the strict distinction between congruent and incongruent distractors: A single color distractor was embedded in a stream of motion distractors with the target consisting of a coherent motion. While behavioral performance was affected by the distractors, the color distractor did not elicit a frontal negativity. The experiments show that distractor-induced blindness is also triggered by visual stimuli predominantly processed in the ventral stream. The strict specificity of the central inhibition process also applies to these stimulus features. © 2017 Society for Psychophysiological Research.

  8. Visual Attention Patterns of Women with Androphilic and Gynephilic Sexual Attractions.

    PubMed

    Dawson, Samantha J; Fretz, Katherine M; Chivers, Meredith L

    2017-01-01

    Women who report exclusive sexual attractions to men (i.e., androphilia) exhibit gender-nonspecific patterns of sexual response-similar magnitude of genital response to both male and female targets. Interestingly, women reporting any degree of attraction to women (i.e., gynephilia) show significantly greater sexual responses to stimuli depicting female targets compared to male targets. At present, the mechanism(s) underlying these patterns are unknown. According to the information processing model (IPM), attentional processing of sexual cues initiates sexual responding; thus, attention to sexual cues may be one mechanism to explain the observed within-gender differences in specificity findings among women. The purpose of the present study was to examine patterns of initial and controlled visual attention among women with varying sexual attractions. We used eye tracking to assess visual attention to sexually preferred and nonpreferred cues in a sample of 164 women who differed in their degree of androphilia and gynephilia. We found that both exclusively and predominantly androphilic women showed gender-nonspecific patterns of initial attention. In contrast, ambiphilic (i.e., concurrent androphilia and gynephilia) and predominantly/exclusively gynephilic women oriented more quickly toward female targets. Controlled attention patterns mirrored patterns of self-reported sexual attractions for three of these four groups of women, such that gender-specific patterns of visual attention were found for androphilic and gynephilic women. Ambiphilic women looked significantly longer at female targets compared to male targets. These findings support predictions from the IPM and suggest that both initial and controlled attention to sexual cues may be mechanisms contributing to within-gender variation in sexual responding.

  9. Playing chess unconsciously.

    PubMed

    Kiesel, Andrea; Kunde, Wilfried; Pohl, Carsten; Berner, Michael P; Hoffmann, Joachim

    2009-01-01

    Expertise in a certain stimulus domain enhances perceptual capabilities. In the present article, the authors investigate whether expertise improves perceptual processing to an extent that allows complex visual stimuli to bias behavior unconsciously. Expert chess players judged whether a target chess configuration entailed a checking configuration. These displays were preceded by masked prime configurations that either represented a checking or a nonchecking configuration. Chess experts, but not novice chess players, revealed a subliminal response priming effect, that is, faster responding when prime and target displays were congruent (both checking or both nonchecking) rather than incongruent. Priming generalized to displays that were not used as targets, ruling out simple repetition priming effects. Thus, chess experts were able to judge unconsciously presented chess configurations as checking or nonchecking. A 2nd experiment demonstrated that experts' priming does not occur for simpler but uncommon chess configurations. The authors conclude that long-term practice prompts the acquisition of visual memories of chess configurations with integrated form-location conjunctions. These perceptual chunks enable complex visual processing outside of conscious awareness.

  10. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    PubMed

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  11. The Benefit of a Visually Guided Beamformer in a Dynamic Speech Task

    PubMed Central

    Roverud, Elin; Streeter, Timothy; Mason, Christine R.; Kidd, Gerald

    2017-01-01

    The aim of this study was to evaluate the performance of a visually guided hearing aid (VGHA) under conditions designed to capture some aspects of “real-world” communication settings. The VGHA uses eye gaze to steer the acoustic look direction of a highly directional beamforming microphone array. Although the VGHA has been shown to enhance speech intelligibility for fixed-location, frontal targets, it is currently not known whether these benefits persist in the face of frequent changes in location of the target talker that are typical of conversational turn-taking. Participants were 14 young adults, 7 with normal hearing and 7 with bilateral sensorineural hearing impairment. Target stimuli were sequences of 12 question–answer pairs that were embedded in a mixture of competing conversations. The participant’s task was to respond via a key press after each answer indicating whether it was correct or not. Spatialization of the stimuli and microphone array processing were done offline using recorded impulse responses, before presentation over headphones. The look direction of the array was steered according to the eye movements of the participant as they followed a visual cue presented on a widescreen monitor. Performance was compared for a “dynamic” condition in which the target stimulus moved between three locations, and a “fixed” condition with a single target location. The benefits of the VGHA over natural binaural listening observed in the fixed condition were reduced in the dynamic condition, largely because visual fixation was less accurate. PMID:28758567

  12. Cueing listeners to attend to a target talker progressively improves word report as the duration of the cue-target interval lengthens to 2,000 ms.

    PubMed

    Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin

    2018-04-25

    Endogenous attention is typically studied by presenting instructive cues in advance of a target stimulus array. For endogenous visual attention, task performance improves as the duration of the cue-target interval increases up to 800 ms. Less is known about how endogenous auditory attention unfolds over time or the mechanisms by which an instructive cue presented in advance of an auditory array improves performance. The current experiment used five cue-target intervals (0, 250, 500, 1,000, and 2,000 ms) to compare four hypotheses for how preparatory attention develops over time in a multi-talker listening task. Young adults were cued to attend to a target talker who spoke in a mixture of three talkers. Visual cues indicated the target talker's spatial location or their gender. Participants directed attention to location and gender simultaneously ("objects") at all cue-target intervals. Participants were consistently faster and more accurate at reporting words spoken by the target talker when the cue-target interval was 2,000 ms than 0 ms. In addition, the latency of correct responses progressively shortened as the duration of the cue-target interval increased from 0 to 2,000 ms. These findings suggest that the mechanisms involved in preparatory auditory attention develop gradually over time, taking at least 2,000 ms to reach optimal configuration, yet providing cumulative improvements in speech intelligibility as the duration of the cue-target interval increases from 0 to 2,000 ms. These results demonstrate an improvement in performance for cue-target intervals longer than those that have been reported previously in the visual or auditory modalities.

  13. Visual search in Dementia with Lewy Bodies and Alzheimer's disease.

    PubMed

    Landy, Kelly M; Salmon, David P; Filoteo, J Vincent; Heindel, William C; Galasko, Douglas; Hamilton, Joanne M

    2015-12-01

    Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer's disease (AD). To assess this possibility, the present study compared patients with DLB (n = 17), AD (n = 30), or Parkinson's disease with dementia (PDD; n = 10) to non-demented patients with PD (n = 18) and normal control (NC) participants (n = 13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target's salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., "pop-out" effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search "pop-out" effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.

    PubMed

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2011-10-01

    The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Investigating the role of the superior colliculus in active vision with the visual search paradigm.

    PubMed

    Shen, Kelly; Valero, Jerome; Day, Gregory S; Paré, Martin

    2011-06-01

    We review here both the evidence that the functional visuomotor organization of the optic tectum is conserved in the primate superior colliculus (SC) and the evidence for the linking proposition that SC discriminating activity instantiates saccade target selection. We also present new data in response to questions that arose from recent SC visual search studies. First, we observed that SC discriminating activity predicts saccade initiation when monkeys perform an unconstrained search for a target defined by either a single visual feature or a conjunction of two features. Quantitative differences between the results in these two search tasks suggest, however, that SC discriminating activity does not only reflect saccade programming. This finding concurs with visual search studies conducted in posterior parietal cortex and the idea that, during natural active vision, visual attention is shifted concomitantly with saccade programming. Second, the analysis of a large neuronal sample recorded during feature search revealed that visual neurons in the superficial layers do possess discriminating activity. In addition, the hypotheses that there are distinct types of SC neurons in the deeper layers and that they are differently involved in saccade target selection were not substantiated. Third, we found that the discriminating quality of single-neuron activity substantially surpasses the ability of the monkeys to discriminate the target from distracters, raising the possibility that saccade target selection is a noisy process. We discuss these new findings in light of the visual search literature and the view that the SC is a visual salience map for orienting eye movements. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. A bilateral advantage in controlling access to visual short-term memory.

    PubMed

    Holt, Jessica L; Delvenne, Jean-François

    2014-01-01

    Recent research on visual short-term memory (VSTM) has revealed the existence of a bilateral field advantage (BFA--i.e., better memory when the items are distributed in the two visual fields than if they are presented in the same hemifield) for spatial location and bar orientation, but not for color (Delvenne, 2005; Umemoto, Drew, Ester, & Awh, 2010). Here, we investigated whether a BFA in VSTM is constrained by attentional selective processes. It has indeed been previously suggested that the BFA may be a general feature of selective attention (Alvarez & Cavanagh, 2005; Delvenne, 2005). Therefore, the present study examined whether VSTM for color benefits from bilateral presentation if attentional selective processes are particularly engaged. Participants completed a color change detection task whereby target stimuli were presented either across both hemifields or within one single hemifield. In order to engage attentional selective processes, some trials contained irrelevant stimuli that needed to be ignored. Targets were selected based on spatial locations (Experiment 1) or on a salient feature (Experiment 2). In both cases, the results revealed a BFA only when irrelevant stimuli were presented among the targets. Overall, the findings strongly suggest that attentional selective processes at encoding can constrain whether a BFA is observed in VSTM.

  17. Altered saccadic targets when processing facial expressions under different attentional and stimulus conditions.

    PubMed

    Boutsen, Frank A; Dvorak, Justin D; Pulusu, Vinay K; Ross, Elliott D

    2017-04-01

    Depending on a subject's attentional bias, robust changes in emotional perception occur when facial blends (different emotions expressed on upper/lower face) are presented tachistoscopically. If no instructions are given, subjects overwhelmingly identify the lower facial expression when blends are presented to either visual field. If asked to attend to the upper face, subjects overwhelmingly identify the upper facial expression in the left visual field but remain slightly biased to the lower facial expression in the right visual field. The current investigation sought to determine whether differences in initial saccadic targets could help explain the perceptual biases described above. Ten subjects were presented with full and blend facial expressions under different attentional conditions. No saccadic differences were found for left versus right visual field presentations or for full facial versus blend stimuli. When asked to identify the presented emotion, saccades were directed to the lower face. When asked to attend to the upper face, saccades were directed to the upper face. When asked to attend to the upper face and try to identify the emotion, saccades were directed to the upper face but to a lesser degree. Thus, saccadic behavior supports the concept that there are cognitive-attentional pre-attunements when subjects visually process facial expressions. However, these pre-attunements do not fully explain the perceptual superiority of the left visual field for identifying the upper facial expression when facial blends are presented tachistoscopically. Hence other perceptual factors must be in play, such as the phenomenon of virtual scanning. Published by Elsevier Ltd.

  18. [Allocation of attentional resource and monitoring processes under rapid serial visual presentation].

    PubMed

    Nishiura, K

    1998-08-01

    With the use of rapid serial visual presentation (RSVP), the present study investigated the cause of target intrusion errors and functioning of monitoring processes. Eighteen students participated in Experiment 1, and 24 in Experiment 2. In Experiment 1, different target intrusion errors were found depending on different kinds of letters --romaji, hiragana, and kanji. In Experiment 2, stimulus set size and context information were manipulated in an attempt to explore the cause of post-target intrusion errors. Results showed that as stimulus set size increased, the post-target intrusion errors also increased, but contextual information did not affect the errors. Results concerning mean report probability indicated that increased allocation of attentional resource to response-defining dimension was the cause of the errors. In addition, results concerning confidence rating showed that monitoring of temporal and contextual information was extremely accurate, but it was not so for stimulus information. These results suggest that attentional resource is different from monitoring resource.

  19. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2017-11-01

    The current study investigated the role of automatic encoding and maintenance of remembered, past, and present visual distractors for reach movement planning. The previous research on eye movements showed that saccades curve away from locations actively kept in working memory and also from task-irrelevant perceptually present visual distractors, but not from task-irrelevant past distractors. Curvature away has been associated with an inhibitory mechanism resolving the competition between multiple active movement plans. Here, we examined whether reach movements underlie a similar inhibitory mechanism and thus show systematic modulation of reach trajectories when the location of a previously presented distractor has to be (a) maintained in working memory or (b) ignored, or (c) when the distractor is perceptually present. Participants performed vertical reach movements on a computer monitor from a home to a target location. Distractors appeared laterally and near or far from the target (equidistant from central fixation). We found that reaches curved away from the distractors located close to the target when the distractor location had to be memorized and when it was perceptually present, but not when the past distractor had to be ignored. Our findings suggest that automatically encoding present distractors and actively maintaining the location of past distractors in working memory evoke a similar response competition resolved by inhibition, as has been previously shown for saccadic eye movements.

  20. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    PubMed

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  2. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals.

    PubMed

    Okino, Nozomu; Wakisaka, Hiroyoshi; Ishibashi, Yohei; Ito, Makoto

    2018-04-01

    Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

  3. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    PubMed

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  4. Visual hallucinations in schizophrenia: confusion between imagination and perception.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2008-05-01

    An association between hallucinations and reality-monitoring deficit has been repeatedly observed in patients with schizophrenia. Most data concern auditory/verbal hallucinations. The aim of this study was to investigate the association between visual hallucinations and a specific type of reality-monitoring deficit, namely confusion between imagined and perceived pictures. Forty-one patients with schizophrenia and 43 healthy control participants completed a reality-monitoring task. Thirty-two items were presented either as written words or as pictures. After the presentation phase, participants had to recognize the target words and pictures among distractors, and then remember their mode of presentation. All groups of participants recognized the pictures better than the words, except the patients with visual hallucinations, who presented the opposite pattern. The participants with visual hallucinations made more misattributions to pictures than did the others, and higher ratings of visual hallucinations were correlated with increased tendency to remember words as pictures. No association with auditory hallucinations was revealed. Our data suggest that visual hallucinations are associated with confusion between visual mental images and perception.

  5. "Multisensory brand search: How the meaning of sounds guides consumers' visual attention": Correction to Knoeferle et al. (2016).

    PubMed

    2017-03-01

    Reports an error in "Multisensory brand search: How the meaning of sounds guides consumers' visual attention" by Klemens M. Knoeferle, Pia Knoeferle, Carlos Velasco and Charles Spence ( Journal of Experimental Psychology: Applied , 2016[Jun], Vol 22[2], 196-210). In the article, under Experiment 2, Design and Stimuli, the set number of target products and visual distractors reported in the second paragraph should be 20 and 13, respectively: "On each trial, the 16 products shown in the display were randomly selected from a set of 20 products belonging to different categories. Out of the set of 20 products, seven were potential targets, whereas the other 13 were used as visual distractors only throughout the experiment (since they were not linked to specific usage or consumption sounds)." Consequently, Appendix A in the supplemental materials has been updated. (The following abstract of the original article appeared in record 2016-28876-002.) Building on models of crossmodal attention, the present research proposes that brand search is inherently multisensory, in that the consumers' visual search for a specific brand can be facilitated by semantically related stimuli that are presented in another sensory modality. A series of 5 experiments demonstrates that the presentation of spatially nonpredictive auditory stimuli associated with products (e.g., usage sounds or product-related jingles) can crossmodally facilitate consumers' visual search for, and selection of, products. Eye-tracking data (Experiment 2) revealed that the crossmodal effect of auditory cues on visual search manifested itself not only in RTs, but also in the earliest stages of visual attentional processing, thus suggesting that the semantic information embedded within sounds can modulate the perceptual saliency of the target products' visual representations. Crossmodal facilitation was even observed for newly learnt associations between unfamiliar brands and sonic logos, implicating multisensory short-term learning in establishing audiovisual semantic associations. The facilitation effect was stronger when searching complex rather than simple visual displays, thus suggesting a modulatory role of perceptual load. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Dynamic visual acuity using "far" and "near" targets

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Bloomberg, Jacob J.

    2005-01-01

    CONCLUSIONS: DVA may be useful for assessing the functional consequences of an impaired gaze stabilization mechanism or for testing the effectiveness of a rehabilitation paradigm. Because target distance influences the relative contributions of canal and otolith inputs, the ability to measure DVA at near and far viewing distances may also lead to tests that will independently assess canal and otolith function. OBJECTIVE: To present and test a methodology that uses dynamic visual acuity (DVA) to assess the efficacy of compensatory gaze mechanisms during a functionally relevant activity that differentially measures canal and otolith function. MATERIAL AND METHODS: The effect of treadmill walking at a velocity of 1.79 m/s on subjects' visual acuity was assessed at each of two viewing distances. A custom-written threshold determination program was used to display Landolt C optotypes on a laptop computer screen during a "far" (4 m) target condition and on a micro-display for a "near" (50 cm) target condition. The walking acuity scores for each target distance were normalized by subtracting a corresponding acuity measure obtained while standing still on the treadmill belt. RESULTS: As predicted by subjective reports of relative target motion, the decrease in visual acuity was significantly greater (p < 0.00001) for the near compared to the far condition.

  7. Relieving the attentional blink in the amblyopic brain with video games.

    PubMed

    Li, Roger W; Ngo, Charlie V; Levi, Dennis M

    2015-02-26

    Video game play induces a generalized recovery of a range of spatial visual functions in the amblyopic brain. Here we ask whether video game play also alters temporal processing in the amblyopic brain. When visual targets are presented in rapid succession, correct identification of the first target (T1) can interfere with identification of the second (T2). This is known as the "attentional blink". We measured the attentional blink in each eye of adults with amblyopia before and after 40 hours of active video game play, using a rapid serial visual presentation technique. After videogame play, we observed a ~40% reduction in the attentional blink (identifying T2 200 ms after T1) seen through the amblyopic eye and this improvement in performance transferred substantially to the untrained fellow sound eye. Our experiments show that the enhanced performance cannot be simply explained by eye patching alone, or to improved visual acuity, but is specific to videogame experience. Thus, videogame training might have important therapeutic applications for amblyopia and other visual brain disorders.

  8. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    PubMed

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  9. The Role of Target-Distractor Relationships in Guiding Attention and the Eyes in Visual Search

    ERIC Educational Resources Information Center

    Becker, Stefanie I.

    2010-01-01

    Current models of visual search assume that visual attention can be guided by tuning attention toward specific feature values (e.g., particular size, color) or by inhibiting the features of the irrelevant nontargets. The present study demonstrates that attention and eye movements can also be guided by a relational specification of how the target…

  10. Language-Mediated Eye Movements in the Absence of a Visual World: The "Blank Screen Paradigm"

    ERIC Educational Resources Information Center

    Altmann, Gerry T. M.

    2004-01-01

    The "visual world paradigm" typically involves presenting participants with a visual scene and recording eye movements as they either hear an instruction to manipulate objects in the scene or as they listen to a description of what may happen to those objects. In this study, participants heard each target sentence only after the corresponding…

  11. What Kind of Memory Supports Visual Marking?

    ERIC Educational Resources Information Center

    Jiang, Yuhong; Wang, Stephanie W.

    2004-01-01

    In visual search tasks, if a set of items is presented for 1 s before another set of new items (containing the target) is added, search can be restricted to the new set. The process that eliminates old items from search is visual marking. This study investigates the kind of memory that distinguishes the old items from the new items during search.…

  12. The Visual Hemifield Asymmetry in the Spatial Blink during Singleton Search and Feature Search

    ERIC Educational Resources Information Center

    Burnham, Bryan R.; Rozell, Cassandra A.; Kasper, Alex; Bianco, Nicole E.; Delliturri, Antony

    2011-01-01

    The present study examined a visual field asymmetry in the contingent capture of attention that was previously observed by Du and Abrams (2010). In our first experiment, color singleton distractors that matched the color of a to-be-detected target produced a stronger capture of attention when they appeared in the left visual hemifield than in the…

  13. Influence of social presence on eye movements in visual search tasks.

    PubMed

    Liu, Na; Yu, Ruifeng

    2017-12-01

    This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.

  14. Does constraining memory maintenance reduce visual search efficiency?

    PubMed

    Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R

    2018-03-01

    We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.

  15. Reaching a Moveable Visual Target: Dissociations in Brain Tumour Patients

    ERIC Educational Resources Information Center

    Buiatti, Tania; Skrap, Miran; Shallice, Tim

    2013-01-01

    Damage to the posterior parietal cortex (PPC) can lead to Optic Ataxia (OA), in which patients misreach to peripheral targets. Recent research suggested that the PPC might be involved not only in simple reaching tasks toward peripheral targets, but also in changing the hand movement trajectory in real time if the target moves. The present study…

  16. Category-based guidance of spatial attention during visual search for feature conjunctions.

    PubMed

    Nako, Rebecca; Grubert, Anna; Eimer, Martin

    2016-10-01

    The question whether alphanumerical category is involved in the control of attentional target selection during visual search remains a contentious issue. We tested whether category-based attentional mechanisms would guide the allocation of attention under conditions where targets were defined by a combination of alphanumerical category and a basic visual feature, and search displays could contain both targets and partially matching distractor objects. The N2pc component was used as an electrophysiological marker of attentional object selection in tasks where target objects were defined by a conjunction of color and category (Experiment 1) or shape and category (Experiment 2). Some search displays contained the target or a nontarget object that matched either the target color/shape or its category among 3 nonmatching distractors. In other displays, the target and a partially matching nontarget object appeared together. N2pc components were elicited not only by targets and by color- or shape-matching nontargets, but also by category-matching nontarget objects, even on trials where a target was present in the same display. On these trials, the summed N2pc components to the 2 types of partially matching nontargets were initially equal in size to the target N2pc, suggesting that attention was allocated simultaneously and independently to all objects with target-matching features during the early phase of attentional processing. Results demonstrate that alphanumerical category is a genuine guiding feature that can operate in parallel with color or shape information to control the deployment of attention during visual search. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Effects of age and eccentricity on visual target detection.

    PubMed

    Gruber, Nicole; Müri, René M; Mosimann, Urs P; Bieri, Rahel; Aeschimann, Andrea; Zito, Giuseppe A; Urwyler, Prabitha; Nyffeler, Thomas; Nef, Tobias

    2013-01-01

    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20-78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.

  18. On the rules of integration of crowded orientation signals.

    PubMed

    Põder, Endel

    2012-01-01

    Crowding is related to an integration of feature signals over an inappropriately large area in the visual periphery. The rules of this integration are still not well understood. This study attempts to understand how the orientation signals from the target and flankers are combined. A target Gabor, together with 2, 4, or 6 flanking Gabors, was briefly presented in a peripheral location (4° eccentricity). The observer's task was to identify the orientation of the target (eight-alternative forced-choice). Performance was found to be nonmonotonically dependent on the target-flanker orientation difference (a drop at intermediate differences). For small target-flanker differences, a strong assimilation bias was observed. An effect of the number of flankers was found for heterogeneous flankers only. It appears that different rules of integration are used, dependent on some salient aspects (target pop-out, homogeneity-heterogeneity) of the stimulus pattern. The strategy of combining simple rules may be explained by the goal of the visual system to encode potentially important aspects of a stimulus with limited processing resources and using statistical regularities of the natural visual environment.

  19. Investigating the role of visual and auditory search in reading and developmental dyslexia

    PubMed Central

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a “serial” search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d′) strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in “serial” search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills. PMID:24093014

  20. Investigating the role of visual and auditory search in reading and developmental dyslexia.

    PubMed

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  1. Influence of inter-item symmetry in visual search.

    PubMed

    Roggeveen, Alexa B; Kingstone, Alan; Enns, James T

    2004-01-01

    Does visual search involve a serial inspection of individual items (Feature Integration Theory) or are items grouped and segregated prior to their consideration as a possible target (Attentional Engagement Theory)? For search items defined by motion and shape there is strong support for prior grouping (Kingstone and Bischof, 1999). The present study tested for grouping based on inter-item shape symmetry. Results showed that target-distractor symmetry strongly influenced search whereas distractor-distractor symmetry influenced search more weakly. This indicates that static shapes are evaluated for similarity to one another prior to their explicit identification as 'target' or 'distractor'. Possible reasons for the unequal contributions of target-distractor and distractor-distractor relations are discussed.

  2. Spatial attention during saccade decisions.

    PubMed

    Jonikaitis, Donatas; Klapetek, Anna; Deubel, Heiner

    2017-07-01

    Behavioral measures of decision making are usually limited to observations of decision outcomes. In the present study, we made use of the fact that oculomotor and sensory selection are closely linked to track oculomotor decision making before oculomotor responses are made. We asked participants to make a saccadic eye movement to one of two memorized target locations and observed that visual sensitivity increased at both the chosen and the nonchosen saccade target locations, with a clear bias toward the chosen target. The time course of changes in visual sensitivity was related to saccadic latency, with the competition between the chosen and nonchosen targets resolved faster before short-latency saccades. On error trials, we observed an increased competition between the chosen and nonchosen targets. Moreover, oculomotor selection and visual sensitivity were influenced by top-down and bottom-up factors as well as by selection history and predicted the direction of saccades. Our findings demonstrate that saccade decisions have direct visual consequences and show that decision making can be traced in the human oculomotor system well before choices are made. Our results also indicate a strong association between decision making, saccade target selection, and visual sensitivity. NEW & NOTEWORTHY We show that saccadic decisions can be tracked by measuring spatial attention. Spatial attention is allocated in parallel to the two competing saccade targets, and the time course of spatial attention differs for fast-slow and for correct-erroneous decisions. Saccade decisions take the form of a competition between potential saccade goals, which is associated with spatial attention allocation to those locations. Copyright © 2017 the American Physiological Society.

