A novel false color mapping model-based fusion method of visual and infrared images
NASA Astrophysics Data System (ADS)
Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu
2013-12-01
A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.
Using false colors to protect visual privacy of sensitive content
NASA Astrophysics Data System (ADS)
Ćiftçi, Serdar; Korshunov, Pavel; Akyüz, Ahmet O.; Ebrahimi, Touradj
2015-03-01
Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly
A dual-channel fusion system of visual and infrared images based on color transfer
NASA Astrophysics Data System (ADS)
Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong
2013-09-01
A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.
7 CFR 51.1860 - Color classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color classification. 51.1860 Section 51.1860... STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification... illustrating the color classification requirements, as set forth in this section. This visual aid may be...
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole
NASA Technical Reports Server (NTRS)
2001-01-01
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.
Color extended visual cryptography using error diffusion.
Kang, InKoo; Arce, Gonzalo R; Lee, Heung-Kyu
2011-01-01
Color visual cryptography (VC) encrypts a color secret message into n color halftone image shares. Previous methods in the literature show good results for black and white or gray scale VC schemes, however, they are not sufficient to be applied directly to color shares due to different color structures. Some methods for color visual cryptography are not satisfactory in terms of producing either meaningless shares or meaningful shares with low visual quality, leading to suspicion of encryption. This paper introduces the concept of visual information pixel (VIP) synchronization and error diffusion to attain a color visual cryptography encryption method that produces meaningful color shares with high visual quality. VIP synchronization retains the positions of pixels carrying visual information of original images throughout the color channels and error diffusion generates shares pleasant to human eyes. Comparisons with previous approaches show the superior performance of the new method.
Small maritime target detection through false color fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Wu, Tirui
2008-04-01
We present an algorithm that produces a fused false color representation of a combined multiband IR and visual imaging system for maritime applications. Multispectral IR imaging techniques are increasingly deployed in maritime operations, to detect floating mines or to find small dinghies and swimmers during search and rescue operations. However, maritime backgrounds usually contain a large amount of clutter that severely hampers the detection of small targets. Our new algorithm deploys the correlation between the target signatures in two different IR frequency bands (3-5 and 8-12 μm) to construct a fused IR image with a reduced amount of clutter. The fused IR image is then combined with a visual image in a false color RGB representation for display to a human operator. The algorithm works as follows. First, both individual IR bands are filtered with a morphological opening top-hat transform to extract small details. Second, a common image is extracted from the two filtered IR bands, and assigned to the red channel of an RGB image. Regions of interest that appear in both IR bands remain in this common image, while most uncorrelated noise details are filtered out. Third, the visual band is assigned to the green channel and, after multiplication with a constant (typically 1.6) also to the blue channel. Fourth, the brightness and colors of this intermediate false color image are renormalized by adjusting its first order statistics to those of a representative reference scene. The result of these four steps is a fused color image, with naturalistic colors (bluish sky and grayish water), in which small targets are clearly visible.
Development and usage of a false color display technique for presenting Seasat-A scatterometer data
NASA Technical Reports Server (NTRS)
Jackson, C. B.
1980-01-01
A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.
Visual Distinctiveness and the Development of Children's False Memories
ERIC Educational Resources Information Center
Howe, Mark L.
2008-01-01
Distinctiveness effects in children's (5-, 7-, and 11-year-olds) false memory illusions were examined using visual materials. In Experiment 1, developmental trends (increasing false memories with age) were obtained using Deese-Roediger-McDermott lists presented as words and color photographs but not line drawings. In Experiment 2, when items were…
Visualization Case Study: Eyjafjallajökull Ash (Invited)
NASA Astrophysics Data System (ADS)
Simmon, R.
2010-12-01
Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.
Coupled binary embedding for large-scale image retrieval.
Zheng, Liang; Wang, Shengjin; Tian, Qi
2014-08-01
Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.28 Section 660.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... Reagents may be color coded with the specified color which shall be a visual match to a specific color...
Neural representation of form-contingent color filling-in in the early visual cortex.
Hong, Sang Wook; Tong, Frank
2017-11-01
Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.
Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T
2006-05-01
We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.
Molina-Torres, María-José; Crespo, María-del-Mar Seguí; Francés, Ana Tauste; Lacarra, Blanca Lumbreras; Ronda-Pérez, Elena
2016-01-01
Objective: To compare the diagnostic accuracy of two vision screeners by a visual examination performed by an optometrist (gold standard) and to evaluate the concordance between both screeners and between each screener and the gold standard. Methods: This was a cross-sectional study that included computer workers who attended a routine yearly health examination. The study included administrative office workers (n=91) aged 50.2±7.9 years (mean±standard deviation), 69.2% of whom were women and 68.1% of whom used video display terminals (VDT) for >4 h/day. The routine visual examination included monocular and binocular distance visual acuity (VA), distance and near lateral phoria (LP), stereo acuity (SA), and color vision. Tests were repeated with Optec 6500 (by Stereo Optical) and Visiotest (by Essilor) screeners. Sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and false positive and negative rates were calculated. Kappa coefficient (κ) was used to measure the concordance of the screeners and the gold standard. Results: The sensitivity and specificity for monocular VA were over 80% for both vision screeners; PPV was below 25%. Sensitivity and specificity were lower for SA (55%-70%), PPV was 50%, and NPV was 75% for both screeners. For distance LP, sensitivity and PPV were <10% in both cases. The screeners differed in their values for near LP: Optec 6500 had higher sensitivity (43.5%), PPV (37.0%), and NPV (79.7%); whereas the Visiotest had higher specificity (83.8%). For color vision, Visiotest showed low sensitivity, low PPV, and high specificity. Visiotest obtained false positive rates that were lower or similar to Optec 6500, and both screeners obtained false negative rates below 50%. Both screeners showed poor concordance (κ<0.40). Conclusions: A high value for NPV would qualify both screeners as acceptable alternatives for visual health surveillance when used as a screening tool; patients with positive test results should be referred to a specialist. PMID:27488039
van der Stelt, O; van der Molen, M; Boudewijn Gunning, W; Kok, A
2001-10-01
In order to gain insight into the functional and macroanatomical loci of visual selective processing deficits that may be basic to attention-deficit hyperactivity disorder (ADHD), the present study examined multi-channel event-related potentials (ERPs) recorded from 7- to 11-year-old boys clinically diagnosed as having ADHD (n=24) and age-matched healthy control boys (n=24) while they performed a visual (color) selective attention task. The spatio-temporal dynamics of several ERP components related to attention to color were characterized using topographic profile analysis, topographic mapping of the ERP and associated scalp current density distributions, and spatio-temporal source potential modeling. Boys with ADHD showed a lower target hit rate, a higher false-alarm rate, and a lower perceptual sensitivity than controls. Also, whereas color attention induced in the ERPs from controls a characteristic early frontally maximal selection positivity (FSP), ADHD boys displayed little or no FSP. Similarly, ADHD boys manifested P3b amplitude decrements that were partially lateralized (i.e., maximal at left temporal scalp locations) as well as affected by maturation. These results indicate that ADHD boys suffer from deficits at both relatively early (sensory) and late (semantic) levels of visual selective information processing. The data also support the hypothesis that the visual selective processing deficits observed in the ADHD boys originate from deficits in the strength of activation of a neural network comprising prefrontal and occipito-temporal brain regions. This network seems to be actively engaged during attention to color and may contain the major intracerebral generating sources of the associated scalp-recorded ERP components.
Proactive interference from items previously stored in visual working memory.
Makovski, Tal; Jiang, Yuhong V
2008-01-01
This study investigates the fate of information that was previously stored in visual working memory but that is no longer needed. Previous research has found inconsistent results, with some showing effective release of irrelevant information and others showing proactive interference. Using change detection tasks of colors or shapes, we show that participants tend to falsely classify a changed item as "no change" if it matches one of the memory items on the preceding trial. The interference is spatially specific: Memory for the preceding trial interferes more if it matches the feature value and the location of a test item than if it does not. Interference results from retaining information in visual working memory, since it is absent when items on the preceding trials are passively viewed, or are attended but not memorized. We conclude that people cannot fully eliminate unwanted visual information from current working memory tasks.
Visual cortex activity predicts subjective experience after reading books with colored letters.
Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke
2016-07-29
One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Imprinting modulates processing of visual information in the visual wulst of chicks.
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-11-14
Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.
Imprinting modulates processing of visual information in the visual wulst of chicks
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-01-01
Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium. PMID:17101060
Color-Space-Based Visual-MIMO for V2X Communication †
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-01-01
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603
Color-Space-Based Visual-MIMO for V2X Communication.
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-04-23
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
Color impact in visual attention deployment considering emotional images
NASA Astrophysics Data System (ADS)
Chamaret, C.
2012-03-01
Color is a predominant factor in the human visual attention system. Even if it cannot be sufficient to the global or complete understanding of a scene, it may impact the visual attention deployment. We propose to study the color impact as well as the emotion aspect of pictures regarding the visual attention deployment. An eye-tracking campaign has been conducted involving twenty people watching half pictures of database in full color and the other half of database in grey color. The eye fixations of color and black and white images were highly correlated leading to the question of the integration of such cues in the design of visual attention model. Indeed, the prediction of two state-of-the-art computational models shows similar results for the two color categories. Similarly, the study of saccade amplitude and fixation duration versus time viewing did not bring any significant differences between the two mentioned categories. In addition, spatial coordinates of eye fixations reveal an interesting indicator for investigating the differences of visual attention deployment over time and fixation number. The second factor related to emotion categories shows evidences of emotional inter-categories differences between color and grey eye fixations for passive and positive emotion. The particular aspect associated to this category induces a specific behavior, rather based on high frequencies, where the color components influence the visual attention deployment.
Encoding color information for visual tracking: Algorithms and benchmark.
Liang, Pengpeng; Blasch, Erik; Ling, Haibin
2015-12-01
While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.
Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna
2015-11-01
Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.
Grapheme-color synesthesia influences overt visual attention.
Carriere, Jonathan S A; Eaton, Daniel; Reynolds, Michael G; Dixon, Mike J; Smilek, Daniel
2009-02-01
For individuals with grapheme-color synesthesia, achromatic letters and digits elicit vivid perceptual experiences of color. We report two experiments that evaluate whether synesthesia influences overt visual attention. In these experiments, two grapheme-color synesthetes viewed colored letters while their eye movements were monitored. Letters were presented in colors that were either congruent or incongruent with the synesthetes' colors. Eye tracking analysis showed that synesthetes exhibited a color congruity bias-a propensity to fixate congruently colored letters more often and for longer durations than incongruently colored letters-in a naturalistic free-viewing task. In a more structured visual search task, this congruity bias caused synesthetes to rapidly fixate and identify congruently colored target letters, but led to problems in identifying incongruently colored target letters. The results are discussed in terms of their implications for perception in synesthesia.
Wang, Zhehong; Xu, Haisong
2008-12-01
In order to investigate the performance of suprathreshold color-difference tolerances with different visual scales and different perceptual correlates, a psychophysical experiment was carried out by the method of constant stimuli using CRT colors. Five hue circles at three lightness (L*=30, 50, and 70) and chroma (C*ab=10, 20, and 30) levels were selected to ensure that the color-difference tolerances did not exceed the color gamut of the CRT display. Twelve color centers distributed evenly every 30 degrees along each hue circle were assessed by a panel of eight observers, and the corresponding color-difference tolerances were obtained. The hue circle with L*=50 and C*ab=20 was assessed with three different visual scales (DeltaV=3.06, 5.92, and 8.87 CIELAB units), which ranged from small to large visual scales, while the remaining hue circles were observed only with the small visual scale. The lightness tolerances had no significant correlation with the hue angles, while chroma and hue tolerances showed considerable hue angle dependences. The color-difference tolerances were linearly proportional to the visual scales but with different slopes. The lightness tolerances with different lightness levels but the same chroma showed the crispening effect to some extent, while the chroma and hue tolerances decreased with the increment of the lightness. For the color-difference tolerances with different chroma levels but the same lightness, there was no correlation between the lightness tolerances and the chroma levels, while the chroma and hue tolerances were nearly linearly proportional to the chroma levels.
Makhambet Crater - False Color
2015-01-29
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows Makhambet Crater.
Liu, B; Meng, X; Wu, G; Huang, Y
2012-05-17
In this article, we aimed to study whether feature precedence existed in the cognitive processing of multifeature visual information in the human brain. In our experiment, we paid attention to two important visual features as follows: color and shape. In order to avoid the presence of semantic constraints between them and the resulting impact, pure color and simple geometric shape were chosen as the color feature and shape feature of visual stimulus, respectively. We adopted an "old/new" paradigm to study the cognitive processing of color feature, shape feature and the combination of color feature and shape feature, respectively. The experiment consisted of three tasks as follows: Color task, Shape task and Color-Shape task. The results showed that the feature-based pattern would be activated in the human brain in processing multifeature visual information without semantic association between features. Furthermore, shape feature was processed earlier than color feature, and the cognitive processing of color feature was more difficult than that of shape feature. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Color-coded visualization of magnetic resonance imaging multiparametric maps
NASA Astrophysics Data System (ADS)
Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit
2017-01-01
Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.
2015-01-15
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Renaudot Crater.
2015-01-12
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Granicus Valles.
2014-12-25
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Candor Labes.
2015-01-08
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.
Schaeberle Crater - False Color
2015-01-26
The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Schaeberle Crater, including small dunes.
2015-01-30
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks in Daedalia Planum.
2015-01-02
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Patera.
2014-12-23
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Atlantis Chaos.
2015-01-01
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.
Hargraves Crater - False Color
2015-01-13
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Hargraves Crater.
2014-12-18
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Reull Vallis.
2014-12-31
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Ares Vallis.
2014-12-10
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.
2015-01-21
The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows small dunes of the floor of Capen Crater in Terra Sabea.
2015-01-20
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Utopia Planitia.
2014-12-08
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Hebes Chasma.
2015-01-14
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Acidalia Planitia.
2015-01-07
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a portion of Kasei Vallis.
2014-12-09
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Melas Chasma.
2014-12-11
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.
2014-12-26
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the region near Nili Fossae.
2014-12-16
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Eos Chasma.
2015-01-06
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the southern flank of Ascraeus Mons.
2015-01-09
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a region in Syrtis Major.
Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh
2004-11-01
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.
Choosing colors for map display icons using models of visual search.
Shive, Joshua; Francis, Gregory
2013-04-01
We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.
Kim, Hana; Youk, Ji Hyun; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju
2013-08-01
To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses 101 patients aged 21-77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1-4), color homogeneity (Ehomo) and six-point color score of maximum elasticity (Ecol). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. A visual color pattern, Ehomo, Ecol and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P<0.001). For 50% opacity, AUCs of visual color pattern, Ecol, Ehomo and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and Ecol showed significantly higher AUC than Ehomo. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, Ehomo, but no significant difference was found in Ecol. Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effects of feature-selective and spatial attention at different stages of visual processing.
Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M
2011-01-01
We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.
Short-term perceptual learning in visual conjunction search.
Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong
2014-08-01
Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.
2014-12-12
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Tyrrhena Terra.
2015-01-16
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Pollack Crater.
2014-12-29
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Sulci Gordii east of Olympus Mons.
Becquerel Crater - False Color
2015-03-17
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Becquerel Crater.
Antoniadi Crater - False Color
2014-12-22
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Antoniadi Crater.
2014-12-30
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the flank of Hecates Tholus.
Calahorra Crater - False Color
2014-12-24
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Calahorra Crater in Chryse Planitia.
2015-01-28
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the margin of the north polar cap.
2015-01-19
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks on the floor of Gusev Crater.
2015-07-15
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Cimmeria.
2015-01-05
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the caldera at the summit of Olympus Mons.
2015-05-25
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed channel in Terra Cimmeria.
2015-05-26
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Terra Cimmeria.
Ares Vallis Tributary - False Color
2014-12-17
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of a tributary channel that empties into Ares Vallis.
2014-12-19
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Daga Vallis on Eos Mensa.
2014-12-15
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Proctor Crater.
2015-01-27
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the interior of Ganges Chasma.
Brenes-Soto, Andrea; Dierenfeld, Ellen S
2014-01-01
Several species in captivity develop nutritional diseases including vitamin A deficiency; cases of this disease have been documented in amphibians, which may be linked to an insectivorous diet lacking in vitamin A or carotenoids. Adults and young of Dyscophus guineti were fed three diets over 9 weeks to evaluate effects on carotenoids and vitamin A status and skin pigmentation. Feeder crickets were either supplemented with soy oil (control, CON), soy oil enriched with β-carotene (BC) or mixed carotenoids (MIX) by direct injection of known dosages. Vitamin A from feeder crickets (measured as retinol) was higher in insects supplemented with both BC and MIX; (P=0.0001) and plasma retinol concentrations were significantly higher in frogs fed MIX (P<0.02). Results suggest that both false tomato frogs and feeder crickets could receive some provitamin A activity through consumption of diets supplemented with β-carotene, and xanthophylls like lutein and zeaxanthin. Pigmentation was evaluated weekly through the use of visual color charts, as well as quantitatively using a hand-held spectrophotometer. MIX diets had a significant effect on skin color values (P<0.0001), as well as on lightness (P=0.0005) and hue (P=0.0022). Results indicated that frogs fed with BC changed to yellower colors, and frogs fed with MIX changed to oranger colors. Visual color chart observations also scored significantly different between CON and MIX diets (P<0.05); the animals fed MIX also appeared oranger according to the qualitative observations. Dietary supplements with carotenoids resulted in color changes and higher circulating retinol concentrations in false tomato frogs. These pigments may provide provitamin A activity in diets, thus may support improved nutrition and health of captive-fed insectivorous amphibians. © 2014 Wiley Periodicals Inc.
Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements
NASA Astrophysics Data System (ADS)
Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.
2016-05-01
Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.
Lu, Aitao; Yang, Ling; Yu, Yanping; Zhang, Meichao; Shao, Yulan; Zhang, Honghong
2014-08-01
The present study used the event-related potential technique to investigate the nature of linguistic effect on color perception. Four types of stimuli based on hue differences between a target color and a preceding color were used: zero hue step within-category color (0-WC); one hue step within-category color (1-WC); one hue step between-category color (1-BC); and two hue step between-category color (2-BC). The ERP results showed no significant effect of stimulus type in the 100-200 ms time window. However, in the 200-350 ms time window, ERP responses to 1-WC target color overlapped with that to 0-WC target color for right visual field (RVF) but not left visual field (LVF) presentation. For the 1-BC condition, ERP amplitudes were comparable in the two visual fields, both being significantly different from the 0-WC condition. The 2-BC condition showed the same pattern as the 1-BC condition. These results suggest that the categorical perception of color in RVF is due to linguistic suppression on within-category color discrimination but not between-category color enhancement, and that the effect is independent of early perceptual processes. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
2015-10-08
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of the floor of Melas Chasma. The dark blue region in this false color image is sand dunes. Orbit Number: 12061 Latitude: -12.2215 Longitude: 289.105 Instrument: VIS Captured: 2004-09-02 10:11 http://photojournal.jpl.nasa.gov/catalog/PIA19793
2015-06-26
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the rim and floor of Saheki Crater.
Effects of subjective preference of colors on attention-related occipital theta oscillations.
Kawasaki, Masahiro; Yamaguchi, Yoko
2012-01-02
Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
The use of ERTS-1 images in the search for large sulfide deposits in the Chagai District, Pakistan
NASA Technical Reports Server (NTRS)
Schmidt, R. G. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Visual examination of color composites was tested under relatively ideal conditions for direct detection of large hydrothermal sulfide deposits at the low-grade porphyry copper deposit at Saindak, western Chagai District, Pakistan. The Saindak deposit is characterized by an elongate zone of easily eroded sulfide-rich rock surrounded by a resistant rim of hornfels and propylitically altered rock. The geomorphic features related to the Saindak deposit are easily distinguished on ERTS-1 images. Attempts to detect a color anomaly using false-color composites were not successful. About 36,000 square km of the western Chagai District were examined on false-color composites for direct evidence of large sulfide deposits. New geologic information acquired from the images was used in conjunction with the known geology to evaluate two previously known proposed areas and to suggest seven additional targets for field checking, one of which is proposed on the basis of tonal anomaly alone. The study also showed that Saindak-type deposits are not likely to be present in some extensive areas of the Chagai District; and also that a rim like that at Saindak does not form if regional metamorphism has increased the resistance of the country rock to erosion.
The bandwidth of consolidation into visual short-term memory (VSTM) depends on the visual feature
Miller, James R.; Becker, Mark W.; Liu, Taosheng
2014-01-01
We investigated the nature of the bandwidth limit in the consolidation of visual information into visual short-term memory. In the first two experiments, we examined whether previous results showing differential consolidation bandwidth for color and orientation resulted from methodological differences by testing the consolidation of color information with methods used in prior orientation experiments. We briefly presented two color patches with masks, either sequentially or simultaneously, followed by a location cue indicating the target. Participants identified the target color via button-press (Experiment 1) or by clicking a location on a color wheel (Experiment 2). Although these methods have previously demonstrated that two orientations are consolidated in a strictly serial fashion, here we found equivalent performance in the sequential and simultaneous conditions, suggesting that two colors can be consolidated in parallel. To investigate whether this difference resulted from different consolidation mechanisms or a common mechanism with different features consuming different amounts of bandwidth, Experiment 3 presented a color patch and an oriented grating either sequentially or simultaneously. We found a lower performance in the simultaneous than the sequential condition, with orientation showing a larger impairment than color. These results suggest that consolidation of both features share common mechanisms. However, it seems that color requires less information to be encoded than orientation. As a result two colors can be consolidated in parallel without exceeding the bandwidth limit, whereas two orientations or an orientation and a color exceed the bandwidth and appear to be consolidated serially. PMID:25317065
Splitting attention across the two visual fields in visual short-term memory.
Delvenne, Jean-Francois; Holt, Jessica L
2012-02-01
Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In two experiments, we show that attention can also be split between the left and right sides of internal representations held in VSTM. Participants were asked to remember several colors, while cues presented during the delay instructed them to orient their attention to a subset of memorized colors. Experiment 1 revealed that orienting attention to one or two colors strengthened equally participants' memory for those colors, but only when they were from separate hemifields. Experiment 2 showed that in the absence of attentional cues the distribution of the items in the visual field per se had no effect on memory. These findings strongly suggest the existence of independent attentional resources in the two hemifields for selecting and/or consolidating information in VSTM. Copyright © 2011 Elsevier B.V. All rights reserved.
Bekhtereva, Valeria; Müller, Matthias M
2017-10-01
Is color a critical feature in emotional content extraction and involuntary attentional orienting toward affective stimuli? Here we used briefly presented emotional distractors to investigate the extent to which color information can influence the time course of attentional bias in early visual cortex. While participants performed a demanding visual foreground task, complex unpleasant and neutral background images were displayed in color or grayscale format for a short period of 133 ms and were immediately masked. Such a short presentation poses a challenge for visual processing. In the visual detection task, participants attended to flickering squares that elicited the steady-state visual evoked potential (SSVEP), allowing us to analyze the temporal dynamics of the competition for processing resources in early visual cortex. Concurrently we measured the visual event-related potentials (ERPs) evoked by the unpleasant and neutral background scenes. The results showed (a) that the distraction effect was greater with color than with grayscale images and (b) that it lasted longer with colored unpleasant distractor images. Furthermore, classical and mass-univariate ERP analyses indicated that, when presented in color, emotional scenes elicited more pronounced early negativities (N1-EPN) relative to neutral scenes, than when the scenes were presented in grayscale. Consistent with neural data, unpleasant scenes were rated as being more emotionally negative and received slightly higher arousal values when they were shown in color than when they were presented in grayscale. Taken together, these findings provide evidence for the modulatory role of picture color on a cascade of coordinated perceptual processes: by facilitating the higher-level extraction of emotional content, color influences the duration of the attentional bias to briefly presented affective scenes in lower-tier visual areas.
Chromosomal rearrangement segregating with adrenoleukodystrophy: associated changes in color vision.