  3. Distraction by emotional sounds: Disentangling arousal benefits and orienting costs.

    PubMed

    Max, Caroline; Widmann, Andreas; Kotz, Sonja A; Schröger, Erich; Wetzel, Nicole

    2015-08-01

    Unexpectedly occurring task-irrelevant stimuli have been shown to impair performance. They capture attention away from the main task leaving fewer resources for target processing. However, the actual distraction effect depends on various variables; for example, only target-informative distractors have been shown to cause costs of attentional orienting. Furthermore, recent studies have shown that high arousing emotional distractors, as compared with low arousing neutral distractors, can improve performance by increasing alertness. We aimed to separate costs of attentional orienting and benefits of arousal by presenting negative and neutral environmental sounds (novels) as oddballs in an auditory-visual distraction paradigm. Participants categorized pictures while task-irrelevant sounds preceded visual targets in two conditions: (a) informative sounds reliably signaled onset and occurrence of visual targets, and (b) noninformative sounds occurred unrelated to visual targets. Results confirmed that only informative novels yield distraction. Importantly, irrespective of sounds' informational value participants responded faster in trials with high arousing negative as compared with moderately arousing neutral novels. That is, costs related to attentional orienting are modulated by information, whereas benefits related to emotional arousal are independent of a sound's informational value. This favors a nonspecific facilitating cross-modal influence of emotional arousal on visual task performance and suggests that behavioral distraction by noninformative novels is controlled after their motivational significance has been determined. (c) 2015 APA, all rights reserved).

  4. Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging

    ERIC Educational Resources Information Center

    Razpurker-Apfeld, Irene; Pratt, Hillel

    2008-01-01

    Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

  5. Effect of visual field presentation on action planning (estimating reach) in children.

    PubMed

    Gabbard, Carl; Cordova, Alberto

    2012-01-01

    In this article, the authors examined the effects of target information presented in different visual fields (lower, upper, central) on estimates of reach via use of motor imagery in children (5-11 years old) and young adults. Results indicated an advantage for estimating reach movements for targets placed in lower visual field (LoVF), with all groups having greater difficulty in the upper visual field (UpVF) condition, especially 5- and 7-year-olds. Complementing these results was an overall age-related increase in accuracy. Based in part on the equivalence hypothesis suggesting that motor imagery and motor planning and execution are similar, the findings support previous work of executed behaviors showing that there is a LoVF bias for motor skill actions of the hand. Given that previous research hints that the UpVF may be bias for visuospatial (perceptual) qualities, research in that area and its association with visuomotor processing (LoVF) should be considered.

  6. Experimental system for measurement of radiologists' performance by visual search task.

    PubMed

    Maeda, Eriko; Yoshikawa, Takeharu; Nakashima, Ryoichi; Kobayashi, Kazufumi; Yokosawa, Kazuhiko; Hayashi, Naoto; Masutani, Yoshitaka; Yoshioka, Naoki; Akahane, Masaaki; Ohtomo, Kuni

    2013-01-01

    Detective performance of radiologists for "obvious" targets should be evaluated by visual search task instead of ROC analysis, but visual task have not been applied to radiology studies. The aim of this study was to set up an environment that allows visual search task in radiology, to evaluate its feasibility, and to preliminarily investigate the effect of career on the performance. In a darkroom, ten radiologists were asked to answer the type of lesion by pressing buttons, when images without lesions, with bulla, ground-glass nodule, and solid nodule were randomly presented on a display. Differences in accuracy and reaction times depending on board certification were investigated. The visual search task was successfully and feasibly performed. Radiologists were found to have high sensitivity, specificity, positive predictive values and negative predictive values in non-board and board groups. Reaction time was under 1 second for all target types in both groups. Board radiologists were significantly faster in answering for bulla, but there were no significant differences for other targets and values. We developed an experimental system that allows visual search experiment in radiology. Reaction time for detection of bulla was shortened with experience.

  7. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    PubMed

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  8. Visualization of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Hogervorst, Maarten A.; Bijl, Piet; Toet, Alexander

    2007-04-01

    We developed four new techniques to visualize hyper spectral image data for man-in-the-loop target detection. The methods respectively: (1) display the subsequent bands as a movie ("movie"), (2) map the data onto three channels and display these as a colour image ("colour"), (3) display the correlation between the pixel signatures and a known target signature ("match") and (4) display the output of a standard anomaly detector ("anomaly"). The movie technique requires no assumptions about the target signature and involves no information loss. The colour technique produces a single image that can be displayed in real-time. A disadvantage of this technique is loss of information. A display of the match between a target signature and pixels and can be interpreted easily and fast, but this technique relies on precise knowledge of the target signature. The anomaly detector signifies pixels with signatures that deviate from the (local) background. We performed a target detection experiment with human observers to determine their relative performance with the four techniques,. The results show that the "match" presentation yields the best performance, followed by "movie" and "anomaly", while performance with the "colour" presentation was the poorest. Each scheme has its advantages and disadvantages and is more or less suited for real-time and post-hoc processing. The rationale is that the final interpretation is best done by a human observer. In contrast to automatic target recognition systems, the interpretation of hyper spectral imagery by the human visual system is robust to noise and image transformations and requires a minimal number of assumptions (about signature of target and background, target shape etc.) When more knowledge about target and background is available this may be used to help the observer interpreting the data (aided target detection).

  9. Comparing visual search and eye movements in bilinguals and monolinguals

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Azuma, Tamiko; Goldinger, Stephen D.

    2017-01-01

    Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands. PMID:28508116

  10. Event-related potentials reveal the effect of prior knowledge on competition for representation and attentional capture.

    PubMed

    Hilimire, Matthew R; Corballis, Paul M

    2014-01-01

    Objects compete for representation in our limited capacity visual system. We examined how this competition is influenced by top-down knowledge using event-related potentials. Competition was manipulated by presenting visual search arrays in which the target or distractor was the only color singleton compared to displays in which both singletons were presented. Experiments 1 and 2 manipulated whether the observer knew the color of the target in advance. Experiment 3 ruled out low-level sensory explanations. Results show that, under conditions of competition, the distractor does not elicit an N2pc when the target color is known. However, the N2pc elicited by the target is reduced in the presence of a distractor. These findings suggest that top-down knowledge can prevent the capture of attention by distracting information, but this prior knowledge does not eliminate the competitive influence of the distractor on the target. Copyright © 2013 Society for Psychophysiological Research.

  11. The Effects of Workload Presented via Visual and Auditory Displays on Soldier Shooting and Secondary Task Performance

    DTIC Science & Technology

    2007-08-01

    Cognitive Psychology: New Directions (pp. 112-153). London: Routledge & Kegan Paul, 1980. Allport, D. A.; Antonis, B.; Reynolds, P. On the Division of...live-fire range. The target type presentations will be an enemy targets which will consist of equal sized solid green silhouettes. Friendly targets...will consist of the solid green silhouette with a gray 6-inch disk at the center-of-mass, or a solid brown silhouette. The target exposure times will

  12. Virgil Gus Grissom's Visit to LaRC

    NASA Image and Video Library

    1963-02-22

    Astronaut Virgil "Gus" Grissom at the controls of the Visual Docking Simulator. From A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers 1966 Winter Meeting, New York, NY, November 27-December 1, 1966. "This facility was [later known as the Visual-Optical Simulator.] It presents to the pilot an out-the-window view of his target in correct 6 degrees of freedom motion. The scene is obtained by a television camera pick-up viewing a small-scale gimbaled model of the target." "For docking studies, the docking target picture was projected onto the surface of a 20-foot-diameter sphere and the pilot could, effectively, maneuver into contract. this facility was used in a comparison study with the Rendezvous Docking Simulator - one of the few comparison experiments in which conditions were carefully controlled and a reasonable sample of pilots used. All pilots preferred the more realistic RDS visual scene. The pilots generally liked the RDS angular motion cues although some objected to the false gravity cues that these motions introduced. Training time was shorter on the RDS, but final performance on both simulators was essentially equal. " "For station-keeping studies, since close approach is not required, the target was presented to the pilot through a virtual-image system which projects his view to infinity, providing a more realistic effect. In addition to the target, the system also projects a star and horizon background. "

  13. Electrophysiological evidence for attentional guidance by the contents of working memory.

    PubMed

    Kumar, Sanjay; Soto, David; Humphreys, Glyn W

    2009-07-01

    The deployment of visual attention can be strongly modulated by stimuli matching the contents of working memory (WM), even when WM contents are detrimental to performance and salient bottom-up cues define the critical target [D. Soto et al. (2006)Vision Research, 46, 1010-1018]. Here we investigated the electrophysiological correlates of this early guidance of attention by WM in humans. Observers were presented with a prime to either identify or hold in memory. Subsequently, they had to search for a target line amongst different distractor lines. Each line was embedded within one of four objects and one of the distractor objects could match the stimulus held in WM. Behavioural data showed that performance was more strongly affected by the prime when it was held in memory than when it was merely identified. An electrophysiological measure of the efficiency of target selection (the N2pc) was also affected by the match between the item in WM and the location of the target in the search task. The N2pc was enhanced when the target fell in the same visual field as the re-presented (invalid) prime, compared with when the prime did not reappear in the search display (on neutral trials) and when the prime was contralateral to the target. Merely identifying the prime produced no effect on the N2pc component. The evidence suggests that WM modulates competitive interactions between the items in the visual field to determine the efficiency of target selection.

  14. Electrophysiological correlates of cross-linguistic semantic integration in hearing signers: N400 and LPC.

    PubMed

    Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T

    2014-07-01

    We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language background and/or usage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. [Neural correlates of priming in vision: evidence from neuropsychology and neuroimaging].

    PubMed

    Kristjánsson, Arni

    2005-04-01

    When we look around us, we are overall more likely to notice objects that we have recently looked at; an effect known as priming. For example, when the color or shape of a visual search target is repeated, observers find the target faster than otherwise. Here I summarize recent research undertaken to uncover the temporary changes in brain activity that accompany these priming effects. In light of the fact that priming seems to have a large effect on how attention is allocated, we investigated priming effects in a visual search task on patients suffering from the neurological disorder "hemispatial neglect" in which patients typically fail to notice display items in one of their visual hemifields. Priming of target color was relatively normal for these patients, while priming of target location seemed to require awareness of the briefly presented visual search target. An experiment with functional magnetic resonance imaging of normal observers revealed that both color and location priming had a strong modulatory influence on attentional mechanisms of the frontal and parietal cortex. Color priming was also correlated with changes in activity in visual cortex as well as color processing areas in the temporal lobe. Location priming was correlated with changes in activity near the temporo- parietal junction and lateral inferior frontal cortex, areas that have been connected with attentional capture; which ties well with our finding of deficits of location priming for the neglect patients who indeed have lesions in the temporo-parietal junction. Overall, the results confirm the tight coupling of visual attention and priming in vision, and also that the visual areas of the brain show some modulation of activity as priming develops.

  16. Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms

    PubMed Central

    Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe

    2017-01-01

    Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233

  17. The Effects of Visual Complexity for Japanese Kanji Processing with High and Low Frequencies

    ERIC Educational Resources Information Center

    Tamaoka, Katsuo; Kiyama, Sachiko

    2013-01-01

    The present study investigated the effects of visual complexity for kanji processing by selecting target kanji from different stroke ranges of visually simple (2-6 strokes), medium (8-12 strokes), and complex (14-20 strokes) kanji with high and low frequencies. A kanji lexical decision task in Experiment 1 and a kanji naming task in Experiment 2…

  18. Categorical Perception of Colour in the Left and Right Visual Field Is Verbally Mediated: Evidence from Korean

    ERIC Educational Resources Information Center

    Roberson, Debi; Pak, Hyensou; Hanley, J. Richard

    2008-01-01

    In this study we demonstrate that Korean (but not English) speakers show Categorical perception (CP) on a visual search task for a boundary between two Korean colour categories that is not marked in English. These effects were observed regardless of whether target items were presented to the left or right visual field. Because this boundary is…

  19. Evaluating the Role of the Dorsolateral Prefrontal Cortex and Posterior Parietal Cortex in Memory-Guided Attention With Repetitive Transcranial Magnetic Stimulation.

    PubMed

    Wang, Min; Yang, Ping; Wan, Chaoyang; Jin, Zhenlan; Zhang, Junjun; Li, Ling

    2018-01-01

    The contents of working memory (WM) can affect the subsequent visual search performance, resulting in either beneficial or cost effects, when the visual search target is included in or spatially dissociated from the memorized contents, respectively. The right dorsolateral prefrontal cortex (rDLPFC) and the right posterior parietal cortex (rPPC) have been suggested to be associated with the congruence/incongruence effects of the WM content and the visual search target. Thus, in the present study, we investigated the role of the dorsolateral prefrontal cortex and the PPC in controlling the interaction between WM and attention during a visual search, using repetitive transcranial magnetic stimulation (rTMS). Subjects maintained a color in WM while performing a search task. The color cue contained the target (valid), the distractor (invalid) or did not reappear in the search display (neutral). Concurrent stimulation with the search onset showed that relative to rTMS over the vertex, rTMS over rPPC and rDLPFC further decreased the search reaction time, when the memory cue contained the search target. The results suggest that the rDLPFC and the rPPC are critical for controlling WM biases in human visual attention.

  20. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.

    PubMed

    Grubert, Anna; Eimer, Martin

    2013-10-01

    To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Temporal Target Integration Underlies Performance at Lag 1 in the Attentional Blink

    ERIC Educational Resources Information Center

    Akyurek, Elkan G.; Eshuis, Sander A. H.; Nieuwenstein, Mark R.; Saija, Jefta D.; Baskent, Deniz; Hommel, Bernhard

    2012-01-01

    When two targets follow each other directly in rapid serial visual presentation (RSVP), they are often identified correctly but reported in the wrong order. These order reversals are commonly explained in terms of the rate at which the two targets are processed, the idea being that the second target can sometimes overtake the first in the race…

  2. Odours reduce the magnitude of object substitution masking for matching visual targets in females.

    PubMed

    Robinson, Amanda K; Laning, Julia; Reinhard, Judith; Mattingley, Jason B

    2016-08-01

    Recent evidence suggests that olfactory stimuli can influence early stages of visual processing, but there has been little focus on whether such olfactory-visual interactions convey an advantage in visual object identification. Moreover, despite evidence that some aspects of olfactory perception are superior in females than males, no study to date has examined whether olfactory influences on vision are gender-dependent. We asked whether inhalation of familiar odorants can modulate participants' ability to identify briefly flashed images of matching visual objects under conditions of object substitution masking (OSM). Across two experiments, we had male and female participants (N = 36 in each group) identify masked visual images of odour-related objects (e.g., orange, rose, mint) amongst nonodour-related distracters (e.g., box, watch). In each trial, participants inhaled a single odour that either matched or mismatched the masked, odour-related target. Target detection performance was analysed using a signal detection (d') approach. In females, but not males, matching odours significantly reduced OSM relative to mismatching odours, suggesting that familiar odours can enhance the salience of briefly presented visual objects. We conclude that olfactory cues exert a subtle influence on visual processes by transiently enhancing the salience of matching object representations. The results add to a growing body of literature that points towards consistent gender differences in olfactory perception.

  3. Semantic information mediates visual attention during spoken word recognition in Chinese: Evidence from the printed-word version of the visual-world paradigm.

    PubMed

    Shen, Wei; Qu, Qingqing; Li, Xingshan

    2016-07-01

    In the present study, we investigated whether the activation of semantic information during spoken word recognition can mediate visual attention's deployment to printed Chinese words. We used a visual-world paradigm with printed words, in which participants listened to a spoken target word embedded in a neutral spoken sentence while looking at a visual display of printed words. We examined whether a semantic competitor effect could be observed in the printed-word version of the visual-world paradigm. In Experiment 1, the relationship between the spoken target words and the printed words was manipulated so that they were semantically related (a semantic competitor), phonologically related (a phonological competitor), or unrelated (distractors). We found that the probability of fixations on semantic competitors was significantly higher than that of fixations on the distractors. In Experiment 2, the orthographic similarity between the spoken target words and their semantic competitors was manipulated to further examine whether the semantic competitor effect was modulated by orthographic similarity. We found significant semantic competitor effects regardless of orthographic similarity. Our study not only reveals that semantic information can affect visual attention, it also provides important new insights into the methodology employed to investigate the semantic processing of spoken words during spoken word recognition using the printed-word version of the visual-world paradigm.

  4. Attentional Shifts between Audition and Vision in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Occelli, Valeria; Esposito, Gianluca; Venuti, Paola; Arduino, Giuseppe Maurizio; Zampini, Massimiliano

    2013-01-01

    Previous evidence on neurotypical adults shows that the presentation of a stimulus allocates the attention to its modality, resulting in faster responses to a subsequent target presented in the same (vs. different) modality. People with Autism Spectrum Disorders (ASDs) often fail to detect a (visual or auditory) target in a stream of stimuli after…

  5. Color selectivity of the spatial congruency effect: evidence from the focused attention paradigm.

    PubMed

    Makovac, Elena; Gerbino, Walter

    2014-01-01

    The multisensory response enhancement (MRE), occurring when the response to a visual target integrated with a spatially congruent sound is stronger than the response to the visual target alone, is believed to be mediated by the superior colliculus (SC) (Stein & Meredith, 1993). Here, we used a focused attention paradigm to show that the spatial congruency effect occurs with red (SC-effective) but not blue (SC-ineffective) visual stimuli, when presented with spatially congruent sounds. To isolate the chromatic component of SC-ineffective targets and to demonstrate the selectivity of the spatial congruency effect we used the random luminance modulation technique (Experiment 1) and the tritanopic technique (Experiment 2). Our results indicate that the spatial congruency effect does not require the distribution of attention over different sensory modalities and provide correlational evidence that the SC mediates the effect.

  6. Contextual remapping in visual search after predictable target-location changes.

    PubMed

    Conci, Markus; Sun, Luning; Müller, Hermann J

    2011-07-01

    Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.

  7. Infrared dim target detection based on visual attention

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lv, Guofang; Xu, Lizhong

    2012-11-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanisms, an automatic detection algorithm for infrared dim target is presented. After analyzing the characteristics of infrared dim target images, the method firstly designs Difference of Gaussians (DoG) filters to compute the saliency map. Then the salient regions where the potential targets exist in are extracted by searching through the saliency map with a control mechanism of winner-take-all (WTA) competition and inhibition-of-return (IOR). At last, these regions are identified by the characteristics of the dim IR targets, so the true targets are detected, and the spurious objects are rejected. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  8. Parallel Distractor Rejection as a Binding Mechanism in Search

    PubMed Central

    Dent, Kevin; Allen, Harriet A.; Braithwaite, Jason J.; Humphreys, Glyn W.

    2012-01-01

    The relatively common experimental visual search task of finding a red X amongst red O’s and green X’s (conjunction search) presents the visual system with a binding problem. Illusory conjunctions (ICs) of features across objects must be avoided and only features present in the same object bound together. Correct binding into unique objects by the visual system may be promoted, and ICs minimized, by inhibiting the locations of distractors possessing non-target features (e.g., Treisman and Sato, 1990). Such parallel rejection of interfering distractors leaves the target as the only item competing for selection; thus solving the binding problem. In the present article we explore the theoretical and empirical basis of this process of active distractor inhibition in search. Specific experiments that provide strong evidence for a process of active distractor inhibition in search are highlighted. In the final part of the article we consider how distractor inhibition, as defined here, may be realized at a neurophysiological level (Treisman and Sato, 1990). PMID:22908002

  9. Performance of a visuomotor walking task in an augmented reality training setting.

    PubMed

    Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper

    2017-12-01

    Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Spatial updating depends on gaze direction even after loss of vision.

    PubMed

    Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja

    2012-02-15

    Direction of gaze (eye angle + head angle) has been shown to be important for representing space for action, implying a crucial role of vision for spatial updating. However, blind people have no access to vision yet are able to perform goal-directed actions successfully. Here, we investigated the role of visual experience for localizing and updating targets as a function of intervening gaze shifts in humans. People who differed in visual experience (late blind, congenitally blind, or sighted) were briefly presented with a proprioceptive reach target while facing it. Before they reached to the target's remembered location, they turned their head toward an eccentric direction that also induced corresponding eye movements in sighted and late blind individuals. We found that reaching errors varied systematically as a function of shift in gaze direction only in participants with early visual experience (sighted and late blind). In the late blind, this effect was solely present in people with moveable eyes but not in people with at least one glass eye. Our results suggest that the effect of gaze shifts on spatial updating develops on the basis of visual experience early in life and remains even after loss of vision as long as feedback from the eyes and head is available.

  11. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical

    PubMed Central

    Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M

    2011-01-01

    The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188

  12. Meeting the Needs of Students with Coexisting Visual Impairments and Learning Disabilities

    ERIC Educational Resources Information Center

    Jones, Beth A.; Hensley-Maloney, Lauren

    2015-01-01

    The coexistence of visual impairments and learning disabilities presents unique challenges. It is imperative that teachers be apprised of the characteristics of this population as well as instructional strategies targeted at meeting their unique needs. The authors highlight typical patterns of performance and provide suggestions for effective…

  13. Right Hemisphere Specialization for Color Detection

    ERIC Educational Resources Information Center

    Sasaki, Hitoshi; Morimoto, Akiko; Nishio, Akira; Matsuura, Sumie

    2007-01-01

    Three experiments were carried out to investigate hemispheric asymmetry in color processing among normal participants. In Experiment 1, it was shown that the reaction times (RTs) of the dominant and non-dominant hands assessed using a visual target presented at the central visual field, were not significantly different. In Experiment 2, RTs of…

  14. Unconscious Cross-Modal Priming of Auditory Sound Localization by Visual Words

    ERIC Educational Resources Information Center

    Ansorge, Ulrich; Khalid, Shah; Laback, Bernhard

    2016-01-01

    Little is known about the cross-modal integration of unconscious and conscious information. In the current study, we therefore tested whether the spatial meaning of an unconscious visual word, such as "up", influences the perceived location of a subsequently presented auditory target. Although cross-modal integration of unconscious…

  15. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  16. Visual Foraging With Fingers and Eye Gaze

    PubMed Central

    Thornton, Ian M.; Smith, Irene J.; Chetverikov, Andrey; Kristjánsson, Árni

    2016-01-01

    A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints. PMID:27433323

  17. Visual Search in Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Landy, Kelly M.; Salmon, David P.; Filoteo, J. Vincent; Heindel, William C.; Galasko, Douglas; Hamilton, Joanne M.

    2016-01-01

    Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer’s disease (AD). To assess this possibility, the present study compared patients with DLB (n=17), AD (n=30), or Parkinson’s disease with dementia (PDD; n=10) to non-demented patients with PD (n=18) and normal control (NC) participants (n=13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target’s salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., “pop-out” effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search “pop-out” effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. PMID:26476402

  18. A new measure for the assessment of visual awareness in individuals with tunnel vision.

    PubMed

    AlSaqr, Ali M; Dickinson, Chris M

    2017-01-01

    Individuals with a restricted peripheral visual field or tunnel vision (TV) have problems moving about and avoiding obstacles. Some individuals adapt better than others and some use assistive optical aids, so measurement of the visual field is not sufficient to describe their performance. In the present study, we developed a new clinical test called the 'Assessment of Visual Awareness (AVA)', which can be used to measure detection of peripheral targets. The participants were 20 patients with TV due to retinitis pigmentosa (PTV) and 50 normally sighted participants with simulated tunnel vision (STV) using goggles. In the AVA test, detection times were measured, when subjects searched for 24 individually presented, one degree targets, randomly positioned in a 60 degrees noise background. Head and eye movements were allowed and the presentation time was unlimited. The test validity was investigated by correlating the detection times with the 'percentage of preferred walking speed' (PPWS) and the 'number of collisions' on an indoor mobility course. In PTV and STV, the detection times had significant negative correlation with the field of view. The detection times had significant positive relations with target location. In the STV, the detection time was significantly negatively correlated with the PPWS and significantly positively correlated with the collisions score on the indoor mobility course. In the PTV, the relationship was not statistically significant. No significant difference in performance of STV was found when repeating the test one to two weeks later. The proposed AVA test was sensitive to the field of view and target location. The test is unique in design, quick, simple to deliver and both repeatable and valid. It could be a valuable tool to test different rehabilitation strategies in patients with TV. © 2016 Optometry Australia.

  19. Learning where to look: electrophysiological and behavioral indices of visual search in young and old subjects.

    PubMed

    Looren de Jong, H; Kok, A; Woestenburg, J C; Logman, C J; Van Rooy, J C

    1988-06-01

    The present investigation explores the way young and elderly subjects use regularities in target location in a visual display to guide search for targets. Although both young and old subjects show efficient use of search strategies, slight but reliable differences in reaction times suggest decreased ability in the elderly to use complex cues. Event-related potentials were very different for the young and the old. In the young, P3 amplitudes were larger on trials where the rule that governed the location of the target became evident; this was interpreted as an effect of memory updating. Enhanced positive Slow Wave amplitude indicated uncertainty in random search conditions. Elderly subjects' P3 and SW, however, seemed unrelated to behavioral performance, and they showed a large negative Slow Wave at central and parietal sites to randomly located targets. The latter finding was tentatively interpreted as a sign of increased effort in the elderly to allocate attention in visual space. This pattern of behavioral and ERP results suggests that age-related differences in search tasks can be understood in terms of changes in the strategy of allocating visual attention.

  20. Visual attention shift to printed words during spoken word recognition in Chinese: The role of phonological information.

    PubMed

    Shen, Wei; Qu, Qingqing; Tong, Xiuhong

    2018-05-01

    The aim of this study was to investigate the extent to which phonological information mediates the visual attention shift to printed Chinese words in spoken word recognition by using an eye-movement technique with a printed-word paradigm. In this paradigm, participants are visually presented with four printed words on a computer screen, which include a target word, a phonological competitor, and two distractors. Participants are then required to select the target word using a computer mouse, and the eye movements are recorded. In Experiment 1, phonological information was manipulated at the full-phonological overlap; in Experiment 2, phonological information at the partial-phonological overlap was manipulated; and in Experiment 3, the phonological competitors were manipulated to share either fulloverlap or partial-overlap with targets directly. Results of the three experiments showed that the phonological competitor effects were observed at both the full-phonological overlap and partial-phonological overlap conditions. That is, phonological competitors attracted more fixations than distractors, which suggested that phonological information mediates the visual attention shift during spoken word recognition. More importantly, we found that the mediating role of phonological information varies as a function of the phonological similarity between target words and phonological competitors.

  1. The strength of attentional biases reduces as visual short-term memory load increases

    PubMed Central

    Shimi, A.

    2013-01-01

    Despite our visual system receiving irrelevant input that competes with task-relevant signals, we are able to pursue our perceptual goals. Attention enhances our visual processing by biasing the processing of the input that is relevant to the task at hand. The top-down signals enabling these biases are therefore important for regulating lower level sensory mechanisms. In three experiments, we examined whether we apply similar biases to successfully maintain information in visual short-term memory (VSTM). We presented participants with targets alongside distracters and we graded their perceptual similarity to vary the extent to which they competed. Experiments 1 and 2 showed that the more items held in VSTM before the onset of the distracters, the more perceptually distinct the distracters needed to be for participants to retain the target accurately. Experiment 3 extended these behavioral findings by demonstrating that the perceptual similarity between target and distracters exerted a significantly greater effect on occipital alpha amplitudes, depending on the number of items already held in VSTM. The trade-off between VSTM load and target-distracter competition suggests that VSTM and perceptual competition share a partially overlapping mechanism, namely top-down inputs into sensory areas. PMID:23576694

  2. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    PubMed Central

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (< 50 years) normally sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  3. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1

    PubMed Central

    Matsui, Teppei; Ohki, Kenichi

    2013-01-01

    Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

  4. The relation between visualization size, grouping, and user performance.

    PubMed

    Gramazio, Connor C; Schloss, Karen B; Laidlaw, David H

    2014-12-01

    In this paper we make the following contributions: (1) we describe how the grouping, quantity, and size of visual marks affects search time based on the results from two experiments; (2) we report how search performance relates to self-reported difficulty in finding the target for different display types; and (3) we present design guidelines based on our findings to facilitate the design of effective visualizations. Both Experiment 1 and 2 asked participants to search for a unique target in colored visualizations to test how the grouping, quantity, and size of marks affects user performance. In Experiment 1, the target square was embedded in a grid of squares and in Experiment 2 the target was a point in a scatterplot. Search performance was faster when colors were spatially grouped than when they were randomly arranged. The quantity of marks had little effect on search time for grouped displays ("pop-out"), but increasing the quantity of marks slowed reaction time for random displays. Regardless of color layout (grouped vs. random), response times were slowest for the smallest mark size and decreased as mark size increased to a point, after which response times plateaued. In addition to these two experiments we also include potential application areas, as well as results from a small case study where we report preliminary findings that size may affect how users infer how visualizations should be used. We conclude with a list of design guidelines that focus on how to best create visualizations based on grouping, quantity, and size of visual marks.

  5. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  6. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  7. Saccades to a remembered location elicit spatially-specific activation in human retinotopic visual cortex

    PubMed Central

    Geng, Joy J.; Ruff, Christian C.; Driver, Jon

    2008-01-01

    The possible impact upon human visual cortex from saccades to remembered target locations was investigated using fMRI. A specific location in the upper-right or upper-left visual quadrant served as the saccadic target. After a delay of 2400 msecs, an auditory signal indicated whether to execute a saccade to that location (go trial) or to cancel the saccade and remain centrally fixated (no-go). Group fMRI analysis revealed activation specific to the remembered target location for executed saccades, in contralateral lingual gyrus. No-go trials produced similar, albeit significantly reduced effects. Individual retinotopic mapping confirmed that on go trials, quadrant-specific activations arose in those parts of ventral V1, V2, and V3 that coded the target location for the saccade, whereas on no-go trials only the corresponding parts of V2 and V3 were significantly activated. These results indicate that a spatial-motor saccadic task (i.e. making an eye-movement to a remembered location) is sufficient to activate retinotopic visual cortex spatially corresponding to the target location, and that this activation is also present (though reduced) when no saccade is executed. We discuss the implications of finding that saccades to remembered locations can affect early visual cortex, not just those structures conventionally associated with eye-movements, in relation to recent ideas about attention, spatial working memory, and the notion that recently activated representations can be ‘refreshed’ when needed. PMID:18510442

  8. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    PubMed

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  9. Stride-Cycle Influences on Goal-Directed Head Movements Made During Walking

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.

    2006-01-01

    Horizontal head movements were studied in six subjects as they made rapid horizontal gaze adjustments while walking. The aim of the present research was to determine if gait-cycle events alter the head movement response to a visual target acquisition task. Gaze shifts of approximately 40deg were elicited by a step change in the position of a visual target from a central location to a second location in the left or right horizontal periphery. The timing of the target position change was constrained to occur at 25,50,75 and 100% of the stride cycle. The trials were randomly presented as the subjects walked on a treadmill at their preferred speed (range: 1.25 to 1.48 m/s, mean: 1.39 +/- 0.09 m/s ) . Analyses focused on the movement onset latencies of the head and eyes and on the peak velocity and saccade amplitude of the head movement response. A comparison of the group means indicated that the head movement onset lagged the eye onset (262 ms versus 252 ms). The head and eye movement onset latencies were not affected by either the direction of the target change nor the point in the gait cycle during which the target relocation occurred. However, the presence of an interaction between the gait cycle events and the direction of the visual target shift indicates that the peak head saccade velocity and head saccade amplitude are affected by the natural head oscillations that occur while walking.

  10. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  11. [Eye movement study in multiple object search process].

    PubMed

    Xu, Zhaofang; Liu, Zhongqi; Wang, Xingwei; Zhang, Xin

    2017-04-01

    The aim of this study is to investigate the search time regulation of objectives and eye movement behavior characteristics in the multi-objective visual search. The experimental task was accomplished with computer programming and presented characters on a 24 inch computer display. The subjects were asked to search three targets among the characters. Three target characters in the same group were of high similarity degree while those in different groups of target characters and distraction characters were in different similarity degrees. We recorded the search time and eye movement data through the whole experiment. It could be seen from the eye movement data that the quantity of fixation points was large when the target characters and distraction characters were similar. There were three kinds of visual search patterns for the subjects including parallel search, serial search, and parallel-serial search. In addition, the last pattern had the best search performance among the three search patterns, that is, the subjects who used parallel-serial search pattern spent shorter time finding the target. The order that the targets presented were able to affect the search performance significantly; and the similarity degree between target characters and distraction characters could also affect the search performance.

  12. The attentional blink in amblyopia.

    PubMed

    Popple, Ariella V; Levi, Dennis M

    2008-10-31

    Amblyopia is a disorder of visual acuity in one eye, thought to arise from suppression by the other eye during development of the visual cortex. In the attentional blink, the second of two targets (T2) in a Rapid Serial Visual Presentation (RSVP) stream is difficult to detect and identify when it appears shortly but not immediately after the first target (T1). We investigated the attentional blink seen through amblyopic eyes and found that it was less finely tuned in time than when the 12 amblyopic observers viewed the stimuli with their preferred eyes. T2 performance was slightly better through amblyopic eyes two frames after T1 but worse one frame after T1. Previously (A. V. Popple & D. M. Levi, 2007), we showed that when the targets were red letters in a stream of gray letters (or vice versa), normal observers frequently confused T2 with the letters before and after it (neighbor errors). Observers viewing through their amblyopic eyes made significantly fewer neighbor errors and more T2 responses consisting of letters that were never presented. In normal observers, T1 (on the rare occasions when it was reported incorrectly) was often confused with the letter immediately after it. Viewing through their amblyopic eyes, observers with amblyopia made more responses to the letter immediately before T1. These results suggest that childhood suppression of the input from amblyopic eyes disrupts attentive processing. We hypothesize reduced connectivity between monocularly tuned lower visual areas, subcortical structures that drive foveal attention, and more frontal regions of the brain responsible for letter recognition and working memory. Perhaps when viewing through their amblyopic eyes, the observers were still processing the letter identity of a prior distractor when the color flash associated with the target was detected. After T1, unfocused temporal attention may have bound together erroneously the features of succeeding letters, resulting in the appearance of letters that were not actually presented. These findings highlight the role of early (monocular) visual processes in modulating the attentional blink, as well as the role of attention in amblyopic visual deficits.

  13. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    PubMed

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differential effects of delay upon visually and haptically guided grasping and perceptual judgments.

    PubMed

    Pettypiece, Charles E; Culham, Jody C; Goodale, Melvyn A

    2009-05-01

    Experiments with visual illusions have revealed a dissociation between the systems that mediate object perception and those responsible for object-directed action. More recently, an experiment on a haptic version of the visual size-contrast illusion has provided evidence for the notion that the haptic modality shows a similar dissociation when grasping and estimating the size of objects in real-time. Here we present evidence suggesting that the similarities between the two modalities begin to break down once a delay is introduced between when people feel the target object and when they perform the grasp or estimation. In particular, when grasping after a delay in a haptic paradigm, people scale their grasps differently when the target is presented with a flanking object of a different size (although the difference does not reflect a size-contrast effect). When estimating after a delay, however, it appears that people ignore the size of the flanking objects entirely. This does not fit well with the results commonly found in visual experiments. Thus, introducing a delay reveals important differences in the way in which haptic and visual memories are stored and accessed.

  15. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  16. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information

    PubMed Central

    Strauss, Soeren; Woodgate, Philip J.W.; Sami, Saber A.; Heinke, Dietmar

    2015-01-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain’s attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO’s predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353

  17. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    PubMed

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Short-term perceptual learning in visual conjunction search.

    PubMed

    Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong

    2014-08-01

    Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.

  19. Modelling eye movements in a categorical search task

    PubMed Central

    Zelinsky, Gregory J.; Adeli, Hossein; Peng, Yifan; Samaras, Dimitris

    2013-01-01

    We introduce a model of eye movements during categorical search, the task of finding and recognizing categorically defined targets. It extends a previous model of eye movements during search (target acquisition model, TAM) by using distances from an support vector machine classification boundary to create probability maps indicating pixel-by-pixel evidence for the target category in search images. Other additions include functionality enabling target-absent searches, and a fixation-based blurring of the search images now based on a mapping between visual and collicular space. We tested this model on images from a previously conducted variable set-size (6/13/20) present/absent search experiment where participants searched for categorically defined teddy bear targets among random category distractors. The model not only captured target-present/absent set-size effects, but also accurately predicted for all conditions the numbers of fixations made prior to search judgements. It also predicted the percentages of first eye movements during search landing on targets, a conservative measure of search guidance. Effects of set size on false negative and false positive errors were also captured, but error rates in general were overestimated. We conclude that visual features discriminating a target category from non-targets can be learned and used to guide eye movements during categorical search. PMID:24018720

  20. Spatiotopic updating of visual feature information.

    PubMed

    Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R

    2017-10-01

    Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.

  1. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  2. Visual attention and stability

    PubMed Central

    Mathôt, Sebastiaan; Theeuwes, Jan

    2011-01-01

    In the present review, we address the relationship between attention and visual stability. Even though with each eye, head and body movement the retinal image changes dramatically, we perceive the world as stable and are able to perform visually guided actions. However, visual stability is not as complete as introspection would lead us to believe. We attend to only a few items at a time and stability is maintained only for those items. There appear to be two distinct mechanisms underlying visual stability. The first is a passive mechanism: the visual system assumes the world to be stable, unless there is a clear discrepancy between the pre- and post-saccadic image of the region surrounding the saccade target. This is related to the pre-saccadic shift of attention, which allows for an accurate preview of the saccade target. The second is an active mechanism: information about attended objects is remapped within retinotopic maps to compensate for eye movements. The locus of attention itself, which is also characterized by localized retinotopic activity, is remapped as well. We conclude that visual attention is crucial in our perception of a stable world. PMID:21242140

  3. Casual Video Games as Training Tools for Attentional Processes in Everyday Life.

    PubMed

    Stroud, Michael J; Whitbourne, Susan Krauss

    2015-11-01

    Three experiments examined the attentional components of the popular match-3 casual video game, Bejeweled Blitz (BJB). Attentionally demanding, BJB is highly popular among adults, particularly those in middle and later adulthood. In experiment 1, 54 older adults (Mage = 70.57) and 33 younger adults (Mage = 19.82) played 20 rounds of BJB, and completed online tasks measuring reaction time, simple visual search, and conjunction visual search. Prior experience significantly predicted BJB scores for younger adults, but for older adults, both prior experience and simple visual search task scores predicted BJB performance. Experiment 2 tested whether BJB practice alone would result in a carryover benefit to a visual search task in a sample of 58 young adults (Mage = 19.57) who completed 0, 10, or 30 rounds of BJB followed by a BJB-like visual search task with targets present or absent. Reaction times were significantly faster for participants who completed 30 but not 10 rounds of BJB compared with the search task only. This benefit was evident when targets were both present and absent, suggesting that playing BJB improves not only target detection, but also the ability to quit search effectively. Experiment 3 tested whether the attentional benefit in experiment 2 would apply to non-BJB stimuli. The results revealed a similar numerical but not significant trend. Taken together, the findings suggest there are benefits of casual video game playing to attention and relevant everyday skills, and that these games may have potential value as training tools.

  4. View-Dependent Streamline Deformation and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Xin; Edwards, John; Chen, Chun-Ming

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less

  5. Selective enhancement of orientation tuning before saccades.

    PubMed

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  6. Low target prevalence is a stubborn source of errors in visual search tasks

    PubMed Central

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2009-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1–2%) than at high prevalence (50%). Unfortunately, low prevalence is characteristic of important search tasks like airport security and medical screening where miss errors are dangerous. A series of experiments show this prevalence effect is very robust. In signal detection terms, the prevalence effect can be explained as a criterion shift and not a change in sensitivity. Several efforts to induce observers to adopt a better criterion fail. However, a regime of brief retraining periods with high prevalence and full feedback allows observers to hold a good criterion during periods of low prevalence with no feedback. PMID:17999575

  7. Attentional enhancement during multiple-object tracking.

    PubMed

    Drew, Trafton; McCollough, Andrew W; Horowitz, Todd S; Vogel, Edward K

    2009-04-01

    What is the role of attention in multiple-object tracking? Does attention enhance target representations, suppress distractor representations, or both? It is difficult to ask this question in a purely behavioral paradigm without altering the very attentional allocation one is trying to measure. In the present study, we used event-related potentials to examine the early visual evoked responses to task-irrelevant probes without requiring an additional detection task. Subjects tracked two targets among four moving distractors and four stationary distractors. Brief probes were flashed on targets, moving distractors, stationary distractors, or empty space. We obtained a significant enhancement of the visually evoked P1 and N1 components (approximately 100-150 msec) for probes on targets, relative to distractors. Furthermore, good trackers showed larger differences between target and distractor probes than did poor trackers. These results provide evidence of early attentional enhancement of tracked target items and also provide a novel approach to measuring attentional allocation during tracking.

  8. Contextual consistency facilitates long-term memory of perceptual detail in barely seen images.

    PubMed

    Gronau, Nurit; Shachar, Meytal

    2015-08-01

    It is long known that contextual information affects memory for an object's identity (e.g., its basic level category), yet it is unclear whether schematic knowledge additionally enhances memory for the precise visual appearance of an item. Here we investigated memory for visual detail of merely glimpsed objects. Participants viewed pairs of contextually related and unrelated stimuli, presented for an extremely brief duration (24 ms, masked). They then performed a forced-choice memory-recognition test for the precise perceptual appearance of 1 of 2 objects within each pair (i.e., the "memory-target" item). In 3 experiments, we show that memory-target stimuli originally appearing within contextually related pairs are remembered better than targets appearing within unrelated pairs. These effects are obtained whether the target is presented at test with its counterpart pair object (i.e., when reiterating the original context at encoding) or whether the target is presented alone, implying that the contextual consistency effects are mediated predominantly by processes occurring during stimulus encoding, rather than during stimulus retrieval. Furthermore, visual detail encoding is improved whether object relations involve implied action or not, suggesting that, contrary to some prior suggestions, action is not a necessary component for object-to-object associative "grouping" processes. Our findings suggest that during a brief glimpse, but not under long viewing conditions, contextual associations may play a critical role in reducing stimulus competition for attention selection and in facilitating rapid encoding of sensory details. Theoretical implications with respect to classic frame theories are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  9. Making the invisible visible: verbal but not visual cues enhance visual detection.

    PubMed

    Lupyan, Gary; Spivey, Michael J

    2010-07-07

    Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.

  10. Reward- and attention-related biasing of sensory selection in visual cortex.

    PubMed

    Buschschulte, Antje; Boehler, Carsten N; Strumpf, Hendrik; Stoppel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max

    2014-05-01

    Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top-down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.

  11. How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?

    PubMed Central

    Sapkota, Raju P.; van der Linde, Ian; Pardhan, Shahina

    2015-01-01

    This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits. PMID:25653615

  12. How does aging affect the types of error made in a visual short-term memory 'object-recall' task?

    PubMed

    Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina

    2014-01-01

    This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.

  13. Scene analysis for effective visual search in rough three-dimensional-modeling scenes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Hu, Xiaopeng

    2016-11-01

    Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.

  14. Hemispheric asymmetry of liking for representational and abstract paintings.

    PubMed

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  15. Retinotopy and attention to the face and house images in the human visual cortex.

    PubMed

    Wang, Bin; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Wu, Jinglong

    2016-06-01

    Attentional modulation of the neural activities in human visual areas has been well demonstrated. However, the retinotopic activities that are driven by face and house images and attention to face and house images remain unknown. In the present study, we used images of faces and houses to estimate the retinotopic activities that were driven by both the images and attention to the images, driven by attention to the images, and driven by the images. Generally, our results show that both face and house images produced similar retinotopic activities in visual areas, which were only observed in the attention + stimulus and the attention conditions, but not in the stimulus condition. The fusiform face area (FFA) responded to faces that were presented on the horizontal meridian, whereas parahippocampal place area (PPA) rarely responded to house at any visual field. We further analyzed the amplitudes of the neural responses to the target wedge. In V1, V2, V3, V3A, lateral occipital area 1 (LO-1), and hV4, the neural responses to the attended target wedge were significantly greater than those to the unattended target wedge. However, in LO-2, ventral occipital areas 1 and 2 (VO-1 and VO-2) and FFA and PPA, the differences were not significant. We proposed that these areas likely have large fields of attentional modulation for face and house images and exhibit responses to both the target wedge and the background stimuli. In addition, we proposed that the absence of retinotopic activity in the stimulus condition might imply no perceived difference between the target wedge and the background stimuli.

  16. Children with Heavy Prenatal Alcohol Exposure have Different Frequency Domain Signal Characteristics when Producing Isometric Force

    PubMed Central

    Nguyen, Tanya T.; Ashrafi, Ashkan; Thomas, Jennifer D.; Riley, Edward P.; Simmons, Roger W.

    2013-01-01

    To extend our current understanding of the teratogenic effects of prenatal alcohol exposure on the control of isometric force, the present study investigated the signal characteristics of power spectral density functions resulting from sustained control of isometric force by children with and without heavy prenatal exposure to alcohol. It was predicted that the functions associated with the force signals would be fundamentally different for the two groups. Twenty-five children aged between 7 and 17 years with heavy prenatal alcohol exposure and 21 non-alcohol exposed control children attempted to duplicate a visually represented target force by pressing on a load cell. The level of target force (5 and 20% of maximum voluntary contraction) and the time interval between visual feedback (20ms, 320ms and 740ms) were manipulated. A multivariate spectral estimation method with sinusoidal windows was applied to individual isometric force-time signals. Analysis of the resulting power spectral density functions revealed that the alcohol-exposed children had a lower mean frequency, less spectral variability, greater peak power and a lower frequency at which peak power occurred. Furthermore, mean frequency and spectral variability produced by the alcohol-exposed group remained constant across target load and visual feedback interval, suggesting that these children were limited to making long-time scale corrections to the force signal. In contrast, the control group produced decreased mean frequency and spectral variability as target force and the interval between visual feedback increased, indicating that when feedback was frequently presented these children used the information to make short-time scale adjustments to the ongoing force signal. Knowledge of these differences could facilitate the design of motor rehabilitation exercises that specifically target isometric force control deficits in alcohol-exposed children. PMID:23238099

  17. Perceptual grouping determines haptic contextual modulation.

    PubMed

    Overvliet, K E; Sayim, B

    2016-09-01

    Since the early phenomenological demonstrations of Gestalt principles, one of the major challenges of Gestalt psychology has been to quantify these principles. Here, we show that contextual modulation, i.e. the influence of context on target perception, can be used as a tool to quantify perceptual grouping in the haptic domain, similar to the visual domain. We investigated the influence of target-flanker grouping on performance in haptic vernier offset discrimination. We hypothesized that when, despite the apparent differences between vision and haptics, similar grouping principles are operational, a similar pattern of flanker interference would be observed in the haptic as in the visual domain. Participants discriminated the offset of a haptic vernier. The vernier was flanked by different flanker configurations: no flankers, single flanking lines, 10 flanking lines, rectangles and single perpendicular lines, varying the degree to which the vernier grouped with the flankers. Additionally, we used two different flanker widths (same width as and narrower than the target), again to vary target-flanker grouping. Our results show a clear effect of flankers: performance was much better when the vernier was presented alone compared to when it was presented with flankers. In the majority of flanker configurations, grouping between the target and the flankers determined the strength of interference, similar to the visual domain. However, in the same width rectangular flanker condition we found aberrant results. We discuss the results of our study in light of similarities and differences between vision and haptics and the interaction between different grouping principles. We conclude that in haptics, similar organization principles apply as in visual perception and argue that grouping and Gestalt are key organization principles not only of vision, but of the perceptual system in general. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Affective Overload: The Effect of Emotive Visual Stimuli on Target Vocabulary Retrieval.

    PubMed

    Çetin, Yakup; Griffiths, Carol; Özel, Zeynep Ebrar Yetkiner; Kinay, Hüseyin

    2016-04-01

    There has been considerable interest in cognitive load in recent years, but the effect of affective load and its relationship to mental functioning has not received as much attention. In order to investigate the effects of affective stimuli on cognitive function as manifest in the ability to remember foreign language vocabulary, two groups of student volunteers (N = 64) aged from 17 to 25 years were shown a Powerpoint presentation of 21 target language words with a picture, audio, and written form for every word. The vocabulary was presented in comfortable rooms with padded chairs and the participants were provided with snacks so that they would be comfortable and relaxed. After the Powerpoint they were exposed to two forms of visual stimuli for 27 min. The different formats contained either visually affective content (sexually suggestive, violent or frightening material) or neutral content (a nature documentary). The group which was exposed to the emotive visual stimuli remembered significantly fewer words than the group which watched the emotively neutral nature documentary. Implications of this finding are discussed and suggestions made for ongoing research.

  19. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    PubMed

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  20. How visual cues for when to listen aid selective auditory attention.

    PubMed

    Varghese, Lenny A; Ozmeral, Erol J; Best, Virginia; Shinn-Cunningham, Barbara G

    2012-06-01

    Visual cues are known to aid auditory processing when they provide direct information about signal content, as in lip reading. However, some studies hint that visual cues also aid auditory perception by guiding attention to the target in a mixture of similar sounds. The current study directly tests this idea for complex, nonspeech auditory signals, using a visual cue providing only timing information about the target. Listeners were asked to identify a target zebra finch bird song played at a random time within a longer, competing masker. Two different maskers were used: noise and a chorus of competing bird songs. On half of all trials, a visual cue indicated the timing of the target within the masker. For the noise masker, the visual cue did not affect performance when target and masker were from the same location, but improved performance when target and masker were in different locations. In contrast, for the chorus masker, visual cues improved performance only when target and masker were perceived as coming from the same direction. These results suggest that simple visual cues for when to listen improve target identification by enhancing sounds near the threshold of audibility when the target is energetically masked and by enhancing segregation when it is difficult to direct selective attention to the target. Visual cues help little when target and masker already differ in attributes that enable listeners to engage selective auditory attention effectively, including differences in spectrotemporal structure and in perceived location.