Alpern, M; Sack, G H; Krantz, D H; Jenness, J; Zhang, H; Moser, H W
1993-01-01
A patient from a large kindred with adrenoleukodystrophy showed profound disturbance of color ordering, color matching, increment thresholds, and luminosity. Except for color matching, his performance was similar to blue-cone "monochromacy," an X chromosome-linked recessive retinal dystrophy in which color vision is dichromatic, mediated by the visual pigments of rods and short-wave-sensitive cones. Color matching, however, indicated that an abnormal rudimentary visual pigment was also present. This may reflect the presence of a recombinant visual pigment protein or altered regulation of residual pigment genes, due to DNA changes--deletion of the long-wave pigment gene and reorganized sequences 5' to the pigment gene cluster--that segregate with the metabolic defect in this kindred. PMID:8415729
The implementation of thermal image visualization by HDL based on pseudo-color
NASA Astrophysics Data System (ADS)
Zhu, Yong; Zhang, JiangLing
2004-11-01
The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.
Abboud, Sami; Hanassy, Shlomi; Levy-Tzedek, Shelly; Maidenbaum, Shachar; Amedi, Amir
2014-01-01
Sensory-substitution devices (SSDs) provide auditory or tactile representations of visual information. These devices often generate unpleasant sensations and mostly lack color information. We present here a novel SSD aimed at addressing these issues. We developed the EyeMusic, a novel visual-to-auditory SSD for the blind, providing both shape and color information. Our design uses musical notes on a pentatonic scale generated by natural instruments to convey the visual information in a pleasant manner. A short behavioral protocol was utilized to train the blind to extract shape and color information, and test their acquired abilities. Finally, we conducted a survey and a comparison task to assess the pleasantness of the generated auditory stimuli. We show that basic shape and color information can be decoded from the generated auditory stimuli. High performance levels were achieved by all participants following as little as 2-3 hours of training. Furthermore, we show that users indeed found the stimuli pleasant and potentially tolerable for prolonged use. The novel EyeMusic algorithm provides an intuitive and relatively pleasant way for the blind to extract shape and color information. We suggest that this might help facilitating visual rehabilitation because of the added functionality and enhanced pleasantness.
Enhancing lineup identification accuracy: two codes are better than one.
Melara, R D; DeWitt-Rickards, T S; O'Brien, T P
1989-10-01
Ways of improving identification accuracy were explored by comparing the conventional visual lineup with an auditory/visual lineup, one that paired color photographs with voice recordings. This bimodal lineup necessitated sequential presentation of lineup members; Experiment 1 showed that performance in sequential lineups was better than performance in traditional simultaneous lineups. In Experiments 2A and 2B unimodal and bimodal lineups were compared by using a multiple-lineup paradigm: Ss viewed 3 videotaped episodes depicting standard police procedures and were tested in 4 sequential lineups. Bimodal lineups were more diagnostic than either visual or auditory lineups alone. The bimodal lineup led to a 126% improvement in number of correct identifications over the conventional visual lineup, with no concomitant increase in number of false identifications. These results imply strongly that bimodal procedures should be adopted in real-world lineups. The nature of memorial processes underlying this bimodal advantage is discussed.
2017-02-15
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Gale Crater. Basaltic sands are dark blue in this type of false color combination. The Curiosity Rover is located in another portion of Gale Crater, far southwest of this image. Orbit Number: 51803 Latitude: -4.39948 Longitude: 138.116 Instrument: VIS Captured: 2013-08-18 09:04 http://photojournal.jpl.nasa.gov/catalog/PIA21312
Seymour, K J; Williams, M A; Rich, A N
2016-05-01
Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Color surface-flow visualization of fin-generated shock wave boundary-layer interactions
NASA Technical Reports Server (NTRS)
Lu, F. K.; Settles, G. S.
1990-01-01
Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.
Color surface-flow visualization of fin-generated shock wave boundary-layer interactions
NASA Astrophysics Data System (ADS)
Lu, F. K.; Settles, G. S.
1990-03-01
Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.
2017-07-13
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 59750 Latitude: -10.5452 Longitude: 290.307 Instrument: VIS Captured: 2015-06-03 12:33 https://photojournal.jpl.nasa.gov/catalog/PIA21705
2015-08-21
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 10289 Latitude: -9.9472 Longitude: 285.933 Instrument: VIS Captured: 2004-04-09 12:43 http://photojournal.jpl.nasa.gov/catalog/PIA19756
Infants' prospective control during object manipulation in an uncertain environment.
Gottwald, Janna M; Gredebäck, Gustaf
2015-08-01
This study investigates how infants use visual and sensorimotor information to prospectively control their actions. We gave 14-month-olds two objects of different weight and observed how high they were lifted, using a Qualisys Motion Capture System. In one condition, the two objects were visually distinct (different color condition) in another they were visually identical (same color condition). Lifting amplitudes of the first movement unit were analyzed in order to assess prospective control. Results demonstrate that infants lifted a light object higher than a heavy object, especially when vision could be used to assess weight (different color condition). When being confronted with two visually identical objects of different weight (same color condition), infants showed a different lifting pattern than what could be observed in the different color condition, expressed by a significant interaction effect between object weight and color condition on lifting amplitude. These results indicate that (a) visual information about object weight can be used to prospectively control lifting actions and that (b) infants are able to prospectively control their lifting actions even without visual information about object weight. We argue that infants, in the absence of reliable visual information about object weight, heighten their dependence on non-visual information (tactile, sensorimotor memory) in order to estimate weight and pre-adjust their lifting actions in a prospective manner.
Color vision but not visual attention is altered in migraine.
Shepherd, Alex J
2006-04-01
To examine visual search performance in migraine and headache-free control groups and to determine whether reports of selective color vision deficits in migraine occur preattentively. Visual search is a classic technique to measure certain components of visual attention. The technique can be manipulated to measure both preattentive (automatic) and attentive processes. Here, visual search for colored targets was employed to extend earlier reports that the detection or discrimination of colors selective for the short-wavelength sensitive cone photoreceptors in the retina (S or "blue" cones) is impaired in migraine. Visual search performance for small and large color differences was measured in 34 migraine and 34 control participants. Small and large color differences were included to assess attentive and preattentive processing, respectively. In separate conditions, colored stimuli were chosen that would be detected selectively by either the S-, or by the long- (L or "red") and middle (M or "green")-wavelength sensitive cone photoreceptors. The results showed no preattentive differences between the migraine and control groups. For active, or attentive, search, differences between the migraine and control groups occurred for colors detected by the S-cones only, there were no differences for colors detected by the L- and M-cones. The migraine group responded significantly more slowly than the control group for the S-cone colors. The pattern of results indicates that there are no overall differences in search performance between migraine and control groups. The differences found for the S-cone colors are attributed to impaired discrimination of these colors in migraine and not to differences in attention.
Support for Lateralization of the Whorf Effect beyond the Realm of Color Discrimination
ERIC Educational Resources Information Center
Gilbert, Aubrey L.; Regier, Terry; Kay, Paul; Ivry, Richard B.
2008-01-01
Recent work has shown that Whorf effects of language on color discrimination are stronger in the right visual field than in the left. Here we show that this phenomenon is not limited to color: The perception of animal figures (cats and dogs) was more strongly affected by linguistic categories for stimuli presented to the right visual field than…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Visualization of blood flow in a cerebral aneurysm. Streamlines (colored by fluid velocity magnitude) reveal the complexity of the flow, isocontours of vorticity show blood vortex structures (colored by pressure), and the flexible arterial wall is colored by the stress magnitude, where regions in red indicate areas of high stress. Credits: Science: Paris Perdikaris, Yue Yu, George Em. Karniadakis and Leopold Grinberg Visualization: Joseph A. Insley and Michael E. Papka
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Priming and the guidance by visual and categorical templates in visual search.
Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L
2014-01-01
Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.
Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng
2012-07-01
Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.
2016-10-11
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows dust devil tracks (dark blue linear feature) in Terra Cimmeria. Orbit Number: 43463 Latitude: -53.1551 Longitude: 125.069 Instrument: VIS Captured: 2011-10-01 23:55 http://photojournal.jpl.nasa.gov/catalog/PIA21009
2017-06-01
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Russell Crater in Noachis Terra. Orbit Number: 59591 Latitude: -54.471 Longitude: 13.1288 Instrument: VIS Captured: 2015-05-21 10:57 https://photojournal.jpl.nasa.gov/catalog/PIA21674
Color priming in pop-out search depends on the relative color of the target
Becker, Stefanie I.; Valuch, Christian; Ansorge, Ulrich
2014-01-01
In visual search for pop-out targets, search times are shorter when the target and non-target colors from the previous trial are repeated than when they change. This priming effect was originally attributed to a feature weighting mechanism that biases attention toward the target features, and away from the non-target features. However, more recent studies have shown that visual selection is strongly context-dependent: according to a relational account of feature priming, the target color is always encoded relative to the non-target color (e.g., as redder or greener). The present study provides a critical test of this hypothesis, by varying the colors of the search items such that either the relative color or the absolute color of the target always remained constant (or both). The results clearly show that color priming depends on the relative color of a target with respect to the non-targets but not on its absolute color value. Moreover, the observed priming effects did not change over the course of the experiment, suggesting that the visual system encodes colors in a relative manner from the start of the experiment. Taken together, these results strongly support a relational account of feature priming in visual search, and are inconsistent with the dominant feature-based views. PMID:24782795
Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M
2011-01-01
The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Pinugu, Jasmine Nadja J.; Bautista, Joshua Ian C.; Nebres, Pauline D.; Rey Hipolito, Cipriano M.; Santella, Jose Anthony A.
2017-06-01
Visual processing skill is used to gather visual information from environment however, there are cases that Visual Processing Disorder (VPD) occurs. The so called visual figure-ground discrimination is a type of VPD where color is one of the factors that contributes on this type. In line with this, color plays a vital role in everyday living, but individuals that have limited and inaccurate color perception suffers from Color Vision Deficiency (CVD) and still not aware on their case. To resolve this case, this study focuses on the design of KULAY, a Head-Mounted Display (HMD) device that can assess whether a user has a CVD or not thru the standard Hardy-Rand-Rittler (HRR) test. This test uses pattern recognition in order to evaluate the user. In addition, color vision deficiency simulation and color correction thru color transformation is also a concern of this research. This will enable people with normal color vision to know how color vision deficient perceives and vice-versa. For the accuracy of the simulated HRR assessment, its results were validated thru an actual assessment done by a doctor. Moreover, for the preciseness of color transformation, Structural Similarity Index Method (SSIM) was used to compare the simulated CVD images and the color corrected images to other reference sources. The output of the simulated HRR assessment and color transformation shows very promising results indicating effectiveness and efficiency of the study. Thus, due to its form factor and portability, this device is beneficial in the field of medicine and technology.
The role of lightness, hue and saturation in feature-based visual attention.
Stuart, Geoffrey W; Barsdell, Wendy N; Day, Ross H
2014-03-01
Visual attention is used to select part of the visual array for higher-level processing. Visual selection can be based on spatial location, but it has also been demonstrated that multiple locations can be selected simultaneously on the basis of a visual feature such as color. One task that has been used to demonstrate feature-based attention is the judgement of the symmetry of simple four-color displays. In a typical task, when symmetry is violated, four squares on either side of the display do not match. When four colors are involved, symmetry judgements are made more quickly than when only two of the four colors are involved. This indicates that symmetry judgements are made one color at a time. Previous studies have confounded lightness, hue, and saturation when defining the colors used in such displays. In three experiments, symmetry was defined by lightness alone, lightness plus hue, or by hue or saturation alone, with lightness levels randomised. The difference between judgements of two- and four-color asymmetry was maintained, showing that hue and saturation can provide the sole basis for feature-based attentional selection. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Shape and color conjunction stimuli are represented as bound objects in visual working memory.
Luria, Roy; Vogel, Edward K
2011-05-01
The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a "weak" object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
Russell Crater Dunes - False Color
2017-07-07
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of the large dune form on the floor of Russell Crater. Orbit Number: 59672 Latitude: -54.337 Longitude: 13.1087 Instrument: VIS Captured: 2015-05-28 02:39 https://photojournal.jpl.nasa.gov/catalog/PIA21701
A comparative study on visual choice reaction time for different colors in females.
Balakrishnan, Grrishma; Uppinakudru, Gurunandan; Girwar Singh, Gaur; Bangera, Shobith; Dutt Raghavendra, Aswini; Thangavel, Dinesh
2014-01-01
Reaction time is one of the important methods to study a person's central information processing speed and coordinated peripheral movement response. Visual choice reaction time is a type of reaction time and is very important for drivers, pilots, security guards, and so forth. Previous studies were mainly on simple reaction time and there are very few studies on visual choice reaction time. The aim of our study was to compare the visual choice reaction time for red, green, and yellow colors of 60 healthy undergraduate female volunteers. After giving adequate practice, visual choice reaction time was recorded for red, green, and yellow colors using reaction time machine (RTM 608, Medicaid, Chandigarh). Repeated measures of ANOVA and Bonferroni multiple comparison were used for analysis and P < 0.05 was considered statistically significant. The results showed that both red and green had significantly less choice visual choice reaction (P values <0.0001 and 0.0002) when compared with yellow. This could be because individual color mental processing time for yellow color is more than red and green.
Seeing Blue As Red: A Hypnotic Suggestion Can Alter Visual Awareness of Colors.
Kallio, Sakari; Koivisto, Mika
2016-01-01
Some highly hypnotizable individuals have reported changes in objects' color with suggestions given in normal waking state. However, it is not clear whether this occurs only in their imagination. The authors show that, although subjects could imagine colors, a posthypnotic suggestion was necessary for seeing altered colors, even for a hypnotic virtuoso. She reported posthypnotic color alterations also selectively in response to specific target shapes in briefly presented object arrays. Surprisingly, another highly hypnotizable person showed a very different pattern of results. The control participants could not simulate virtuosos' results by applying cognitive strategies. The results imply that hypnosis can alter the functioning of automatic visual processes but only in some of the most hypnotizable individuals.
Extraction of memory colors for preferred color correction in digital TVs
NASA Astrophysics Data System (ADS)
Ryu, Byong Tae; Yeom, Jee Young; Kim, Choon-Woo; Ahn, Ji-Young; Kang, Dong-Woo; Shin, Hyun-Ho
2009-01-01
Subjective image quality is one of the most important performance indicators for digital TVs. In order to improve subjective image quality, preferred color correction is often employed. More specifically, areas of memory colors such as skin, grass, and sky are modified to generate pleasing impression to viewers. Before applying the preferred color correction, tendency of preference for memory colors should be identified. It is often accomplished by off-line human visual tests. Areas containing the memory colors should be extracted then color correction is applied to the extracted areas. These processes should be performed on-line. This paper presents a new method for area extraction of three types of memory colors. Performance of the proposed method is evaluated by calculating the correct and false detection ratios. Experimental results indicate that proposed method outperform previous methods proposed for the memory color extraction.
NASA Astrophysics Data System (ADS)
Suaste-Gomez, Ernesto; Leybon, Jaime I.; Rodriguez, D.
1998-07-01
Visual scanpath has been an important work applied in neuro- ophthalmic and psychological studies. This is because it has been working like a tool to validate some pathologies such as visual perception in color or black/white images; color blindness; etc. On the other hand, this tool has reached a big field of applications such as marketing. The scanpath over a specific picture, shows the observer interest in color, shapes, letter size, etc.; even tough the picture be among a group of images, this tool has demonstrated to be helpful to catch people interest over a specific advertisement.
Unconscious Familiarity-based Color-Form Binding: Evidence from Visual Extinction.
Rappaport, Sarah J; Riddoch, M Jane; Chechlacz, Magda; Humphreys, Glyn W
2016-03-01
There is good evidence that early visual processing involves the coding of different features in independent brain regions. A major question, then, is how we see the world in an integrated manner, in which the different features are "bound" together. A standard account of this has been that feature binding depends on attention to the stimulus, which enables only the relevant features to be linked together [Treisman, A., & Gelade, G. A feature-integration theory of attention. Cognitive Psychology, 12, 97-136, 1980]. Here we test this influential idea by examining whether, in patients showing visual extinction, the processing of otherwise unconscious (extinguished) stimuli is modulated by presenting objects in their correct (familiar) color. Correctly colored objects showed reduced extinction when they had a learned color, and this color matched across the ipsi- and contralesional items (red strawberry + red tomato). In contrast, there was no reduction in extinction under the same conditions when the stimuli were colored incorrectly (blue strawberry + blue tomato; Experiment 1). The result was not due to the speeded identification of a correctly colored ipsilesional item, as there was no benefit from having correctly colored objects in different colors (red strawberry + yellow lemon; Experiment 2). There was also no benefit to extinction from presenting the correct colors in the background of each item (Experiment 3). The data suggest that learned color-form binding can reduce extinction even when color is irrelevant for the task. The result is consistent with preattentive binding of color and shape for familiar stimuli.
Feature-selective attention enhances color signals in early visual areas of the human brain.
Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A
2006-09-19
We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.
Investigating Flow-Structure Interactions in Cerebral Aneurysms
None
2018-06-05
Visualization of blood flow in a cerebral aneurysm. Streamlines (colored by fluid velocity magnitude) reveal the complexity of the flow, isocontours of vorticity show blood vortex structures (colored by pressure), and the flexible arterial wall is colored by the stress magnitude, where regions in red indicate areas of high stress. Credits: Science: Paris Perdikaris, Yue Yu, George Em. Karniadakis and Leopold Grinberg Visualization: Joseph A. Insley and Michael E. Papka
Spectral discrimination in color blind animals via chromatic aberration and pupil shape.
Stubbs, Alexander L; Stubbs, Christopher W
2016-07-19
We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.
Long-term follow-up of two patients with oligocone trichromacy.
Smirnov, Vasily; Drumare, Isabelle; Bouacha, Ikram; Puech, Bernard; Defoort-Dhellemmes, Sabine
2015-10-01
Oligocone trichromacy (OT) is an uncommon cone dysfunction disorder, the mechanism of which remains poorly understood. OT has been thought to be non-progressive, but its long-term visual outcome has been seldom reported in the literature. Our aim was to present two OT patients followed at our institution over 18 years. Complete ocular examination, color vision, visual fields, and full-field electroretinography (ERG) were performed at initial presentation and follow-up. Spectral-domain optical coherence tomography (OCT) was performed during follow-up when available at our institution. Initial ocular examination showed satisfactory visual acuities with normal fundus examination and near-to-normal color vision. However, computerized perimetry demonstrated a ring-shaped scotoma around fixation, and ERG showed a profound cone dysfunction. The discrepancy between preserved color vision and profound cone dysfunction leads to the diagnosis of OT. Subsequent follow-ups over 18 years showed subtle degradation of visual acuities along with progression of the myopia in both patients and slight worsening of color vision in one patient. Initial OCT revealed a focal interruption of the ellipsoid line along with decreased thickness of the perifoveal macula. Subsequent OCT imaging performed 2 years later did not show any macular changes. Although OT is known to be a non-progressive cone dysfunction, our results suggest that subtle degradation of the visual function might happen over time.
Streaked Craters in False-Color
2010-03-29
A false-color view of Saturn moon Mimas from NASA Cassini spacecraft accentuates terrain-dependent color differences and shows dark streaks running down the sides of some of the craters on the region of the moon that leads in its orbit around Saturn.
Searching through synaesthetic colors.
Laeng, Bruno
2009-10-01
Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.
Independent and additive repetition priming of motion direction and color in visual search.
Kristjánsson, Arni
2009-03-01
Priming of visual search for Gabor patch stimuli, varying in color and local drift direction, was investigated. The task relevance of each feature varied between the different experimental conditions compared. When the target defining dimension was color, a large effect of color repetition was seen as well as a smaller effect of the repetition of motion direction. The opposite priming pattern was seen when motion direction defined the target--the effect of motion direction repetition was this time larger than for color repetition. Finally, when neither was task relevant, and the target defining dimension was the spatial frequency of the Gabor patch, priming was seen for repetition of both color and motion direction, but the effects were smaller than in the previous two conditions. These results show that features do not necessarily have to be task relevant for priming to occur. There is little interaction between priming following repetition of color and motion, these two features show independent and additive priming effects, most likely reflecting that the two features are processed at separate processing sites in the nervous system, consistent with previous findings from neuropsychology & neurophysiology. The implications of the findings for theoretical accounts of priming in visual search are discussed.
Application of color mixing for safety and quality inspection of agricultural products
NASA Astrophysics Data System (ADS)
Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin
2005-11-01
In this paper, color-mixing applications for food safety and quality was studied, including two-color mixing and three-color mixing. It was shown that the chromaticness of the visual signal resulting from two- or three-color mixing is directly related to the band ratio of light intensity at the two or three selected wavebands. An optical visual device using color mixing to implement the band ratio criterion was presented. Inspection through human vision assisted by an optical device that implements the band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical color mixing technique were given for the inspection of chicken carcasses with various diseases and for the detection of chilling injury in cucumbers. Simulation results showed that discrimination by chromaticness that has a direct relation with band ratio can work very well with proper selection of the two or three narrow wavebands. This novel color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.
Ho-Phuoc, Tien; Guyader, Nathalie; Landragin, Frédéric; Guérin-Dugué, Anne
2012-02-03
Since Treisman's theory, it has been generally accepted that color is an elementary feature that guides eye movements when looking at natural scenes. Hence, most computational models of visual attention predict eye movements using color as an important visual feature. In this paper, using experimental data, we show that color does not affect where observers look when viewing natural scene images. Neither colors nor abnormal colors modify observers' fixation locations when compared to the same scenes in grayscale. In the same way, we did not find any significant difference between the scanpaths under grayscale, color, or abnormal color viewing conditions. However, we observed a decrease in fixation duration for color and abnormal color, and this was particularly true at the beginning of scene exploration. Finally, we found that abnormal color modifies saccade amplitude distribution.
NASA Astrophysics Data System (ADS)
Beltrame, Francesco; Diaspro, Alberto; Fato, Marco; Martin, I.; Ramoino, Paola; Sobel, Irwin E.
1995-03-01
Confocal microscopy systems can be linked to 3D data oriented devices for the interactive navigation of the operator through a 3D object space. Sometimes, such environments are named `virtual reality' or `augmented reality' systems. We consider optical confocal laser scanning microscopy images, in fluorescence with various excitations and emissions, and versus time The aim of our study has been the quantitative spatial analysis of confocal data using the false-color composition technique. Starting from three 2D confocal fluorescent images at the same slice location in a given biological specimen, a new single image representation of all three parameters has been generated by the false-color technique on a HP 9000/735 workstation, connected to the confocal microscope. The color composite result of the mapping of the three parameters is displayed using a resolution of 24 bits per pixel. The operator may independently vary the mix of each of the three components in the false-color composite via three (R, G, B) mixing sliders. Furthermore, by using the pixel data in the three fluorescent component images, a 3D space containing the density distribution of these three parameters has been constructed. The histogram has been displayed in stereo: it can be used for clustering purposes from the operator, through an original thresholding algorithm.
Gasquoine, Philip Gerard; Croyle, Kristin L; Cavazos-Gonzalez, Cynthia; Sandoval, Omar
2007-11-01
This study compared the performance of Hispanic American bilingual adults on Spanish and English language versions of a neuropsychological test battery. Language achievement test scores were used to divide 36 bilingual, neurologically intact, Hispanic Americans from south Texas into Spanish-dominant, balanced, and English-dominant bilingual groups. They were administered the eight subtests of the Bateria Neuropsicologica and the Matrix Reasoning subtest of the WAIS-III in Spanish and English. Half the participants were tested in Spanish first. Balanced bilinguals showed no significant differences in test scores between Spanish and English language administrations. Spanish and/or English dominant bilinguals showed significant effects of language of administration on tests with higher language compared to visual perceptual weighting (Woodcock-Munoz Language Survey-Revised, Letter Fluency, Story Memory, and Stroop Color and Word Test). Scores on tests with higher visual-perceptual weighting (Matrix Reasoning, Figure Memory, Wisconsin Card Sorting Test, and Spatial Span), were not significantly affected by language of administration, nor were scores on the Spanish/California Verbal Learning Test, and Digit Span. A problem was encountered in comparing false positive rates in each language, as Spanish norms fell below English norms, resulting in a much higher false positive rate in English across all bilingual groupings. Use of a comparison standard (picture vocabulary score) reduced false positive rates in both languages, but the higher false positive rate in English persisted.