  1. What does visual suffix interference tell us about spatial location in working memory?

    PubMed

    Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.

  2. Visuomotor adaptation needs a validation of prediction error by feedback error

    PubMed Central

    Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle

    2014-01-01

    The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644

  3. Attentional bias to briefly presented emotional distractors follows a slow time course in visual cortex.

    PubMed

    Müller, Matthias M; Andersen, Søren K; Hindi Attar, Catherine

    2011-11-02

    A central controversy in the field of attention is how the brain deals with emotional distractors and to what extent they capture attentional processing resources reflexively due to their inherent significance for guidance of adaptive behavior and survival. Especially, the time course of competitive interactions in early visual areas and whether masking of briefly presented emotional stimuli can inhibit biasing of processing resources in these areas is currently unknown. We recorded frequency-tagged potentials evoked by a flickering target detection task in the foreground of briefly presented emotional or neutral pictures that were followed by a mask in human subjects. We observed greater competition for processing resources in early visual cortical areas with shortly presented emotional relative to neutral pictures ~275 ms after picture offset. This was paralleled by a reduction of target detection rates in trials with emotional pictures ~400 ms after picture offset. Our finding that briefly presented emotional distractors are able to bias attention well after their offset provides evidence for a rather slow feedback or reentrant neural competition mechanism for emotional distractors that continues after the offset of the emotional stimulus.

  4. Using multisensory cues to facilitate air traffic management.

    PubMed

    Ngo, Mary K; Pierce, Russell S; Spence, Charles

    2012-12-01

    In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.

  5. Bullets versus burgers: is it threat or relevance that captures attention?

    PubMed

    de Oca, Beatrice M; Black, Alison A

    2013-01-01

    Previous studies have found that potentially dangerous stimuli are better at capturing attention than neutral stimuli, a finding sometimes called the threat superiority effect. However, non-threatening stimuli also capture attention in many studies of visual attention. In Experiment 1, the relevance superiority effect was tested with a visual search task comparing detection times for threatening stimuli (guns), pleasant but motivationally relevant stimuli (food), and neutral stimuli (flowers and chairs). Gun targets were detected more rapidly than both types of neutral targets, whereas food targets were detected more quickly than the neutral chair targets only. Guns were detected more rapidly than food. In Experiment 2, threatening targets (guns and snakes), pleasant but motivationally relevant targets (money and food), and neutral targets (trees and couches) were all presented with the same neutral distractors (cactus and pots) in order to control for the valence of the distractor stimulus across the three categories of target stimuli. Threatening and pleasant target categories facilitated attention relative to neutral targets. The results support the view that both threatening and pleasant pictures can be detected more rapidly than neutral targets.

  6. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    PubMed Central

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274

  7. Temporal Dynamics of Visual Attention Measured with Event-Related Potentials

    PubMed Central

    Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2013-01-01

    How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP) and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs) with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance. PMID:23976966

  8. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    PubMed

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  9. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  10. Attentional episodes in visual perception

    PubMed Central

    Wyble, Brad; Potter, Mary C; Bowman, Howard; Nieuwenstein, Mark

    2011-01-01

    Is one's temporal perception of the world truly as seamless as it appears? This paper presents a computationally motivated theory suggesting that visual attention samples information from temporal episodes (episodic Simultaneous Type/ Serial Token model or eSTST; Wyble et al 2009a). Breaks between these episodes are punctuated by periods of suppressed attention, better known as the attentional blink (Raymond, Shapiro & Arnell 1992). We test predictions from this model and demonstrate that subjects are able to report more letters from a sequence of four targets presented in a dense temporal cluster, than from a sequence of four targets that are interleaved with non-targets. However, this superior report accuracy comes at a cost in impaired temporal order perception. Further experiments explore the dynamics of multiple episodes, and the boundary conditions that trigger episodic breaks. Finally, we contrast the importance of attentional control, limited resources and memory capacity constructs in the model. PMID:21604913

  11. Ultrafast scene detection and recognition with limited visual information

    PubMed Central

    Hagmann, Carl Erick; Potter, Mary C.

    2016-01-01

    Humans can detect target color pictures of scenes depicting concepts like picnic or harbor in sequences of six or twelve pictures presented as briefly as 13 ms, even when the target is named after the sequence (Potter, Wyble, Hagmann, & McCourt, 2014). Such rapid detection suggests that feedforward processing alone enabled detection without recurrent cortical feedback. There is debate about whether coarse, global, low spatial frequencies (LSFs) provide predictive information to high cortical levels through the rapid magnocellular (M) projection of the visual path, enabling top-down prediction of possible object identities. To test the “Fast M” hypothesis, we compared detection of a named target across five stimulus conditions: unaltered color, blurred color, grayscale, thresholded monochrome, and LSF pictures. The pictures were presented for 13–80 ms in six-picture rapid serial visual presentation (RSVP) sequences. Blurred, monochrome, and LSF pictures were detected less accurately than normal color or grayscale pictures. When the target was named before the sequence, all picture types except LSF resulted in above-chance detection at all durations. Crucially, when the name was given only after the sequence, performance dropped and the monochrome and LSF pictures (but not the blurred pictures) were at or near chance. Thus, without advance information, monochrome and LSF pictures were rarely understood. The results offer only limited support for the Fast M hypothesis, suggesting instead that feedforward processing is able to activate conceptual representations without complementary reentrant processing. PMID:28255263

  12. Association of auditory-verbal and visual hallucinations with impaired and improved recognition of colored pictures.

    PubMed

    Brébion, Gildas; Stephan-Otto, Christian; Usall, Judith; Huerta-Ramos, Elena; Perez del Olmo, Mireia; Cuevas-Esteban, Jorge; Haro, Josep Maria; Ochoa, Susana

    2015-09-01

    A number of cognitive underpinnings of auditory hallucinations have been established in schizophrenia patients, but few have, as yet, been uncovered for visual hallucinations. In previous research, we unexpectedly observed that auditory hallucinations were associated with poor recognition of color, but not black-and-white (b/w), pictures. In this study, we attempted to replicate and explain this finding. Potential associations with visual hallucinations were explored. B/w and color pictures were presented to 50 schizophrenia patients and 45 healthy individuals under 2 conditions of visual context presentation corresponding to 2 levels of visual encoding complexity. Then, participants had to recognize the target pictures among distractors. Auditory-verbal hallucinations were inversely associated with the recognition of the color pictures presented under the most effortful encoding condition. This association was fully mediated by working-memory span. Visual hallucinations were associated with improved recognition of the color pictures presented under the less effortful condition. Patients suffering from visual hallucinations were not impaired, relative to the healthy participants, in the recognition of these pictures. Decreased working-memory span in patients with auditory-verbal hallucinations might impede the effortful encoding of stimuli. Visual hallucinations might be associated with facilitation in the visual encoding of natural scenes, or with enhanced color perception abilities. (c) 2015 APA, all rights reserved).

  13. Resting EEG in Alpha and Beta Bands Predicts Individual Differences in Attentional Blink Magnitude

    ERIC Educational Resources Information Center

    MacLean, Mary H.; Arnell, Karen M.; Cote, Kimberly A.

    2012-01-01

    Accuracy for a second target (T2) is reduced when it is presented within 500 ms of a first target (T1) in a rapid serial visual presentation (RSVP)--an attentional blink (AB). There are reliable individual differences in the magnitude of the AB. Recent evidence has shown that the attentional approach that an individual typically adopts during a…

  14. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory

    PubMed Central

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978

  15. Temporal allocation of attention toward threat in individuals with posttraumatic stress symptoms.

    PubMed

    Amir, Nader; Taylor, Charles T; Bomyea, Jessica A; Badour, Christal L

    2009-12-01

    Research suggests that individuals with posttraumatic stress disorder (PTSD) selectively attend to threat-relevant information. However, little is known about how initial detection of threat influences the processing of subsequently encountered stimuli. To address this issue, we used a rapid serial visual presentation paradigm (RSVP; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860) to examine temporal allocation of attention to threat-related and neutral stimuli in individuals with PTSD symptoms (PTS), traumatized individuals without PTSD symptoms (TC), and non-anxious controls (NAC). Participants were asked to identify one or two targets in an RSVP stream. Typically processing of the first target decreases accuracy of identifying the second target as a function of the temporal lag between targets. Results revealed that the PTS group was significantly more accurate in detecting a neutral target when it was presented 300 or 500ms after threat-related stimuli compared to when the target followed neutral stimuli. These results suggest that individuals with PTSD may process trauma-relevant information more rapidly and efficiently than benign information.

  16. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Waytowich, Nicholas R.; Krusienski, Dean J.

    2015-06-01

    Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. Main results. Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. Significance. The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.

  17. Top-down knowledge modulates onset capture in a feedforward manner.

    PubMed

    Becker, Stefanie I; Lewis, Amanda J; Axtens, Jenna E

    2017-04-01

    How do we select behaviourally important information from cluttered visual environments? Previous research has shown that both top-down, goal-driven factors and bottom-up, stimulus-driven factors determine which stimuli are selected. However, it is still debated when top-down processes modulate visual selection. According to a feedforward account, top-down processes modulate visual processing even before the appearance of any stimuli, whereas others claim that top-down processes modulate visual selection only at a late stage, via feedback processing. In line with such a dual stage account, some studies found that eye movements to an irrelevant onset distractor are not modulated by its similarity to the target stimulus, especially when eye movements are launched early (within 150-ms post stimulus onset). However, in these studies the target transiently changed colour due to a colour after-effect that occurred during premasking, and the time course analyses were incomplete. The present study tested the feedforward account against the dual stage account in two eye tracking experiments, with and without colour after-effects (Exp. 1), as well when the target colour varied randomly and observers were informed of the target colour with a word cue (Exp. 2). The results showed that top-down processes modulated the earliest eye movements to the onset distractors (<150-ms latencies), without incurring any costs for selection of target matching distractors. These results unambiguously support a feedforward account of top-down modulation.

  18. Visual field tunneling in aviators induced by memory demands.

    PubMed

    Williams, L J

    1995-04-01

    Aviators are required rapidly and accurately to process enormous amounts of visual information located foveally and peripherally. The present study, expanding upon an earlier study (Williams, 1988), required young aviators to process within the framework of a single eye fixation a briefly displayed foveally presented memory load while simultaneously trying to identify common peripheral targets presented on the same display at locations up to 4.5 degrees of visual angle from the fixation point. This task, as well as a character classification task (Williams, 1985, 1988), has been shown to be very difficult for nonaviators: It results in a tendency toward tunnel vision. Limited preliminary measurements of peripheral accuracy suggested that aviators might be less susceptible than nonaviators to this visual tunneling. The present study demonstrated moderate susceptibility to cognitively induced tunneling in aviators when the foveal task was sufficiently difficult and reaction time was the principal dependent measure.

  19. Vision In Stroke cohort: Profile overview of visual impairment.

    PubMed

    Rowe, Fiona J

    2017-11-01

    To profile the full range of visual disorders from a large prospective observation study of stroke survivors referred by stroke multidisciplinary teams to orthoptic services with suspected visual problems. Multicenter prospective study undertaken in 20 acute Trust hospitals. Standardized screening/referral forms and investigation forms documented data on referral signs and symptoms plus type and extent of visual impairment. Of 1,345 patients referred with suspected visual impairment, 915 were recruited (59% men; mean age at stroke onset 69 years [SD 14]). Initial visual assessment was at median 22 days post stroke onset. Eight percent had normal visual assessment. Of 92% with confirmed visual impairment, 24% had reduced central visual acuity <0.3 logMAR and 13.5% <0.5 logMAR. Acquired strabismus was noted in 16% and acquired ocular motility disorders in 68%. Peripheral visual field loss was present in 52%, most commonly homonymous hemianopia. Fifteen percent had visual inattention and 4.6% had other visual perceptual disorders. Overall 84% were visually symptomatic with visual field loss the most common complaint followed by blurred vision, reading difficulty, and diplopia. Treatment options were provided to all with confirmed visual impairment. Targeted advice was most commonly provided along with refraction, prisms, and occlusion. There are a wide range of visual disorders that occur following stroke and, frequently, with visual symptoms. There are equally a wide variety of treatment options available for these individuals. All stroke survivors require screening for visual impairment and warrant referral for specialist assessment and targeted treatment specific to the type of visual impairment.

  20. Multisensory brand search: How the meaning of sounds guides consumers' visual attention.

    PubMed

    Knoeferle, Klemens M; Knoeferle, Pia; Velasco, Carlos; Spence, Charles

    2016-06-01

    Building on models of crossmodal attention, the present research proposes that brand search is inherently multisensory, in that the consumers' visual search for a specific brand can be facilitated by semantically related stimuli that are presented in another sensory modality. A series of 5 experiments demonstrates that the presentation of spatially nonpredictive auditory stimuli associated with products (e.g., usage sounds or product-related jingles) can crossmodally facilitate consumers' visual search for, and selection of, products. Eye-tracking data (Experiment 2) revealed that the crossmodal effect of auditory cues on visual search manifested itself not only in RTs, but also in the earliest stages of visual attentional processing, thus suggesting that the semantic information embedded within sounds can modulate the perceptual saliency of the target products' visual representations. Crossmodal facilitation was even observed for newly learnt associations between unfamiliar brands and sonic logos, implicating multisensory short-term learning in establishing audiovisual semantic associations. The facilitation effect was stronger when searching complex rather than simple visual displays, thus suggesting a modulatory role of perceptual load. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Gait bradykinesia in Parkinson's disease: a change in the motor program which controls the synergy of gait.

    PubMed

    Warabi, Tateo; Furuyama, Hiroyasu; Sugai, Eri; Kato, Masamichi; Yanagisawa, Nobuo

    2018-01-01

    This study examined how gait bradykinesia is changed by the motor programming in Parkinson's disease. Thirty-five idiopathic Parkinson's disease patients and nine age-matched healthy subjects participated in this study. After the patients fixated on a visual-fixation target (conditioning-stimulus), the voluntary-gait was triggered by a visual on-stimulus. While the subject walked on a level floor, soleus, tibialis anterior EMG latencies, and the y-axis-vector of the sole-floor reaction force were examined. Three paradigms were used to distinguish between the off-/on-latencies. The gap-task: the visual-fixation target was turned off; 200 ms before the on-stimulus was engaged (resulting in a 200 ms-gap). EMG latency was not influenced by the visual-fixation target. The overlap-task: the on-stimulus was turned on during the visual-fixation target presentation (200 ms-overlap). The no-gap-task: the fixation target was turned off and the on-stimulus was turned on simultaneously. The onset of EMG pause following the tonic soleus EMG was defined as the off-latency of posture (termination). The onset of the tibialis anterior EMG burst was defined as the on-latency of gait (initiation). In the gap-task, the on-latency was unchanged in all of the subjects. In Parkinson's disease, the visual-fixation target prolonged both the off-/on-latencies in the overlap-task. In all tasks, the off-latency was prolonged and the off-/on-latencies were unsynchronized, which changed the synergic movement to a slow, short-step-gait. The synergy of gait was regulated by two independent sensory-motor programs of the off- and on-latency levels. In Parkinson's disease, the delayed gait initiation was due to the difficulty in terminating the sensory-motor program which controls the subject's fixation. The dynamic gait bradykinesia was involved in the difficulty (long off-latency) in terminating the motor program of the prior posture/movement.

  2. View-Dependent Streamline Deformation and Exploration

    PubMed Central

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-01-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061

  3. View-Dependent Streamline Deformation and Exploration.

    PubMed

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  4. Attention, Intention, and Priority in the Parietal Lobe

    PubMed Central

    Bisley, James W.; Goldberg, Michael E.

    2013-01-01

    For many years there has been a debate about the role of the parietal lobe in the generation of behavior. Does it generate movement plans (intention) or choose objects in the environment for further processing? To answer this, we focus on the lateral intraparietal area (LIP), an area that has been shown to play independent roles in target selection for saccades and the generation of visual attention. Based on results from a variety of tasks, we propose that LIP acts as a priority map in which objects are represented by activity proportional to their behavioral priority. We present evidence to show that the priority map combines bottom-up inputs like a rapid visual response with an array of top-down signals like a saccade plan. The spatial location representing the peak of the map is used by the oculomotor system to target saccades and by the visual system to guide visual attention. PMID:20192813

  5. Categorical Effects in Children's Colour Search: A Cross-Linguistic Comparison

    ERIC Educational Resources Information Center

    Daoutis, Christine A.; Franklin, Anna; Riddett, Amy; Clifford, Alexandra; Davies, Ian R. L.

    2006-01-01

    In adults, visual search for a colour target is facilitated if the target and distractors fall in different colour categories (e.g. Daoutis, Pilling, & Davies, in press). The present study explored category effects in children's colour search. The relationship between linguistic colour categories and perceptual categories was addressed by…

  6. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.

    PubMed

    Murthy, Aditya; Ray, Supriya; Shorter, Stephanie M; Schall, Jeffrey D; Thompson, Kirk G

    2009-05-01

    The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-target-step reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation.

  7. Visualizing Energy on Target: Molecular Dynamics Simulations

    DTIC Science & Technology

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  8. Atypical Visual Orienting to Gaze- and Arrow-Cues in Adults with High Functioning Autism

    ERIC Educational Resources Information Center

    Vlamings, Petra H. J. M.; Stauder, Johannes E. A.; van Son, Ilona A. M.; Mottron, Laurent

    2005-01-01

    The present study investigates visual orienting to directional cues (arrow or eyes) in adults with high functioning autism (n = 19) and age matched controls (n = 19). A choice reaction time paradigm is used in which eye-or arrow direction correctly (congruent) or incorrectly (incongruent) cues target location. In typically developing participants,…

  9. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  10. Developing a Vocabulary Size Test Measuring Two Aspects of Receptive Vocabulary Knowledge: Visual versus Aural

    ERIC Educational Resources Information Center

    Aizawa, Kazumi; Iso, Tatsuo; Nadasdy, Paul

    2017-01-01

    Testing learners' English proficiency is central to university English classes in Japan. This study developed and implemented a set of parallel online receptive aural and visual vocabulary tests that would predict learners' English proficiency. The tests shared the same target words and choices--the main difference was the presentation of the…

  11. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    PubMed Central

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  12. Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.

    PubMed

    Schmitz, Gerd; Bock, Otmar L

    2017-10-01

    Previous work documented that sensorimotor adaptation transfers between sensory modalities: When subjects adapt with one arm to a visuomotor distortion while responding to visual targets, they also appear to be adapted when they are subsequently tested with auditory targets. Vice versa, when they adapt to an auditory-motor distortion while pointing to auditory targets, they appear to be adapted when they are subsequently tested with visual targets. Therefore, it was concluded that visuomotor as well as auditory-motor adaptation use the same adaptation mechanism. Furthermore, it has been proposed that sensory information from the trained modality is weighted larger than sensory information from an untrained one, because transfer between sensory modalities is incomplete. The present study tested these hypotheses for dual arm adaptation. One arm adapted to an auditory-motor distortion and the other either to an opposite directed auditory-motor or visuomotor distortion. We found that both arms adapted significantly. However, compared to reference data on single arm adaptation, adaptation in the dominant arm was reduced indicating interference from the non-dominant to the dominant arm. We further found that arm-specific aftereffects of adaptation, which reflect recalibration of sensorimotor transformation rules, were stronger or equally strong when targets were presented in the previously adapted compared to the non-adapted sensory modality, even when one arm adapted visually and the other auditorily. The findings are discussed with respect to a recently published schematic model on sensorimotor adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The impact of Relative Prevalence on dual-target search for threat items from airport X-ray screening.

    PubMed

    Godwin, Hayward J; Menneer, Tamaryn; Cave, Kyle R; Helman, Shaun; Way, Rachael L; Donnelly, Nick

    2010-05-01

    The probability of target presentation in visual search tasks influences target detection performance: this is known as the prevalence effect (Wolfe et al., 2005). Additionally, searching for several targets simultaneously reduces search performance: this is known as the dual-target cost (DTC: Menneer et al., 2007). The interaction between the DTC and prevalence effect was investigated in a single study by presenting one target in dual-target search at a higher level of prevalence than the other target (Target A: 45% Prevalence; Target B: 5% Prevalence). An overall DTC was found for both RTs and response accuracy. Furthermore, there was an effect of target prevalence in dual-target search, suggesting that, when one target is presented at a higher level of prevalence than the other, both the dual-target cost and the prevalence effect contribute to decrements in performance. The implications for airport X-ray screening are discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Identity-expression interaction in face perception: sex, visual field, and psychophysical factors.

    PubMed

    Godard, Ornella; Baudouin, Jean-Yves; Bonnet, Philippe; Fiori, Nicole

    2013-01-01

    We investigated the psychophysical factors underlying the identity-emotion interaction in face perception. Visual field and sex were also taken into account. Participants had to judge whether a probe face, presented in either the left or the right visual field, and a central target face belonging to same person while emotional expression varied (Experiment 1) or to judge whether probe and target faces expressed the same emotion while identity was manipulated (Experiment 2). For accuracy we replicated the mutual facilitation effect between identity and emotion; no sex or hemispheric differences were found. Processing speed measurements, however, showed a lesser degree of interference in women than in men, especially for matching identity when faces expressed different emotions after a left visual presentation probe face. Psychophysical indices can be used to determine whether these effects are perceptual (A') or instead arise at a post-perceptual decision-making stage (B"). The influence of identity on the processing of facial emotion seems to be due to perceptual factors, whereas the influence of emotion changes on identity processing seems to be related to decisional factors. In addition, men seem to be more "conservative" after a LVF/RH probe-face presentation when processing identity. Women seem to benefit from better abilities to extract facial invariant aspects relative to identity.

  15. An ERP investigation of visual word recognition in syllabary scripts.

    PubMed

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J

    2013-06-01

    The bimodal interactive-activation model has been successfully applied to understanding the neurocognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, in the present study we examined word recognition in a different writing system, the Japanese syllabary scripts hiragana and katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words in which the prime and target words were both in the same script (within-script priming, Exp. 1) or were in the opposite script (cross-script priming, Exp. 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sublexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in "Experiment 1: Within-script priming", in which the prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neurocognitive processes that operate in similar manners across different writing systems and languages, as well as pointing to the viability of the bimodal interactive-activation framework for modeling such processes.

  16. Impact of Target Distance, Target Size, and Visual Acuity on the Video Head Impulse Test.

    PubMed

    Judge, Paul D; Rodriguez, Amanda I; Barin, Kamran; Janky, Kristen L

    2018-05-01

    The video head impulse test (vHIT) assesses the vestibulo-ocular reflex. Few have evaluated whether environmental factors or visual acuity influence the vHIT. The purpose of this study was to evaluate the influence of target distance, target size, and visual acuity on vHIT outcomes. Thirty-eight normal controls and 8 subjects with vestibular loss (VL) participated. vHIT was completed at 3 distances and with 3 target sizes. Normal controls were subdivided on the basis of visual acuity. Corrective saccade frequency, corrective saccade amplitude, and gain were tabulated. In the normal control group, there were no significant effects of target size or visual acuity for any vHIT outcome parameters; however, gain increased as target distance decreased. The VL group demonstrated higher corrective saccade frequency and amplitude and lower gain as compared with controls. In conclusion, decreasing target distance increases gain for normal controls but not subjects with VL. Preliminarily, visual acuity does not affect vHIT outcomes.

  17. Effect of light intensity on food detection in captive great fruit-eating bats, Artibeus lituratus (Chiroptera: Phyllostomidae).

    PubMed

    Gutierrez, Eduardo de A; Pessoa, Valdir F; Aguiar, Ludmilla M S; Pessoa, Daniel M A

    2014-11-01

    Bats are known for their well-developed echolocation. However, several experiments focused on the bat visual system have shown evidence of the importance of visual cues under specific luminosity for different aspects of bat biology, including foraging behavior. This study examined the foraging abilities of five female great fruit-eating bats, Artibeus lituratus, under different light intensities. Animals were given a series of tasks to test for discrimination between a food target against an inedible background, under light levels similar to the twilight illumination (18lx), the full moon (2lx) and complete darkness (0lx). We found that the bats required a longer time frame to detect targets under a light intensity similar to twilight, possibly due to inhibitory effects present under a more intense light level. Additionally, bats were more efficient at detecting and capturing targets under light conditions similar to the luminosity of a full moon, suggesting that visual cues were important for target discrimination. These results demonstrate that light intensity affects foraging behavior and enables the use of visual cues for food detection in frugivorous bats. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Rules infants look by: Testing the assumption of transitivity in visual salience.

    PubMed

    Kibbe, Melissa M; Kaldy, Zsuzsa; Blaser, Erik

    2018-01-01

    What drives infants' attention in complex visual scenes? Early models of infant attention suggested that the degree to which different visual features were detectable determines their attentional priority. Here, we tested this by asking whether two targets - defined by different features, but each equally salient when evaluated independently - would drive attention equally when pitted head-to-head. In Experiment 1, we presented 6-month-old infants with an array of gabor patches in which a target region varied either in color or spatial frequency from the background. Using a forced-choice preferential-looking method, we measured how readily infants fixated the target as its featural difference from the background was parametrically increased. Then, in Experiment 2, we used these psychometric preference functions to choose values for color and spatial frequency targets that were equally salient (preferred), and pitted them against each other within the same display. We reasoned that, if salience is transitive, then the stimuli should be iso-salient and infants should therefore show no systematic preference for either stimulus. On the contrary, we found that infants consistently preferred the color-defined stimulus. This suggests that computing visual salience in more complex scenes needs to include factors above and beyond local salience values.