NASA Astrophysics Data System (ADS)
Karimi, Khadijeh; Taheri Shahraiyni, Hamid; Habibi Nokhandan, Majid; Hafezi Moghaddas, Naser; Sanaeifar, Melika
2011-11-01
The dust storm happens in the Middle East with very high frequency. According to the dust storm effects, it is vital to study on the dust storms in the Middle East. The first step toward the study on dust storm is the enhancement of dust storms and determination of the point sources. In this paper, a new false color composite (FCC) map for the dust storm enhancement and point sources determination in the Middle East has been developed. The 28 Terra-MODIS images in 2008 and 2009 were utilized in this study. We tried to replace the Red, Green and Blue bands in RGB maps with the bands or maps that enhance the dust storms. Hence, famous indices for dust storm detection (NDDI, D and BTD) were generated using the different bands of MODIS images. These indices with some bands of MODIS were utilized for FCC map generation with different combinations. Among the different combinations, four better FCC maps were selected and these four FCC are compared using visual interpretation. The results of visual interpretations showed that the best FCC map for enhancement of dust storm in the middle east is an especial combination of the three indices (Red: D, Green: BTD and Blue: NDDI). Therefore, we utilized of this new FCC method for the enhancement of dust storms and determination of point sources in Middle East.
2015-02-27
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Melas Chasma. Orbit Number: 4622 Latitude: -12.797 Longitude: 288.629 Instrument: VIS Captured: 2002-12-30 00:28 http://photojournal.jpl.nasa.gov/catalog/PIA19218
Facial color is an efficient mechanism to visually transmit emotion
Benitez-Quiroz, Carlos F.; Srinivasan, Ramprakash
2018-01-01
Facial expressions of emotion in humans are believed to be produced by contracting one’s facial muscles, generally called action units. However, the surface of the face is also innervated with a large network of blood vessels. Blood flow variations in these vessels yield visible color changes on the face. Here, we study the hypothesis that these visible facial colors allow observers to successfully transmit and visually interpret emotion even in the absence of facial muscle activation. To study this hypothesis, we address the following two questions. Are observable facial colors consistent within and differential between emotion categories and positive vs. negative valence? And does the human visual system use these facial colors to decode emotion from faces? These questions suggest the existence of an important, unexplored mechanism of the production of facial expressions of emotion by a sender and their visual interpretation by an observer. The results of our studies provide evidence in favor of our hypothesis. We show that people successfully decode emotion using these color features, even in the absence of any facial muscle activation. We also demonstrate that this color signal is independent from that provided by facial muscle movements. These results support a revised model of the production and perception of facial expressions of emotion where facial color is an effective mechanism to visually transmit and decode emotion. PMID:29555780
Facial color is an efficient mechanism to visually transmit emotion.
Benitez-Quiroz, Carlos F; Srinivasan, Ramprakash; Martinez, Aleix M
2018-04-03
Facial expressions of emotion in humans are believed to be produced by contracting one's facial muscles, generally called action units. However, the surface of the face is also innervated with a large network of blood vessels. Blood flow variations in these vessels yield visible color changes on the face. Here, we study the hypothesis that these visible facial colors allow observers to successfully transmit and visually interpret emotion even in the absence of facial muscle activation. To study this hypothesis, we address the following two questions. Are observable facial colors consistent within and differential between emotion categories and positive vs. negative valence? And does the human visual system use these facial colors to decode emotion from faces? These questions suggest the existence of an important, unexplored mechanism of the production of facial expressions of emotion by a sender and their visual interpretation by an observer. The results of our studies provide evidence in favor of our hypothesis. We show that people successfully decode emotion using these color features, even in the absence of any facial muscle activation. We also demonstrate that this color signal is independent from that provided by facial muscle movements. These results support a revised model of the production and perception of facial expressions of emotion where facial color is an effective mechanism to visually transmit and decode emotion. Copyright © 2018 the Author(s). Published by PNAS.
Some spectral and spatial characteristics of LANDSAT data
NASA Technical Reports Server (NTRS)
1982-01-01
Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.
1992-01-01
Astronaut Ulf Merbold on the stationary seat of the mini-sled, stares into an umbrella-shaped rotating dome with colored dots. Astronaut Merbold, assisted by astronaut David Hilmer, are conducting the Visual Simulator Experiment, a space physiology experiment. The Visual Stimulator Experiment measures the relative importance of visual and vestibular information in determining body orientation. When a person looks at a rotating visual field, a false sensation of self-rotation, called circularvection, results. In weightlessness, circularvection should increase immediately and may continue to increase as the nervous system comes to rely more on visual than vestibular cues. As Astronaut Merbold stares into the rotating dome with a pattern of colored dots and its interior, he turns a knob to indicate his perception of body rotation. The strength of circularvection is calculated by comparing signals from the dome and the knob. The greater the false sense of circularvection, the more the subject is relying on visual information instead of otolith information. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).
Color Map of Ceres Elliptical Projection
2016-03-22
This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.
Spectral discrimination in color blind animals via chromatic aberration and pupil shape
Stubbs, Alexander L.; Stubbs, Christopher W.
2016-01-01
We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins. PMID:27382180
Animal coloration: sexy spider scales.
Taylor, Lisa A; McGraw, Kevin J
2007-08-07
Many male jumping spiders display vibrant colors that are used in visual communication. A recent microscopic study on a jumping spider from Singapore shows that three-layered 'scale sandwiches' of chitin and air are responsible for producing their brilliant iridescent body coloration.
High luminance monochrome vs. color displays: impact on performance and search
NASA Astrophysics Data System (ADS)
Krupinski, Elizabeth A.; Roehrig, Hans; Matsui, Takashi
2011-03-01
To determine if diagnostic accuracy and visual search efficiency with a high luminance medical-grade color display are equivalent to a high luminance medical-grade monochrome display. Six radiologists viewed DR chest images, half with a solitary pulmonary nodule and half without. Observers reported whether or not a nodule was present and their confidence in that decision. Total viewing time per image was recorded. On a subset of 15 cases eye-position was recorded. Confidence data were analyzed using MRMC ROC techniques. There was no statistically significant difference (F = 0.0136, p = 0.9078) between color (mean Az = 0.8981, se = 0.0065) and monochrome (mean Az = 0.8945, se = 0.0148) diagnostic performance. Total viewing time per image did not differ significantly (F = 0.392, p = 0.5315) as a function of color (mean = 27.36 sec, sd = 12.95) vs monochrome (mean = 28.04, sd = 14.36) display. There were no significant differences in decision dwell times (true and false, positive and negative) overall for color vs monochrome displays (F = 0.133, p = 0.7154). The true positive (TP) and false positive (FP) decisions were associated with the longest dwell times, the false negatives (FN) with slightly shorter dwell times, and the true negative decisions (TN) with the shortest (F = 50.552, p < 0.0001) and these trends were consistent for both color and monochrome displays. Current color medical-grade displays are suitable for primary diagnostic interpretation in clinical radiology.
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Color vision deficiencies and the child's willingness for visual activity: preliminary research
NASA Astrophysics Data System (ADS)
Geniusz, Malwina; Szmigiel, Marta; Geniusz, Maciej
2017-09-01
After a few weeks a newborn baby can recognize high contrasts in colors like black and white. They reach full color vision at the age of circa six months. Matching colors is the next milestone. Most children can do it at the age of two. Good color vision is one of the factors which indicate proper development of a child. Presented research shows the correlation between color vision and visual activity. The color vision of a group of children aged 3-8 was examined with saturated Farnsworth D-15. Fransworth test was performed twice - in a standard version and in a magnetic version. The time of completing standard and magnetic tests was measured. Furthermore, parents of subjects answered questions checking the children's visual activity in 1 - 10 scale. Parents stated whether the child willingly watched books, colored coloring books, put puzzles or liked to play with blocks etc. The Fransworth D-15 test designed for color vision testing can be used to test younger children from the age of 3 years. These are preliminary studies which may be a useful tool for further, more accurate examination on a larger group of subjects.
Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data
NASA Astrophysics Data System (ADS)
Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.
2003-12-01
A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond traditional visualization approaches. This work has been supported by the GRS Education and Public Outreach Program and the NASA Spacegrant Graduate Fellowship Program.
Functional Defects in Color Vision in Patients With Choroideremia.
Jolly, Jasleen K; Groppe, Markus; Birks, Jacqueline; Downes, Susan M; MacLaren, Robert E
2015-10-01
To characterize defects in color vision in patients with choroideremia. Prospective cohort study. Thirty patients with choroideremia (41 eyes) and 10 age-matched male controls (19 eyes) with visual acuity of ≥6/36 attending outpatient clinics in Oxford Eye Hospital underwent color vision testing with the Farnsworth-Munsell 100 hue test, visual acuity testing, and autofluorescence imaging. To exclude changes caused by degeneration of the fovea, a subgroup of 14 patients with a visual acuity ≥6/6 was analyzed. Calculated color vision total error scores were compared between the groups and related to a range of factors using a random-effects model. Mean color vision total error scores were 120 (95% confidence interval [CI] 92, 156) in the ≥6/6 choroideremia group, 206 (95% CI 161, 266) in the <6/6 visual acuity choroideremia group, and 47 (95% CI 32, 69) in the control group. Covariate analysis showed a significant difference in color vision total error score between the groups (P < .001 between each group). Patients with choroideremia have a functional defect in color vision compared with age-matched controls. The color vision defect deteriorates as the degeneration encroaches on the fovea. The presence of an early functional defect in color vision provides a useful biomarker against which to assess successful gene transfer in gene therapy trials. Copyright © 2015 Elsevier Inc. All rights reserved.
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Visual search and contextual cueing: differential effects in 10-year-old children and adults.
Couperus, Jane W; Hunt, Ruskin H; Nelson, Charles A; Thomas, Kathleen M
2011-02-01
The development of contextual cueing specifically in relation to attention was examined in two experiments. Adult and 10-year-old participants completed a context cueing visual search task (Jiang & Chun, The Quarterly Journal of Experimental Psychology, 54A(4), 1105-1124, 2001) containing stimuli presented in an attended (e.g., red) and unattended (e.g., green) color. When the spatial configuration of stimuli in the attended and unattended color was invariant and consistently paired with the target location, adult reaction times improved, demonstrating learning. Learning also occurred if only the attended stimuli's configuration remained fixed. In contrast, while 10 year olds, like adults, showed incrementally slower reaction times as the number of attended stimuli increased, they did not show learning in the standard paradigm. However, they did show learning when the ratio of attended to unattended stimuli was high, irrespective of the total number of attended stimuli. Findings suggest children show efficient attentional guidance by color in visual search but differences in contextual cueing.
Eridania Planitia - False Color
2016-06-22
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Eridania Planitia.
2016-03-16
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a hill in Tyrrhena Terra.
2016-10-17
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Gale Crater.
2016-03-07
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea.
2016-04-28
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Ophir Chasma.
2016-03-14
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Terra Sirenum.
2016-03-18
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa.
2016-05-02
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Peraea Cavus.
2016-03-09
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Martin Crater.
2016-04-27
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Fossae.
False Color Image of Volcano Sapas Mons
1996-02-05
This false-color image obtained by NASA Magellan spacecraft shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio. http://photojournal.jpl.nasa.gov/catalog/PIA00203
NASA Technical Reports Server (NTRS)
2000-01-01
This false color image, taken on November 6, 1980 from a distance of about 8 million kilometers, shows somewhat similar, although much smaller, red spot on Saturn. False color was used to make the faint spot more visible.
Categorical Working Memory Representations are used in Delayed Estimation of Continuous Colors
Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J
2016-01-01
In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In two experiments we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. PMID:27797548
Categorical working memory representations are used in delayed estimation of continuous colors.
Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J
2017-01-01
In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember, and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work, we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In 2 experiments, we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site]
The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season. Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
Grubert, Anna; Eimer, Martin
2016-02-01
Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.
Olfactory discrimination: when vision matters?
Demattè, M Luisa; Sanabria, Daniel; Spence, Charles
2009-02-01
Many previous studies have attempted to investigate the effect of visual cues on olfactory perception in humans. The majority of this research has only looked at the modulatory effect of color, which has typically been explained in terms of multisensory perceptual interactions. However, such crossmodal effects may equally well relate to interactions taking place at a higher level of information processing as well. In fact, it is well-known that semantic knowledge can have a substantial effect on people's olfactory perception. In the present study, we therefore investigated the influence of visual cues, consisting of color patches and/or shapes, on people's olfactory discrimination performance. Participants had to make speeded odor discrimination responses (lemon vs. strawberry) while viewing a red or yellow color patch, an outline drawing of a strawberry or lemon, or a combination of these color and shape cues. Even though participants were instructed to ignore the visual stimuli, our results demonstrate that the accuracy of their odor discrimination responses was influenced by visual distractors. This result shows that both color and shape information are taken into account during speeded olfactory discrimination, even when such information is completely task irrelevant, hinting at the automaticity of such higher level visual-olfactory crossmodal interactions.
Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus
2016-06-01
Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang
2015-02-01
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
2016-04-25
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.
2016-05-05
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Arabia Terra.
2016-03-15
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.
2016-05-06
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.
Syrtis Major Planum - False Color
2016-09-09
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Syrtis Major Planum.
2016-03-11
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Coprates Chasma.
2016-03-08
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sabaea.
Feature-based attention elicits surround suppression in feature space.
Störmer, Viola S; Alvarez, George A
2014-09-08
It is known that focusing attention on a particular feature (e.g., the color red) facilitates the processing of all objects in the visual field containing that feature [1-7]. Here, we show that such feature-based attention not only facilitates processing but also actively inhibits processing of similar, but not identical, features globally across the visual field. We combined behavior and electrophysiological recordings of frequency-tagged potentials in human observers to measure this inhibitory surround in feature space. We found that sensory signals of an attended color (e.g., red) were enhanced, whereas sensory signals of colors similar to the target color (e.g., orange) were suppressed relative to colors more distinct from the target color (e.g., yellow). Importantly, this inhibitory effect spreads globally across the visual field, thus operating independently of location. These findings suggest that feature-based attention comprises an excitatory peak surrounded by a narrow inhibitory zone in color space to attenuate the most distracting and potentially confusable stimuli during visual perception. This selection profile is akin to what has been reported for location-based attention [8-10] and thus suggests that such center-surround mechanisms are an overarching principle of attention across different domains in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Color “Fruit”: Object Memories Defined by Color
Lewis, David E.; Pearson, Joel; Khuu, Sieu K.
2013-01-01
Most fruits and other highly color-diagnostic objects have color as a central aspect of their identity, which can facilitate detection and visual recognition. It has been theorized that there may be a large amount of overlap between the neural representations of these objects and processing involved in color perception. In accordance with this theory we sought to determine if the recognition of highly color diagnostic fruit objects could be facilitated by the visual presentation of their known color associates. In two experiments we show that color associate priming is possible, but contingent upon multiple factors. Color priming was found to be maximally effective for the most highly color diagnostic fruits, when low spatial-frequency information was present in the image, and when determination of the object's specific identity, not merely its category, was required. These data illustrate the importance of color for determining the identity of certain objects, and support the theory that object knowledge involves sensory specific systems. PMID:23717677
Lack of color integration in visual short-term memory binding.
Parra, Mario A; Cubelli, Roberto; Della Sala, Sergio
2011-10-01
Bicolored objects are retained in visual short-term memory (VSTM) less efficiently than unicolored objects. This is unlike shape-color combinations, whose retention in VSTM does not differ from that observed for shapes only. It is debated whether this is due to a lack of color integration and whether this may reflect the function of separate memory mechanisms. Participants judged whether the colors of bicolored objects (each with an external and an internalcolor) were the same or different across two consecutive screens. Colors had to be remembered either individually or in combination. In Experiment 1, external colors in the combined colors condition were remembered better than the internal colors, and performance for both was worse than that in the individual colors condition. The lack of color integration observed in Experiment 1 was further supported by a reduced capacity of VSTM to retain color combinations, relative to individual colors (Experiment 2). An additional account was found in Experiment 3, which showed spared color-color binding in the presence of impaired shape-color binding in a brain-damaged patient, thus suggesting that these two memory mechanisms are different.
Verhoef, Bram-Ernst; Bohon, Kaitlin S.
2015-01-01
Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane. We discovered three regions that showed preferential responses for near and far stimuli, relative to zero-disparity stimuli at the fixation plane. These “near/far” disparity-biased regions were located within dorsal IT, as predicted by microelectrode studies, and on the posterior inferotemporal gyrus. In a second analysis, we instead compared responses to near stimuli with responses to far stimuli and discovered a separate network of “near” disparity-biased regions that extended along the crest of the superior temporal sulcus. We also measured in the same animals fMRI responses to faces, scenes, color, and checkerboard annuli at different visual field eccentricities. Disparity-biased regions defined in either analysis did not show a color bias, suggesting that disparity and color contribute to different computations within IT. Scene-biased regions responded preferentially to near and far stimuli (compared with stimuli without disparity) and had a peripheral visual field bias, whereas face patches had a marked near bias and a central visual field bias. These results support the idea that IT is organized by a coarse eccentricity map, and show that disparity likely contributes to computations associated with both central (face processing) and peripheral (scene processing) visual field biases, but likely does not contribute much to computations within IT that are implicated in processing color. PMID:25926470
Object onset and parvocellular guidance of attentional allocation.
Cole, Geoff G; Kentridge, Robert W; Heywood, Charles A
2005-04-01
The parvocellular visual pathway in the primate brain is known to be involved with the processing of color. However, a subject of debate is whether an abrupt change in color, conveyed via this pathway, is capable of automatically attracting attention. It has been shown that the appearance of new objects defined solely by color is indeed capable of modulating attention. However, given evidence suggesting that the visual system is particularly sensitive to new onsets, it is unclear to what extent such results reflect effects of color change per se, rather than effects of object onset. We assessed attentional capture by color change that occurred as a result of either new objects appearing or already-present "old" objects changing color. Results showed that although new object onsets accrued attention, changing the color of old objects did not. We conclude that abrupt color change per se is not sufficient to capture attention.
2015-09-30
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows where Mawrth Vallis empties into Chryse Planitia.
Yuty Crater Ejecta - False Color
2016-04-26
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the ejecta from Yuty Crater.
2016-02-01
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sabaea.
2016-02-04
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows a group of unnamed craters north of Fournier Crater.
2015-07-27
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa and Capri Chasma.
Regression analysis for LED color detection of visual-MIMO system
NASA Astrophysics Data System (ADS)
Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo
2018-04-01
Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.
Hue distinctiveness overrides category in determining performance in multiple object tracking.
Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming
2018-02-01
The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.
Two-out-of-two color matching based visual cryptography schemes.
Machizaud, Jacques; Fournel, Thierry
2012-09-24
Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.
Statistics of natural scenes and cortical color processing.
Cecchi, Guillermo A; Rao, A Ravishankar; Xiao, Youping; Kaplan, Ehud
2010-09-01
We investigate the spatial correlations of orientation and color information in natural images. We find that the correlation of orientation information falls off rapidly with increasing distance, while color information is more highly correlated over longer distances. We show that orientation and color information are statistically independent in natural images and that the spatial correlation of jointly encoded orientation and color information decays faster than that of color alone. Our findings suggest that: (a) orientation and color information should be processed in separate channels and (b) the organization of cortical color and orientation selectivity at low spatial frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world. These findings are in agreement with biological observations, as form and color are thought to be represented by different classes of neurons in the primary visual cortex, and the receptive fields of color-selective neurons are larger than those of orientation-selective neurons. The agreement between our findings and biological observations supports the ecological theory of perception.
7 CFR 51.2085 - Fairly uniform color.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform color. 51.2085 Section 51.2085... Definitions § 51.2085 Fairly uniform color. Fairly uniform color means that the shells do not show excessive variation in color, whether bleached or natural. ...
7 CFR 51.2085 - Fairly uniform color.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform color. 51.2085 Section 51.2085... Definitions § 51.2085 Fairly uniform color. Fairly uniform color means that the shells do not show excessive variation in color, whether bleached or natural. ...
The role of color information on object recognition: a review and meta-analysis.
Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís
2011-09-01
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.
Chromatic information and feature detection in fast visual analysis
Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.; ...
2016-08-01
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity ofmore » color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.« less
Chromatic information and feature detection in fast visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Viva, Maria M.; Punzi, Giovanni; Shevell, Steven K.
The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-andwhite movies provide compelling representations of real world scenes. Also, the contrast sensitivity ofmore » color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. As a result, we conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.« less
Lazar, Aurel A; Slutskiy, Yevgeniy B; Zhou, Yiyin
2015-03-01
Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself. If information about color is mixed and encoded by a common pool of neurons, how can colors be demixed and perceived? We present Color Video Time Encoding Machines (Color Video TEMs) for encoding color visual stimuli that take into account a variety of color representations within a single neural circuit. We then derive a Color Video Time Decoding Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual scenes from spikes produced by a population of visual neurons. In addition, we formulate Color Video Channel Identification Machines (Color Video CIMs) for functionally identifying color visual processing performed by a spiking neural circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two and leads to a general theory of neural information representation for stereoscopic color vision. We provide examples demonstrating that a massively parallel color visual neural circuit can be first identified with arbitrary precision and its spike trains can be subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the functional identification methodology can be effectively and intuitively performed in the stimulus space. In this space, a signal reconstructed from spike trains generated by the identified neural circuit can be compared to the original stimulus. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.
2009-12-01
Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.
Effects of VDT workstation lighting conditions on operator visual workload.
Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi
2008-04-01
Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.
2015-06-18
The THEMIS VIS camera contains 5 filters. Data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the central pit of an unnamed crater south of Coprates Catena.
2016-02-05
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a variety of surface materials in the plains of Sabaea Terra.
Wegener Crater Dunes - False Color
2016-06-23
The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows some of the dunes on the floor of Wegener Crater.
Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max
2017-10-25
Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the responses of less-selective cells in lower-level brain areas. These data emphasize that color perception involves multiple areas across a hierarchy of regions, interacting with each other in a complex, recursive manner. Copyright © 2017 the authors 0270-6474/17/3710346-12$15.00/0.
NASA Astrophysics Data System (ADS)
Dai, Mengyan; Liu, Jianghai; Cui, Jianlin; Chen, Chunsheng; Jia, Peng
2017-10-01
In order to solve the problem of the quantitative test of spectrum and color of aerosol, the measurement method of spectrum of aerosol based on human visual system was proposed. The spectrum characteristics and color parameters of three different aerosols were tested, and the color differences were calculated according to the CIE1976-L*a*b* color difference formula. Three tested powders (No 1# No 2# and No 3# ) were dispersed in a plexglass box and turned into aerosol. The powder sample was released by an injector with different dosages in each experiment. The spectrum and color of aerosol were measured by the PRO 6500 Fiber Optic Spectrometer. The experimental results showed that the extinction performance of aerosol became stronger and stronger with the increase of concentration of aerosol. While the chromaticity value differences of aerosols in the experiment were so small, luminance was verified to be the main influence factor of human eye visual perception and contributed most in the three factors of the color difference calculation. The extinction effect of No 3# aerosol was the strongest of all and caused the biggest change of luminance and color difference which would arouse the strongest human visual perception. According to the sensation level of chromatic color by Chinese, recognition color difference would be produced when the dosage of No 1# powder was more than 0.10 gram, the dosage of No 2# powder was more than 0.15 gram, and the dosage of No 3# powder was more than 0.05 gram.
7 CFR 51.2085 - Fairly uniform color.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...
7 CFR 51.2085 - Fairly uniform color.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...
7 CFR 51.2085 - Fairly uniform color.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly uniform color. 51.2085 Section 51.2085 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... color. Fairly uniform color means that the shells do not show excessive variation in color, whether...
A preconscious neural mechanism of hypnotically altered colors: a double case study.
Koivisto, Mika; Kirjanen, Svetlana; Revonsuo, Antti; Kallio, Sakari
2013-01-01
Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the squares are blue". One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz) 70-120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions.
NASA Astrophysics Data System (ADS)
Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun
2018-04-01
Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.
Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
Seymoure, B M; Aiello, A
2015-09-01
There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands. © 2015 European Society For Evolutionary Biology.
Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.
Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta
2015-05-01
Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination
Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.
2010-01-01
Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: 1) the categorical relationship between the target and the distracters and 2) the visual field in which the target was presented. Similar to controls, the RH patients were faster in detecting targets in the right visual field when the target and distracters had different color names compared to when their names were the same. This effect was absent in the LH patients, consistent with the hypothesis that injury to the left hemisphere handicaps the automatic activation of lexical codes. Moreover, the LH patients showed a reversed effect, such that the advantage of different target-distracter names was now evident for targets in the left visual field. This reversal may suggest a reorganization of the color lexicon in the right hemisphere following left hemisphere brain injury and/or the unmasking of a heightened right hemisphere sensitivity to color categories. PMID:21216454
Rock with Odd Coating Beside a Young Martian Crater, False Color
2010-03-24
This false color image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.
Spirit Scans Winter Haven False Color
2006-04-24
This false-color image shows paper-thin layers of light-toned, jagged-edged rocks; a light gray rock with smooth, rounded edges atop and drifts; and several dark gray to black, angular rocks with vesicles typical of hardened lava scattered across the sand
2015-09-18
The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the beginning of Ares Vallis at the edge of Iani Chaos.
Matara Crater Dunes - False Color
2017-04-20
The THEMIS camera contains 5 filters. Data from different filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the sand sheet with surface dune forms on the floor of Matara Crater.
Murray Ridge on Rim of Endeavour Crater on Mars, False Color
2013-11-13
This scene shows the Murray Ridge portion of the western rim of Endeavour Crater on Mars, as seen by NASA Opportunity rover. It is presented in false color to make some differences between materials easier to see.
7 CFR 51.3066 - Fairly well colored.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly well colored. 51.3066 Section 51.3066 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Fairly well colored. Fairly well colored means that the avocado shows a shade of color which is fairly...
7 CFR 51.3066 - Fairly well colored.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly well colored. 51.3066 Section 51.3066 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Fairly well colored. Fairly well colored means that the avocado shows a shade of color which is fairly...
Why Do Pictures, but Not Visual Words, Reduce Older Adults’ False Memories?
Smith, Rebekah E.; Hunt, R. Reed; Dunlap, Kathryn R.
2015-01-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both the case of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment we provide the first simultaneous comparison of all three study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. PMID:26213799
Why do pictures, but not visual words, reduce older adults' false memories?
Smith, Rebekah E; Hunt, R Reed; Dunlap, Kathryn R
2015-09-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both cases of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment, we provide the first simultaneous comparison of all 3 study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
More than a memory: Confirmatory visual search is not caused by remembering a visual feature.
Rajsic, Jason; Pratt, Jay
2017-10-01
Previous research has demonstrated a preference for positive over negative information in visual search; asking whether a target object is green biases search towards green objects, even when this entails more perceptual processing than searching non-green objects. The present study investigated whether this confirmatory search bias is due to the presence of one particular (e.g., green) color in memory during search. Across two experiments, we show that this is not the critical factor in generating a confirmation bias in search. Search slowed proportionally to the number of stimuli whose color matched the color held in memory only when the color was remembered as part of the search instructions. These results suggest that biased search for information is due to a particular attentional selection strategy, and not to memory-driven attentional biases. Copyright © 2017 Elsevier B.V. All rights reserved.
Search Strategies of Visually Impaired Persons using a Camera Phone Wayfinding System
Manduchi, R.; Coughlan, J.; Ivanchenko, V.
2016-01-01
We report new experiments conducted using a camera phone wayfinding system, which is designed to guide a visually impaired user to machine-readable signs (such as barcodes) labeled with special color markers. These experiments specifically investigate search strategies of such users detecting, localizing and touching color markers that have been mounted in various ways in different environments: in a corridor (either flush with the wall or mounted perpendicular to it) or in a large room with obstacles between the user and the markers. The results show that visually impaired users are able to reliably find color markers in all the conditions that we tested, using search strategies that vary depending on the environment in which they are placed. PMID:26949755
Search Strategies of Visually Impaired Persons using a Camera Phone Wayfinding System.
Manduchi, R; Coughlan, J; Ivanchenko, V
2008-07-01
We report new experiments conducted using a camera phone wayfinding system, which is designed to guide a visually impaired user to machine-readable signs (such as barcodes) labeled with special color markers. These experiments specifically investigate search strategies of such users detecting, localizing and touching color markers that have been mounted in various ways in different environments: in a corridor (either flush with the wall or mounted perpendicular to it) or in a large room with obstacles between the user and the markers. The results show that visually impaired users are able to reliably find color markers in all the conditions that we tested, using search strategies that vary depending on the environment in which they are placed.
2015-12-04
The THEMIS VIS camera contains 5 filters. Data from the filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the region just west of the dune/polar cap image from earlier this week.
Mars-Flyby Comet in False Color
2014-11-07
This frame from a movie sequence of images from NASA Mars Reconnaissance Orbiter MRO shows comet C/2013 A1 Siding Spring before and after its close pass by Mars in October 2014. False color enhances subtle variations in brightness in the comet coma.
7 CFR 51.1407 - Fairly uniform in color.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly uniform in color. 51.1407 Section 51.1407 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... in color. Fairly uniform in color means that the shells do not show sufficient variation in color to...
7 CFR 51.1407 - Fairly uniform in color.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly uniform in color. 51.1407 Section 51.1407 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... in color. Fairly uniform in color means that the shells do not show sufficient variation in color to...
7 CFR 51.3066 - Fairly well colored.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly well colored. 51.3066 Section 51.3066... STANDARDS) United States Standards for Florida Avocados Definitions § 51.3066 Fairly well colored. Fairly well colored means that the avocado shows a shade of color which is fairly characteristic of the...
7 CFR 51.3066 - Fairly well colored.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly well colored. 51.3066 Section 51.3066... STANDARDS) United States Standards for Florida Avocados Definitions § 51.3066 Fairly well colored. Fairly well colored means that the avocado shows a shade of color which is fairly characteristic of the...
7 CFR 51.1407 - Fairly uniform in color.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly uniform in color. 51.1407 Section 51.1407 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... in color. Fairly uniform in color means that the shells do not show sufficient variation in color to...
Unconscious analyses of visual scenes based on feature conjunctions.
Tachibana, Ryosuke; Noguchi, Yasuki
2015-06-01
To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).
High-chroma visual cryptography using interference color of high-order retarder films
NASA Astrophysics Data System (ADS)
Sugawara, Shiori; Harada, Kenji; Sakai, Daisuke
2015-08-01
Visual cryptography can be used as a method of sharing a secret image through several encrypted images. Conventional visual cryptography can display only monochrome images. We have developed a high-chroma color visual encryption technique using the interference color of high-order retarder films. The encrypted films are composed of a polarizing film and retarder films. The retarder films exhibit interference color when they are sandwiched between two polarizing films. We propose a stacking technique for displaying high-chroma interference color images. A prototype visual cryptography device using high-chroma interference color is developed.
Tan, Xue; Aoki, Aya; Yanagi, Yasuo
2013-01-01
Patients with the complete form of congenital stationary night blindness (CSNB) often have reduced visual acuity, myopia, impaired night vision, and sometimes nystagmus and strabismus, however, they seldom complain of color vision abnormality. A 17-year-old male who was at technical school showed abnormalities in the color perception test for employment, and was referred to our hospital for a detailed examination. He had no family history of color vision deficiency and no other symptoms. During the initial examination, his best-corrected visual acuity was 1.2 in both eyes. His fundus showed no abnormalities except for somewhat yellowish reflex in the fovea of both eyes. Electroretinogram (ERG) showed a good response in cone ERG and 30 Hz flicker ERG, however, the bright flash, mixed rod and cone ERG showed a negative type with a reduced b-wave (positive deflection). There was no response in the rod ERG, either. From the findings of the typical ERG, the patient was diagnosed with complete congenital stationary night blindness. This case underscores the importance of ERG in order to diagnose the cause of a color vision anomaly.
NASA Technical Reports Server (NTRS)
Chernov, A. A.; Garcia-Ruiz, J. M.; Thomas, B. R.
2000-01-01
Colorless transparent apoferritin (Mr = 450KDa) crystals have been grown from gel with Cd(2+) as precipitant in the presence of reddish brown-colored ferritin dimers (Mr = 900KDa). In agreement with our previous measurements, showing preferential trapping of dimers (distribution coefficient K = 4), the apoferritin crystals become strongly colored while the gel solution around them became nearly colorless. The depth of the depletion with respect to the colored dimer impurity allowed us to visualize the impurity depletion zone. Depletion with respect to impurity as compared to the crystallizing protein is discussed.
Ng, Jason S; Shih, Brian
2017-05-11
Minimizing false-positives (FPs) when evaluating color vision is important in eye care. Identification of plate 1 (demonstration plate) is often considered a way to avoid FPs. However, few studies have quantified the minimum level of visual acuity (VA) that would minimize FPs for the Ishihara and HRR color tests. Threshold levels of optical defocus were obtained from 25 color normal subjects. Blur levels were obtained for Ishihara (38 plate) plates 1, 10, and 15 and 4th edition HRR plates 1, 7, 10, and 20 using the method of limits. Corresponding VAs were measured through these blur levels at 40 centimeters after adjusting for the dioptric distance difference. Analysis of variance testing was used to analyze the data. Mean optical defocus values in diopters (mean ± SD) for HRR plates 1, 7, 10, and 20 were 6.23 ± 1.61, 1.23 ± 1.16, 2.41 ± 1.31, and 7.96 ± 2.03, respectively, and for Ishihara plates 1, 10, and 15 were 5.70 ± 1.52, 3.68 ± 1.71, and 4.62 ± 1.56, respectively. There was a significant difference between the screening and demonstration plates for both tests (p<0.001). Based on the plate in each test that was found to be the least tolerant to blur, the average minimum VAs needed to identify the screening plates were approximately 20/180 for the Ishihara test and 20/50 for the HRR test. Identifying the demonstration plate in the Ishihara and HRR tests does not ensure FPs will be avoided.
False Color Mosaic of Jupiter Belt-Zone Boundary
1997-12-18
This false color mosaic shows a belt-zone boundary near Jupiter equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. These images were taken on Nov. 5, 1996 by NASA Galileo orbiter.
Amsel, Ben D; Kutas, Marta; Coulson, Seana
2017-10-01
In grapheme-color synesthesia, seeing particular letters or numbers evokes the experience of specific colors. We investigate the brain's real-time processing of words in this population by recording event-related brain potentials (ERPs) from 15 grapheme-color synesthetes and 15 controls as they judged the validity of word pairs ('yellow banana' vs. 'blue banana') presented under high and low visual contrast. Low contrast words elicited delayed P1/N170 visual ERP components in both groups, relative to high contrast. When color concepts were conveyed to synesthetes by individually tailored achromatic grapheme strings ('55555 banana'), visual contrast effects were like those in color words: P1/N170 components were delayed but unchanged in amplitude. When controls saw equivalent colored grapheme strings, visual contrast modulated P1/N170 amplitude but not latency. Color induction in synesthetes thus differs from color perception in controls. Independent from experimental effects, all orthographic stimuli elicited larger N170 and P2 in synesthetes than controls. While P2 (150-250ms) enhancement was similar in all synesthetes, N170 (130-210ms) amplitude varied with individual differences in synesthesia and visual imagery. Results suggest immediate cross-activation in visual areas processing color and shape is most pronounced in so-called projector synesthetes whose concurrent colors are experienced as originating in external space.
Do focal colors look particularly "colorful"?
Witzel, Christoph; Franklin, Anna
2014-04-01
If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.
Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T
2011-05-31
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
NASA Astrophysics Data System (ADS)
Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina
1995-04-01
This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.
7 CFR 51.1407 - Fairly uniform in color.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly uniform in color. 51.1407 Section 51.1407... Definitions § 51.1407 Fairly uniform in color. Fairly uniform in color means that the shells do not show sufficient variation in color to materially detract from the general appearance of the lot. ...
7 CFR 51.1407 - Fairly uniform in color.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly uniform in color. 51.1407 Section 51.1407... Definitions § 51.1407 Fairly uniform in color. Fairly uniform in color means that the shells do not show sufficient variation in color to materially detract from the general appearance of the lot. ...
Modeling Color Difference for Visualization Design.
Szafir, Danielle Albers
2018-01-01
Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.
Negative emotion boosts quality of visual working memory representation.
Xie, Weizhen; Zhang, Weiwei
2016-08-01
Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Two-color mixing for classifying agricultural products for safety and quality
NASA Astrophysics Data System (ADS)
Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.
2006-02-01
We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.
Whitaker, Kirstie J; Kang, Xiaojian; Herron, Timothy J; Woods, David L; Robertson, Lynn C; Alvarez, Bryan D
2014-04-15
In this study we show, for the first time, a correlation between the neuroanatomy of the synesthetic brain and a metric that measures behavior not exclusive to the synesthetic experience. Grapheme-color synesthetes (n=20), who experience colors triggered by viewing or thinking of specific letters or numbers, showed altered white matter microstructure, as measured using diffusion tensor imaging, compared with carefully matched non-synesthetic controls. Synesthetes had lower fractional anisotropy and higher perpendicular diffusivity when compared to non-synesthetic controls. An analysis of the mode of anisotropy suggested that these differences were likely due to the presence of more crossing pathways in the brains of synesthetes. Additionally, these differences in white matter microstructure correlated negatively, and only for synesthetes, with a measure of the vividness of their visual imagery. Synesthetes who reported the most vivid visual imagery had the lowest fractional anisotropy and highest perpendicular diffusivity. We conclude that synesthetes as a population vary along a continuum while showing categorical differences in neuroanatomy and behavior compared to non-synesthetes. Copyright © 2013 Elsevier Inc. All rights reserved.
Akyürek, Elkan G; van Asselt, E Manon
2015-12-01
When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.
Visual comfort evaluated by opponent colors
NASA Astrophysics Data System (ADS)
Sagawa, Ken
2002-06-01
This study aimed to evaluate psychological impression of visual comfort when we see an image of ordinary colored scene presented in a color display. Effects of opponent colors, i.e. red, green, yellow and blue component, on the subjective judgement on visual comfort to the image were investigated. Three kinds of psychological experiment were designed to see the effects and the results indicated that the red/green opponent color component was more affecting than the yellow-blue one, and red color in particular was the most affecting factor on visual comfort.
Featural Guidance in Conjunction Search: The Contrast between Orientation and Color
ERIC Educational Resources Information Center
Anderson, Giles M.; Heinke, Dietmar; Humphreys, Glyn W.
2010-01-01
Four experiments examined the effects of precues on visual search for targets defined by a color-orientation conjunction. Experiment 1 showed that cueing the identity of targets enhanced the efficiency of search. Cueing effects were stronger with color than with orientation cues, but this advantage was additive across array size. Experiment 2…
Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses.
Rhodes, Michelle; Guang, Zhe; Pease, Jerrold; Trebino, Rick
2017-04-10
Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. Here, we propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. Using this plotting technique, we generate two- and three-dimensional images and movies that show the effects of spatiotemporal couplings.
Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, Michelle; Guang, Zhe; Pease, Jerrold
2017-04-06
Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. We propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. In using this plotting technique, we generate two- and three-dimensional images and moviesmore » that show the effects of spatiotemporal couplings.« less
Coloring your information: How designers use Theory of Color in creative ways to present infographic
NASA Astrophysics Data System (ADS)
Lucius, C. R.; Fuad, A.
2017-12-01
Various methods of data presentation is now visualized through engaging infographics and perform the presentation techniques a new kind of storytelling. Geometric elements for infographics perform interesting data, which is developed with color harmony. There are categories of colors based on color circle from the theory of color design: primary color, secondary color and tertiary color. This color circle allows a designer to visualize the balance and harmony of colors when they are side by side. These composition of colors can be formed as a harmonious dyad, triad, or tetrads. A harmonious dyad is formed from two diametrically opposed colors on the color circle, which known as contrast complementary and works best in color harmonious if one of the colors is dominant. A harmonious triad is represented by three colors from the color circle which positions with an equilateral triangle. An triangle of yellow-red-blue shows the most powerful of harmonious triad and call as the fundamental triad. A harmonious tetrad is developed from two pairs of complementary colors, which can be formed by rectangle or square on the color circle. It help to figure out how objects are connected on presenting data. To create an efficiency infographic, presenting data has to prepare with some strategic. The color circle has the power to perform the infographic when it is made for a fascinating design.
Visual color matching system based on RGB LED light source
NASA Astrophysics Data System (ADS)
Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng
2018-01-01
In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.
Pixel-based image fusion with false color mapping
NASA Astrophysics Data System (ADS)
Zhao, Wei; Mao, Shiyi
2003-06-01
In this paper, we propose a pixel-based image fusion algorithm that combines the gray-level image fusion method with the false color mapping. This algorithm integrates two gray-level images presenting different sensor modalities or at different frequencies and produces a fused false-color image. The resulting image has higher information content than each of the original images. The objects in the fused color image are easy to be recognized. This algorithm has three steps: first, obtaining the fused gray-level image of two original images; second, giving the generalized high-boost filtering images between fused gray-level image and two source images respectively; third, generating the fused false-color image. We use the hybrid averaging and selection fusion method to obtain the fused gray-level image. The fused gray-level image will provide better details than two original images and reduce noise at the same time. But the fused gray-level image can't contain all detail information in two source images. At the same time, the details in gray-level image cannot be discerned as easy as in a color image. So a color fused image is necessary. In order to create color variation and enhance details in the final fusion image, we produce three generalized high-boost filtering images. These three images are displayed through red, green and blue channel respectively. A fused color image is produced finally. This method is used to fuse two SAR images acquired on the San Francisco area (California, USA). The result shows that fused false-color image enhances the visibility of certain details. The resolution of the final false-color image is the same as the resolution of the input images.
Paper Test Cards for Presumptive Testing of Very Low Quality Antimalarial Medications
Weaver, Abigail A.; Lieberman, Marya
2015-01-01
Carrying out chemical analysis of antimalarials to detect low-quality medications before they reach a patient is a costly venture. Here, we show that a library of chemical color tests embedded on a paper card can presumptively identify formulations corresponding to very low quality antimalarial drugs. The presence or absence of chloroquine (CQ), doxycycline (DOX), quinine, sulfadoxine, pyrimethamine, and primaquine antimalarial medications, in addition to fillers used in low-quality pharmaceuticals, are indicated by patterns of colors that are generated on the test cards. Test card sensitivity for detection of these pure components ranges from 90% to 100% with no false positives in the absence of pharmaceutical. The color intensities from reactions characteristic of CQ or DOX allowed visual detection of formulations of these medications cut with 60% or 100% filler, although samples cut with 30% filler could not be reliably detected colorimetrically. However, the addition of unexpected fillers, even in 30% quantities, or substitute pharmaceuticals, could sometimes be detected by other color reactions on the test cards. Tests are simple and inexpensive enough to be carried out in clinics, pharmacies, and ports of entry and could provide a screening method to presumptively indicate very low quality medicines throughout the supply chain. PMID:25897064
Colors in mind: a novel paradigm to investigate pure color imagery.
Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S
2015-07-01
Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.
2017-05-01
Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.
NASA Technical Reports Server (NTRS)
1986-01-01
This false-color view of the rings of Uranus was made from images taken by Voyager 2 on Jan. 21, 1986, from a distance of 4.17 million kilometers (2.59 million miles). All nine known rings are visible here; the somewhat fainter, pastel lines seen between them are contributed by the computer enhancement. Six 15-second narrow-angle images were used to extract color information from the extremely dark and faint rings. Two images each in the green, clear and violet filters were added together and averaged to find the proper color differences between the rings. The final image was made from these three color averages and represents an enhanced, false-color view. The image shows that the brightest, or epsilon, ring at top is neutral in color, with the fainter eight other rings showing color differences between them. Moving down, toward Uranus, we see the delta, gamma and eta rings in shades of blue and green; the beta and alpha rings in somewhat lighter tones; and then a final set of three, known simply as the 4, 5 and 6 rings, in faint off-white tones. Scientists will use this color information to try to understand the nature and origin of the ring material. The resolution of this image is approximately 40 km (25 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Visual attention to features by associative learning.
Gozli, Davood G; Moskowitz, Joshua B; Pratt, Jay
2014-11-01
Expecting a particular stimulus can facilitate processing of that stimulus over others, but what is the fate of other stimuli that are known to co-occur with the expected stimulus? This study examined the impact of learned association on feature-based attention. The findings show that the effectiveness of an uninformative color transient in orienting attention can change by learned associations between colors and the expected target shape. In an initial acquisition phase, participants learned two distinct sequences of stimulus-response-outcome, where stimuli were defined by shape ('S' vs. 'H'), responses were localized key-presses (left vs. right), and outcomes were colors (red vs. green). Next, in a test phase, while expecting a target shape (80% probable), participants showed reliable attentional orienting to the color transient associated with the target shape, and showed no attentional orienting with the color associated with the alternative target shape. This bias seemed to be driven by learned association between shapes and colors, and not modulated by the response. In addition, the bias seemed to depend on observing target-color conjunctions, since encountering the two features disjunctively (without spatiotemporal overlap) did not replicate the findings. We conclude that associative learning - likely mediated by mechanisms underlying visual object representation - can extend the impact of goal-driven attention to features associated with a target stimulus. Copyright © 2014 Elsevier B.V. All rights reserved.
Colored floaters as a manifestation of digoxin toxicity.
Shi, Lynn; Sun, Linus D; Odel, Jeffrey G
2018-06-01
Since its report in one patient more than 70 years ago, digitalis-induced colored muscae volitantes have not surfaced again in the literature. We report here a case of digoxin induced colored floaters. An 89-year-old man on 0.25 mg digoxin daily developed visual hallucinations and colored floaters. He had floaters in the past but now they were in various colors including yellow, green, blue and red, though predominantly in yellow. These "weirdly" shaped little particles wiggled around as if in a viscous solution and casted shadows in his vision. He also saw geometric shapes, spirals, and cross hatch patterns of various colors that moved and undulated, especially on wallpaper. Ophthalmic examination revealed reduced visual acuity, poor color vision especially in his left eye, along with central depression on Amsler grid and Humphrey visual field in his left eye. Discontinuation of digoxin resulted in complete resolution of his visual symptoms. On subsequent ophthalmic examination, the patient's visual acuity, field testing and color vision improved and he had normal Amsler grid test results. Colored floaters may occur in patients taking cardiac glycosides but this association has not been explored. Unlike optical illusions and visual hallucinations, floaters are entoptic phenomena casting a physical shadow upon the retina and their coloring likely arise from retinal dysfunction. Colored floaters may be a more common visual phenomenon than realized.
Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin
2015-01-01
Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253
Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin
2015-05-01
Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.
Relating Standardized Visual Perception Measures to Simulator Visual System Performance
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Sweet, Barbara T.
2013-01-01
Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).
Effects of color combination and ambient illumination on visual perception time with TFT-LCD.
Lin, Chin-Chiuan; Huang, Kuo-Chen
2009-10-01
An empirical study was carried out to examine the effects of color combination and ambient illumination on visual perception time using TFT-LCD. The effect of color combination was broken down into two subfactors, luminance contrast ratio and chromaticity contrast. Analysis indicated that the luminance contrast ratio and ambient illumination had significant, though small effects on visual perception. Visual perception time was better at high luminance contrast ratio than at low luminance contrast ratio. Visual perception time under normal ambient illumination was better than at other ambient illumination levels, although the stimulus color had a confounding effect on visual perception time. In general, visual perception time was better for the primary colors than the middle-point colors. Based on the results, normal ambient illumination level and high luminance contrast ratio seemed to be the optimal choice for design of workplace with video display terminals TFT-LCD.
Color in Reference Production: The Role of Color Similarity and Color Codability.