  19. Emotion potentiates response activation and inhibition in masked priming

    PubMed Central

    Bocanegra, Bruno R.; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness. PMID:23162447

  20. Emotion potentiates response activation and inhibition in masked priming.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness.

  1. Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance

    PubMed Central

    Veniero, Domenica

    2017-01-01

    Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794

  2. Neuronal interactions in areas of spatial attention reflect avoidance of disgust, but orienting to danger.

    PubMed

    Zimmer, Ulrike; Höfler, Margit; Koschutnig, Karl; Ischebeck, Anja

    2016-07-01

    For survival, it is necessary to attend quickly towards dangerous objects, but to turn away from something that is disgusting. We tested whether fear and disgust sounds direct spatial attention differently. Using fMRI, a sound cue (disgust, fear or neutral) was presented to the left or right ear. The cue was followed by a visual target (a small arrow) which was located on the same (valid) or opposite (invalid) side as the cue. Participants were required to decide whether the arrow pointed up- or downwards while ignoring the sound cue. Behaviorally, responses were faster for invalid compared to valid targets when cued by disgust, whereas the opposite pattern was observed for targets after fearful and neutral sound cues. During target presentation, activity in the visual cortex and IPL increased for targets invalidly cued with disgust, but for targets validly cued with fear which indicated a general modulation of activation due to attention. For the TPJ, an interaction in the opposite direction was observed, consistent with its role in detecting targets at unattended positions and in relocating attention. As a whole our results indicate that a disgusting sound directs spatial attention away from its location, in contrast to fearful and neutral sounds. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Emergence of the benefits and costs of grouping for visual search.

    PubMed

    Wu, Rachel; McGee, Brianna; Rubenstein, Madelyn; Pruitt, Zoe; Cheung, Olivia S; Aslin, Richard N

    2018-04-16

    The present study investigated how grouping related items leads to the emergence of benefits (facilitation when related items are search targets) and costs (interference when related items are distractors) in visual search. Participants integrated different views (related items) of a novel Lego object via (a) assembling the object, (b) disassembling the object, or (c) sitting quietly without explicit instructions. An omnibus ANOVA revealed that neural responses (N2pc ERP) for attentional selection increased between pretest to posttest regardless of the training condition when a specific target view appeared (benefit) and when a nontarget view from the same object as the target view appeared (cost). Bonferroni-corrected planned comparisons revealed that assembling the object (but not disassembling the object or no training) had a significant impact from pretest to posttest, although the ANOVA did not reveal any interaction effects, suggesting that the effects might not differ across training conditions. This study is one of the first to demonstrate the emergence of the costs and benefits of grouping novel targets on visual search efficiency. © 2018 Society for Psychophysiological Research.

  4. On the rules of integration of crowded orientation signals

    PubMed Central

    Põder, Endel

    2012-01-01

    Crowding is related to an integration of feature signals over an inappropriately large area in the visual periphery. The rules of this integration are still not well understood. This study attempts to understand how the orientation signals from the target and flankers are combined. A target Gabor, together with 2, 4, or 6 flanking Gabors, was briefly presented in a peripheral location (4° eccentricity). The observer's task was to identify the orientation of the target (eight-alternative forced-choice). Performance was found to be nonmonotonically dependent on the target–flanker orientation difference (a drop at intermediate differences). For small target–flanker differences, a strong assimilation bias was observed. An effect of the number of flankers was found for heterogeneous flankers only. It appears that different rules of integration are used, dependent on some salient aspects (target pop-out, homogeneity–heterogeneity) of the stimulus pattern. The strategy of combining simple rules may be explained by the goal of the visual system to encode potentially important aspects of a stimulus with limited processing resources and using statistical regularities of the natural visual environment. PMID:23145295

  5. Making the Invisible Visible: Verbal but Not Visual Cues Enhance Visual Detection

    PubMed Central

    Lupyan, Gary; Spivey, Michael J.

    2010-01-01

    Background Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Methodology/Principal Findings Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d′). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Conclusions/Significance Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception. PMID:20628646

  6. Eye guidance during real-world scene search: The role color plays in central and peripheral vision.

    PubMed

    Nuthmann, Antje; Malcolm, George L

    2016-01-01

    The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field--particularly color--facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field.

  7. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  8. Action Planning Mediates Guidance of Visual Attention from Working Memory.

    PubMed

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2015-01-01

    Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences.

  9. Action Planning Mediates Guidance of Visual Attention from Working Memory

    PubMed Central

    Schubö, Anna

    2015-01-01

    Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences. PMID:26171241

  10. Inverse target- and cue-priming effects of masked stimuli.

    PubMed

    Mattler, Uwe

    2007-02-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses are facilitated after dissimilar primes. Previous studies on inverse priming effects examined target-priming effects, which arise when the prime and the target stimuli share features that are critical for the response decision. In contrast, 3 experiments of the present study demonstrate inverse priming effects in a nonmotor cue-priming paradigm. Inverse cue-priming effects exhibited time courses comparable to inverse target-priming effects. Results suggest that inverse priming effects do not arise from specific processes of the response system but follow from operations that are more general.

  11. Interference with olfactory memory by visual and verbal tasks.

    PubMed

    Annett, J M; Cook, N M; Leslie, J C

    1995-06-01

    It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.

  12. Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.

    PubMed

    Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta

    2015-05-01

    Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).

  13. Visual acuity and visual field impairment in Usher syndrome.

    PubMed

    Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J

    1998-02-01

    To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (P<.001) targets was more impaired in the better eye of type 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3.9). Visual acuity and visual field area were more impaired in patients with type 1 than type 2 Usher syndrome. Of note, 27 of 53 type 1 (51%) and 87 of 120 type 2 (72%) patients had a visual acuity of 20/40 or better in at least 1 eye. These data are useful for overall counseling of patients with Usher syndrome.

  14. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete.

    PubMed

    Jarick, Michelle; Dixon, Mike J; Stewart, Mark T; Maxwell, Emily C; Smilek, Daniel

    2009-01-01

    Synaesthesia is a fascinating condition whereby individuals report extraordinary experiences when presented with ordinary stimuli. Here we examined an individual (L) who experiences time units (i.e., months of the year and hours of the day) as occupying specific spatial locations (January is 30 degrees to the left of midline). This form of time-space synaesthesia has been recently investigated by Smilek et al. (2007) who demonstrated that synaesthetic time-space associations are highly consistent, occur regardless of intention, and can direct spatial attention. We extended this work by showing that for the synaesthete L, her time-space vantage point changes depending on whether the time units are seen or heard. For example, when L sees the word JANUARY, she reports experiencing January on her left side, however when she hears the word "January" she experiences the month on her right side. L's subjective reports were validated using a spatial cueing paradigm. The names of months were centrally presented followed by targets on the left or right. L was faster at detecting targets in validly cued locations relative to invalidly cued locations both for visually presented cues (January orients attention to the left) and for aurally presented cues (January orients attention to the right). We replicated this difference in visual and aural cueing effects using hour of the day. Our findings support previous research showing that time-space synaesthesia can bias visual spatial attention, and further suggest that for this synaesthete, time-space associations differ depending on whether they are visually or aurally induced.

  15. Altering spatial priority maps via reward-based learning.

    PubMed

    Chelazzi, Leonardo; Eštočinová, Jana; Calletti, Riccardo; Lo Gerfo, Emanuele; Sani, Ilaria; Della Libera, Chiara; Santandrea, Elisa

    2014-06-18

    Spatial priority maps are real-time representations of the behavioral salience of locations in the visual field, resulting from the combined influence of stimulus driven activity and top-down signals related to the current goals of the individual. They arbitrate which of a number of (potential) targets in the visual scene will win the competition for attentional resources. As a result, deployment of visual attention to a specific spatial location is determined by the current peak of activation (corresponding to the highest behavioral salience) across the map. Here we report a behavioral study performed on healthy human volunteers, where we demonstrate that spatial priority maps can be shaped via reward-based learning, reflecting long-lasting alterations (biases) in the behavioral salience of specific spatial locations. These biases exert an especially strong influence on performance under conditions where multiple potential targets compete for selection, conferring competitive advantage to targets presented in spatial locations associated with greater reward during learning relative to targets presented in locations associated with lesser reward. Such acquired biases of spatial attention are persistent, are nonstrategic in nature, and generalize across stimuli and task contexts. These results suggest that reward-based attentional learning can induce plastic changes in spatial priority maps, endowing these representations with the "intelligent" capacity to learn from experience. Copyright © 2014 the authors 0270-6474/14/348594-11$15.00/0.

  16. The study of infrared target recognition at sea background based on visual attention computational model

    NASA Astrophysics Data System (ADS)

    Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing

    2009-07-01

    Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.

  17. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  18. Visual search for features and conjunctions in development.

    PubMed

    Lobaugh, N J; Cole, S; Rovet, J F

    1998-12-01

    Visual search performance was examined in three groups of children 7 to 12 years of age and in young adults. Colour and orientation feature searches and a conjunction search were conducted. Reaction time (RT) showed expected improvements in processing speed with age. Comparisons of RT's on target-present and target-absent trials were consistent with parallel search on the two feature conditions and with serial search in the conjunction condition. The RT results indicated searches for feature and conjunctions were treated similarly for children and adults. However, the youngest children missed more targets at the largest array sizes, most strikingly in conjunction search. Based on an analysis of speed/accuracy trade-offs, we suggest that low target-distractor discriminability leads to an undersampling of array elements, and is responsible for the high number of misses in the youngest children.

  19. Perceived reachability in hemispace.

    PubMed

    Gabbard, Carl; Ammar, Diala; Rodrigues, Luis

    2005-07-01

    A common observation in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate. Of the studies noted, reaching tasks have been presented in the general midline range. In the present study, strong right-handers were asked to judge the reachability of visual targets projected onto a table surface at midline, right- (RVF), and left-visual fields (LVF). Midline results support those of previous studies, showing an overestimation bias. In contrast, participants revealed the tendency to underestimate their reachability in RVF and LVF. These findings are discussed from the perspective of actor 'confidence' (a cognitive state) possibly associated with visual information, perceived ability, and perceived task demands.

  20. Behavioral Investigation on the Frames of Reference Involved in Visuomotor Transformations during Peripheral Arm Reaching

    PubMed Central

    Pelle, Gina; Perrucci, Mauro Gianni; Galati, Gaspare; Fattori, Patrizia; Galletti, Claudio; Committeri, Giorgia

    2012-01-01

    Background Several psychophysical experiments found evidence for the involvement of gaze-centered and/or body-centered coordinates in arm-movement planning and execution. Here we aimed at investigating the frames of reference involved in the visuomotor transformations for reaching towards visual targets in space by taking target eccentricity and performing hand into account. Methodology/Principal Findings We examined several performance measures while subjects reached, in complete darkness, memorized targets situated at different locations relative to the gaze and/or to the body, thus distinguishing between an eye-centered and a body-centered frame of reference involved in the computation of the movement vector. The errors seem to be mainly affected by the visual hemifield of the target, independently from its location relative to the body, with an overestimation error in the horizontal reaching dimension (retinal exaggeration effect). The use of several target locations within the perifoveal visual field allowed us to reveal a novel finding, that is, a positive linear correlation between horizontal overestimation errors and target retinal eccentricity. In addition, we found an independent influence of the performing hand on the visuomotor transformation process, with each hand misreaching towards the ipsilateral side. Conclusions While supporting the existence of an internal mechanism of target-effector integration in multiple frames of reference, the present data, especially the linear overshoot at small target eccentricities, clearly indicate the primary role of gaze-centered coding of target location in the visuomotor transformation for reaching. PMID:23272180

  1. Shifting attention in viewer- and object-based reference frames after unilateral brain injury.

    PubMed

    List, Alexandra; Landau, Ayelet N; Brooks, Joseph L; Flevaris, Anastasia V; Fortenbaugh, Francesca C; Esterman, Michael; Van Vleet, Thomas M; Albrecht, Alice R; Alvarez, Bryan D; Robertson, Lynn C; Schendel, Krista

    2011-06-01

    The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection. Published by Elsevier Ltd.

  2. Blue-green color categorization in Mandarin-English speakers.

    PubMed

    Wuerger, Sophie; Xiao, Kaida; Mylonas, Dimitris; Huang, Qingmei; Karatzas, Dimosthenis; Hird, Emily; Paramei, Galina

    2012-02-01

    Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF. © 2012 Optical Society of America

  3. A risk-based coverage model for video surveillance camera control optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Hongzhou; Du, Zhiguo; Zhao, Xingtao; Li, Peiyue; Li, Dehua

    2015-12-01

    Visual surveillance system for law enforcement or police case investigation is different from traditional application, for it is designed to monitor pedestrians, vehicles or potential accidents. Visual surveillance risk is defined as uncertainty of visual information of targets and events monitored in present work and risk entropy is introduced to modeling the requirement of police surveillance task on quality and quantity of vide information. the prosed coverage model is applied to calculate the preset FoV position of PTZ camera.

  4. Scrambling for anonymous visual communications

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic; Ebrahimi, Touradj

    2005-08-01

    In this paper, we present a system for anonymous visual communications. Target application is an anonymous video chat. The system is identifying faces in the video sequence by means of face detection or skin detection. The corresponding regions are subsequently scrambled. We investigate several approaches for scrambling, either in the image-domain or in the transform-domain. Experiment results show the effectiveness of the proposed system.

  5. The Early Development of Object Knowledge: A Study of Infants' Visual Anticipations during Action Observation

    ERIC Educational Resources Information Center

    Hunnius, Sabine; Bekkering, Harold

    2010-01-01

    This study examined the developing object knowledge of infants through their visual anticipation of action targets during action observation. Infants (6, 8, 12, 14, and 16 months) and adults watched short movies of a person using 3 different everyday objects. Participants were presented with objects being brought either to a correct or to an…

  6. Overt Attention in Contextual Cuing of Visual Search Is Driven by the Attentional Set, but Not by the Predictiveness of Distractors

    ERIC Educational Resources Information Center

    Beesley, Tom; Hanafi, Gunadi; Vadillo, Miguel A.; Shanks, David R.; Livesey, Evan J.

    2018-01-01

    Two experiments examined biases in selective attention during contextual cuing of visual search. When participants were instructed to search for a target of a particular color, overt attention (as measured by the location of fixations) was biased strongly toward distractors presented in that same color. However, when participants searched for…

  7. Accessible GPS: Reorientation and Target Location among Users with Visual Impairments

    ERIC Educational Resources Information Center

    Ponchillia, Paul E.; Rak, Eniko C.; Freeland, Amy L.; LaGrow, Steven J.

    2007-01-01

    This article presents the results of two single-subject experiments that were designed to determine consumers' ability to use a BrailleNote GPS. The participants decreased their mean orientation time from 6 minutes to 45 seconds and increased their target-location efficiency fourfold with BGPS than without BGPS. Additional results and implications…

  8. Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies.

    PubMed

    Geyer, Thomas; Shi, Zhuanghua; Müller, Hermann J

    2010-06-01

    Three experiments examined memory-based guidance of visual search using a modified version of the contextual-cueing paradigm (Jiang & Chun, 2001). The target, if present, was a conjunction of color and orientation, with target (and distractor) features randomly varying across trials (multiconjunction search). Under these conditions, reaction times (RTs) were faster when all items in the display appeared at predictive ("old") relative to nonpredictive ("new") locations. However, this RT benefit was smaller compared to when only one set of items, namely that sharing the target's color (but not that in the alternative color) appeared in predictive arrangement. In all conditions, contextual cueing was reliable on both target-present and -absent trials and enhanced if a predictive display was preceded by a predictive (though differently arranged) display, rather than a nonpredictive display. These results suggest that (1) contextual cueing is confined to color subsets of items, that (2) retrieving contextual associations for one color subset of items can be impeded by associations formed within the alternative subset ("contextual interference"), and (3) that contextual cueing is modulated by intertrial priming.

  9. Probability cueing of distractor locations: both intertrial facilitation and statistical learning mediate interference reduction.

    PubMed

    Goschy, Harriet; Bakos, Sarolta; Müller, Hermann J; Zehetleitner, Michael

    2014-01-01

    Targets in a visual search task are detected faster if they appear in a probable target region as compared to a less probable target region, an effect which has been termed "probability cueing." The present study investigated whether probability cueing cannot only speed up target detection, but also minimize distraction by distractors in probable distractor regions as compared to distractors in less probable distractor regions. To this end, three visual search experiments with a salient, but task-irrelevant, distractor ("additional singleton") were conducted. Experiment 1 demonstrated that observers can utilize uneven spatial distractor distributions to selectively reduce interference by distractors in frequent distractor regions as compared to distractors in rare distractor regions. Experiments 2 and 3 showed that intertrial facilitation, i.e., distractor position repetitions, and statistical learning (independent of distractor position repetitions) both contribute to the probability cueing effect for distractor locations. Taken together, the present results demonstrate that probability cueing of distractor locations has the potential to serve as a strong attentional cue for the shielding of likely distractor locations.

  10. Salience from the decision perspective: You know where it is before you know it is there.

    PubMed

    Zehetleitner, Michael; Müller, Hermann J

    2010-12-31

    In visual search for feature contrast ("odd-one-out") singletons, identical manipulations of salience, whether by varying target-distractor similarity or dimensional redundancy of target definition, had smaller effects on reaction times (RTs) for binary localization decisions than for yes/no detection decisions. According to formal models of binary decisions, identical differences in drift rates would yield larger RT differences for slow than for fast decisions. From this principle and the present findings, it follows that decisions on the presence of feature contrast singletons are slower than decisions on their location. This is at variance with two classes of standard models of visual search and object recognition that assume a serial cascade of first detection, then localization and identification of a target object, but also inconsistent with models assuming that as soon as a target is detected all its properties, spatial as well as non-spatial (e.g., its category), are available immediately. As an alternative, we propose a model of detection and localization tasks based on random walk processes, which can account for the present findings.

  11. Evidence for distinct mechanisms underlying attentional priming and sensory memory for bistable perception.

    PubMed

    Brinkhuis, M A B; Kristjánsson, Á; Brascamp, J W

    2015-08-01

    Attentional selection in visual search paradigms and perceptual selection in bistable perception paradigms show functional similarities. For example, both are sensitive to trial history: They are biased toward previously selected targets or interpretations. We investigated whether priming by target selection in visual search and sensory memory for bistable perception are related. We did this by presenting two trial types to observers. We presented either ambiguous spheres that rotated over a central axis and could be perceived as rotating in one of two directions, or search displays in which the unambiguously rotating target and distractor spheres closely resembled the two possible interpretations of the ambiguous stimulus. We interleaved both trial types within experiments, to see whether priming by target selection during search trials would affect the perceptual outcome of bistable perception and, conversely, whether sensory memory during bistable perception would affect target selection times during search. Whereas we found intertrial repetition effects among consecutive search trials and among consecutive bistable trials, we did not find cross-paradigm effects. Thus, even though we could ascertain that our experiments robustly elicited processes of both search priming and sensory memory for bistable perception, these same experiments revealed no interaction between the two.

  12. Effects of sensorineural hearing loss on visually guided attention in a multitalker environment.

    PubMed

    Best, Virginia; Marrone, Nicole; Mason, Christine R; Kidd, Gerald; Shinn-Cunningham, Barbara G

    2009-03-01

    This study asked whether or not listeners with sensorineural hearing loss have an impaired ability to use top-down attention to enhance speech intelligibility in the presence of interfering talkers. Listeners were presented with a target string of spoken digits embedded in a mixture of five spatially separated speech streams. The benefit of providing simple visual cues indicating when and/or where the target would occur was measured in listeners with hearing loss, listeners with normal hearing, and a control group of listeners with normal hearing who were tested at a lower target-to-masker ratio to equate their baseline (no cue) performance with the hearing-loss group. All groups received robust benefits from the visual cues. The magnitude of the spatial-cue benefit, however, was significantly smaller in listeners with hearing loss. Results suggest that reduced utility of selective attention for resolving competition between simultaneous sounds contributes to the communication difficulties experienced by listeners with hearing loss in everyday listening situations.

  13. Rapid modulation of spoken word recognition by visual primes.

    PubMed

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J

    2016-02-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics.

  14. Rapid modulation of spoken word recognition by visual primes

    PubMed Central

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.

    2015-01-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics. PMID:26516296

  15. Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention.

    PubMed

    Callaghan, Eleanor; Holland, Carol; Kessler, Klaus

    2017-01-01

    Background : Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults' driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods : Age groups (21-30, 40-49, 50-59, 60-69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results : Visual search response times (RTs) were longer on "Target Mid" and "Distractor Only" trials in comparison to "Target 1st" trials, reflecting switch-costs. Larger switch-costs were found in both the 40-49 and 60-69 years group in comparison to the 21-30 years group when switching from the Target Mid condition. Discussion : Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial.

  16. The semantic category-based grouping in the Multiple Identity Tracking task.

    PubMed

    Wei, Liuqing; Zhang, Xuemin; Li, Zhen; Liu, Jingyao

    2018-01-01

    In the Multiple Identity Tracking (MIT) task, categorical distinctions between targets and distractors have been found to facilitate tracking (Wei, Zhang, Lyu, & Li in Frontiers in Psychology, 7, 589, 2016). The purpose of this study was to further investigate the reasons for the facilitation effect, through six experiments. The results of Experiments 1-3 excluded the potential explanations of visual distinctiveness, attentional distribution strategy, and a working memory mechanism, respectively. When objects' visual information was preserved and categorical information was removed, the facilitation effect disappeared, suggesting that the visual distinctiveness between targets and distractors was not the main reason for the facilitation effect. Moreover, the facilitation effect was not the result of strategically shifting the attentional distribution, because the targets received more attention than the distractors in all conditions. Additionally, the facilitation effect did not come about because the identities of targets were encoded and stored in visual working memory to assist in the recovery from tracking errors; when working memory was disturbed by the object identities changing during tracking, the facilitation effect still existed. Experiments 4 and 5 showed that observers grouped targets together and segregated them from distractors on the basis of their categorical information. By doing this, observers could largely avoid distractor interference with tracking and improve tracking performance. Finally, Experiment 6 indicated that category-based grouping is not an automatic, but a goal-directed and effortful, strategy. In summary, the present findings show that a semantic category-based target-grouping mechanism exists in the MIT task, which is likely to be the major reason for the tracking facilitation effect.

  17. Visual and Vestibular Determinants of Perceived Eye-Level

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm Martin

    2003-01-01

    Both gravitational and optical sources of stimulation combine to determine the perceived elevations of visual targets. The ways in which these sources of stimulation combine with one another in operational aeronautical environments are critical for pilots to make accurate judgments of the relative altitudes of other aircraft and of their own altitude relative to the terrain. In a recent study, my colleagues and I required eighteen observers to set visual targets at their apparent horizon while they experienced various levels of G(sub z) in the human centrifuge at NASA-Ames Research Center. The targets were viewed in darkness and also against specific background optical arrays that were oriented at various angles with respect to the vertical; target settings were lowered as Gz was increased; this effect was reduced when the background optical array was visible. Also, target settings were displaced in the direction that the background optical array was pitched. Our results were attributed to the combined influences of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched optical arrays that comprise the background. In this paper, I present a mathematical model that describes the independent and combined effects of G(sub z) intensity and the orientation and structure of background optical arrays; the model predicts quantitative deviations from normal accurate perceptions of target localization under a variety of conditions. Our earlier experimental results and the mathematical model are described in some detail, and the effects of viewing specific optical arrays under various gravitational-inertial conditions encountered in aeronautical environments are discussed.

  18. Global Statistical Learning in a Visual Search Task

    ERIC Educational Resources Information Center

    Jones, John L.; Kaschak, Michael P.

    2012-01-01

    Locating a target in a visual search task is facilitated when the target location is repeated on successive trials. Global statistical properties also influence visual search, but have often been confounded with local regularities (i.e., target location repetition). In two experiments, target locations were not repeated for four successive trials,…

  19. Non-singleton colors are not attended faster than categories, but they are encoded faster: A combined approach of behavior, modeling and ERPs.

    PubMed

    Callahan-Flintoft, Chloe; Wyble, Brad

    2017-11-01

    The visual system is able to detect targets according to a variety of criteria, such as by categorical (letter vs digit) or featural attributes (color). These criteria are often used interchangeably in rapid serial visual presentation (RSVP) studies but little is known about how rapidly they are processed. The aim of this work was to compare the time course of attentional selection and memory encoding for different types of target criteria. We conducted two experiments where participants reported one or two targets (T1, T2) presented in lateral RSVP streams. Targets were marked either by being a singleton color (red letter among black letters), being categorically distinct (digits among letters) or non-singleton color (target color letter among heterogeneously colored letters). Using event related potential (ERPs) associated with attention and memory encoding (the N2pc and the P3 respectively), we compared the relative latency of these two processing stages for these three kinds of targets. In addition to these ERP measures, we obtained convergent behavioral measures for attention and memory encoding by presenting two targets in immediate sequence and comparing their relative accuracy and proportion of temporal order errors. Both behavioral and EEG measures revealed that singleton color targets were attended much more quickly than either non-singleton color or categorical targets, and there was very little difference between attention latencies to non-singleton color and categorical targets. There was however a difference in the speed of memory encoding for non-singleton color and category latencies in both behavioral and EEG measures, which shows that encoding latency differences do not always mirror attention latency differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Interaction between object-based attention and pertinence values shapes the attentional priority map of a multielement display.