Viethen, Jette; van Vessem, Thomas; Goudbeek, Martijn; Krahmer, Emiel
2017-05-01
It has often been observed that color is a highly preferred attribute for use in distinguishing descriptions, that is, referring expressions produced with the purpose of identifying an object within a visual scene. However, most of these observations were based on visual displays containing only colors that were maximally different in hue and for which the language of experimentation possessed basic color terms. The experiments described in this paper investigate whether speakers' preference for color is reduced if the color of the target referent is similar to that of the distractors. Because colors that look similar are often also harder to distinguish linguistically, we also examine the impact of the codability of color values. As a third factor, we investigate the salience of available alternative attributes and its impact on the use of color. The results of our experiments show that, while speakers are indeed less likely to use color when the colors in a display are similar, this effect is mostly due to the difficulty in naming similar colors. Color use for color with a basic color term is affected only when the colors of target and distractors are very similar (yet still distinguishable). The salience of our alternative attribute size, manipulated by varying the difference in size between target and distractors, had no impact on the use of color. Copyright © 2016 Cognitive Science Society, Inc.
Effects of Perceptual and Contextual Enrichment on Visual Confrontation Naming in Adult Aging
Rogalski, Yvonne; Peelle, Jonathan E.; Reilly, Jamie
2013-01-01
Purpose The purpose of this study was to determine the effects of enriching line drawings with color/texture and environmental context as a facilitator of naming speed and accuracy in older adults. Method Twenty young and 23 older adults named high-frequency picture stimuli from the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 2001) under three conditions: (a) black-and-white items, (b) colorized-texturized items, and (c) scene-primed colored items (e.g., “hammock” preceded 1,000 ms by a backyard scene). Results With respect to speeded naming latencies, mixed-model analyses of variance revealed that young adults did not benefit from colorization-texturization but did show scene-priming effects. In contrast, older adults failed to show facilitation effects from either colorized-texturized or scene-primed items. Moreover, older adults were consistently slower to initiate naming than were their younger counterparts across all conditions. Conclusions Perceptual and contextual enrichment of sparse line drawings does not appear to facilitate visual confrontation naming in older adults, whereas younger adults do tend to show benefits of scene priming. We interpret these findings as generally supportive of a processing speed account of age-related object picture-naming difficulty. PMID:21498581
Effects of chromatic image statistics on illumination induced color differences.
Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels
2013-09-01
We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.
7 CFR 51.2652 - Fairly well colored.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly well colored. 51.2652 Section 51.2652... STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2652 Fairly well colored. Fairly well colored means that at least 95 percent of the surface of the cherry shows characteristic...
7 CFR 51.2652 - Fairly well colored.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly well colored. 51.2652 Section 51.2652... STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2652 Fairly well colored. Fairly well colored means that at least 95 percent of the surface of the cherry shows characteristic...
Eye guidance during real-world scene search: The role color plays in central and peripheral vision.
Nuthmann, Antje; Malcolm, George L
2016-01-01
The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field--particularly color--facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field.
Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.
ERIC Educational Resources Information Center
Jan, J. E.; Groenveld, M.
1993-01-01
This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)
A Spectral Method for Color Quantitation of a Protein Drug Solution.
Swartz, Trevor E; Yin, Jian; Patapoff, Thomas W; Horst, Travis; Skieresz, Susan M; Leggett, Gordon; Morgan, Charles J; Rahimi, Kimia; Marhoul, Joseph; Kabakoff, Bruce
2016-01-01
Color is an important quality attribute for biotherapeutics. In the biotechnology industry, a visual method is most commonly utilized for color characterization of liquid drug protein solutions. The color testing method is used for both batch release and on stability testing for quality control. Using that method, an analyst visually determines the color of the sample by choosing the closest matching European Pharmacopeia reference color solution. The requirement to judge the best match makes it a subjective method. Furthermore, the visual method does not capture data on hue or chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we describe a quantitative method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. Following color industry standards established by International Commission on Illumination, this method converts a protein solution's visible absorption spectra to L*a*b* color space. Color matching is achieved within the L*a*b* color space, a practice that is already widely used in other industries. The work performed here is to facilitate the adoption and transition for the traditional visual assessment method to a quantitative spectral method. We describe here the algorithm used such that the quantitative spectral method correlates with the currently used visual method. In addition, we provide the L*a*b* values for the European Pharmacopeia reference color solutions required for the quantitative method. We have determined these L*a*b* values by gravimetrically preparing and measuring multiple lots of the reference color solutions. We demonstrate that the visual assessment and the quantitative spectral method are comparable using both low- and high-concentration antibody solutions and solutions with varying turbidity. In the biotechnology industry, a visual assessment is the most commonly used method for color characterization, batch release, and stability testing of liquid protein drug solutions. Using this method, an analyst visually determines the color of the sample by choosing the closest match to a standard color series. This visual method can be subjective because it requires an analyst to make a judgment of the best match of color of the sample to the standard color series, and it does not capture data on hue and chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we developed a quantitative spectral method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. The details of the spectral quantitative method are described. A comparison between the visual assessment method and spectral quantitative method is presented. This study supports the transition to a quantitative spectral method from the visual assessment method for quality testing of protein solutions. © PDA, Inc. 2016.
Historical photometric evidence for volatile migration on Triton
NASA Technical Reports Server (NTRS)
Buratti, Bonnie J.; Goguen, Jay D.; Gibson, James; Mosher, Joel
1994-01-01
Analysis of CCD images of Triton obtained with the 1.5-m telescope on Palomar Mountain shows that in the time period surrounding the Voyager 2 encounter with the satellite (1985-1990), no changes in the satellite's visual albedo or color occurred. The published observations of Triton in the 0.35- to 0.60-micrometer spectral region obtained between 1950 and 1990 were reanalyzed to detect historical variability in both its albedo and visual color. Analysis of the photometry indicates that there is little, if any, change in Triton's visual geometric albedo. This result is consistent with the albedo pattern observed by Voyager and the change in sub-Earth latitude. Two distinct types of color changes are evident: a significant secular increase in the blue region of the visual spectrum since at least the 1950s, and the reported dramatic reddening of Triton's spectrum in the late 1970s. The latter change can be explained only by a short-lived geological phenomenon. Triton's changing pole orientation with respect to a terrestrial observer cannot explain the secular color changes. These changes imply volatile transport on a global scale on Triton's surface during the past 4 decades. We present two models which show that either removal of a red volatile from Triton's polar cap or deposition of a blue volatile in the equatorial regions can explain the secular color changes. A third possibility is that the changes are the result of the alpha-beta phase transition of nitrogen and subsequent fracturing of the polar cap region (N. S. Duxbury and R. H. Brown (1993).
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released July 28, 2004 This image shows two representations of the same infra-red image covering an area near Mare Cimmerium. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. This area contains a mixture of basaltic materials (magenta/purple) and dust (green/blue). Faint blue areas may be due to some thin water ice clouds. The different compositional units are sometimes correlated with crater floors and other surface features, but they are often not tied to valleys, lava flows, etc... indicating that the surface materials could be mobile (dust and sand). Image information: IR instrument. Latitude -23.7, Longitude 139.3 East (220.7 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Saliency affects feedforward more than feedback processing in early visual cortex.
Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony
2013-07-01
Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goddard, Erin; Clifford, Colin W G
2013-04-22
Attending selectively to changes in our visual environment may help filter less important, unchanging information within a scene. Here, we demonstrate that color changes can go unnoticed even when they occur throughout an otherwise static image. The novelty of this demonstration is that it does not rely upon masking by a visual disruption or stimulus motion, nor does it require the change to be very gradual and restricted to a small section of the image. Using a two-interval, forced-choice change-detection task and an odd-one-out localization task, we showed that subjects were slowest to respond and least accurate (implying that change was hardest to detect) when the color changes were isoluminant, smoothly varying, and asynchronous with one another. This profound change blindness offers new constraints for theories of visual change detection, implying that, in the absence of transient signals, changes in color are typically monitored at a coarse spatial scale.
A color fusion method of infrared and low-light-level images based on visual perception
NASA Astrophysics Data System (ADS)
Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa
2014-11-01
The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.
Abdelraouf, Rasha M; Habib, Nour A
2016-01-01
Objectives . To assess visually color-matching and blending-effect (BE) of a universal shade bulk-fill-resin-composite placed in resin-composite-models with different shades and cavity sizes and in natural teeth (extracted and patients' teeth). Materials and Methods . Resin-composite-discs (10 mm × 1 mm) were prepared of universal shade composite and resin-composite of shades: A1, A2, A3, A3.5, and A4. Spectrophotometric-color-measurement was performed to calculate color-difference (Δ E ) between the universal shade and shaded-resin-composites discs and determine their translucency-parameter (TP). Visual assessment was performed by seven normal-color-vision-observers to determine the color-matching between the universal shade and each shade, under Illuminant D65. Color-matching visual scoring (VS) values were expressed numerically (1-5): 1: mismatch/totally unacceptable, 2: Poor-Match/hardly acceptable, 3: Good-Match/acceptable, 4: Close-Match/small-difference, and 5: Exact-Match/no-color-difference. Occlusal cavities of different sizes were prepared in teeth-like resin-composite-models with shades A1, A2, A3, A3.5, and A4. The cavities were filled by the universal shade composite. The same scale was used to score color-matching between the fillings and composite-models. BE was calculated as difference in mean-visual-scores in models and that of discs. Extracted teeth with two different class I-cavity sizes as well as ten patients' lower posterior molars with occlusal caries were prepared, filled by universal shade composite, and assessed similarly. Results . In models, the universal shade composite showed close matching in the different cavity sizes and surrounding shades (4 ≤ VS < 5) (BE = 0.6-2.9 in small cavities and 0.5-2.8 in large cavities). In extracted teeth, there was good-to-close color-matching (VS = 3.7-4.4 in small cavities, BE = 2.5-3.2) (VS = 3-3.5, BE = 1.8-2.3 in large cavities). In patients' molars, the universal shade composite showed good-matching (VS = 3-3.3, BE = -0.9-2.1). Conclusions . Color-matching of universal shade resin-composite was satisfactory rather than perfect in patients' teeth.
Visual Attention to Movement and Color in Children with Cortical Visual Impairment
ERIC Educational Resources Information Center
Cohen-Maitre, Stacey Ann; Haerich, Paul
2005-01-01
This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.
Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).
Bogale, Bezawork Afework; Sugawara, Satoshi; Sakano, Katsuhisa; Tsuda, Sonoko; Sugita, Shoei
2012-03-01
Wild-caught jungle crows (n = 20) were trained to discriminate between color stimuli in a two-alternative discrimination task. Next, crows were tested for long-term memory after 1-, 2-, 3-, 6-, and 10-month retention intervals. This preliminary study showed that jungle crows learn the task and reach a discrimination criterion (80% or more correct choices in two consecutive sessions of ten trials) in a few trials, and some even in a single session. Most, if not all, crows successfully remembered the constantly reinforced visual stimulus during training after all retention intervals. These results suggest that jungle crows have a high retention capacity for learned information, at least after a 10-month retention interval and make no or very few errors. This study is the first to show long-term memory capacity of color stimuli in corvids following a brief training that memory rather than rehearsal was apparent. Memory of visual color information is vital for exploitation of biological resources in crows. We suspect that jungle crows could remember the learned color discrimination task even after a much longer retention interval.
[Neural correlates of priming in vision: evidence from neuropsychology and neuroimaging].
Kristjánsson, Arni
2005-04-01
When we look around us, we are overall more likely to notice objects that we have recently looked at; an effect known as priming. For example, when the color or shape of a visual search target is repeated, observers find the target faster than otherwise. Here I summarize recent research undertaken to uncover the temporary changes in brain activity that accompany these priming effects. In light of the fact that priming seems to have a large effect on how attention is allocated, we investigated priming effects in a visual search task on patients suffering from the neurological disorder "hemispatial neglect" in which patients typically fail to notice display items in one of their visual hemifields. Priming of target color was relatively normal for these patients, while priming of target location seemed to require awareness of the briefly presented visual search target. An experiment with functional magnetic resonance imaging of normal observers revealed that both color and location priming had a strong modulatory influence on attentional mechanisms of the frontal and parietal cortex. Color priming was also correlated with changes in activity in visual cortex as well as color processing areas in the temporal lobe. Location priming was correlated with changes in activity near the temporo- parietal junction and lateral inferior frontal cortex, areas that have been connected with attentional capture; which ties well with our finding of deficits of location priming for the neglect patients who indeed have lesions in the temporo-parietal junction. Overall, the results confirm the tight coupling of visual attention and priming in vision, and also that the visual areas of the brain show some modulation of activity as priming develops.
What's color got to do with it? The influence of color on visual attention in different categories.
Frey, Hans-Peter; Honey, Christian; König, Peter
2008-10-23
Certain locations attract human gaze in natural visual scenes. Are there measurable features, which distinguish these locations from others? While there has been extensive research on luminance-defined features, only few studies have examined the influence of color on overt attention. In this study, we addressed this question by presenting color-calibrated stimuli and analyzing color features that are known to be relevant for the responses of LGN neurons. We recorded eye movements of 15 human subjects freely viewing colored and grayscale images of seven different categories. All images were also analyzed by the saliency map model (L. Itti, C. Koch, & E. Niebur, 1998). We find that human fixation locations differ between colored and grayscale versions of the same image much more than predicted by the saliency map. Examining the influence of various color features on overt attention, we find two extreme categories: while in rainforest images all color features are salient, none is salient in fractals. In all other categories, color features are selectively salient. This shows that the influence of color on overt attention depends on the type of image. Also, it is crucial to analyze neurophysiologically relevant color features for quantifying the influence of color on attention.
Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos
2009-01-01
To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 +/- 0.6 years). Color vision defects were studied using a special computer program for Farnsworth-Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30-2. Both tests were repeated every six months. In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 +/- 31.79) and OH eyes (75.51 +/- 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was -20.62 +/- 2.75 (t value 9.08, p < 0.001) while in OH eyes was -2.11 +/- 4.36 (t value 1.1, p = 0.276). Pearson's coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields.
Effects of auditory and visual modalities in recall of words.
Gadzella, B M; Whitehead, D A
1975-02-01
Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.
Action Planning Mediates Guidance of Visual Attention from Working Memory.
Feldmann-Wüstefeld, Tobias; Schubö, Anna
2015-01-01
Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences.
Action Planning Mediates Guidance of Visual Attention from Working Memory
Schubö, Anna
2015-01-01
Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences. PMID:26171241
Shin, Eun-hye; Kim, Chai-Youn
2014-12-01
Individuals with grapheme-color synesthesia experience "colors" when viewing achromatic letters and digits. Despite the large individual difference in synesthetic association between inducing graphemes and induced colors, the search for the determinants of synesthetic experience has begun. So far, however, research has drawn an inconsistent picture; some studies have shown that graphemes of similar visual shape tend to induce similar synesthetic colors, while others suggested sound as an important factor. Moreover, meaning seems to affect synesthetic color. In the present work, we sought to investigate the determinants of synesthetic color by testing four multilingual grapheme-color synesthetes who experience "colors" upon viewing Korean (hangul), Japanese (katakana and hiragana), and English (Latin alphabet) characters on a standardized color-matching procedure. Results showed that pairs of characters of matched sound tended to induce similar synesthetic colors. This was the case not only between two scripts within the same language (Japanese hiragana and katakana) but also between two different languages (Japanese and Korean). In addition, pairs of characters with similar initial phonemes tended to induce similar colors; this was general across multiple languages. Results also showed that pairs of sequential words in Korean, Japanese, English, and Chinese that have the same meaning tended to elicit similar synesthetic colors. When those pairs of words shared not only meaning but also sound, the similarity of the induced synesthetic colors was even greater. Our work is one of the few initial attempts to examine the influence of visual shape, sound, meaning, and their interaction on synesthetic color induced by characters across multiple languages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Berdejo, Stephanie; Rowe, Mark; Bond, John W
2012-03-01
Three relatively new reagents for developing latent fingermarks on porous substrates, 1,2-indandione (IND), 5-methylthioninhydrin (5-MTN), and lawsone, are compared with the more widely used ninhydrin and 1,8-diazofluoren (DFO). Developed latent fingermark visualization on 10 different substrates comprising colored papers, cardboard, and cellophane rather than conventional printer and writing/notepad paper is assessed using latent fingermark deposits from 48 donors. Results show improved fluorescent fingermark visualization using IND compared with DFO on a range of colored cardboards and thick white paper, thus extending the range of substrates known to yield improved visualization with IND. Adding zinc chloride to IND failed to yield any further improvement in fluorescent fingermark visualization. 5-MTN (with and without zinc chloride posttreatment) showed no improvement in visualization compared with ninhydrin and DFO although visible fingermarks were developed. Lawsone produced fluorescent visible fingermarks only with white substrates, which were inferior to those produced with DFO. © 2011 American Academy of Forensic Sciences.
Bailey, James A; Casanova, Ruby S; Bufkin, Kim
2006-07-01
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.
Physiological modeling for detecting degree of perception of a color-deficient person.
Rajalakshmi, T; Prince, Shanthi
2017-04-01
Physiological modeling of retina plays a vital role in the development of high-performance image processing methods to produce better visual perception. People with normal vision have an ability to discern different colors. The situation is different in the case of people with color blindness. The aim of this work is to develop a human visual system model for detecting the level of perception of people with red, green and blue deficiency by considering properties like luminance, spatial and temporal frequencies. Simulation results show that in the photoreceptor, outer plexiform and inner plexiform layers, the energy and intensity level of the red, green and blue component for a normal person is proved to be significantly higher than for dichromats. The proposed method explains with appropriate results that red and blue color blindness people could not perceive red and blue color completely.
NASA Technical Reports Server (NTRS)
2002-01-01
This pair of true- and false-color images from the Moderate Resolution Imaging Spectroradiometer (MODIS) from June 28, 2002, shows numerous burn scars dotting the northern Siberian landscape along the Lena River. In the true-color image, the burn scars appear dark grayish-brown, while in the false-color image they appear red, as does the bare exposed soil of the Verkhoyansk Mountain Range to the east of the north-flowing Lena. A tinge of blue along the mountains in the false-color image means there is some lingering snow or ice, and that the bare soil is due to spring's late arrival there, and not to burn scars. At the top, sea ice still fills the Laptev Sea. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Visual wetness perception based on image color statistics.
Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya
2017-05-01
Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.
Adaptability and specificity of inhibition processes in distractor-induced blindness.
Winther, Gesche N; Niedeggen, Michael
2017-12-01
In a rapid serial visual presentation task, inhibition processes cumulatively impair processing of a target possessing distractor properties. This phenomenon-known as distractor-induced blindness-has thus far only been elicited using dynamic visual features, such as motion and orientation changes. In three ERP experiments, we used a visual object feature-color-to test for the adaptability and specificity of the effect. In Experiment I, participants responded to a color change (target) in the periphery whose onset was signaled by a central cue. Presentation of irrelevant color changes prior to the cue (distractors) led to reduced target detection, accompanied by a frontal ERP negativity that increased with increasing number of distractors, similar to the effects previously found for dynamic targets. This suggests that distractor-induced blindness is adaptable to color features. In Experiment II, the target consisted of coherent motion contrasting the color distractors. Correlates of distractor-induced blindness were found neither in the behavioral nor in the ERP data, indicating a feature specificity of the process. Experiment III confirmed the strict distinction between congruent and incongruent distractors: A single color distractor was embedded in a stream of motion distractors with the target consisting of a coherent motion. While behavioral performance was affected by the distractors, the color distractor did not elicit a frontal negativity. The experiments show that distractor-induced blindness is also triggered by visual stimuli predominantly processed in the ventral stream. The strict specificity of the central inhibition process also applies to these stimulus features. © 2017 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Jimenezdel Barco, L.; Jimenez, J. R.; Rubino, M.; Diaz, J. A.
1996-09-01
The results obtained by different authors show that when a color stimulus changes in both luminance and chromaticity, the visual reaction time (VRT) of an observer in detecting this chromatic change depends on nothing more than the luminance change and is regulated by Pieron's law. In the present work, we evaluate the VRT needed by an observer to detect the chromaticity difference between an adapting and variable stimulus. For this, we have used the experimental method of hue substitution, which allows us to maintain the luminance channel constant and thereby study the temporal response to changes only in chromaticity. The experiments were carried out with a CRT color monitor and the experimental results are expressed in different color-representation systems. The systems UCS-CIE 1964 (U*, V*, W*) and CIELUV show good correlations between the VRT and the chromaticity difference expressed in these systems, adjusting the VRT to an expression following Pieron's law: VRT-VRTon=k( Delta E)- beta .
LEA Detection and Tracking Method for Color-Independent Visual-MIMO
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-01-01
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563
LEA Detection and Tracking Method for Color-Independent Visual-MIMO.
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-07-02
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement.
Assimilative and non-assimilative color spreading in the watercolor configuration.
Kimura, Eiji; Kuroki, Mikako
2014-01-01
A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.
Kamei, Ryotaro; Watanabe, Yuji; Sagiyama, Koji; Isoda, Takuro; Togao, Osamu; Honda, Hiroshi
2018-05-23
To investigate the optimal monochromatic color combination for fusion imaging of FDG-PET and diffusion-weighted MR images (DW) regarding lesion conspicuity of each image. Six linear monochromatic color-maps of red, blue, green, cyan, magenta, and yellow were assigned to each of the FDG-PET and DW images. Total perceptual color differences of the lesions were calculated based on the lightness and chromaticity measured with the photometer. Visual lesion conspicuity was also compared among the PET-only, DW-only and PET-DW-double positive portions with mean conspicuity scores. Statistical analysis was performed with a one-way analysis of variance and Spearman's rank correlation coefficient. Among all the 12 possible monochromatic color-map combinations, the 3 combinations of red/cyan, magenta/green, and red/green produced the highest conspicuity scores. Total color differences between PET-positive and double-positive portions correlated with conspicuity scores (ρ = 0.2933, p < 0.005). Lightness differences showed a significant negative correlation with conspicuity scores between the PET-only and DWI-only positive portions. Chromaticity differences showed a marginally significant correlation with conspicuity scores between DWI-positive and double-positive portions. Monochromatic color combinations can facilitate the visual evaluation of FDG-uptake and diffusivity as well as registration accuracy on the FDG-PET/DW fusion images, when red- and green-colored elements are assigned to FDG-PET and DW images, respectively.
Visual Field Asymmetry in Attentional Capture
ERIC Educational Resources Information Center
Du, Feng; Abrams, Richard A.
2010-01-01
The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…
Snow Storm Blankets Southeastern U.S.
NASA Technical Reports Server (NTRS)
2002-01-01
A new year's storm brought heavy snow to portions of the southeastern United States, with some regions receiving more than a foot in less than two days. By Friday, January 4, 2002, the skies had cleared, and MODIS captured this false-color image showing the extent of the snowfall. Snow cover is red, and extends all the way from Alabama (lower left), up through Georgia, South Carolina, North Carolina, Virginia, and Maryland, including the southern reaches of the Delmarva Peninsula (upper right). Beneath some clouds in West Virginia (top center), snow is also visible on the Allegheny Mountains and the Appalachian Plateau, although it did come from the same storm. Though red isn't the color we associate with snow, scientists often find 'false-color' images more useful than 'true-color' images in certain situations. True-color images are images in which the satellite data are made to look like what our eyes would see, using a combination of red, green, and blue. In a true-color image of this scene, cloud and snow would appear almost identical-both would be very bright white-and would be hard to distinguish from each other. However, at near-infrared wavelengths of light, snow cover absorbs sunlight and therefore appears much darker than clouds. So a false-color image in which one visible wavelength of the data is colored red, and different near-infrared wavelengths are colored green and blue helps show the snow cover most clearly.
The correlation between visual acuity and color vision as an indicator of the cause of visual loss.
Almog, Yehoshua; Nemet, Arie
2010-06-01
To explore the correlation between visual acuity (VA) and color vision and to establish a guide for the diagnosis of the cause of visual loss based on this correlation. Retrospective comparative evaluation of a diagnostic test. A total of 259 patients with visual impairment caused by 1 of 4 possible disease categories were included. Patients were divided into 4 groups according to the etiology of visual loss: 1) optic neuropathies, 2) macular diseases, 3) media opacities, and 4) amblyopia. The best-corrected VA was established and a standard Ishihara 15 color plates was tested and correlated to the VA in every group separately. Correlation between the VA and the color vision along the different etiologies was evaluated. Frequency of each combination of color vision and VA in every disease category was established. VA is correlated with color vision in all 4 disease categories. For the same degree of VA loss, patients with optic neuropathy are most likely and patients with amblyopia are the least expected to have a significant color vision loss. Patients with optic neuropathy had considerably worse average color vision (6.7/15) compared to patients in the other 3 disease categories: 11.1/15 (macular diseases), 13.2/15 (media opacities), and 13.4/15 (amblyopia). Diseases of the optic nerve affect color vision earlier and more profoundly than other diseases. When the cause of visual loss is uncertain, the correlation between the severity of color vision and VA loss can imply the possible etiology of the visual loss. Copyright 2010 Elsevier Inc. All rights reserved.
Effect of Yellow-Tinted Lenses on Visual Attributes Related to Sports Activities
Kohmura, Yoshimitsu; Murakami, Shigeki; Aoki, Kazuhiro
2013-01-01
The purpose of this study was to clarify the effect of colored lenses on visual attributes related to sports activities. The subjects were 24 students (11 females, 13 males; average age 21.0 ±1.2 years) attending a sports university. Lenses of 5 colors were used: colorless, light yellow, dark yellow, light gray, and dark gray. For each lens, measurements were performed in a fixed order: contrast sensitivity, dynamic visual acuity, depth perception, hand-eye coordination and visual acuity and low-contrast visual acuity. The conditions for the measurements of visual acuity and low-contrast visual acuity were in the order of Evening, Evening+Glare, Day, and Day+Glare. There were no significant differences among lenses in dynamic visual acuity and depth perception. For hand-eye coordination, time was significantly shorter with colorless than dark gray lenses. Contrast sensitivity was significantly higher with colorless, light yellow, and light gray lenses than with dark yellow and dark gray lenses. The low-contrast visual acuity test in the Day+Glare condition showed no significant difference among the lenses. In the Evening condition, low-contrast visual acuity was significantly higher with colorless and light yellow lenses than with dark gray lenses, and in the Evening+Glare condition, low-contrast visual acuity was significantly higher with colorless lenses than with the other colors except light yellow. Under early evening conditions and during sports activities, light yellow lenses do not appear to have an adverse effect on visual attributes. PMID:23717352
Color categories affect pre-attentive color perception.
Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna
2010-10-01
Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.
The Specificity of Colored Lenses as Visual Aids in Retinal Disease.
ERIC Educational Resources Information Center
Gawande, A.; And Others
1992-01-01
This study of the effects of lenses of different colors on the visual abilities and comfort of 20 patients with retinal disease found that, in home trials, the critical issue was density more than color. Office tests of visual acuity and contrast sensitivity with colored lenses did not predict subjective benefit. (Author/JDD)
NASA Astrophysics Data System (ADS)
Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liu, Qiang; Liang, Jingxing; Li, Chan
2016-10-01
This paper proposed two weight functions based on principal component analysis (PCA) to reserve more colorimetric information in spectral data compression process. One weight function consisted of the CIE XYZ color-matching functions representing the characteristic of the human visual system, while another was made up of the CIE XYZ color-matching functions of human visual system and relative spectral power distribution of the CIE standard illuminant D65. The improvement obtained from the proposed two methods were tested to compress and reconstruct the reflectance spectra of 1600 glossy Munsell color chips and 1950 Natural Color System color chips as well as six multispectral images. The performance was evaluated by the mean values of color difference under the CIE 1931 standard colorimetric observer and the CIE standard illuminant D65 and A. The mean values of root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed two methods significantly outperform the standard PCA and another two weighted PCA in the aspects of colorimetric reconstruction accuracy with very slight degradation in spectral reconstruction accuracy. In addition, weight functions with the CIE standard illuminant D65 can improve the colorimetric reconstruction accuracy compared to weight functions without the CIE standard illuminant D65.
NASA Astrophysics Data System (ADS)
Yao, Juncai; Liu, Guizhong
2017-03-01
In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo
2017-09-01
Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater False Color
2006-08-24
This false-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of reddish dust. The rock is light tan and has a moderately cracked the surface. Around it is a layer of bluish sand and pebbles
Flooding of the Ob and Irtysh Rivers, Russia
NASA Technical Reports Server (NTRS)
2002-01-01
This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers
Parts-based stereoscopic image assessment by learning binocular manifold color visual properties
NASA Astrophysics Data System (ADS)
Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi
2016-11-01
Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.
Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.
Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M
2015-12-01
There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.
2015-12-01
The THEMIS VIS camera contains 5 filters. Data from different filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows sand dunes and sand materials in depressions near the south pole. The dark blue tone shows the location of sand transport from one depression to another. Orbit Number: 16870 Latitude: -75.1264 Longitude: 348.882 Instrument: VIS Captured: 2005-10-03 09:18 http://photojournal.jpl.nasa.gov/catalog/PIA20105
Learning new color names produces rapid increase in gray matter in the intact adult human cortex
Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai
2011-01-01
The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence “lateralized Whorfian” effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing. PMID:21464316
Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling
2014-07-09
Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.
Lightness, chroma and hue differences on visual shade matching.
Pecho, Oscar E; Pérez, María M; Ghinea, Razvan; Della Bona, Alvaro
2016-11-01
To analyze the influence of lightness, chroma and hue differences on visual shade matching performed by dental students. 100 dental students (DS) volunteers with normal vision participated in the study. A spectroradiometer (SP) was used to measure the spectral reflectance of 4 extracted human upper central incisors (UCI 1-4) and shade tabs from Vita Classical (VC) and Vita Toothguide 3D-Master (3D) shade guides. Measurements were performed over a gray background, inside a viewing booth and under D65 illuminant (diffuse/0° geometry). Color parameters (L*, a*, b*, C* and h°) were calculated. DS used VC and 3D to visually select the best shade match for each UCI. CIE metric differences (Δa * ,Δb * ,ΔL ' , ΔC ' and ΔH ' ) and CIEDE2000(2:1:1) lightness (ΔE L ), chroma (ΔE C ) and hue (ΔE H ) differences were obtained from each UCI and the first three shades selected by DS and the first option using CIELAB, CIEDE2000(1:1:1) and CIEDE2000(2:1:1) color difference metrics. The closest CIELAB color-discrimination ellipsoid (from RIT-DuPont visual color-difference data) to each UCI was selected for the analysis of visual shade matching. DS showed a preference for shades with lower chroma (ΔC ' and ΔE C ) and/or hue (ΔH ' and ΔE H ) values instead of shades with lower lightness values (ΔL ' and ΔE L ). Most best visual matches were near the tolerance ellipsoid centered on tooth shade. This study is an attempt to partially explain the inconsistencies between visual and instrumental shade matching and the limitations of shade guides. Visual shade matching was driven by color differences with lower chroma and hue values. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2015-12-09
This representation of Ceres' Occator Crater in false colors shows differences in the surface composition. Red corresponds to a wavelength range around 0.97 micrometers (near infrared), green to a wavelength range around 0.75 micrometers (red, visible light) and blue to a wavelength range of around 0.44 micrometers (blue, visible light). Occator measures about 60 miles (90 kilometers) wide. Scientists use false color to examine differences in surface materials. The color blue on Ceres is generally associated with bright material, found in more than 130 locations, and seems to be consistent with salts, such as sulfates. It is likely that silicate materials are also present. The images were obtained by the framing camera on NASA's Dawn spacecraft from a distance of about 2,700 miles (4,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20180
NASA Astrophysics Data System (ADS)
El-Saba, A. M.; Alam, M. S.; Surpanani, A.
2006-05-01
Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.
The Role of Color in Search Templates for Real-world Target Objects.
Nako, Rebecca; Smith, Tim J; Eimer, Martin
2016-11-01
During visual search, target representations (attentional templates) control the allocation of attention to template-matching objects. The activation of new attentional templates can be prompted by verbal or pictorial target specifications. We measured the N2pc component of the ERP as a temporal marker of attentional target selection to determine the role of color signals in search templates for real-world search target objects that are set up in response to word or picture cues. On each trial run, a word cue (e.g., "apple") was followed by three search displays that contained the cued target object among three distractors. The selection of the first target was based on the word cue only, whereas selection of the two subsequent targets could be controlled by templates set up after the first visual presentation of the target (picture cue). In different trial runs, search displays either contained objects in their natural colors or monochromatic objects. These two display types were presented in different blocks (Experiment 1) or in random order within each block (Experiment 2). RTs were faster, and target N2pc components emerged earlier for the second and third display of each trial run relative to the first display, demonstrating that pictures are more effective than word cues in guiding search. N2pc components were triggered more rapidly for targets in the second and third display in trial runs with colored displays. This demonstrates that when visual target attributes are fully specified by picture cues, the additional presence of color signals in target templates facilitates the speed with which attention is allocated to template-matching objects. No such selection benefits for colored targets were found when search templates were set up in response to word cues. Experiment 2 showed that color templates activated by word cues can even impair the attentional selection of noncolored targets. Results provide new insights into the status of color during the guidance of visual search for real-world target objects. Color is a powerful guiding feature when the precise visual properties of these objects are known but seems to be less important when search targets are specified by word cues.
[The Performance Analysis for Lighting Sources in Highway Tunnel Based on Visual Function].
Yang, Yong; Han, Wen-yuan; Yan, Ming; Jiang, Hai-feng; Zhu, Li-wei
2015-10-01
Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the discrepancy of visual recognition. The emission spectrum peak of GaN chip is approximate to the wave length peak of efficiency function in photopic vision. The lighting visual effect of write LED in high color temperature is better than it in low color temperature and electrodeless fluorescent lamp. The lighting visual effect of high pressure sodium is weak. Because of its peak value is around the Na+ characteristic spectra.
Constable, Merryn D; Becker, Stefanie I
2017-10-01
According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.
2009-06-03
Lots of clouds are visible in this infrared image of Saturn's moon Titan. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini spacecraft show. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. Three false-color images make up this mosaic and show the clouds at 40 to 50 degrees mid-latitude. The images were taken by Cassini's visual and infrared mapping spectrometer during a close flyby of Titan on Sept. 7, 2006, known as T17. For a similar view see PIA12005. Each image is a color composite, with red shown at the 2-micron wavelength, green at 1.6 microns, and blue at 2.8 microns. An infrared color mosaic is also used as a background (red at 5 microns, green at 2 microns and blue at 1.3 microns). The characteristic elongated mid-latitude clouds, which are easily visible in bright bluish tones are still active even late into 2006-2007. According to climate models, these clouds should have faded out since 2005. http://photojournal.jpl.nasa.gov/catalog/PIA12004
Predictors of vision impairment in Multiple Sclerosis.
Sanchez-Dalmau, Bernardo; Martinez-Lapiscina, Elena H; Pulido-Valdeolivas, Irene; Zubizarreta, Irati; Llufriu, Sara; Blanco, Yolanda; Sola-Valls, Nuria; Sepulveda, Maria; Guerrero, Ana; Alba, Salut; Andorra, Magi; Camos, Anna; Sanchez-Vela, Laura; Alfonso, Veronica; Saiz, Albert; Villoslada, Pablo
2018-01-01
Visual impairment significantly alters the quality of life of people with Multiple Sclerosis (MS). The objective of this study was to identify predictors (independent variables) of visual outcomes, and to define their relationship with neurological disability and retinal atrophy when assessed by optical coherence tomography (OCT). We performed a cross-sectional analysis of 119 consecutive patients with MS, assessing vision using high contrast visual acuity (LogMar), 2.5% and 1.25% low contrast visual acuity (Sloan charts), and color vision (Hardy-Rand-Rittler plates). Quality of vision is a patient reported outcome based on an individual's unique perception of his or her vision and was assessed with the Visual Functioning Questionnaire-25 (VFQ-25) with the 10 neuro-ophthalmologic items. MS disability was assessed using the expanded disability status scale (EDSS), the MS functional composite (MSFC) and the brief repetitive battery-neuropsychology (BRB-N). Retinal atrophy was assessed using spectral domain OCT, measuring the thickness of the peripapillar retinal nerve fiber layer (pRNFL) and the volume of the ganglion cell plus inner plexiform layer (GCIPL). The vision of patients with MS was impaired, particularly in eyes with prior optic neuritis. Retinal atrophy (pRNFL and GCIPL) was closely associated with impaired low contrast vision and color vision, whereas the volume of the GCIPL showed a trend (p = 0.092) to be associated with quality of vision. Multiple regression analysis revealed that EDSS was an explanatory variable for high contrast vision after stepwise analysis, GCIPL volume for low contrast vision, and GCIPL volume and EDSS for color vision. The explanatory variables for quality of vision were high contrast vision and color vision. In summary, quality of vision in MS depends on the impairment of high contrast visual acuity and color vision due to the disease.
Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos
2009-01-01
Purpose: To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. Methods: In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 ± 0.6 years). Color vision defects were studied using a special computer program for Farnsworth–Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30–2. Both tests were repeated every six months. Results: In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 ± 31.79) and OH eyes (75.51 ± 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was −20.62 ± 2.75 (t value 9.08, p < 0.001) while in OH eyes was −2.11 ± 4.36 (t value 1.1, p = 0.276). Pearson’s coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Conclusion: Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields. PMID:19668575
Hogervorst, Maarten A.; Pinkus, Alan R.
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance. PMID:28036328
Toet, Alexander; Hogervorst, Maarten A; Pinkus, Alan R
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm), near-infrared (NIR, 0.7-1.0μm) and long-wave infrared (LWIR, 8-14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance.
Adaptive color demosaicing and false color removal
NASA Astrophysics Data System (ADS)
Guarnera, Mirko; Messina, Giuseppe; Tomaselli, Valeria
2010-04-01
Color interpolation solutions drastically influence the quality of the whole image generation pipeline, so they must guarantee the rendering of high quality pictures by avoiding typical artifacts such as blurring, zipper effects, and false colors. Moreover, demosaicing should avoid emphasizing typical artifacts of real sensors data, such as noise and green imbalance effect, which would be further accentuated by the subsequent steps of the processing pipeline. We propose a new adaptive algorithm that decides the interpolation technique to apply to each pixel, according to its neighborhood analysis. Edges are effectively interpolated through a directional filtering approach that interpolates the missing colors, selecting the suitable filter depending on edge orientation. Regions close to edges are interpolated through a simpler demosaicing approach. Thus flat regions are identified and low-pass filtered to eliminate some residual noise and to minimize the annoying green imbalance effect. Finally, an effective false color removal algorithm is used as a postprocessing step to eliminate residual color errors. The experimental results show how sharp edges are preserved, whereas undesired zipper effects are reduced, improving the edge resolution itself and obtaining superior image quality.
The psychological four-color mapping problem.
Francis, Gregory; Bias, Keri; Shive, Joshua
2010-06-01
Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task of identifying the optimal colors for a map. We parameterized the model with a set of 7 colors using a visual search experiment in which human participants found a target region on a small map. We then used the model to predict search times for new maps and identified the color assignments that minimize or maximize average search time. The differences between these maps were predicted to be substantial. The model was then tested with a larger set of 31 colors on a map of English counties under conditions in which participants might memorize some aspects of the map. Empirical tests of the model showed that an optimally best colored version of this map is searched 15% faster than the correspondingly worst colored map. Thus, the color assignment seems to affect search times in a way predicted by the model, and this effect persists even when participants might use other sources of knowledge about target location. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Lightness Constancy in Surface Visualization
Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael
2016-01-01
Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers’ abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495
Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis
2009-12-01
We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.
Quantifying camouflage: how to predict detectability from appearance.
Troscianko, Jolyon; Skelhorn, John; Stevens, Martin
2017-01-06
Quantifying the conspicuousness of objects against particular backgrounds is key to understanding the evolution and adaptive value of animal coloration, and in designing effective camouflage. Quantifying detectability can reveal how colour patterns affect survival, how animals' appearances influence habitat preferences, and how receiver visual systems work. Advances in calibrated digital imaging are enabling the capture of objective visual information, but it remains unclear which methods are best for measuring detectability. Numerous descriptions and models of appearance have been used to infer the detectability of animals, but these models are rarely empirically validated or directly compared to one another. We compared the performance of human 'predators' to a bank of contemporary methods for quantifying the appearance of camouflaged prey. Background matching was assessed using several established methods, including sophisticated feature-based pattern analysis, granularity approaches and a range of luminance and contrast difference measures. Disruptive coloration is a further camouflage strategy where high contrast patterns disrupt they prey's tell-tale outline, making it more difficult to detect. Disruptive camouflage has been studied intensely over the past decade, yet defining and measuring it have proven far more problematic. We assessed how well existing disruptive coloration measures predicted capture times. Additionally, we developed a new method for measuring edge disruption based on an understanding of sensory processing and the way in which false edges are thought to interfere with animal outlines. Our novel measure of disruptive coloration was the best predictor of capture times overall, highlighting the importance of false edges in concealment over and above pattern or luminance matching. The efficacy of our new method for measuring disruptive camouflage together with its biological plausibility and computational efficiency represents a substantial advance in our understanding of the measurement, mechanism and definition of disruptive camouflage. Our study also provides the first test of the efficacy of many established methods for quantifying how conspicuous animals are against particular backgrounds. The validation of these methods opens up new lines of investigation surrounding the form and function of different types of camouflage, and may apply more broadly to the evolution of any visual signal.
What does visual suffix interference tell us about spatial location in working memory?
Allen, Richard J; Castellà, Judit; Ueno, Taiji; Hitch, Graham J; Baddeley, Alan D
2015-01-01
A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system.
Interaction of color and geometric cues in depth perception: when does "red" mean "near"?
Guibal, Christophe R C; Dresp, Birgitta
2004-12-01
Luminance and color are strong and self-sufficient cues to pictorial depth in visual scenes and images. The present study investigates the conditions under which luminance or color either strengthens or overrides geometric depth cues. We investigated how luminance contrast associated with the color red and color contrast interact with relative height in the visual field, partial occlusion, and interposition to determine the probability that a given figure presented in a pair is perceived as "nearer" than the other. Latencies of "near" responses were analyzed to test for effects of attentional selection. Figures in a pair were supported by luminance contrast (Experiment 1) or isoluminant color contrast (Experiment 2) and combined with one of the three geometric cues. The results of Experiment 1 show that the luminance contrast of a color (here red), when it does not interact with other colors, produces the same effects as achromatic luminance contrasts. The probability of "near" increases with the luminance contrast of the color stimulus, the latencies for "near" responses decrease with increasing luminance contrast. Partial occlusion is found to be a strong enough pictorial cue to support a weaker red luminance contrast. Interposition cues lose out against cues of spatial position and partial occlusion. The results of Experiment 2, with isoluminant displays of varying color contrast, reveal that red color contrast on a light background supported by any of the three geometric cues wins over green or white supported by any of the three geometric cues. On a dark background, red color contrast supported by the interposition cue loses out against green or white color contrast supported by partial occlusion. These findings reveal that color is not an independent depth cue, but is strongly influenced by luminance contrast and stimulus geometry. Systematically shorter response latencies for stronger "near" percepts demonstrate that selective visual attention reliably detects the most likely depth cue combination in a given configuration.
Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.
Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik
2015-01-01
Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.
Impact of color hard copy on instructional technology applications
NASA Astrophysics Data System (ADS)
Lantz, Christopher J.
1995-04-01
Hard copy is still preeminent in the form of textbooks or lab manuals in most training environments despite inroads made by microcomputer delivery. Cost per copy is still a major factor but one that is offset by convenience and the capability of including a small number of crucial color illustrations for low run laboratory manuals. Overhead transparencies and color displays are other major educational applications in which electronically generated color hardcopy is just starting to make an impact. Color hardcopy has been perceived as out of reach to the average educator because of probatively high costs in the recent past. Another reason for the underutilization of color in instruction is research that suggests that color distracts instead of directing attention among learners. Much of this research compares visuals which are designed to convey simple visual information, and in this case complexity does often get in the way of comprehension. Color can also act as an advanced organizer that directs visual perception and comprehension to specific instructional objectives. Color can elicit emotional responses from viewers which will assist them in remembering visual detail. Not unlike any other instructional tool, color can add or distract from instructional objectives. Now that color is more accessible in the hard copy format, there are many new ways it can be utilized to benefit the public or corporate educator. In the sections that follow color hard copy is considered in its present areas of application, in context to the suitability of visuals for instruction, as a important component of visual literacy and lastly in the development of measures of picture readability.
Modeling a color-rendering operator for high dynamic range images using a cone-response function
NASA Astrophysics Data System (ADS)
Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju
2015-09-01
Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.
Burriss, Robert P.; Troscianko, Jolyon; Lovell, P. George; Fulford, Anthony J. C.; Stevens, Martin; Quigley, Rachael; Payne, Jenny; Saxton, Tamsin K.; Rowland, Hannah M.
2015-01-01
Human ovulation is not advertised, as it is in several primate species, by conspicuous sexual swellings. However, there is increasing evidence that the attractiveness of women’s body odor, voice, and facial appearance peak during the fertile phase of their ovulatory cycle. Cycle effects on facial attractiveness may be underpinned by changes in facial skin color, but it is not clear if skin color varies cyclically in humans or if any changes are detectable. To test these questions we photographed women daily for at least one cycle. Changes in facial skin redness and luminance were then quantified by mapping the digital images to human long, medium, and shortwave visual receptors. We find cyclic variation in skin redness, but not luminance. Redness decreases rapidly after menstrual onset, increases in the days before ovulation, and remains high through the luteal phase. However, we also show that this variation is unlikely to be detectable by the human visual system. We conclude that changes in skin color are not responsible for the effects of the ovulatory cycle on women’s attractiveness. PMID:26134671
Burriss, Robert P; Troscianko, Jolyon; Lovell, P George; Fulford, Anthony J C; Stevens, Martin; Quigley, Rachael; Payne, Jenny; Saxton, Tamsin K; Rowland, Hannah M
2015-01-01
Human ovulation is not advertised, as it is in several primate species, by conspicuous sexual swellings. However, there is increasing evidence that the attractiveness of women's body odor, voice, and facial appearance peak during the fertile phase of their ovulatory cycle. Cycle effects on facial attractiveness may be underpinned by changes in facial skin color, but it is not clear if skin color varies cyclically in humans or if any changes are detectable. To test these questions we photographed women daily for at least one cycle. Changes in facial skin redness and luminance were then quantified by mapping the digital images to human long, medium, and shortwave visual receptors. We find cyclic variation in skin redness, but not luminance. Redness decreases rapidly after menstrual onset, increases in the days before ovulation, and remains high through the luteal phase. However, we also show that this variation is unlikely to be detectable by the human visual system. We conclude that changes in skin color are not responsible for the effects of the ovulatory cycle on women's attractiveness.
Visual long-term memory has the same limit on fidelity as visual working memory.
Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A
2013-06-01
Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.
Adolescents' Visual Preference for Color over Form.
ERIC Educational Resources Information Center
Uba, Anselm
1985-01-01
Examines whether Nigerian adolescent girls are more likely to demonstrate superior performance in a task involving cultural differences in visual selective attention preference for color over form than boys are. Students (N=100) completed the Visual Selective Attention Color-Form Matching Experiment. Results confirmed the hypothesis. (BH)
1986-01-21
4.17 million miles (2.59 million miles) Resolution : 40 km. (25mi.) P-29498C This false color, Voyager 2 composite view of all nine of Uranian rings was made from six 15 second exposures through the narrow angle camera. The special computer processing used to extract color information from the extremely dark and faint rings, causing the even fainter, pastel lines seen between the rings. Two images, each in the green, clear, & violet filters, were added together and averaged to find the proper color difference between the rings. the final image was made from these three color averages and represents an enhanced, false color view. The image shows that the brightest, or Epsilon ring, at top ,is neutral in color, with the fainter eight other rings showing color differences between them. moving down, toward, Uranus, we see the Delta, Gamma, & Eta rings in shades of blue and green; the Beta & Alpha rings in somewhat lighter tones; and then finally, a set of three, known simply as 4, 5, & 6 rings, in faint off-white tones. Scientists will use this color information to try to understand the nature and origin of the ring material.
NASA Astrophysics Data System (ADS)
Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno
2015-01-01
Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.