    PubMed

    Gillebert, Celine R; Petersen, Anders; Van Meel, Chayenne; Müller, Tanja; McIntyre, Alexandra; Wagemans, Johan; Humphreys, Glyn W

    2016-06-01

    Previous studies have shown that the perceptual organization of the visual scene constrains the deployment of attention. Here we investigated how the organization of multiple elements into larger configurations alters their attentional weight, depending on the "pertinence" or behavioral importance of the elements' features. We assessed object-based effects on distinct aspects of the attentional priority map: top-down control, reflecting the tendency to encode targets rather than distracters, and the spatial distribution of attention weights across the visual scene, reflecting the tendency to report elements belonging to the same rather than different objects. In 2 experiments participants had to report the letters in briefly presented displays containing 8 letters and digits, in which pairs of characters could be connected with a line. Quantitative estimates of top-down control were obtained using Bundesen's Theory of Visual Attention (1990). The spatial distribution of attention weights was assessed using the "paired response index" (PRI), indicating responses for within-object pairs of letters. In Experiment 1, grouping along the task-relevant dimension (targets with targets and distracters with distracters) increased top-down control and enhanced the PRI; in contrast, task-irrelevant grouping (targets with distracters) did not affect performance. In Experiment 2, we disentangled the effect of target-target and distracter-distracter grouping: Pairwise grouping of distracters enhanced top-down control whereas pairwise grouping of targets changed the PRI. We conclude that object-based perceptual representations interact with pertinence values (of the elements' features and location) in the computation of attention weights, thereby creating a widespread pattern of attentional facilitation across the visual scene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    PubMed

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  2. Two-stage perceptual learning to break visual crowding.

    PubMed

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  3. Working memory encoding delays top-down attention to visual cortex.

    PubMed

    Scalf, Paige E; Dux, Paul E; Marois, René

    2011-09-01

    The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to interfere with the deployment of top-down attention [de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. The role of working memory in visual selective attention. Science, 291, 1803-1806, 2001, doi:10.1126/science.1056496]. It is, therefore, possible that, in addition to delaying central processes, the engagement of working memory encoding (WME) also postpones perceptual processing as well. Here, we tested this hypothesis with time-resolved fMRI by assessing whether WME serially postpones the action of top-down attention on low-level sensory signals. In three experiments, participants viewed a skeletal rapid serial visual presentation sequence that contained two target items (T1 and T2) separated by either a short (550 msec) or long (1450 msec) SOA. During single-target runs, participants attended and responded only to T1, whereas in dual-target runs, participants attended and responded to both targets. To determine whether T1 processing delayed top-down attentional enhancement of T2, we examined T2 BOLD response in visual cortex by subtracting the single-task waveforms from the dual-task waveforms for each SOA. When the WME demands of T1 were high (Experiments 1 and 3), T2 BOLD response was delayed at the short SOA relative to the long SOA. This was not the case when T1 encoding demands were low (Experiment 2). We conclude that encoding of a stimulus into working memory delays the deployment of attention to subsequent target representations in visual cortex.

  4. Arousal (but not valence) amplifies the impact of salience.

    PubMed

    Sutherland, Matthew R; Mather, Mara

    2018-05-01

    Previous findings indicate that negative arousal enhances bottom-up attention biases favouring perceptual salient stimuli over less salient stimuli. The current study tests whether those effects were driven by emotional arousal or by negative valence by comparing how well participants could identify visually presented letters after hearing either a negative arousing, positive arousing or neutral sound. On each trial, some letters were presented in a high contrast font and some in a low contrast font, creating a set of targets that differed in perceptual salience. Sounds rated as more emotionally arousing led to more identification of highly salient letters but not of less salient letters, whereas sounds' valence ratings did not impact salience biases. Thus, arousal, rather than valence, is a key factor enhancing visual processing of perceptually salient targets.

  5. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.

    PubMed

    Ljubojevic, Vladimir; Luu, Paul; Gill, Patrick Robert; Beckett, Lee-Anne; Takehara-Nishiuchi, Kaori; De Rosa, Eve

    2018-04-18

    A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection. SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection. Copyright © 2018 the authors 0270-6474/18/383988-18$15.00/0.

  6. Learning the Association between a Context and a Target Location in Infancy

    ERIC Educational Resources Information Center

    Bertels, Julie; San Anton, Estibaliz; Gebuis, Titia; Destrebecqz, Arnaud

    2017-01-01

    Extracting the statistical regularities present in the environment is a central learning mechanism in infancy. For instance, infants are able to learn the associations between simultaneously or successively presented visual objects (Fiser & Aslin, 2002; Kirkham, Slemmer & Johnson, 2002). The present study extends these results by…

  7. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.

    PubMed

    Strauss, Soeren; Woodgate, Philip J W; Sami, Saber A; Heinke, Dietmar

    2015-12-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain's attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO's predictions and also lessons for neurobiologically inspired robotics emerging from this work. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    PubMed

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  9. Visual attention and the apprehension of spatial relations: the case of depth.

    PubMed

    Moore, C M; Elsinger, C L; Lleras, A

    2001-05-01

    Several studies have shown that targets defined on the basis of the spatial relations between objects yield highly inefficient visual search performance (e.g., Logan, 1994; Palmer, 1994), suggesting that the apprehension of spatial relations may require the selective allocation of attention within the scene. In the present study, we tested the hypothesis that depth relations might be different in this regard and might support efficient visual search. This hypothesis was based, in part, on the fact that many perceptual organization processes that are believed to occur early and in parallel, such as figure-ground segregation and perceptual completion, seem to depend on the assignment of depth relations. Despite this, however, using increasingly salient cues to depth (Experiments 2-4) and including a separate test of the sufficiency of the most salient depth cue used (Experiment 5), no evidence was found to indicate that search for a target defined by depth relations is any different than search for a target defined by other types of spatial relations, with regard to efficiency of search. These findings are discussed within the context of the larger literature on early processing of three-dimensional characteristics of visual scenes.

  10. The footprints of visual attention in the Posner cueing paradigm revealed by classification images

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Shimozaki, Steven S.; Abbey, Craig K.

    2002-01-01

    In the Posner cueing paradigm, observers' performance in detecting a target is typically better in trials in which the target is present at the cued location than in trials in which the target appears at the uncued location. This effect can be explained in terms of a Bayesian observer where visual attention simply weights the information differently at the cued (attended) and uncued (unattended) locations without a change in the quality of processing at each location. Alternatively, it could also be explained in terms of visual attention changing the shape of the perceptual filter at the cued location. In this study, we use the classification image technique to compare the human perceptual filters at the cued and uncued locations in a contrast discrimination task. We did not find statistically significant differences between the shapes of the inferred perceptual filters across the two locations, nor did the observed differences account for the measured cueing effects in human observers. Instead, we found a difference in the magnitude of the classification images, supporting the idea that visual attention changes the weighting of information at the cued and uncued location, but does not change the quality of processing at each individual location.

  11. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  12. Memory for Spatial Locations in a Patient with Near Space Neglect and Optic Ataxia: Involvement of the Occipitotemporal Stream

    PubMed Central

    Chieffi, Sergio; Messina, Giovanni; Messina, Antonietta; Villano, Ines; Monda, Vincenzo; Ambra, Ferdinando Ivano; Garofalo, Elisabetta; Romano, Felice; Mollica, Maria Pina; Monda, Marcellino; Iavarone, Alessandro

    2017-01-01

    Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP) with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1) an immediate reaching task, in which GP reached target locations under visual control and (2) a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1). In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2), but not proprioceptive (experiment 3), target locations. As a whole, these findings further support the hypothesis of an involvement of the occipitotemporal stream in delayed reaching. Furthermore, the observation that in both delayed reaching tasks the variable errors were greater in GP than in the controls suggested that in optic ataxia is present not only a visuo- but also a proprioceptivo-motor integration deficit. PMID:28620345

  13. Hepatopulmonary shunting on Tc99m-MAA liver mapping: correlation with dynamic cross-sectional imaging and description of different shunting patterns.

    PubMed

    Bermo, Mohammed; Matesan, Manuela C; Itani, Malak; Behnia, Fatemeh; Vesselle, Hubert J

    2018-04-09

    The purpose of the study was to correlate lung shunt fraction (LSF) calculated by intra-arterial injection of Technetium-99m (Tc-99m)-labeled macroaggregated albumin (MAA) in a hepatic artery branch with the presence of certain patterns of vascular shunts on dynamic CT or MRI of the liver. This retrospective study was approved by the institutional review board and informed consent was waived. We reviewed 523 MAA scans in 453 patients (301 men, 152 women) performed from July 2007 to June 2015 and their correlative cross-sectional imaging. Patterns of vascular shunts on dynamic CT or MRI performed within 3 months of the MAA study and that potentially divert hepatic arterial inflow to the systemic venous return were defined as "target shunts." Dynamic CT or MRI was classified into three groups with target shunt present, absent, or indeterminate. The mean LSF was compared across the first and second groups using paired t test. 342 CT and MRI studies met inclusion criteria: target shunts were present in 63 studies, absent in 271 studies, and 8 studies were indeterminate. When target shunts were visualized, the mean LSF on corresponding MAA scans was 12.9 ± 10.36% (95% CI 10.29-15.15%) compared to 4.3 ± 3.17% (95% CI 3.93-4.68%) when no target shunt was visualized. The difference was statistically significant (p value < 0.001). Identified target shunts were either direct (arteriohepatic venous shunt) or indirect (arterioportal shunt combined with a portosystemic shunt). Visualizing certain patterns of vascular shunting on a dynamic CT or MRI scan is associated with high LSF.

  14. Reading without words or target detection? A re-analysis and replication fMRI study of the Landolt paradigm.

    PubMed

    Heim, Stefan; von Tongeln, Franziska; Hillen, Rebekka; Horbach, Josefine; Radach, Ralph; Günther, Thomas

    2018-06-19

    The Landolt paradigm is a visual scanning task intended to evoke reading-like eye-movements in the absence of orthographic or lexical information, thus allowing the dissociation of (sub-) lexical vs. visual processing. To that end, all letters in real word sentences are exchanged for closed Landolt rings, with 0, 1, or 2 open Landolt rings as targets in each Landolt sentence. A preliminary fMRI block-design study (Hillen et al. in Front Hum Neurosci 7:1-14, 2013) demonstrated that the Landolt paradigm has a special neural signature, recruiting the right IPS and SPL as part of the endogenous attention network. However, in that analysis, the brain responses to target detection could not be separated from those involved in processing Landolt stimuli without targets. The present study presents two fMRI experiments testing the question whether targets or the Landolt stimuli per se, led to the right IPS/SPL activation. Experiment 1 was an event-related re-analysis of the Hillen et al. (Front Hum Neurosci 7:1-14, 2013) data. Experiment 2 was a replication study with a new sample and identical procedures. In both experiments, the right IPS/SPL were recruited in the Landolt condition as compared to orthographic stimuli even in the absence of any target in the stimulus, indicating that the properties of the Landolt task itself trigger this right parietal activation. These findings are discussed against the background of behavioural and neuroimaging studies of healthy reading as well as developmental and acquired dyslexia. Consequently, this neuroimaging evidence might encourage the use of the Landolt paradigm also in the context of examining reading disorders, as it taps into the orientation of visual attention during reading-like scanning of stimuli without interfering sub-lexical information.

  15. On the possible roles of microsaccades and drifts in visual perception.

    PubMed

    Ahissar, Ehud; Arieli, Amos; Fried, Moshe; Bonneh, Yoram

    2016-01-01

    During natural viewing large saccades shift the visual gaze from one target to another every few hundreds of milliseconds. The role of microsaccades (MSs), small saccades that show up during long fixations, is still debated. A major debate is whether MSs are used to redirect the visual gaze to a new location or to encode visual information through their movement. We argue that these two functions cannot be optimized simultaneously and present several pieces of evidence suggesting that MSs redirect the visual gaze and that the visual details are sampled and encoded by ocular drifts. We show that drift movements are indeed suitable for visual encoding. Yet, it is not clear to what extent drift movements are controlled by the visual system, and to what extent they interact with saccadic movements. We analyze several possible control schemes for saccadic and drift movements and propose experiments that can discriminate between them. We present the results of preliminary analyses of existing data as a sanity check to the testability of our predictions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Search guidance is proportional to the categorical specificity of a target cue.

    PubMed

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  17. Context-dependent similarity effects in letter recognition.

    PubMed

    Kinoshita, Sachiko; Robidoux, Serje; Guilbert, Daniel; Norris, Dennis

    2015-10-01

    In visual word recognition tasks, digit primes that are visually similar to letter string targets (e.g., 4/A, 8/B) are known to facilitate letter identification relative to visually dissimilar digits (e.g., 6/A, 7/B); in contrast, with letter primes, visual similarity effects have been elusive. In the present study we show that the visual similarity effect with letter primes can be made to come and go, depending on whether it is necessary to discriminate between visually similar letters. The results support a Bayesian view which regards letter recognition not as a passive activation process driven by the fixed stimulus properties, but as a dynamic evidence accumulation process for a decision that is guided by the task context.

  18. The ventriloquist in periphery: impact of eccentricity-related reliability on audio-visual localization.

    PubMed

    Charbonneau, Geneviève; Véronneau, Marie; Boudrias-Fournier, Colin; Lepore, Franco; Collignon, Olivier

    2013-10-28

    The relative reliability of separate sensory estimates influences the way they are merged into a unified percept. We investigated how eccentricity-related changes in reliability of auditory and visual stimuli influence their integration across the entire frontal space. First, we surprisingly found that despite a strong decrease in auditory and visual unisensory localization abilities in periphery, the redundancy gain resulting from the congruent presentation of audio-visual targets was not affected by stimuli eccentricity. This result therefore contrasts with the common prediction that a reduction in sensory reliability necessarily induces an enhanced integrative gain. Second, we demonstrate that the visual capture of sounds observed with spatially incongruent audio-visual targets (ventriloquist effect) steadily decreases with eccentricity, paralleling a lowering of the relative reliability of unimodal visual over unimodal auditory stimuli in periphery. Moreover, at all eccentricities, the ventriloquist effect positively correlated with a weighted combination of the spatial resolution obtained in unisensory conditions. These findings support and extend the view that the localization of audio-visual stimuli relies on an optimal combination of auditory and visual information according to their respective spatial reliability. All together, these results evidence that the external spatial coordinates of multisensory events relative to an observer's body (e.g., eyes' or head's position) influence how this information is merged, and therefore determine the perceptual outcome.

  19. Attention-shift vs. response-priming explanations for the spatial cueing effect in cross-modal tasks.

    PubMed

    Paavilainen, Petri; Illi, Janne; Moisseinen, Nella; Niinisalo, Maija; Ojala, Karita; Reinikainen, Johanna; Vainio, Lari

    2016-06-01

    The task-irrelevant spatial location of a cue stimulus affects the processing of a subsequent target. This "Posner effect" has been explained by an exogenous attention shift to the spatial location of the cue, improving perceptual processing of the target. We studied whether the left/right location of task-irrelevant and uninformative tones produces cueing effects on the processing of visual targets. Tones were presented randomly from left or right. In the first condition, the subsequent visual target, requiring response either with the left or right hand, was presented peripherally to left or right. In the second condition, the target was a centrally presented left/right-pointing arrow, indicating the response hand. In the third condition, the tone and the central arrow were presented simultaneously. Data were recorded on compatible (the tone location and the response hand were the same) and incompatible trials. Reaction times were longer on incompatible than on compatible trials. The results of the second and third conditions are difficult to explain with the attention-shift model emphasizing improved perceptual processing in the cued location, as the central target did not require any location-based processing. Consequently, as an alternative explanation they suggest response priming in the hand corresponding to the spatial location of the tone. Simultaneous lateralized readiness potential (LRP) recordings were consistent with the behavioral data, the tone cues eliciting on incompatible trials a fast preparation for the incorrect response and on compatible trials preparation for the correct response. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474

  1. Using an auditory sensory substitution device to augment vision: evidence from eye movements.

    PubMed

    Wright, Thomas D; Margolis, Aaron; Ward, Jamie

    2015-03-01

    Sensory substitution devices convert information normally associated with one sense into another sense (e.g. converting vision into sound). This is often done to compensate for an impaired sense. The present research uses a multimodal approach in which both natural vision and sound-from-vision ('soundscapes') are simultaneously presented. Although there is a systematic correspondence between what is seen and what is heard, we introduce a local discrepancy between the signals (the presence of a target object that is heard but not seen) that the participant is required to locate. In addition to behavioural responses, the participants' gaze is monitored with eye-tracking. Although the target object is only presented in the auditory channel, behavioural performance is enhanced when visual information relating to the non-target background is presented. In this instance, vision may be used to generate predictions about the soundscape that enhances the ability to detect the hidden auditory object. The eye-tracking data reveal that participants look for longer in the quadrant containing the auditory target even when they subsequently judge it to be located elsewhere. As such, eye movements generated by soundscapes reveal the knowledge of the target location that does not necessarily correspond to the actual judgment made. The results provide a proof of principle that multimodal sensory substitution may be of benefit to visually impaired people with some residual vision and, in normally sighted participants, for guiding search within complex scenes.

  2. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    PubMed

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  3. Dynamic sound localization in cats

    PubMed Central

    Ruhland, Janet L.; Jones, Amy E.

    2015-01-01

    Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts. PMID:26063772

  4. Method and system for providing autonomous control of a platform

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David (Inventor)

    2012-01-01

    The present application provides a system for enabling instrument placement from distances on the order of five meters, for example, and increases accuracy of the instrument placement relative to visually-specified targets. The system provides precision control of a mobile base of a rover and onboard manipulators (e.g., robotic arms) relative to a visually-specified target using one or more sets of cameras. The system automatically compensates for wheel slippage and kinematic inaccuracy ensuring accurate placement (on the order of 2 mm, for example) of the instrument relative to the target. The system provides the ability for autonomous instrument placement by controlling both the base of the rover and the onboard manipulator using a single set of cameras. To extend the distance from which the placement can be completed to nearly five meters, target information may be transferred from navigation cameras (used for long-range) to front hazard cameras (used for positioning the manipulator).

  5. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  6. Visual attention shifting in autism spectrum disorders.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be related to restricted and repetitive behaviors in these disorders.

  7. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  8. Event-related potentials reveal linguistic suppression effect but not enhancement effect on categorical perception of color.

    PubMed

    Lu, Aitao; Yang, Ling; Yu, Yanping; Zhang, Meichao; Shao, Yulan; Zhang, Honghong

    2014-08-01

    The present study used the event-related potential technique to investigate the nature of linguistic effect on color perception. Four types of stimuli based on hue differences between a target color and a preceding color were used: zero hue step within-category color (0-WC); one hue step within-category color (1-WC); one hue step between-category color (1-BC); and two hue step between-category color (2-BC). The ERP results showed no significant effect of stimulus type in the 100-200 ms time window. However, in the 200-350 ms time window, ERP responses to 1-WC target color overlapped with that to 0-WC target color for right visual field (RVF) but not left visual field (LVF) presentation. For the 1-BC condition, ERP amplitudes were comparable in the two visual fields, both being significantly different from the 0-WC condition. The 2-BC condition showed the same pattern as the 1-BC condition. These results suggest that the categorical perception of color in RVF is due to linguistic suppression on within-category color discrimination but not between-category color enhancement, and that the effect is independent of early perceptual processes. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  9. Robotic assessment of the contribution of motor commands to wrist position sense.

    PubMed

    Contu, Sara; Marini, Francesca; Masia, Lorenzo

    2017-07-01

    Assessing joint position sense for rehabilitation after neurological injury provides a prognostic factor in recovery and long-term functional outcomes. A common method for testing joint position sense involves the active replication of a joint configuration presented via a passive movement. However, recent evidence showed how this sense is mediated by the centrally generated signals of motor command, such that movements produced volitionally may be coded differently from passive movements and accuracy may be different when matching targets presented actively. To verify this hypothesis we asked ten participants to actively replicate a target wrist angle with the help of a visual feedback in two conditions, which differed in the mode of target presentation: active (aaJPM) or passive (paJPM). The accuracy of target matching, directional bias and variability were analyzed, as well as speed and smoothness of the matching movement and criterion movement in the aaJPM. Overall results indicate higher accuracy and lower variability in the paJPM, while directional bias showed the tendency to overshoot the target regardless of condition. The speed did not differ in the two conditions and movements were smoother in the aaJPM, suggesting a higher confidence by participants in their matching ability. In conclusion, this study suggests that motor commands negatively affect the accuracy of joint position sense when matching involves the integration of visual and proprioceptive information.

  10. Early and late selection processes have separable influences on the neural substrates of attention.

    PubMed

    Drisdelle, Brandi Lee; Jolicoeur, Pierre

    2018-05-01

    To improve our understanding of the mechanisms of target selection, we examined how the spatial separation of salient items and their similarity to a pre-defined target interact using lateralised electrophysiological correlates of visual spatial attention (N2pc component) and visual short-term memory (VSTM; SPCN component). Using these features of target selection, we sought to expand on previous work proposing a model of early and late selection, where the N2pc is suggested to reflect the selection probability of visual stimuli (Aubin and Jolicoeur, 2016). The authors suggested that early-selection processes could be enhanced when items are adjacent. In the present work, the stimuli were short oriented lines, all of which were grey except for two that were blue and hence salient. A decrease in N2pc amplitude with decreasing spatial separation between salient items was observed. The N2pc increased in amplitude with increasing similarity of salient distractors to the target template, but only in target-absent trials. There was no interaction between these two factors, suggesting that separable attentional mechanisms influenced the N2pc. The findings suggest that selection is initially based on easily-distinguished attributes (i.e., both blue items) followed by a later identification-based process (if necessary), which depends on feature similarity to a target template. For the SPCN component, the results were in line with previous work: for target-present trials, an increase in similarity of salient distractors was associated with an increase in SPCN amplitude, suggesting more information was maintained in VSTM. In sum, results suggest there is a need for further inspection of salient distractors when they are similar to the target, increasing the need for focal attention, demonstrated by an increase in N2pc amplitude, followed by a higher probability of transfer to VSTM, demonstrated by an increase in SPCN amplitude. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    PubMed

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  12. Recovery from Object Substitution Masking Induced by Transient Suppression of Visual Motion Processing: A Repetitive Transcranial Magnetic Stimulation Study

    ERIC Educational Resources Information Center

    Hirose, Nobuyuki; Kihara, Ken; Mima, Tatsuya; Ueki, Yoshino; Fukuyama, Hidenao; Osaka, Naoyuki

    2007-01-01

    Object substitution masking is a form of visual backward masking in which a briefly presented target is rendered invisible by a lingering mask that is too sparse to produce lower image-level interference. Recent studies suggested the importance of an updating process in a higher object-level representation, which should rely on the processing of…

  13. Visual Marking and Change Blindness: Moving Occluders and Transient Masks Neutralize Shape Changes to Ignored Objects

    ERIC Educational Resources Information Center

    Watson, Derrick G.; Kunar, Melina A.

    2010-01-01

    Visual search efficiency improves by presenting (previewing) one set of distractors before the target and remaining distractor items (D. G. Watson & G. W. Humphreys, 1997). Previous work has shown that this preview benefit is abolished if the old items change their shape when the new items are added (e.g., D. G. Watson & G. W. Humphreys,…

  14. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    PubMed

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  15. Competing Distractors Facilitate Visual Search in Heterogeneous Displays.

    PubMed

    Kong, Garry; Alais, David; Van der Burg, Erik

    2016-01-01

    In the present study, we examine how observers search among complex displays. Participants were asked to search for a big red horizontal line among 119 distractor lines of various sizes, orientations and colours, leading to 36 different feature combinations. To understand how people search in such a heterogeneous display, we evolved the search display by using a genetic algorithm (Experiment 1). The best displays (i.e., displays corresponding to the fastest reaction times) were selected and combined to create new, evolved displays. Search times declined over generations. Results show that items sharing the same colour and orientation as the target disappeared over generations, implying they interfered with search, but items sharing the same colour and were 12.5° different in orientation only interfered if they were also the same size. Furthermore, and inconsistent with most dominant visual search theories, we found that non-red horizontal distractors increased over generations, indicating that these distractors facilitated visual search while participants were searching for a big red horizontally oriented target. In Experiments 2 and 3, we replicated these results using conventional, factorial experiments. Interestingly, in Experiment 4, we found that this facilitation effect was only present when the displays were very heterogeneous. While current models of visual search are able to successfully describe search in homogeneous displays, our results challenge the ability of these models to describe visual search in heterogeneous environments.

  16. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    ERIC Educational Resources Information Center

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2011-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: (1) the categorical relationship between the target and the distracters and (2) the visual field in which the target was presented. Similar to controls, the RH patients…

  17. Similarity as an organising principle in short-term memory.

    PubMed

    LeCompte, D C; Watkins, M J

    1993-03-01

    The role of stimulus similarity as an organising principle in short-term memory was explored in a series of seven experiments. Each experiment involved the presentation of a short sequence of items that were drawn from two distinct physical classes and arranged such that item class changed after every second item. Following presentation, one item was re-presented as a probe for the 'target' item that had directly followed it in the sequence. Memory for the sequence was considered organised by class if probability of recall was higher when the probe and target were from the same class than when they were from different classes. Such organisation was found when one class was auditory and the other was visual (spoken vs. written words, and sounds vs. pictures). It was also found when both classes were auditory (words spoken in a male voice vs. words spoken in a female voice) and when both classes were visual (digits shown in one location vs. digits shown in another). It is concluded that short-term memory can be organised on the basis of sensory modality and on the basis of certain features within both the auditory and visual modalities.

  18. Looking at anything that is green when hearing "frog": how object surface colour and stored object colour knowledge influence language-mediated overt attention.

    PubMed

    Huettig, Falk; Altmann, Gerry T M

    2011-01-01

    Three eye-tracking experiments investigated the influence of stored colour knowledge, perceived surface colour, and conceptual category of visual objects on language-mediated overt attention. Participants heard spoken target words whose concepts are associated with a diagnostic colour (e.g., "spinach"; spinach is typically green) while their eye movements were monitored to (a) objects associated with a diagnostic colour but presented in black and white (e.g., a black-and-white line drawing of a frog), (b) objects associated with a diagnostic colour but presented in an appropriate but atypical colour (e.g., a colour photograph of a yellow frog), and (c) objects not associated with a diagnostic colour but presented in the diagnostic colour of the target concept (e.g., a green blouse; blouses are not typically green). We observed that colour-mediated shifts in overt attention are primarily due to the perceived surface attributes of the visual objects rather than stored knowledge about the typical colour of the object. In addition our data reveal that conceptual category information is the primary determinant of overt attention if both conceptual category and surface colour competitors are copresent in the visual environment.

  19. Combined visual illusion effects on the perceived index of difficulty and movement outcomes in discrete and continuous fitts' tapping.

    PubMed

    Alphonsa, Sushma; Dai, Boyi; Benham-Deal, Tami; Zhu, Qin

    2016-01-01

    The speed-accuracy trade-off is a fundamental movement problem that has been extensively investigated. It has been established that the speed at which one can move to tap targets depends on how large the targets are and how far they are apart. These spatial properties of the targets can be quantified by the index of difficulty (ID). Two visual illusions are known to affect the perception of target size and movement amplitude: the Ebbinghaus illusion and Muller-Lyer illusion. We created visual images that combined these two visual illusions to manipulate the perceived ID, and then examined people's visual perception of the targets in illusory context as well as their performance in tapping those targets in both discrete and continuous manners. The findings revealed that the combined visual illusions affected the perceived ID similarly in both discrete and continuous judgment conditions. However, the movement outcomes were affected by the combined visual illusions according to the tapping mode. In discrete tapping, the combined visual illusions affected both movement accuracy and movement amplitude such that the effective ID resembled the perceived ID. In continuous tapping, none of the movement outcomes were affected by the combined visual illusions. Participants tapped the targets with higher speed and accuracy in all visual conditions. Based on these findings, we concluded that distinct visual-motor control mechanisms were responsible for execution of discrete and continuous Fitts' tapping. Although discrete tapping relies on allocentric information (object-centered) to plan for action, continuous tapping relies on egocentric information (self-centered) to control for action. The planning-control model for rapid aiming movements is supported.

  20. Virtual reality method to analyze visual recognition in mice.

    PubMed

    Young, Brent Kevin; Brennan, Jayden Nicole; Wang, Ping; Tian, Ning

    2018-01-01

    Behavioral tests have been extensively used to measure the visual function of mice. To determine how precisely mice perceive certain visual cues, it is necessary to have a quantifiable measurement of their behavioral responses. Recently, virtual reality tests have been utilized for a variety of purposes, from analyzing hippocampal cell functionality to identifying visual acuity. Despite the widespread use of these tests, the training requirement for the recognition of a variety of different visual targets, and the performance of the behavioral tests has not been thoroughly characterized. We have developed a virtual reality behavior testing approach that can essay a variety of different aspects of visual perception, including color/luminance and motion detection. When tested for the ability to detect a color/luminance target or a moving target, mice were able to discern the designated target after 9 days of continuous training. However, the quality of their performance is significantly affected by the complexity of the visual target, and their ability to navigate on a spherical treadmill. Importantly, mice retained memory of their visual recognition for at least three weeks after the end of their behavioral training.

  1. Effects of Symbol Brightness Cueing on Attention During a Visual Search of a Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Liao, Min-Ju; Granada, Stacie

    2003-01-01

    This study investigated visual search performance for target aircraft symbols on a Cockpit Display of Traffic Information (CDTI). Of primary interest was the influence of target brightness (intensity) and highlighting validity (search directions) on the ability to detect a target aircraft among distractor aircraft. Target aircraft were distinguished by an airspace course that conflicted with Ownship (that is, the participant's aircraft). The display could present all (homogeneous) bright aircraft, all (homogeneous) dim aircraft, or mixed bright and dim aircraft, with the target aircraft being either bright or dim. In the mixed intensity condition, participants may or may not have been instructed whether the target was bright or dim. Results indicated that highlighting validity facilitated better detection times. However, instead of bright targets being detected faster, dim targets were found to be detected more slowly in the mixed intensity display than in the homogeneous display. This relative slowness may be due to a delay in confirming the dim aircraft to be a target when it it was among brighter distractor aircraft. This hypothesis will be tested in future research. Funding for this work was provided by the Advanced Air Transportation Technologies Project of NASA's Airspace Operation Systems Program.

  2. Enhanced compressed sensing for visual target tracking in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Qiang, Guo

    2017-11-01

    Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.

  3. Grapheme-color synesthesia influences overt visual attention.

    PubMed

    Carriere, Jonathan S A; Eaton, Daniel; Reynolds, Michael G; Dixon, Mike J; Smilek, Daniel

    2009-02-01

    For individuals with grapheme-color synesthesia, achromatic letters and digits elicit vivid perceptual experiences of color. We report two experiments that evaluate whether synesthesia influences overt visual attention. In these experiments, two grapheme-color synesthetes viewed colored letters while their eye movements were monitored. Letters were presented in colors that were either congruent or incongruent with the synesthetes' colors. Eye tracking analysis showed that synesthetes exhibited a color congruity bias-a propensity to fixate congruently colored letters more often and for longer durations than incongruently colored letters-in a naturalistic free-viewing task. In a more structured visual search task, this congruity bias caused synesthetes to rapidly fixate and identify congruently colored target letters, but led to problems in identifying incongruently colored target letters. The results are discussed in terms of their implications for perception in synesthesia.

  4. Inferring Interaction Force from Visual Information without Using Physical Force Sensors.

    PubMed

    Hwang, Wonjun; Lim, Soo-Chul

    2017-10-26

    In this paper, we present an interaction force estimation method that uses visual information rather than that of a force sensor. Specifically, we propose a novel deep learning-based method utilizing only sequential images for estimating the interaction force against a target object, where the shape of the object is changed by an external force. The force applied to the target can be estimated by means of the visual shape changes. However, the shape differences in the images are not very clear. To address this problem, we formulate a recurrent neural network-based deep model with fully-connected layers, which models complex temporal dynamics from the visual representations. Extensive evaluations show that the proposed learning models successfully estimate the interaction forces using only the corresponding sequential images, in particular in the case of three objects made of different materials, a sponge, a PET bottle, a human arm, and a tube. The forces predicted by the proposed method are very similar to those measured by force sensors.

  5. A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays

    NASA Technical Reports Server (NTRS)

    Eckstein, M. P.; Thomas, J. P.; Palmer, J.; Shimozaki, S. S.

    2000-01-01

    Recently, quantitative models based on signal detection theory have been successfully applied to the prediction of human accuracy in visual search for a target that differs from distractors along a single attribute (feature search). The present paper extends these models for visual search accuracy to multidimensional search displays in which the target differs from the distractors along more than one feature dimension (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in the display elicits a noisy representation for each of the relevant feature dimensions. The observer combines the representations across feature dimensions to obtain a single decision variable, and the stimulus with the maximum value determines the response. The model accurately predicts human experimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation. The model accounts for performance degradation without resorting to a limited-capacity spatially localized and temporally serial mechanism by which to bind information across feature dimensions.

  6. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  7. Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment☆

    PubMed Central

    Güntekin, Bahar; Emek-Savaş, Derya Durusu; Kurt, Pınar; Yener, Görsev Gülmen; Başar, Erol

    2013-01-01

    The aim of the present study was to investigate the role of beta oscillatory responses upon cognitive load in healthy subjects and in subjects with mild cognitive impairment (MCI). The role of beta oscillations upon cognitive stimulation is least studied in comparison to other frequency bands. The study included 17 consecutive patients with MCI (mean age = 70.8 ± 5.6 years) according to Petersen's criteria, and 17 age- and education-matched normal elderly controls (mean age = 68.5 ± 5.5 years). The experiments used a visual oddball paradigm. EEG was recorded at 30 cortical locations. EEG-evoked power, inter-trial phase synchronization, and event-related beta responses filtered in 15–20 Hz were obtained in response to target and non-target stimuli for both groups of subjects. In healthy subjects, EEG-evoked beta power, inter-trial phase synchronization of beta responses and event-related filtered beta responses were significantly higher in responses to target than non-target stimuli (p < 0.05). In MCI patients, there were no differences in evoked beta power between target and non-target stimuli. Furthermore, upon presentation of visual oddball paradigm, occipital electrodes depict higher beta response in comparison to other electrode sites. The increased beta response upon presentation of target stimuli in healthy subjects implies that beta oscillations could shift the system to an attention state, and had important function in cognitive activity. This may, in future, open the way to consider beta activity as an important operator in brain cognitive processes. PMID:24179847

  8. Hearing Feelings: Affective Categorization of Music and Speech in Alexithymia, an ERP Study

    PubMed Central

    Goerlich, Katharina Sophia; Witteman, Jurriaan; Aleman, André; Martens, Sander

    2011-01-01

    Background Alexithymia, a condition characterized by deficits in interpreting and regulating feelings, is a risk factor for a variety of psychiatric conditions. Little is known about how alexithymia influences the processing of emotions in music and speech. Appreciation of such emotional qualities in auditory material is fundamental to human experience and has profound consequences for functioning in daily life. We investigated the neural signature of such emotional processing in alexithymia by means of event-related potentials. Methodology Affective music and speech prosody were presented as targets following affectively congruent or incongruent visual word primes in two conditions. In two further conditions, affective music and speech prosody served as primes and visually presented words with affective connotations were presented as targets. Thirty-two participants (16 male) judged the affective valence of the targets. We tested the influence of alexithymia on cross-modal affective priming and on N400 amplitudes, indicative of individual sensitivity to an affective mismatch between words, prosody, and music. Our results indicate that the affective priming effect for prosody targets tended to be reduced with increasing scores on alexithymia, while no behavioral differences were observed for music and word targets. At the electrophysiological level, alexithymia was associated with significantly smaller N400 amplitudes in response to affectively incongruent music and speech targets, but not to incongruent word targets. Conclusions Our results suggest a reduced sensitivity for the emotional qualities of speech and music in alexithymia during affective categorization. This deficit becomes evident primarily in situations in which a verbalization of emotional information is required. PMID:21573026

  9. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study

    PubMed Central

    Capotosto, Paolo; Corbetta, Maurizio; Romani, Gian Luca; Babiloni, Claudio

    2013-01-01

    Transcranial magnetic stimulation (TMS) interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and electroencephalographic (EEG) rhythmic correlates of endogenous spatial orienting prior to visual target presentation (Capotosto et al. 2009; 2011). Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven re-orienting or the ability to efficiently process unattended stimuli, i.e. stimuli outside the current focus of attention. Healthy subjects (N=24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 milliseconds (ms) simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 ms (P3) post-target. The P3 significantly decreased for unattended targets, and significantly increased for attended targets after right IPS-rTMS as compared to Sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of subjects. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with post-decision processes that are part of stimulus-driven re-orienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven re-orienting processes in human vision. PMID:22905824

  10. Attention capture without awareness in a non-spatial selection task.

    PubMed

    Oriet, Chris; Pandey, Mamata; Kawahara, Jun-Ichiro

    2017-02-01

    Distractors presented prior to a critical target in a rapid sequence of visually-presented items induce a lag-dependent deficit in target identification, particularly when the distractor shares a task-relevant feature of the target. Presumably, such capture of central attention is important for bringing a target into awareness. The results of the present investigation suggest that greater capture of attention by a distractor is not accompanied by greater awareness of it. Moreover, awareness tends to be limited to superficial characteristics of the target such as colour. The findings are interpreted within the context of a model that assumes sudden increases in arousal trigger selection of information for consolidation in working memory. In this conceptualization, prolonged analysis of distractor items sharing task-relevant features leads to larger target identification deficits (i.e., greater capture) but no increase in awareness. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Phased array performance evaluation with photoelastic visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzel, Robert; Dao, Gavin

    2014-02-18

    New instrumentation and a widening range of phased array transducer options are affording the industry a greater potential. Visualization of the complex wave components using the photoelastic system can greatly enhance understanding of the generated signals. Diffraction, mode conversion and wave front interaction, together with beam forming for linear, sectorial and matrix arrays, will be viewed using the photoelastic system. Beam focus and steering performance will be shown with a range of embedded and surface targets within glass samples. This paper will present principles and sound field images using this visualization system.

  12. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    PubMed

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  13. CLFs-based optimization control for a class of constrained visual servoing systems.

    PubMed

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. The Effect of Symbology Location and Format on Attentional Deployment within a Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Liao, Min-Ju; Tse, Stephen

    2003-01-01

    The present experiment employed target detection tasks to investigate attentional deployment during visual search for target aircraft symbols on a cockpit display of traffic information (CDTI). Targets were defined by either a geometric property (aircraft on a collision course with Ownship) or a textual property (aircraft with associated altitude tags indicating an even altitude level). Effects of target location and target brightness (highlighting) were examined. Target location was systematically related to target detection time, and this interacted with the target's defining property (collision geometry or associated text). Highlighting (which was not linked to whether an aircraft symbol was the target) did not influence target detection time.

  15. Using task effort and pupil size to track covert shifts of visual attention independently of a pupillary light reflex.

    PubMed

    Brocher, Andreas; Harbecke, Raphael; Graf, Tim; Memmert, Daniel; Hüttermann, Stefanie

    2018-03-07

    We tested the link between pupil size and the task effort involved in covert shifts of visual attention. The goal of this study was to establish pupil size as a marker of attentional shifting in the absence of luminance manipulations. In three experiments, participants evaluated two stimuli that were presented peripherally, appearing equidistant from and on opposite sides of eye fixation. The angle between eye fixation and the peripherally presented target stimuli varied from 12.5° to 42.5°. The evaluation of more distant stimuli led to poorer performance than did the evaluation of more proximal stimuli throughout our study, confirming that the former required more effort than the latter. In addition, in Experiment 1 we found that pupil size increased with increasing angle and that this effect could not be reduced to the operation of low-level visual processes in the task. In Experiment 2 the pupil dilated more strongly overall when participants evaluated the target stimuli, which required shifts of attention, than when they merely reported on the target's presence versus absence. Both conditions yielded larger pupils for more distant than for more proximal stimuli, however. In Experiment 3, we manipulated task difficulty more directly, by changing the contrast at which the target stimuli were presented. We replicated the results from Experiment 1 only with the high-contrast stimuli. With stimuli of low contrast, ceiling effects in pupil size were observed. Our data show that the link between task effort and pupil size can be used to track the degree to which an observer covertly shifts attention to or detects stimuli in peripheral vision.

  16. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  17. Brain processing of visual information during fast eye movements maintains motor performance.

    PubMed

    Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis

    2013-01-01

    Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.

  18. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  19. Increased effect of target eccentricity on covert shifts of visual attention in patients with neglect.

    PubMed

    Hamilton, Roy H; Stark, Marianna; Coslett, H Branch

    2010-01-01

    Debate continues regarding the mechanisms underlying covert shifts of visual attention. We examined the relationship between target eccentricity and the speed of covert shifts of attention in normal subjects and patients with brain lesions using a cued-response task in which cues and targets were presented at 2 degrees or 8 degrees lateral to the fixation point. Normal subjects were slower on invalid trials in the 8 degrees as compared to 2 degrees condition. Patients with right-hemisphere stroke with neglect were slower in their responses to left-sided invalid targets compared to valid targets, and demonstrated a significant increase in the effect of target validity as a function of target eccentricity. Additional data from one neglect patient (JM) demonstrated an exaggerated validity x eccentricity x side interaction for contralesional targets on a cued reaction time task with a central (arrow) cue. We frame these results in the context of a continuous 'moving spotlight' model of attention, and also consider the potential role of spatial saliency maps. By either account, we argue that neglect is characterized by an eccentricity-dependent deficit in the allocation of attention.

  20. Evaluation of camouflage effectiveness using hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zavvartorbati, Ahmad; Dehghani, Hamid; Rashidi, Ali Jabar

    2017-10-01

    Recent advances in camouflage engineering have made it more difficult to detect targets. Assessing the effectiveness of camouflage against different target detection methods leads to identifying the strengths and weaknesses of camouflage designs. One of the target detection methods is to analyze the content of the scene using remote sensing hyperspectral images. In the process of evaluating camouflage designs, there must be comprehensive and efficient evaluation criteria. Three parameters were considered as the main factors affecting the target detection and based on these factors, camouflage effectiveness assessment criteria were proposed. To combine the criteria in the form of a single equation, the equation used in target visual search models was employed and for determining the criteria, a model was presented based on the structure of the computational visual attention systems. Also, in software implementations on the HyMap hyperspectral image, a variety of camouflage levels were created for the real targets in the image. Assessing the camouflage levels using the proposed criteria, comparing and analyzing the results can show that the provided criteria and model are effective for the evaluation of camouflage designs using hyperspectral images.

  1. Selection and response bias as determinants of priming of pop-out search: Revelations from diffusion modeling.

    PubMed

    Burnham, Bryan R

    2018-05-03

    During visual search, both top-down factors and bottom-up properties contribute to the guidance of visual attention, but selection history can influence attention independent of bottom-up and top-down factors. For example, priming of pop-out (PoP) is the finding that search for a singleton target is faster when the target and distractor features repeat than when those features trade roles between trials. Studies have suggested that such priming (selection history) effects on pop-out search manifest either early, by biasing the selection of the preceding target feature, or later in processing, by facilitating response and target retrieval processes. The present study was designed to examine the influence of selection history on pop-out search by introducing a speed-accuracy trade-off manipulation in a pop-out search task. Ratcliff diffusion modeling (RDM) was used to examine how selection history influenced both attentional bias and response execution processes. The results support the hypothesis that selection history biases attention toward the preceding target's features on the current trial and also influences selection of the response to the target.

  2. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    PubMed

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  3. Neural basis of superior performance of action videogame players in an attention-demanding task.

    PubMed

    Mishra, Jyoti; Zinni, Marla; Bavelier, Daphne; Hillyard, Steven A

    2011-01-19

    Steady-state visual evoked potentials (SSVEPs) were recorded from action videogame players (VGPs) and from non-videogame players (NVGPs) during an attention-demanding task. Participants were presented with a multi-stimulus display consisting of rapid sequences of alphanumeric stimuli presented at rates of 8.6/12 Hz in the left/right peripheral visual fields, along with a central square at fixation flashing at 5.5 Hz and a letter sequence flashing at 15 Hz at an upper central location. Subjects were cued to attend to one of the peripheral or central stimulus sequences and detect occasional targets. Consistent with previous behavioral studies, VGPs detected targets with greater speed and accuracy than NVGPs. This behavioral advantage was associated with an increased suppression of SSVEP amplitudes to unattended peripheral sequences in VGPs relative to NVGPs, whereas the magnitude of the attended SSVEPs was equivalent in the two groups. Group differences were also observed in the event-related potentials to targets in the alphanumeric sequences, with the target-elicited P300 component being of larger amplitude in VGPS than NVGPs. These electrophysiological findings suggest that the superior target detection capabilities of the VGPs are attributable, at least in part, to enhanced suppression of distracting irrelevant information and more effective perceptual decision processes.

  4. An ERP Investigation of Visual Word Recognition in Syllabary Scripts

    PubMed Central

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.

    2013-01-01

    The bi-modal interactive-activation model has been successfully applied to understanding the neuro-cognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, the current study examined word recognition in a different writing system, the Japanese syllabary scripts Hiragana and Katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words where the prime and target words were both in the same script (within-script priming, Experiment 1) or were in the opposite script (cross-script priming, Experiment 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sub-lexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time-course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in Experiment 1 where prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neuro-cognitive processes that operate in a similar manner across different writing systems and languages, as well as pointing to the viability of the bi-modal interactive activation framework for modeling such processes. PMID:23378278

  5. Seeing the hand while reaching speeds up on-line responses to a sudden change in target position

    PubMed Central

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2009-01-01

    Goal-directed movements are executed under the permanent supervision of the central nervous system, which continuously processes sensory afferents and triggers on-line corrections if movement accuracy seems to be compromised. For arm reaching movements, visual information about the hand plays an important role in this supervision, notably improving reaching accuracy. Here, we tested whether visual feedback of the hand affects the latency of on-line responses to an external perturbation when reaching for a visual target. Two types of perturbation were used: visual perturbation consisted in changing the spatial location of the target and kinesthetic perturbation in applying a force step to the reaching arm. For both types of perturbation, the hand trajectory and the electromyographic (EMG) activity of shoulder muscles were analysed to assess whether visual feedback of the hand speeds up on-line corrections. Without visual feedback of the hand, on-line responses to visual perturbation exhibited the longest latency. This latency was reduced by about 10% when visual feedback of the hand was provided. On the other hand, the latency of on-line responses to kinesthetic perturbation was independent of the availability of visual feedback of the hand. In a control experiment, we tested the effect of visual feedback of the hand on visual and kinesthetic two-choice reaction times – for which coordinate transformation is not critical. Two-choice reaction times were never facilitated by visual feedback of the hand. Taken together, our results suggest that visual feedback of the hand speeds up on-line corrections when the position of the visual target with respect to the body must be re-computed during movement execution. This facilitation probably results from the possibility to map hand- and target-related information in a common visual reference frame. PMID:19675067

  6. Visual selective attention and reading efficiency are related in children.

    PubMed

    Casco, C; Tressoldi, P E; Dellantonio, A

    1998-09-01

    We investigated the relationship between visual selective attention and linguistic performance. Subjects were classified in four categories according to their accuracy in a letter cancellation task involving selective attention. The task consisted in searching a target letter in a set of background letters and accuracy was measured as a function of set size. We found that children with the lowest performance in the cancellation task present a significantly slower reading rate and a higher number of reading visual errors than children with highest performance. Results also show that these groups of searchers present significant differences in a lexical search task whereas their performance did not differ in lexical decision and syllables control task. The relationship between letter search and reading, as well as the finding that poor readers-searchers perform poorly lexical search tasks also involving selective attention, suggest that the relationship between letter search and reading difficulty may reflect a deficit in a visual selective attention mechanisms which is involved in all these tasks. A deficit in visual attention can be linked to the problems that disabled readers present in the function of magnocellular stream which culminates in posterior parietal cortex, an area which plays an important role in guiding visual attention.

  7. Age Changes in Attention Control: Assessing the Role of Stimulus Contingencies

    ERIC Educational Resources Information Center

    Brodeur, Darlene A.

    2004-01-01

    Children (ages 5, 7, and 9 years) and young adults completed two visual attention tasks that required them to make a forced choice identification response to a target shape presented in the center of a computer screen. In the first task (high correlation condition) each target was flanked with the same distracters on 80% of the trials (valid…

  8. Matching Accuracy in Hemiparetic Cerebral Palsy during Unimanual and Bimanual Movements with (Mirror) Visual Feedback

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2012-01-01

    In the present study participants with Spastic Hemiparetic Cerebral Palsy (SHCP) were asked to match the position of a target either with the impaired arm only (unimanual condition) or with both arms at the same time (bimanual condition). The target was placed at 4 different locations scaled to the individual maximum reaching distance. To test the…

  9. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Effects of Field of View and Visual Complexity on Virtual Reality Training Effectiveness for a Visual Scanning Task

    DOE PAGES

    Ragan, Eric D.; Bowman, Doug A.; Kopper, Regis; ...