Brébion, Gildas; Stephan-Otto, Christian; Usall, Judith; Huerta-Ramos, Elena; Perez del Olmo, Mireia; Cuevas-Esteban, Jorge; Haro, Josep Maria; Ochoa, Susana
2015-09-01
A number of cognitive underpinnings of auditory hallucinations have been established in schizophrenia patients, but few have, as yet, been uncovered for visual hallucinations. In previous research, we unexpectedly observed that auditory hallucinations were associated with poor recognition of color, but not black-and-white (b/w), pictures. In this study, we attempted to replicate and explain this finding. Potential associations with visual hallucinations were explored. B/w and color pictures were presented to 50 schizophrenia patients and 45 healthy individuals under 2 conditions of visual context presentation corresponding to 2 levels of visual encoding complexity. Then, participants had to recognize the target pictures among distractors. Auditory-verbal hallucinations were inversely associated with the recognition of the color pictures presented under the most effortful encoding condition. This association was fully mediated by working-memory span. Visual hallucinations were associated with improved recognition of the color pictures presented under the less effortful condition. Patients suffering from visual hallucinations were not impaired, relative to the healthy participants, in the recognition of these pictures. Decreased working-memory span in patients with auditory-verbal hallucinations might impede the effortful encoding of stimuli. Visual hallucinations might be associated with facilitation in the visual encoding of natural scenes, or with enhanced color perception abilities. (c) 2015 APA, all rights reserved).
Color Vision in Color Display Night Vision Goggles.
Liggins, Eric P; Serle, William P
2017-05-01
Aircrew viewing eyepiece-injected symbology on color display night vision goggles (CDNVGs) are performing a visual task involving color under highly unnatural viewing conditions. Their performance in discriminating different colors and responding to color cues is unknown. Experimental laboratory measurements of 1) color discrimination and 2) visual search performance are reported under adaptation conditions representative of a CDNVG. Color discrimination was measured using a two-alternative forced choice (2AFC) paradigm that probes color space uniformly around a white point. Search times in the presence of different degrees of clutter (distractors in the scene) are measured for different potential symbology colors. The discrimination data support previous data suggesting that discrimination is best for colors close to the adapting point in color space (P43 phosphor in this case). There were highly significant effects of background adaptation (white or green) and test color. The search time data show that saturated colors with the greatest chromatic contrast with respect to the background lead to the shortest search times, associated with the greatest saliency. Search times for the green background were around 150 ms longer than for the white. Desaturated colors, along with those close to a typical CDNVG display phosphor in color space, should be avoided by CDNVG designers if the greatest conspicuity of symbology is desired. The results can be used by CDNVG symbology designers to optimize aircrew performance subject to wider constraints arising from the way color is used in the existing conventional cockpit instruments and displays.Liggins EP, Serle WP. Color vision in color display night vision goggles. Aerosp Med Hum Perform. 2017; 88(5):448-456.
Ice Layer Cross-Section In False Color
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood. Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Beretta, Giordano
2007-01-01
The words in a document are often supported, illustrated, and enriched by visuals. When color is used, some of it is used to define the document's identity and is therefore strictly controlled in the design process. The result of this design process is a "color specification sheet," which must be created for every background color. While in traditional publishing there are only a few backgrounds, in variable data publishing a larger number of backgrounds can be used. We present an algorithm that nudges the colors in a visual to be distinct from a background while preserving the visual's general color character.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel
2015-01-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722
Callosal involvement in a lateralized stroop task in alcoholic and healthy subjects.
Schulte, T; Müller-Oehring, E M; Salo, R; Pfefferbaum, A; Sullivan, E V
2006-11-01
To investigate the role of interhemispheric attentional processes, 25 alcoholic and 28 control subjects were tested with a Stroop match-to-sample task and callosal areas were measured with magnetic resonance imaging. Stroop color-word stimuli were presented to the left or right visual field (VF) and were preceded by a color cue that did or did not match the word's color. For matching colors, both groups showed a right VF advantage; for nonmatching colors, controls showed a left VF advantage, whereas alcoholic subjects showed no VF advantage. For nonmatch trials, VF advantage correlated with callosal splenium area in controls but not alcoholic subjects, supporting the position that information presented to the nonpreferred hemisphere is transmitted via the splenium to the hemisphere specialized for efficient processing. The authors speculate that alcoholism-associated callosal thinning disrupts this processing route.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Regional Principal Color Based Saliency Detection
Lou, Jing; Ren, Mingwu; Wang, Huan
2014-01-01
Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960
Color vision defects in adrenomyeloneuropathy.
Sack, G H; Raven, M B; Moser, H W
1989-01-01
The relationship between abnormal color vision and adrenomyeloneuropathy (AMN) was investigated in 27 AMN patients and 31 age-matched controls by using the Farnsworth-Munsell 100 Hue test. Twelve (44%) of 27 patients showed test scores significantly above normal. The axes of bipolarity determined by the testing differed widely between the patients with abnormal scores, compatible with the notion that different alterations in visual pigment genes occur in different AMN kindreds. These observations confirm our earlier impression that the frequency of abnormal color vision is increased in these kindreds, and it supports our contentions that (1) AMN (and its companion, adrenoleukodystrophy) are very closely linked to the visual pigment loci at Xq28 and (2) this proximity might provide the opportunity to observe contiguous gene defects. PMID:2729274
The Constancy of Colored After-Images
Zeki, Semir; Cheadle, Samuel; Pepper, Joshua; Mylonas, Dimitris
2017-01-01
We undertook psychophysical experiments to determine whether the color of the after-image produced by viewing a colored patch which is part of a complex multi-colored scene depends on the wavelength-energy composition of the light reflected from that patch. Our results show that it does not. The after-image, just like the color itself, depends on the ratio of light of different wavebands reflected from it and its surrounds. Hence, traditional accounts of after-images as being the result of retinal adaptation or the perceptual result of physiological opponency, are inadequate. We propose instead that the color of after-images is generated after colors themselves are generated in the visual brain. PMID:28539878
Global Enhancement but Local Suppression in Feature-based Attention.
Forschack, Norman; Andersen, Søren K; Müller, Matthias M
2017-04-01
A key property of feature-based attention is global facilitation of the attended feature throughout the visual field. Previously, we presented superimposed red and blue randomly moving dot kinematograms (RDKs) flickering at a different frequency each to elicit frequency-specific steady-state visual evoked potentials (SSVEPs) that allowed us to analyze neural dynamics in early visual cortex when participants shifted attention to one of the two colors. Results showed amplification of the attended and suppression of the unattended color as measured by SSVEP amplitudes. Here, we tested whether the suppression of the unattended color also operates globally. To this end, we presented superimposed flickering red and blue RDKs in the center of a screen and a red and blue RDK in the left and right periphery, respectively, also flickering at different frequencies. Participants shifted attention to one color of the superimposed RDKs in the center to discriminate coherent motion events in the attended from the unattended color RDK, whereas the peripheral RDKs were task irrelevant. SSVEP amplitudes elicited by the centrally presented RDKs confirmed the previous findings of amplification and suppression. For peripherally located RDKs, we found the expected SSVEP amplitude increase, relative to precue baseline when color matched the one of the centrally attended RDK. We found no reduction in SSVEP amplitude relative to precue baseline, when the peripheral color matched the unattended one of the central RDK, indicating that, while facilitation in feature-based attention operates globally, suppression seems to be linked to the location of focused attention.
Colored Overlays Enhance Visual Perceptual Performance in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Ludlow, A. K.; Wilkins, A. J.; Heaton, P.
2008-01-01
Children with autism spectrum disorders (ASD), together with controls matched for age and ability participated in three experiments that assessed the therapeutic benefit of colored overlays. The findings from the first experiment showed that a significantly greater proportion of children with ASD, than controls, increased reading speed when using…
Control system of hexacopter using color histogram footprint and convolutional neural network
NASA Astrophysics Data System (ADS)
Ruliputra, R. N.; Darma, S.
2017-07-01
The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.
A distributed code for color in natural scenes derived from center-surround filtered cone signals
Kellner, Christian J.; Wachtler, Thomas
2013-01-01
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289
We see more than we can report: "cost free" color phenomenality outside focal attention.
Bronfman, Zohar Z; Brezis, Noam; Jacobson, Hilla; Usher, Marius
2014-07-01
The distinction between access consciousness and phenomenal consciousness is a subject of intensive debate. According to one view, visual experience overflows the capacity of the attentional and working memory system: We see more than we can report. According to the opposed view, this perceived richness is an illusion-we are aware only of information that we can subsequently report. This debate remains unresolved because of the inevitable reliance on report, which is limited in capacity. To bypass this limitation, this study utilized color diversity-a unique summary statistic-which is sensitive to detailed visual information. Participants were shown a Sperling-like array of colored letters, one row of which was precued. After reporting a letter from the cued row, participants estimated the color diversity of the noncued rows. Results showed that people could estimate the color diversity of the noncued array without a cost to letter report, which suggests that color diversity is registered automatically, outside focal attention, and without consuming additional working memory resources. © The Author(s) 2014.
Direct versus indirect processing changes the influence of color in natural scene categorization.
Otsuka, Sachio; Kawaguchi, Jun
2009-10-01
We examined whether participants would use a negative priming (NP) paradigm to categorize color and grayscale images of natural scenes that were presented peripherally and were ignored. We focused on (1) attentional resources allocated to natural scenes and (2) direct versus indirect processing of them. We set up low and high attention-load conditions, based on the set size of the searched stimuli in the prime display (one and five). Participants were required to detect and categorize the target objects in natural scenes in a central visual search task, ignoring peripheral natural images in both the prime and probe displays. The results showed that, irrespective of attention load, NP was observed for color scenes but not for grayscale scenes. We did not observe any effect of color information in central visual search, where participants responded directly to natural scenes. These results indicate that, in a situation in which participants indirectly process natural scenes, color information is critical to object categorization, but when the scenes are processed directly, color information does not contribute to categorization.
NASA Technical Reports Server (NTRS)
2007-01-01
Thick haze collected over the Beijing region in late March 2007. Earlier that month, the BBC News reported that an international team of scientists had documented how increasing pollution in China led to decreasing rainfall over the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard the Aqua satellite captured these images of the Beijing region on March 22, 2007. The top image is a 'true-color' picture, similar to a digital photo. The bottom, 'false-color,' image uses a combination of visible and infrared light to more clearly show vegetation, water, and clouds. Even sparse vegetation appears bright green, while water appears deep blue (bright blue when tinged with sediment). Clouds dominated by water droplets appear white, while clouds made of ice crystals appear light blue. The false-color image highlights water bodies, perhaps aqua-culture ponds, that are all but invisible in the true-color image, especially along the shores of the Bo Hai. While vegetation and water show up more clearly in the false-color image, haze is much more transparent. Although dingy gray haze dominates the true-color picture, it is all but invisible in the false-color view. The haze 'disappears' in the infrared-enhanced image because tiny haze particles do not reflect longer-wavelength infrared light very well, making this type of image useful for distinguishing haze from clouds. The bank of clouds in the upper right corner shows up clearly in both pictures. As China industrializes, factories, power plants, and automobiles all contribute to pollution in the region. In examining pollutants and rainfall, the team of scientists examined records covering more than 50 years, concluding that pollution decreased precipitation at Mount Hua near Xi'an in central China. They concluded that when conditions are so hazy that visibility is reduced to less than 8 kilometers (5 miles), hilly precipitation can drop by 30 to 50 percent. When moist air passes over mountains, it usually cools and forms raindrops, but heavy pollutant concentrations cause the clouds to hang on to their moisture.
Working Memory Enhances Visual Perception: Evidence from Signal Detection Analysis
ERIC Educational Resources Information Center
Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W.
2010-01-01
We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be…
Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach
Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik
2015-01-01
Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019
Environmental influences on neural systems of relational complexity
Kalbfleisch, M. Layne; deBettencourt, Megan T.; Kopperman, Rebecca; Banasiak, Meredith; Roberts, Joshua M.; Halavi, Maryam
2013-01-01
Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving. PMID:24133465
Zovko, Monika; Kiefer, Markus
2013-02-01
According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.
Wang, Kui
2011-01-10
This study reported the role of orthography in semantic activation processes of Chinese single-character words. Eighteen native Chinese speaking adults were recruited to take part in a Stroop experiment consisting of one-character color words and pseudowords which were orthographically similar to these color words. Classic behavioral Stroop effects, namely longer reaction times for incongruent conditions than for congruent conditions, were demonstrated for color words and pseudowords. A clear N450 was also observed in the two incongruent conditions. The participants were also asked to perform a visual judgment task immediately following the Stroop experiment. Results from the visual judgment task showed that participants could distinguish color words and pseudowords well (with a mean accuracy rate over 90 percent). Taken together, these findings support the direct orthography-semantic route in Chinese one-character words. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Flooding of the Ob and Irtysh Rivers, Russia
NASA Technical Reports Server (NTRS)
2002-01-01
This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Black Hole Spills Kaleidoscope of Color
2006-07-21
This new false-colored image from NASA Hubble, Chandra and Spitzer space telescopes shows a giant jet of particles that has been shot out from the vicinity of a type of supermassive black hole called a quasar.
Theoretical aspects of color vision
NASA Technical Reports Server (NTRS)
Wolbarsht, M. L.
1972-01-01
The three color receptors of Young-Helmholtz and the opponent colors type of information processing postulated by Hering are both present in the human visual system. This mixture accounts for both the phenomena of color matching or hue discrimination and such perceptual qualities of color as the division of the spectrum into color bands. The functioning of the cells in the visual system, especially within the retina, and the relation of this function to color perception are discussed.
Ochiai, Nobuhisa; Kondo, Hiroyuki
2017-01-01
The effects of color perception are utilized in visual displays for the purpose of safety in the workplace and in daily life. These effects, generally known as color functionality, are divided into four classifications: visibility, legibility, conspicuity and discriminability. This article focuses on the relationship between the color functionality of color schemes used in visual displays for occupational and environmental safety and color vision deficiency (particularly congenital red-green color deficiency), a critical issue in ophthalmology, and examines the effects of color functionality on the perception of the color red in individuals with protan defects. Due to abrupt system reforms, current Japanese clinical ophthalmology finds itself in a situation where it is insufficiently prepared to handle congenital red-green color deficiencies. Indeed, occupational problems caused by color vision deficiencies have been almost completely neglected, and are an occupational safety and health concern that will need to be solved in the future. This report will present the guidelines for the color vision testing established by the British Health and Safety Executive (HSE), a pioneering example of a model meant to solve these problems. Issues relating to the creation of guidelines adapted to Japanese clinical ophthalmology will also be examined, and we will discuss ways to utilize color functionality used in visual displays for occupational and environmental safety to help manage color vision deficiency.
A novel weighted-direction color interpolation
NASA Astrophysics Data System (ADS)
Tao, Jin-you; Yang, Jianfeng; Xue, Bin; Liang, Xiaofen; Qi, Yong-hong; Wang, Feng
2013-08-01
A digital camera capture images by covering the sensor surface with a color filter array (CFA), only get a color sample at pixel location. Demosaicking is a process by estimating the missing color components of each pixel to get a full resolution image. In this paper, a new algorithm based on edge adaptive and different weighting factors is proposed. Our method can effectively suppress undesirable artifacts. Experimental results based on Kodak images show that the proposed algorithm obtain higher quality images compared to other methods in numerical and visual aspects.
Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.
2014-01-01
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318
Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D
2015-02-01
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Nonlinear dynamics of cortical responses to color in the human cVEP.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2017-09-01
The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.
Stimulus and optode placement effects on functional near-infrared spectroscopy of visual cortex
Kashou, Nasser H.; Giacherio, Brenna M.
2016-01-01
Abstract. Functional near-infrared spectroscopy has yet to be implemented as a stand-alone technique within an ophthalmology clinical setting, despite its promising advantages. The present study aims to further investigate reliability of visual cortical signals. This was achieved by: (1) assessing the effects of optode placements using the 10–20 International System of Electrode Placement consisting of 28 channels, (2) determining effects of stimulus size on response, and (3) evaluating response variability as a result of cap placement across three sessions. Ten participants with mean age 23.8±4.8 years (five male) and varying types of hair color and thickness were recruited. Visual stimuli of black-and-white checkerboards, reversing at a frequency of 7.5 Hz were presented. Visual angles of individual checker squares included 1 deg, 2 deg, 5 deg, 9 deg, and 18 deg. The number of channels that showed response was analyzed for each participant, stimulus size, and session. 1-deg stimulus showed the greatest activation. One of three data collection sessions for each participant gave different results (p<0.05). Hair color and thickness each had an effect upon the overall HbO (p<0.05), while only color had a significant effect for HbD (p<0.05). A reliable level of robustness and consistency is still required for clinical implementation and assessment of visual dysfunction. PMID:27335887
Repetition blindness and illusory conjunctions: errors in binding visual types with visual tokens.
Kanwisher, N
1991-05-01
Repetition blindness (Kanwisher, 1986, 1987) has been defined as the failure to detect or recall repetitions of words presented in rapid serial visual presentation (RSVP). The experiments presented here suggest that repetition blindness (RB) is a more general visual phenomenon, and examine its relationship to feature integration theory (Treisman & Gelade, 1980). Experiment 1 shows RB for letters distributed through space, time, or both. Experiment 2 demonstrates RB for repeated colors in RSVP lists. In Experiments 3 and 4, RB was found for repeated letters and colors in spatial arrays. Experiment 5 provides evidence that the mental representations of discrete objects (called "visual tokens" here) that are necessary to detect visual repetitions (Kanwisher, 1987) are the same as the "object files" (Kahneman & Treisman, 1984) in which visual features are conjoined. In Experiment 6, repetition blindness for the second occurrence of a repeated letter resulted only when the first occurrence was attended to. The overall results suggest that a general dissociation between types and tokens in visual information processing can account for both repetition blindness and illusory conjunctions.
Color coding of control room displays: the psychocartography of visual layering effects.
Van Laar, Darren; Deshe, Ofer
2007-06-01
To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).
Color Processing in the Early Visual System of Drosophila.
Schnaitmann, Christopher; Haikala, Väinö; Abraham, Eva; Oberhauser, Vitus; Thestrup, Thomas; Griesbeck, Oliver; Reiff, Dierk F
2018-01-11
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV short /blue and UV long /green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently. Copyright © 2017 Elsevier Inc. All rights reserved.
2010-02-16
This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.
"Commentary": Object and Spatial Visualization in Geosciences
ERIC Educational Resources Information Center
Kastens, Kim
2010-01-01
Cognitive science research shows that the brain has two systems for processing visual information, one specialized for spatial information such as position, orientation, and trajectory, and the other specialized for information used to identify objects, such as color, shape and texture. Some individuals seem to be more facile with the spatial…
Milet-Pinheiro, Paulo; Ayasse, Manfred; Dötterl, Stefan
2015-01-01
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed. PMID:26060994
Visual half-field presentations of incongruent color words: effects of gender and handedness.
Franzon, M; Hugdahl, K
1986-09-01
Right-handed (dextral) and left-handed (sinistral) males and females (N = 15) were compared for language lateralization in a visual half-field (VHF) incongruent color-words paradigm. The paradigm consists of repeated brief (less than 200 msec) presentations of color-words written in an incongruent color. Presentations are either to the right or to the left of center fixation. The task of the subject is to report the color the word is written in on each trial, ignoring the color-word. Color-bars and congruent color-words were used as control stimuli. Vocal reaction time (VRT) and error frequency were used as dependent measures. The logic behind the paradigm is that incongruent color-words should lead to a greater cognitive conflict when presented in the half-field contralateral to the dominant hemisphere. The results showed significantly longer VRTs in the right half-field for the dextral subjects. Furthermore, significantly more errors were observed in the male dextral group when the incongruent stimuli were presented in the right half-field. There was a similar trend in the data for the sinistral males. No differences between half-fields were observed for the female groups. It is concluded that the present results strengthen previous findings from our laboratory (Hugdahl and Franzon, 1985) that the incongruent color-words paradigm is a useful non-invasive technique for the study of lateralization in the intact brain.
Object knowledge changes visual appearance: semantic effects on color afterimages.
Lupyan, Gary
2015-10-01
According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models. Copyright © 2015 Elsevier B.V. All rights reserved.
Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Meadows, Steven
1997-10-01
Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it. Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Shape and color naming are inherently asymmetrical: Evidence from practice-based interference.
Protopapas, Athanassios; Markatou, Artemis; Samaras, Evangelos; Piokos, Andreas
2017-01-01
Stroop interference is characterized by strong asymmetry between word and color naming such that the former is faster and interferes with the latter but not vice versa. This asymmetry is attributed to differential experience with naming in the two dimensions, i.e., words and colors. Here we show that training on visual-verbal paired associate tasks equivalent to color and shape naming, not involving word reading, leads to strongly asymmetric interference patterns. In two experiments adults practiced naming colors and shapes, one dimension more extensively (10days) than the other (2days), depending on group assignment. One experiment used novel shapes (ideograms) and the other familiar geometric shapes, associated with nonsense syllables. In a third experiment participants practiced naming either colors or shapes using cross-category shape and color names, respectively, for 12days. Across experiments, despite equal training of the two groups in naming the two different dimensions, color naming was strongly affected by shape even after extensive practice, whereas shape naming was resistant to interference. To reconcile these findings with theoretical accounts of interference, reading may be conceptualized as involving visual-verbal associations akin to shape naming. An inherent or early-developing advantage for naming shapes may provide an evolutionary substrate for the invention and development of reading. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Price, V.; Weber, T.; Jerram, K.; Doucet, M.
2016-12-01
The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released August 9, 2004 This image shows two representations of the same infra-red image in the Elysium region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. The light blue area in the center of this image is a very nice example of a water ice cloud. Water ice is frequently present in the Martian atmosphere as a thin haze. Clouds such as this one can be difficult to identify in a temperature image, but are easy to spot in the DCS images. In this case, the water ice is relatively confined and concentrated which may be due to the topography of the Elysium volcanic construct. Image information: IR instrument. Latitude 23.2, Longitude 150.1 East (209.9 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Temperature measurement with industrial color camera devices
NASA Astrophysics Data System (ADS)
Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen
1999-05-01
This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.
Video enhancement method with color-protection post-processing
NASA Astrophysics Data System (ADS)
Kim, Youn Jin; Kwak, Youngshin
2015-01-01
The current study is aimed to propose a post-processing method for video enhancement by adopting a color-protection technique. The color-protection intends to attenuate perceptible artifacts due to over-enhancements in visually sensitive image regions such as low-chroma colors, including skin and gray objects. In addition, reducing the loss in color texture caused by the out-of-color-gamut signals is also taken into account. Consequently, color reproducibility of video sequences could be remarkably enhanced while the undesirable visual exaggerations are minimized.
van Boxtel, M P; ten Tusscher, M P; Metsemakers, J F; Willems, B; Jolles, J
2001-10-01
It is unknown to what extent the performance on the Stroop color-word test is affected by reduced visual function in older individuals. We tested the impact of common deficiencies in visual function (reduced distant and close acuity, reduced contrast sensitivity, and color weakness) on Stroop performance among 821 normal individuals aged 53 and older. After adjustment for age, sex, and educational level, low contrast sensitivity was associated with more time needed on card I (word naming), red/green color weakness with slower card 2 performance (color naming), and reduced distant acuity with slower performance on card 3 (interference). Half of the age-related variance in speed performance was shared with visual function. The actual impact of reduced visual function may be underestimated in this study when some of this age-related variance in Stroop performance is mediated by visual function decrements. It is suggested that reduced visual function has differential effects on Stroop performance which need to be accounted for when the Stroop test is used both in research and in clinical settings. Stroop performance measured from older individuals with unknown visual status should be interpreted with caution.
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
Uncertainty of sensory signal explains variation of color constancy.
Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin
2016-12-01
Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released August 11, 2004 This image shows two representations of the same infra-red image over Melas Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. There is a distinct purple/blue layer present in the northern wall of the Chasma. Although this layer likely has a composition different than the surrounding areas, it is difficult to interpret its specific composition due to the high variability of sunlit and shaded surfaces in this area, which cause a wide range of temperatures to be present within each pixel of the image. It is possible that this layer has a unique composition due to differences in the volcanic or sedimentary environment at the time that the rock formed, or it could be a layer of magma injected between two previously existing rock layers. Another possibility is that the wall is mostly covered by dust and debris, and this portion contains the only exposed bedrock. The light blue colors present in many other areas of the Chasma are due to water ice clouds. Image information: IR instrument. Latitude -8.9, Longitude 282 East (78 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Effective color design for displays
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay W.