    2015-02-13

    Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. The paper presents a framework for evaluating the effects of virtual reality fidelity based on an analysis of a simulation’s display, interaction, and scenario components. Following this framework, we conducted a controlled experiment to test the effects of fidelity on training effectiveness for a visual scanning task. The experiment varied the levels of field of view and visual realism during a training phase and then evaluated scanning performance with the simulator’s highestmore » level of fidelity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual realism significantly affected target detection during training; higher field of view led to better performance and higher visual realism worsened performance. Additionally, the level of visual realism during training significantly affected learning of the prescribed visual scanning strategy, providing evidence that high visual realism was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—evaluation in a more realistic setting may be necessary.« less

  11. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The modulation of auditory novelty processing by working memory load in school age children and adults: a combined behavioral and event-related potential study

    PubMed Central

    2010-01-01

    Background We investigated the processing of task-irrelevant and unexpected novel sounds and its modulation by working-memory load in children aged 9-10 and in adults. Environmental sounds (novels) were embedded amongst frequently presented standard sounds in an auditory-visual distraction paradigm. Each sound was followed by a visual target. In two conditions, participants evaluated the position of a visual stimulus (0-back, low load) or compared the position of the current stimulus with the one two trials before (2-back, high load). Processing of novel sounds were measured with reaction times, hit rates and the auditory event-related brain potentials (ERPs) Mismatch Negativity (MMN), P3a, Reorienting Negativity (RON) and visual P3b. Results In both memory load conditions novels impaired task performance in adults whereas they improved performance in children. Auditory ERPs reflect age-related differences in the time-window of the MMN as children showed a positive ERP deflection to novels whereas adults lack an MMN. The attention switch towards the task irrelevant novel (reflected by P3a) was comparable between the age groups. Adults showed more efficient reallocation of attention (reflected by RON) under load condition than children. Finally, the P3b elicited by the visual target stimuli was reduced in both age groups when the preceding sound was a novel. Conclusion Our results give new insights in the development of novelty processing as they (1) reveal that task-irrelevant novel sounds can result in contrary effects on the performance in a visual primary task in children and adults, (2) show a positive ERP deflection to novels rather than an MMN in children, and (3) reveal effects of auditory novels on visual target processing. PMID:20929535

  13. Visual search for conjunctions of physical and numerical size shows that they are processed independently.

    PubMed

    Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J; Dague, Taylor D

    2017-03-01

    The size congruity effect refers to the interaction between numerical magnitude and physical digit size in a symbolic comparison task. Though this effect is well established in the typical 2-item scenario, the mechanisms at the root of the interference remain unclear. Two competing explanations have emerged in the literature: an early interaction model and a late interaction model. In the present study, we used visual conjunction search to test competing predictions from these 2 models. Participants searched for targets that were defined by a conjunction of physical and numerical size. Some distractors shared the target's physical size, and the remaining distractors shared the target's numerical size. We held the total number of search items fixed and manipulated the ratio of the 2 distractor set sizes. The results from 3 experiments converge on the conclusion that numerical magnitude is not a guiding feature for visual search, and that physical and numerical magnitude are processed independently, which supports a late interaction model of the size congruity effect. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  15. Memory as discrimination: what distraction reveals.

    PubMed

    Beaman, C Philip; Hanczakowski, Maciej; Hodgetts, Helen M; Marsh, John E; Jones, Dylan M

    2013-11-01

    Recalling information involves the process of discriminating between relevant and irrelevant information stored in memory. Not infrequently, the relevant information needs to be selected from among a series of related possibilities. This is likely to be particularly problematic when the irrelevant possibilities not only are temporally or contextually appropriate, but also overlap semantically with the target or targets. Here, we investigate the extent to which purely perceptual features that discriminate between irrelevant and target material can be used to overcome the negative impact of contextual and semantic relatedness. Adopting a distraction paradigm, it is demonstrated that when distractors are interleaved with targets presented either visually (Experiment 1) or auditorily (Experiment 2), a within-modality semantic distraction effect occurs; semantically related distractors impact upon recall more than do unrelated distractors. In the semantically related condition, the number of intrusions in recall is reduced, while the number of correctly recalled targets is simultaneously increased by the presence of perceptual cues to relevance (color features in Experiment 1 or speaker's gender in Experiment 2). However, as is demonstrated in Experiment 3, even presenting semantically related distractors in a language and a sensory modality (spoken Welsh) distinct from that of the targets (visual English) is insufficient to eliminate false recalls completely or to restore correct recall to levels seen with unrelated distractors . Together, the study shows how semantic and nonsemantic discriminability shape patterns of both erroneous and correct recall.

  16. Contingent attentional capture occurs by activated target congruence.

    PubMed

    Ariga, Atsunori; Yokosawa, Kazuhiko

    2008-05-01

    Contingent attentional capture occurs when a stimulus property captures an observer's attention, usually related to the observer's top-down attentional set for target-defining properties. In this study, we examined whether contingent attentional capture occurs for a distractor that does not share the target-defining property at a physical level, but does share that property at an abstract level of representation. In a rapid serial visual presentation stream, we defined the target by color (e.g., a green-colored Japanese kanji character). Before the target onset, we presented a distractor that referred to the target-defining color (e.g., a white-colored character meaning "green"). We observed contingent attentional capture by the distractor, which was reflected by a deficit in identifying the subsequent target. This result suggests that because of the attentional set, stimuli were scanned on the basis of the target-defining property at an abstract semantic level of representation.

  17. Focused and divided attention abilities in the acute phase of recovery from moderate to severe traumatic brain injury.

    PubMed

    Robertson, Kayela; Schmitter-Edgecombe, Maureen

    2017-01-01

    Impairments in attention following traumatic brain injury (TBI) can significantly impact recovery and rehabilitation effectiveness. This study investigated the multi-faceted construct of selective attention following TBI, highlighting the differences on visual nonsearch (focused attention) and search (divided attention) tasks. Participants were 30 individuals with moderate to severe TBI who were tested acutely (i.e. following emergence from PTA) and 30 age- and education-matched controls. Participants were presented with visual displays that contained either two or eight items. In the focused attention, nonsearch condition, the location of the target (if present) was cued with a peripheral arrow prior to presentation of the visual displays. In the divided attention, search condition, no spatial cue was provided prior to presentation of the visual displays. The results revealed intact focused, nonsearch, attention abilities in the acute phase of TBI recovery. In contrast, when no spatial cue was provided (divided attention condition), participants with TBI demonstrated slower visual search compared to the control group. The results of this study suggest that capitalizing on intact focused attention abilities by allocating attention during cognitively demanding tasks may help to reduce mental workload and improve rehabilitation effectiveness.

  18. Perceived Reachability in Hemispace

    ERIC Educational Resources Information Center

    Gabbard, C.; Ammar, D.; Rodrigues, L.

    2005-01-01

    A common observation in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate. Of the studies noted, reaching tasks have been presented in the general midline range. In the present study, strong right-handers were asked to judge the reachability of visual targets projected onto a table…

  19. Transient Distraction and Attentional Control during a Sustained Selective Attention Task.

    PubMed

    Demeter, Elise; Woldorff, Marty G

    2016-07-01

    Distracting stimuli in the environment can pull our attention away from our goal-directed tasks. fMRI studies have implicated regions in right frontal cortex as being particularly important for processing distractors [e.g., de Fockert, J. W., & Theeuwes, J. Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 80, 367-373, 2012; Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage, 54, 1518-1529, 2011]. Less is known, however, about the timing and sequence of how right frontal or other brain regions respond selectively to distractors and how distractors impinge upon the cascade of processes related to detecting and processing behaviorally relevant target stimuli. Here we used EEG and ERPs to investigate the neural consequences of a perceptually salient but task-irrelevant distractor on the detection of rare target stimuli embedded in a rapid, serial visual presentation (RSVP) stream. We found that distractors that occur during the presentation of a target interfere behaviorally with detection of those targets, reflected by reduced detection rates, and that these missed targets show a reduced amplitude of the long-latency, detection-related P3 component. We also found that distractors elicited a right-lateralized frontal negativity beginning at 100 msec, whose amplitude negatively correlated across participants with their distraction-related behavioral impairment. Finally, we also quantified the instantaneous amplitude of the steady-state visual evoked potentials elicited by the RSVP stream and found that the occurrence of a distractor resulted in a transient amplitude decrement of the steady-state visual evoked potential, presumably reflecting the pull of attention away from the RSVP stream when distracting stimuli occur in the environment.

  20. Misperception of exocentric directions in auditory space

    PubMed Central

    Arthur, Joeanna C.; Philbeck, John W.; Sargent, Jesse; Dopkins, Stephen

    2008-01-01

    Previous studies have demonstrated large errors (over 30°) in visually perceived exocentric directions (the direction between two objects that are both displaced from the observer’s location; e.g., Philbeck et al., in press). Here, we investigated whether a similar pattern occurs in auditory space. Blindfolded participants either attempted to aim a pointer at auditory targets (an exocentric task) or gave a verbal estimate of the egocentric target azimuth. Targets were located at 20° to 160° azimuth in the right hemispace. For comparison, we also collected pointing and verbal judgments for visual targets. We found that exocentric pointing responses exhibited sizeable undershooting errors, for both auditory and visual targets, that tended to become more strongly negative as azimuth increased (up to −19° for visual targets at 160°). Verbal estimates of the auditory and visual target azimuths, however, showed a dramatically different pattern, with relatively small overestimations of azimuths in the rear hemispace. At least some of the differences between verbal and pointing responses appear to be due to the frames of reference underlying the responses; when participants used the pointer to reproduce the egocentric target azimuth rather than the exocentric target direction relative to the pointer, the pattern of pointing errors more closely resembled that seen in verbal reports. These results show that there are similar distortions in perceiving exocentric directions in visual and auditory space. PMID:18555205

  1. Moving attention - Evidence for time-invariant shifts of visual selective attention

    NASA Technical Reports Server (NTRS)

    Remington, R.; Pierce, L.

    1984-01-01

    Two experiments measured the time to shift spatial selective attention across the visual field to targets 2 or 10 deg from central fixation. A central arrow cued the most likely target location. The direction of attention was inferred from reaction times to expected, unexpected, and neutral locations. The development of a spatial attentional set with time was examined by presenting target probes at varying times after the cue. There were no effects of distance on the time course of the attentional set. Reaction times for far locations were slower than for near, but the effects of attention were evident by 150 msec in both cases. Spatial attention does not shift with a characteristic, fixed velocity. Rather, velocity is proportional to distance, resulting in a movement time that is invariant over the distances tested.

  2. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.

  3. Maintaining perceptual constancy while remaining vigilant: left hemisphere change blindness and right hemisphere vigilance.

    PubMed

    Vos, Leia; Whitman, Douglas

    2014-01-01

    A considerable literature suggests that the right hemisphere is dominant in vigilance for novel and survival-related stimuli, such as predators, across a wide range of species. In contrast to vigilance for change, change blindness is a failure to detect obvious changes in a visual scene when they are obscured by a disruption in scene presentation. We studied lateralised change detection using a series of scenes with salient changes in either the left or right visual fields. In Study 1 left visual field changes were detected more rapidly than right visual field changes, confirming a right hemisphere advantage for change detection. Increasing stimulus difficulty resulted in greater right visual field detections and left hemisphere detection was more likely when change occurred in the right visual field on a prior trial. In Study 2 an intervening distractor task disrupted the influence of prior trials. Again, faster detection speeds were observed for the left visual field changes with a shift to a right visual field advantage with increasing time-to-detection. This suggests that a right hemisphere role for vigilance, or catching attention, and a left hemisphere role for target evaluation, or maintaining attention, is present at the earliest stage of change detection.

  4. Behavior and neural basis of near-optimal visual search

    PubMed Central

    Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre

    2013-01-01

    The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276

  5. Inhibition of voluntary saccadic eye movement commands by abrupt visual onsets.

    PubMed

    Edelman, Jay A; Xu, Kitty Z

    2009-03-01

    Saccadic eye movements are made both to explore the visual world and to react to sudden sensory events. We studied the ability for humans to execute a voluntary (i.e., nonstimulus-driven) saccade command in the face of a suddenly appearing visual stimulus. Subjects were required to make a saccade to a memorized location when a central fixation point disappeared. At varying times relative to fixation point disappearance a visual distractor appeared at a random location. When the distractor appeared at locations distant from the target virtually no saccades were initiated in a 30- to 40-ms interval beginning 70-80 ms after appearance of the distractor. If the distractor was presented slightly earlier relative to saccade initiation then saccades tended to have smaller amplitudes, with velocity profiles suggesting that the distractor terminated them prematurely. In contrast, distractors appearing close to the saccade target elicited express saccade-like movements 70-100 ms after their appearance, although the saccade endpoint was generally scarcely affected by the distractor. An additional experiment showed that these effects were weaker when the saccade was made to a visible target in a delayed task and still weaker when the saccade itself was made in response to the abrupt appearance of a visual stimulus. A final experiment revealed that the effect is smaller, but quite evident, for very small stimuli. These results suggest that the transient component of a visual response can briefly but almost completely suppress a voluntary saccade command, but only when the stimulus evoking that response is distant from the saccade goal.

  6. Does It Really Matter Where You Look When Walking on Stairs? Insights from a Dual-Task Study

    PubMed Central

    Miyasike-daSilva, Veronica; McIlroy, William E.

    2012-01-01

    Although the visual system is known to provide relevant information to guide stair locomotion, there is less understanding of the specific contributions of foveal and peripheral visual field information. The present study investigated the specific role of foveal vision during stair locomotion and ground-stairs transitions by using a dual-task paradigm to influence the ability to rely on foveal vision. Fifteen healthy adults (26.9±3.3 years; 8 females) ascended a 7-step staircase under four conditions: no secondary tasks (CONTROL); gaze fixation on a fixed target located at the end of the pathway (TARGET); visual reaction time task (VRT); and auditory reaction time task (ART). Gaze fixations towards stair features were significantly reduced in TARGET and VRT compared to CONTROL and ART. Despite the reduced fixations, participants were able to successfully ascend stairs and rarely used the handrail. Step time was increased during VRT compared to CONTROL in most stair steps. Navigating on the transition steps did not require more gaze fixations than the middle steps. However, reaction time tended to increase during locomotion on transitions suggesting additional executive demands during this phase. These findings suggest that foveal vision may not be an essential source of visual information regarding stair features to guide stair walking, despite the unique control challenges at transition phases as highlighted by phase-specific challenges in dual-tasking. Instead, the tendency to look at the steps in usual conditions likely provides a stable reference frame for extraction of visual information regarding step features from the entire visual field. PMID:22970297

  7. Reading sky and seeing a cloud: On the relevance of events for perceptual simulation.

    PubMed

    Ostarek, Markus; Vigliocco, Gabriella

    2017-04-01

    Previous research has shown that processing words with an up/down association (e.g., bird, foot) can influence the subsequent identification of visual targets in congruent location (at the top/bottom of the screen). However, as facilitation and interference were found under similar conditions, the nature of the underlying mechanisms remained unclear. We propose that word comprehension relies on the perceptual simulation of a prototypical event involving the entity denoted by a word in order to provide a general account of the different findings. In 3 experiments, participants had to discriminate between 2 target pictures appearing at the top or the bottom of the screen by pressing the left versus right button. Immediately before the targets appeared, they saw an up/down word belonging to the target's event, an up/down word unrelated to the target, or a spatially neutral control word. Prime words belonging to target event facilitated identification of targets at a stimulus onset asynchrony (SOA) of 250 ms (Experiment 1), but only when presented in the vertical location where they are typically seen, indicating that targets were integrated in the simulations activated by the prime words. Moreover, at the same SOA, there was a robust facilitation effect for targets appearing in their typical location regardless of the prime type. However, when words were presented for 100 ms (Experiment 2) or 800 ms (Experiment 3), only a location nonspecific priming effect was found, suggesting that the visual system was not activated. Implications for theories of semantic processing are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Reaching back: the relative strength of the retroactive emotional attentional blink

    PubMed Central

    Ní Choisdealbha, Áine; Piech, Richard M.; Fuller, John K.; Zald, David H.

    2017-01-01

    Visual stimuli with emotional content appearing in close temporal proximity either before or after a target stimulus can hinder conscious perceptual processing of the target via an emotional attentional blink (EAB). This occurs for targets that appear after the emotional stimulus (forward EAB) and for those appearing before the emotional stimulus (retroactive EAB). Additionally, the traditional attentional blink (AB) occurs because detection of any target hinders detection of a subsequent target. The present study investigated the relations between these different attentional processes. Rapid sequences of landscape images were presented to thirty-one male participants with occasional landscape targets (rotated images). For the forward EAB, emotional or neutral distractor images of people were presented before the target; for the retroactive EAB, such images were also targets and presented after the landscape target. In the latter case, this design allowed investigation of the AB as well. Erotic and gory images caused more EABs than neutral images, but there were no differential effects on the AB. This pattern is striking because while using different target categories (rotated landscapes, people) appears to have eliminated the AB, the retroactive EAB still occurred, offering additional evidence for the power of emotional stimuli over conscious attention. PMID:28255172

  9. Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention

    PubMed Central

    Callaghan, Eleanor; Holland, Carol; Kessler, Klaus

    2017-01-01

    Background: Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults’ driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods: Age groups (21–30, 40–49, 50–59, 60–69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results: Visual search response times (RTs) were longer on “Target Mid” and “Distractor Only” trials in comparison to “Target 1st” trials, reflecting switch-costs. Larger switch-costs were found in both the 40–49 and 60–69 years group in comparison to the 21–30 years group when switching from the Target Mid condition. Discussion: Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial. PMID:28261088

  10. Attentional awakening: gradual modulation of temporal attention in rapid serial visual presentation.

    PubMed

    Ariga, Atsunori; Yokosawa, Kazuhiko

    2008-03-01

    Orienting attention to a point in time facilitates processing of an item within rapidly changing surroundings. We used a one-target RSVP task to look for differences in accuracy in reporting a target related to when the target temporally appeared in the sequence. The results show that observers correctly report a target early in the sequence less frequently than later in the sequence. Previous RSVP studies predicted equivalently accurate performances for one target wherever it appeared in the sequence. We named this new phenomenon attentional awakening, which reflects a gradual modulation of temporal attention in a rapid sequence.

  11. Binocular coordination in response to stereoscopic stimuli

    NASA Astrophysics Data System (ADS)

    Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.

    2009-02-01

    Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

  12. Self-Taught Low-Rank Coding for Visual Learning.

    PubMed

    Li, Sheng; Li, Kang; Fu, Yun

    2018-03-01

    The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing auxiliary samples from the same domain or from a different domain, respectively. Self-taught learning, which is a special type of transfer learning, has fewer restrictions on the choice of auxiliary data. It has shown promising performance in visual learning. However, existing self-taught learning methods usually ignore the structure information in data. In this paper, we focus on building a self-taught coding framework, which can effectively utilize the rich low-level pattern information abstracted from the auxiliary domain, in order to characterize the high-level structural information in the target domain. By leveraging a high quality dictionary learned across auxiliary and target domains, the proposed approach learns expressive codings for the samples in the target domain. Since many types of visual data have been proven to contain subspace structures, a low-rank constraint is introduced into the coding objective to better characterize the structure of the given target set. The proposed representation learning framework is called self-taught low-rank (S-Low) coding, which can be formulated as a nonconvex rank-minimization and dictionary learning problem. We devise an efficient majorization-minimization augmented Lagrange multiplier algorithm to solve it. Based on the proposed S-Low coding mechanism, both unsupervised and supervised visual learning algorithms are derived. Extensive experiments on five benchmark data sets demonstrate the effectiveness of our approach.

  13. More target features in visual working memory leads to poorer search guidance: Evidence from contralateral delay activity

    PubMed Central

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J.

    2014-01-01

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process. PMID:24599946

  14. More target features in visual working memory leads to poorer search guidance: evidence from contralateral delay activity.

    PubMed

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J

    2014-03-05

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process.

  15. Lateral interactions and speed of information processing in highly functioning multiple sclerosis patients.

    PubMed

    Nagy, Helga; Bencsik, Krisztina; Rajda, Cecília; Benedek, Krisztina; Janáky, Márta; Beniczky, Sándor; Kéri, Szabolcs; Vécsei, László

    2007-06-01

    Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.

  16. An electrophysiological dissociation of craving and stimulus-dependent attentional capture in smokers.

    PubMed

    Donohue, Sarah E; Woldorff, Marty G; Hopf, Jens-Max; Harris, Joseph A; Heinze, Hans-Jochen; Schoenfeld, Mircea A

    2016-12-01

    It has been suggested that over the course of an addiction, addiction-related stimuli become highly salient in the environment, thereby capturing an addict's attention. To assess these effects neurally in smokers, and how they interact with craving, we recorded electroencephalography (EEG) in two sessions: one in which participants had just smoked (non-craving), and one in which they had abstained from smoking for 3 h (craving). In both sessions, participants performed a visual-search task in which two colored squares were presented to the left and right of fixation, with one color being the target to which they should shift attention and discriminate the locations of two missing corners. Task-irrelevant images, both smoking-related and non-smoking-related, were embedded in both squares, enabling the shift of spatial attention to the target to be examined as a function of the addiction-related image being present or absent in the target, the distractor, or both. Behaviorally, participants were slower to respond to targets containing a smoking-related image. Furthermore, when the target contained a smoking-related image, the neural responses indicated that attention had been shifted less strongly to the target; when the distractor contained a smoking-related image, the shift of attention to the contralateral target was stronger. These effects occurred independently of craving and suggest that participants were actively avoiding the smoking-related images. Together, these results provide an electrophysiological dissociation between addiction-related visual-stimulus processing and the neural activity associated with craving.

  17. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    NASA Astrophysics Data System (ADS)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  18. Search time critically depends on irrelevant subset size in visual search.

    PubMed

    Benjamins, Jeroen S; Hooge, Ignace T C; van Elst, Jacco C; Wertheim, Alexander H; Verstraten, Frans A J

    2009-02-01

    In order for our visual system to deal with the massive amount of sensory input, some of this input is discarded, while other parts are processed [Wolfe, J. M. (1994). Guided search 2.0: a revised model of visual search. Psychonomic Bulletin and Review, 1, 202-238]. From the visual search literature it is unclear how well one set of items can be selected that differs in only one feature from target (a 1F set), while another set of items can be ignored that differs in two features from target (a 2F set). We systematically varied the percentage of 2F non-targets to determine the contribution of these non-targets to search behaviour. Increasing the percentage 2F non-targets, that have to be ignored, was expected to result in increasingly faster search, since it decreases the size of 1F set that has to be searched. Observers searched large displays for a target in the 1F set with a variable percentage of 2F non-targets. Interestingly, when the search displays contained 5% 2F non-targets, the search time was longer compared to the search time in other conditions. This effect of 2F non-targets on performance was independent of set size. An inspection of the saccades revealed that saccade target selection did not contribute to the longer search times in displays with 5% 2F non-targets. Occurrence of longer search times in displays containing 5% 2F non-targets might be attributed to covert processes related to visual analysis of the fixated part of the display. Apparently, visual search performance critically depends on the percentage of irrelevant 2F non-targets.

  19. Reaching with cerebral tunnel vision.

    PubMed

    Rizzo, M; Darling, W

    1997-01-01

    We studied reaching movements in a 48-year-old man with bilateral lesions of the calcarine cortex which spared the foveal representation and caused severe tunnel vision. Three-dimensional (3D) reconstruction of brain MR images showed no evidence of damage beyond area 18. The patient could not see his hand during reaching movements, providing a unique opportunity to test the role of peripheral visual cues in limb control. Optoelectronic recordings of upper limb movements showed normal hand paths and trajectories to fixated extrinsic targets. There was no slowing, tremor, or ataxia. Self-bound movements were also preserved. Analyses of limb orientation at the endpoints of reaches showed that the patient could transform an extrinsic target's visual coordinates to an appropriate upper limb configuration for target acquisition. There was no disadvantage created by blocking the view of the reaching arm. Moreover, the patient could not locate targets presented in the hemianopic fields by pointing. Thus, residual nonconscious vision or 'blindsight' in the aberrant fields was not a factor in our patient's reaching performance. The findings in this study show that peripheral visual cues on the position and velocity of the moving limb are not critical to the control of goal directed reaches, at least not until the hand is close to target. Other cues such as kinesthetic feedback can suffice. It also appears that the visuomotor transformations for reaching do not take place before area 19 in humans.

  20. Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series.

    PubMed

    Verleger, Rolf; Śmigasiewicz, Kamila

    2015-09-01

    Everyday experience suggests that people are equally aware of events in both hemi-fields. However, when two streams of stimuli are rapidly presented left and right containing two targets, the second target is better identified in the left than in the right visual field. This might be considered evidence for a right-hemisphere advantage in generating conscious percepts. However, this putative asymmetry of conscious perception cannot be measured independently of participants' access to their conscious percepts, and there is actually evidence from split-brain patients for the reverse, left-hemisphere advantage in having access to conscious percepts. Several other topics were studied in search of the responsible mechanism, among others: Mutual inhibition of hemispheres, cooperation of hemispheres in perceiving midline stimuli, and asymmetries in processing various perceptual inputs. Directing attention by salient cues turned out to be one of the few mechanisms capable of modifying the left visual-field advantage in this paradigm. Thus, this left visual-field advantage is best explained by the notion of a right-hemisphere advantage in directing attention to salient events. Dovetailing with the pathological asymmetries of attention after right-hemisphere lesions and with asymmetries of brain activation when healthy participants shift their attention, the present results extend that body of evidence by demonstrating unusually large and reliable behavioral asymmetries for attention-directing processes in healthy participants. Copyright © 2015 Elsevier Inc. All rights reserved.

Top