2002-06-01
Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.
Grubert, Anna; Eimer, Martin
2013-10-01
To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Clinical color vision testing and correlation with visual function.
Zhao, Jiawei; Davé, Sarita B; Wang, Jiangxia; Subramanian, Prem S
2015-09-01
To determine if Hardy-Rand-Rittler (H-R-R) and Ishihara testing are accurate estimates of color vision in subjects with acquired visual dysfunction. Assessment of diagnostic tools. Twenty-two subjects with optic neuropathy (aged 18-65) and 18 control subjects were recruited prospectively from an outpatient clinic. Individuals with visual acuity (VA) <20/200 or with congenital color blindness were excluded. All subjects underwent a comprehensive eye examination including VA, color vision, and contrast sensitivity testing. Color vision was assessed using H-R-R and Ishihara plates and Farnsworth D-15 (D-15) discs. D-15 is the accepted standard for detecting and classifying color vision deficits. Contrast sensitivity was measured using Pelli-Robson contrast sensitivity charts. No relationship was found between H-R-R and D-15 scores (P = .477). H-R-R score and contrast sensitivity were positively correlated (P = .003). On multivariate analysis, contrast sensitivity (β = 8.61, P < .001) and VA (β = 2.01, P = .022) both showed association with H-R-R scores. Similar to H-R-R, Ishihara score did not correlate with D-15 score (P = .973), but on multivariate analysis was related to contrast sensitivity (β = 8.69, P < .001). H-R-R and Ishihara scores had an equivalent relationship with contrast sensitivity (P = .069). Neither H-R-R nor Ishihara testing appears to assess color identification in patients with optic neuropathy. Both H-R-R and Ishihara testing are correlated with contrast sensitivity, and these tests may be useful clinical surrogates for contrast sensitivity testing. Copyright © 2015 Elsevier Inc. All rights reserved.
The Interaction of Color Realism and Pictorial Recall Memory.
ERIC Educational Resources Information Center
Berry, Louis H.
This study investigated the interaction of variations in color realism on pictorial recall memory in order to better understand the effects of variations in color realism, and to draw comparisons between visual recall memory and visual recognition memory in terms of color information processing. Stimulus materials used were three sets of slides,…
Cogito ergo video: Task-relevant information is involuntarily boosted into awareness.
Gayet, Surya; Brascamp, Jan W; Van der Stigchel, Stefan; Paffen, Chris L E
2015-01-01
Only part of the visual information that impinges on our retinae reaches visual awareness. In a series of three experiments, we investigated how the task relevance of incoming visual information affects its access to visual awareness. On each trial, participants were instructed to memorize one of two presented hues, drawn from different color categories (e.g., red and green), for later recall. During the retention interval, participants were presented with a differently colored grating in each eye such as to elicit binocular rivalry. A grating matched either the task-relevant (memorized) color category or the task-irrelevant (nonmemorized) color category. We found that the rivalrous stimulus that matched the task-relevant color category tended to dominate awareness over the rivalrous stimulus that matched the task-irrelevant color category. This effect of task relevance persisted when participants reported the orientation of the rivalrous stimuli, even though in this case color information was completely irrelevant for the task of reporting perceptual dominance during rivalry. When participants memorized the shape of a colored stimulus, however, its color category did not affect predominance of rivalrous stimuli during retention. Taken together, these results indicate that the selection of task-relevant information is under volitional control but that visual input that matches this information is boosted into awareness irrespective of whether this is useful for the observer.
Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek
2016-01-01
This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.
Blue-green color categorization in Mandarin-English speakers.
Wuerger, Sophie; Xiao, Kaida; Mylonas, Dimitris; Huang, Qingmei; Karatzas, Dimosthenis; Hird, Emily; Paramei, Galina
2012-02-01
Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF. © 2012 Optical Society of America
Realistic tissue visualization using photoacoustic image
NASA Astrophysics Data System (ADS)
Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong
2018-02-01
Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.
Shape encoding consistency across colors in primate V4
Bushnell, Brittany N.
2012-01-01
Neurons in primate cortical area V4 are sensitive to the form and color of visual stimuli. To determine whether form selectivity remains consistent across colors, we studied the responses of single V4 neurons in awake monkeys to a set of two-dimensional shapes presented in two different colors. For each neuron, we chose two colors that were visually distinct and that evoked reliable and different responses. Across neurons, the correlation coefficient between responses in the two colors ranged from −0.03 to 0.93 (median 0.54). Neurons with highly consistent shape responses, i.e., high correlation coefficients, showed greater dispersion in their responses to the different shapes, i.e., greater shape selectivity, and also tended to have less eccentric receptive field locations; among shape-selective neurons, shape consistency ranged from 0.16 to 0.93 (median 0.63). Consistency of shape responses was independent of the physical difference between the stimulus colors used and the strength of neuronal color tuning. Finally, we found that our measurement of shape response consistency was strongly influenced by the number of stimulus repeats: consistency estimates based on fewer than 10 repeats were substantially underestimated. In conclusion, our results suggest that neurons that are likely to contribute to shape perception and discrimination exhibit shape responses that are largely consistent across colors, facilitating the use of simpler algorithms for decoding shape information from V4 neuronal populations. PMID:22673324
Grouping and binding in visual short-term memory.
Quinlan, Philip T; Cohen, Dale J
2012-09-01
Findings of 2 experiments are reported that challenge the current understanding of visual short-term memory (VSTM). In both experiments, a single study display, containing 6 colored shapes, was presented briefly and then probed with a single colored shape. At stake is how VSTM retains a record of different objects that share common features: In the 1st experiment, 2 study items sometimes shared a common feature (either a shape or a color). The data revealed a color sharing effect, in which memory was much better for items that shared a common color than for items that did not. The 2nd experiment showed that the size of the color sharing effect depended on whether a single pair of items shared a common color or whether 2 pairs of items were so defined-memory for all items improved when 2 color groups were presented. In explaining performance, an account is advanced in which items compete for a fixed number of slots, but then memory recall for any given stored item is prone to error. A critical assumption is that items that share a common color are stored together in a slot as a chunk. The evidence provides further support for the idea that principles of perceptual organization may determine the manner in which items are stored in VSTM. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Just Noticeable Distortion Model and Its Application in Color Image Watermarking
NASA Astrophysics Data System (ADS)
Liu, Kuo-Cheng
In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.
Visualizing Parallel Computer System Performance
NASA Technical Reports Server (NTRS)
Malony, Allen D.; Reed, Daniel A.
1988-01-01
Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.
Crocodiles Alter Skin Color in Response to Environmental Color Conditions.
Merchant, Mark; Hale, Amber; Brueggen, Jen; Harbsmeier, Curt; Adams, Colette
2018-04-18
Many species alter skin color to varying degrees and by different mechanisms. Here, we show that some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60-90 minutes. The response is visually-mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops.
Using a colorimeter to develop an intrinsic silicone shade guide for facial prostheses.
Over, L M; Andres, C J; Moore, B K; Goodacre, C J; Muñoz, C A
1998-12-01
To determine if using CIE L*a*b* color measurements of white facial skin could be correlated to those of silicone shade samples that visually matched the skin. Secondly, to see if a correlation in color measurements could be achieved between the silicone shade samples and duplicated silicone samples made using a shade-guide color formula. A color booth was designed according to ASTM specifications, and painted using a Munsell Value 8 gray. A Minolta colorimeter was used to make facial skin measurements on 15 white adults. The skin color was duplicated using custom-shaded silicone samples. A 7-step wedge silicone shade guide was then fabricated, representing the commonly encountered thicknesses when fabricating facial prostheses. The silicone samples were then measured with the Minolta colorimeter. The readings were compared with the previous L*a*b* readings from the corresponding patient's skin measurements, and the relative color difference was then calculated. Silicone samples were fabricated and analyzed for three of the patients to determine if duplication of the visually matched silicone specimen was possible using the silicone color formula, and if the duplicates were visually and colorimetrically equivalent to each other. The color difference Delta E and chromaticity was calculated, and the data were analyzed using a coefficient-of-variation formula expressed by percent. A Pearson Product Moment Correlation Coefficient was performed to determine if a correlation existed between the skin and the silicone samples at the p < or = .05 level. The highest correlation was found in the b* dimension for silicone thicknesses of 1 to 4 mm. For silicone thicknesses of 6 to 10 mm, the highest correlation was found in the L* dimension. All three dimensions had positive correlations (R2 > 0), but only the 1-mm and 4-mm b* readings were very strong. Patient and silicone L*a*b* measurement results showed very little change in the a* axis, while the L* and b* measurements showed more change in their numbers, with changes in depth for all patient silicone samples. Delta E numbers indicated the lowest Delta E at the 1-mm depth and the highest Delta E at the 10-mm depth. All duplicated samples matched their original silicone samples to a degree that visual evaluation could not distinguish any color differences. Using volumetric measurements, a shade guide was developed for all 15 patients. There was good correlation between the patient's colorimeter measurements and the silicone samples, with the b* color dimension the most reproducible, followed by the L* and the a*. Silicone samples at 6, 8, and 10 mm matched the patient the best, and this study showed that silicone samples can be duplicated successfully if a good patient-silicone match is obtained. Rayon flocking fibers and liquid makeup are effective at matching facial prostheses and can be used to develop a simple shade guide for patient application.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site]
The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season. Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Abramjan, Andran; Bauerová, Anna; Somerová, Barbora; Frynta, Daniel
2015-08-01
Blue-tongued skinks of the genus Tiliqua (Scincidae) are characterized by their large blue melanin-pigmented tongues, often displayed during open-mouth threats, when the animal feels endangered. It is not clear whether this unusual coloration is a direct anti-predation adaptation or it may rather serve intraspecific communication, as ultraviolet-blue color is a frequent visual signal in a number of lizard species. We used spectrophotometry and visual modeling to compare blue tongues of Tiliqua gigas with tongues and skin coloration of other lizard species, and to examine their appearance through the eyes of both the conspecifics and avian predators. Our results show that (1) the tongue coloration is probably not substantially influenced by the amount of melanin in the skin, (2) lingual and oral tissues are UV-reflective in general, with blue colored tongues having chromatic qualities similar to UV-blue skin patches of other lizard species, (3) UV-blue tongues are more conspicuous than pink tongues, especially in the visual model of conspecifics. We hypothesize that blue tongues may possibly serve as a semantic (honest) signal analogous to UV-blue skin patches of other lizard species due to greater UV-bias in the vision of diurnal lizards. Regarding the social behavior and high aggressiveness in Tiliqua and their relatives, such signal might serve, e.g., in intraspecific long-distance communication between conspecifics in order to avoid aggression, and its anti-predation effect may only be a secondary function (exaptation).
Parvocellular Pathway Impairment in Autism Spectrum Disorder: Evidence from Visual Evoked Potentials
ERIC Educational Resources Information Center
Fujita, Takako; Yamasaki, Takao; Kamio, Yoko; Hirose, Shinichi; Tobimatsu, Shozo
2011-01-01
In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimpe, T; Marchessoux, C; Rostang, J
Purpose: Use of color images in medical imaging has increased significantly the last few years. As of today there is no agreed standard on how color information needs to be visualized on medical color displays, resulting into large variability of color appearance and it making consistency and quality assurance a challenge. This paper presents a proposal for an extension of DICOM GSDF towards color. Methods: Visualization needs for several color modalities (multimodality imaging, nuclear medicine, digital pathology, quantitative imaging applications…) have been studied. On this basis a proposal was made for desired color behavior of color medical display systems andmore » its behavior and effect on color medical images was analyzed. Results: Several medical color modalities could benefit from perceptually linear color visualization for similar reasons as why GSDF was put in place for greyscale medical images. An extension of the GSDF (Greyscale Standard Display Function) to color is proposed: CSDF (color standard display function). CSDF is based on deltaE2000 and offers a perceptually linear color behavior. CSDF uses GSDF as its neutral grey behavior. A comparison between sRGB/GSDF and CSDF confirms that CSDF significantly improves perceptual color linearity. Furthermore, results also indicate that because of the improved perceptual linearity, CSDF has the potential to increase perceived contrast of clinically relevant color features. Conclusion: There is a need for an extension of GSDF towards color visualization in order to guarantee consistency and quality. A first proposal (CSDF) for such extension has been made. Behavior of a CSDF calibrated display has been characterized and compared with sRGB/GSDF behavior. First results indicate that CSDF could have a positive influence on perceived contrast of clinically relevant color features and could offer benefits for quantitative imaging applications. Authors are employees of Barco Healthcare.« less
Color-selective attention need not be mediated by spatial attention.
Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A
2009-06-08
It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.
Immune challenges and visual signalling in tree frogs
NASA Astrophysics Data System (ADS)
Desprat, Julia L.; Lengagne, Thierry; Mondy, Nathalie
2017-04-01
In animals, mate-choice is often based on sexual signals that carry information and help the receiver make the best choice to improve the receiver's fitness. Orange visual sexual signals have been hypothesised to carry immune information because they are often due to carotenoid pigments which are also involved in immunity response. Although many studies have focused on the direct relationships between coloration and immunocompetence, few studies have simultaneously studied immunocompetent response and coloration variation after an immune challenge. We tested this hypothesis on starved and ad libitum-fed males of the European tree frog Hyla arborea. Our results show that male coloration is not a reliable indicator of its immune response capacity in this species. However, after an immune challenge induced by a PHA ( Phaseolus vulgaris phytohaemagglutinin) injection, starved males presented a significant coloration loss and this alteration was related to the immune response intensity. Taken together, these results suggest that the brighter (lighter) coloration may be used as a cue by female to exclude males with a recent immune challenge, due to diseases or parasites for example.
Developmental changes in visual short-term memory in infancy: evidence from eye-tracking.
Oakes, Lisa M; Baumgartner, Heidi A; Barrett, Frederick S; Messenger, Ian M; Luck, Steven J
2013-01-01
We assessed visual short-term memory (VSTM) for color in 6- and 8-month-old infants (n = 76) using a one-shot change detection task. In this task, a sample array of two colored squares was visible for 517 ms, followed by a 317-ms retention period and then a 3000-ms test array consisting of one unchanged item and one item in a new color. We tracked gaze at 60 Hz while infants looked at the changed and unchanged items during test. When the two sample items were different colors (Experiment 1), 8-month-old infants exhibited a preference for the changed item, indicating memory for the colors, but 6-month-olds exhibited no evidence of memory. When the two sample items were the same color and did not need to be encoded as separate objects (Experiment 2), 6-month-old infants demonstrated memory. These results show that infants can encode information in VSTM in a single, brief exposure that simulates the timing of a single fixation period in natural scene viewing, and they reveal rapid developmental changes between 6 and 8 months in the ability to store individuated items in VSTM.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface. Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder.
Kim, Soyeon; Chen, Samantha; Tannock, Rosemary
2014-01-01
Color vision and self-reported visual function in everyday life in young adults with Attention-Deficit/Hyperactivity Disorder (ADHD) were investigated. Participants were 30 young adults with ADHD and 30 controls matched for age and gender. They were tested individually and completed the Visual Activities Questionnaire (VAQ), Farnsworth-Munsell 100 Hue Test (FMT) and A Quick Test of Cognitive Speed (AQT). The ADHD group reported significantly more problems in 4 of 8 areas on the VAQ: depth perception, peripheral vision, visual search and visual processing speed. Further analyses of VAQ items revealed that the ADHD group endorsed more visual problems associated with driving than controls. Color perception difficulties on the FMT were restricted to the blue spectrum in the ADHD group. FMT and AQT results revealed slower processing of visual stimuli in the ADHD group. A comprehensive investigation of mechanisms underlying visual function and color vision in adults with ADHD is warranted, along with the potential impact of these visual problems on driving performance. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site]
The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. This false color image was collected during Southern Fall and shows part of the Aureum Chaos. Image information: VIS instrument. Latitude -3.6, Longitude 332.9 East (27.1 West). 35 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Selection-for-action in visual search.
Hannus, Aave; Cornelissen, Frans W; Lindemann, Oliver; Bekkering, Harold
2005-01-01
Grasping an object rather than pointing to it enhances processing of its orientation but not its color. Apparently, visual discrimination is selectively enhanced for a behaviorally relevant feature. In two experiments we investigated the limitations and targets of this bias. Specifically, in Experiment 1 we were interested to find out whether the effect is capacity demanding, therefore we manipulated the set-size of the display. The results indicated a clear cognitive processing capacity requirement, i.e. the magnitude of the effect decreased for a larger set size. Consequently, in Experiment 2, we investigated if the enhancement effect occurs only at the level of behaviorally relevant feature or at a level common to different features. Therefore we manipulated the discriminability of the behaviorally neutral feature (color). Again, results showed that this manipulation influenced the action enhancement of the behaviorally relevant feature. Particularly, the effect of the color manipulation on the action enhancement suggests that the action effect is more likely to bias the competition between different visual features rather than to enhance the processing of the relevant feature. We offer a theoretical account that integrates the action-intention effect within the biased competition model of visual selective attention.
The Effect of Scene Variation on the Redundant Use of Color in Definite Reference
ERIC Educational Resources Information Center
Koolen, Ruud; Goudbeek, Martijn; Krahmer, Emiel
2013-01-01
This study investigates to what extent the amount of variation in a visual scene causes speakers to mention the attribute color in their definite target descriptions, focusing on scenes in which this attribute is not needed for identification of the target. The results of our three experiments show that speakers are more likely to redundantly…
Egg-laying substrate selection for optimal camouflage by quail.
Lovell, P George; Ruxton, Graeme D; Langridge, Keri V; Spencer, Karen A
2013-02-04
Camouflage is conferred by background matching and disruption, which are both affected by microhabitat. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs. For most animals, phenotypic variation is continuous; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high and egg appearance shows strong between-female variation. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail "know" their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R
2008-11-24
Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.
Uranus in True and False Color
1996-08-01
These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers (5.7 million miles) from the planet, several days from closest approach. The picture at left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The picture is a composite of images taken through blue, green and orange filters. The darker shadings at the upper right of the disk correspond to the day-night boundary on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the absorption of red light by methane gas in Uranus' deep, cold and remarkably clear atmosphere. The picture at right uses false color and extreme contrast enhancement to bring out subtle details in the polar region of Uranus. Images obtained through ultraviolet, violet and orange filters were respectively converted to the same blue, green and red colors used to produce the picture at left. The very slight contrasts visible in true color are greatly exaggerated here. In this false-color picture, Uranus reveals a dark polar hood surrounded by a series of progressively lighter concentric bands. One possible explanation is that a brownish haze or smog, concentrated over the pole, is arranged into bands by zonal motions of the upper atmosphere. The bright orange and yellow strip at the lower edge of the planet's limb is an artifact of the image enhancement. In fact, the limb is dark and uniform in color around the planet. http://photojournal.jpl.nasa.gov/catalog/PIA00032
Color visual simulation applications at the Defense Mapping Agency
NASA Astrophysics Data System (ADS)
Simley, J. D.
1984-09-01
The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.
Shwirl: Meaningful coloring of spectral cube data with volume rendering
NASA Astrophysics Data System (ADS)
Vohl, Dany
2017-04-01
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
The IAT shows no evidence for Kandinsky's color-shape associations.
Makin, Alexis D J; Wuerger, Sophie M
2013-01-01
In the early twentieth century, the Bauhaus revolutionized art and design by using simple colors and forms. Wassily Kandinsky was especially interested in the relationship of these two visual attributes and postulated a fundamental correspondence between color and form: yellow triangle, red square and blue circle. Subsequent empirical studies used preference judgments to test Kandinsky's original color-form combinations, usually yielding inconsistent results. We have set out to test the validity of these postulated associations by using the Implicit Association Test. Participants pressed one of two buttons on each trial. On some trials they classified shapes (e.g., circle or triangle). On interleaved trials they classified colors (e.g., blue or yellow). Response times should theoretically be faster when the button mapping follows Kandinsky's associations: For example, when the left key is used to report blue or circle and the right is used for yellow and triangle, than when the response mapping is the opposite of this (blue or triangle, yellow or circle). Our findings suggest that there is no implicit association between the original color-form combinations. Of the three combinations we tested, there was only a marginal effect in one case. It can be concluded that the IAT does not support Kandinsky's postulated color-form associations, and that these are probably not a universal property of the visual system.
NASA Astrophysics Data System (ADS)
Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei
2017-09-01
In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.
On Adapting the Tensor Voting Framework to Robust Color Image Denoising
NASA Astrophysics Data System (ADS)
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Julià, Carme
This paper presents an adaptation of the tensor voting framework for color image denoising, while preserving edges. Tensors are used in order to encode the CIELAB color channels, the uniformity and the edginess of image pixels. A specific voting process is proposed in order to propagate color from a pixel to its neighbors by considering the distance between pixels, the perceptual color difference (by using an optimized version of CIEDE2000), a uniformity measurement and the likelihood of the pixels being impulse noise. The original colors are corrected with those encoded by the tensors obtained after the voting process. Peak to noise ratios and visual inspection show that the proposed methodology has a better performance than state-of-the-art techniques.
Fu, Qiufang; Liu, Yong-Jin; Dienes, Zoltan; Wu, Jianhui; Chen, Wenfeng; Fu, Xiaolan
2017-01-01
It remains controversial whether visual awareness is correlated with early activation indicated by VAN (visual awareness negativity), as the recurrent process hypothesis theory proposes, or with later activation indicated by P3 or LP (late positive), as suggested by global workspace theories. To address this issue, a backward masking task was adopted, in which participants were first asked to categorize natural scenes of color photographs and line-drawings and then to rate the clarity of their visual experience on a Perceptual Awareness Scale (PAS). The interstimulus interval between the scene and the mask was manipulated. The behavioral results showed that categorization accuracy increased with PAS ratings for both color photographs and line-drawings, with no difference in accuracy between the two types of images for each rating, indicating that the experience rating reflected visibility. Importantly, the event-related potential (ERP) results revealed that for correct trials, the early posterior N1 and anterior P2 components changed with the PAS ratings for color photographs, but did not vary with the PAS ratings for line-drawings, indicating that the N1 and P2 do not always correlate with subjective visual awareness. Moreover, for both types of images, the anterior N2 and posterior VAN changed with the PAS ratings in a linear way, while the LP changed with the PAS ratings in a non-linear way, suggesting that these components relate to different types of subjective awareness. The results reconcile the apparently contradictory predictions of different theories and help to resolve the current debate on neural correlates of visual awareness.
Fu, Qiufang; Liu, Yong-Jin; Dienes, Zoltan; Wu, Jianhui; Chen, Wenfeng; Fu, Xiaolan
2017-01-01
It remains controversial whether visual awareness is correlated with early activation indicated by VAN (visual awareness negativity), as the recurrent process hypothesis theory proposes, or with later activation indicated by P3 or LP (late positive), as suggested by global workspace theories. To address this issue, a backward masking task was adopted, in which participants were first asked to categorize natural scenes of color photographs and line-drawings and then to rate the clarity of their visual experience on a Perceptual Awareness Scale (PAS). The interstimulus interval between the scene and the mask was manipulated. The behavioral results showed that categorization accuracy increased with PAS ratings for both color photographs and line-drawings, with no difference in accuracy between the two types of images for each rating, indicating that the experience rating reflected visibility. Importantly, the event-related potential (ERP) results revealed that for correct trials, the early posterior N1 and anterior P2 components changed with the PAS ratings for color photographs, but did not vary with the PAS ratings for line-drawings, indicating that the N1 and P2 do not always correlate with subjective visual awareness. Moreover, for both types of images, the anterior N2 and posterior VAN changed with the PAS ratings in a linear way, while the LP changed with the PAS ratings in a non-linear way, suggesting that these components relate to different types of subjective awareness. The results reconcile the apparently contradictory predictions of different theories and help to resolve the current debate on neural correlates of visual awareness. PMID:28261141
Standardization of Color Palettes for Scientific Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulesza, Joel A.; Spencer, Joshua Bradly; Sood, Avneet
The purpose of this white paper is to demonstrate the importance of color palette choice in scientific visualizations and to promote an effort to convene an interdisciplinary team of researchers to study and recommend color palettes based on intended application(s) and audience(s).
Color reproduction and processing algorithm based on real-time mapping for endoscopic images.
Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A
2016-01-01
In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.
If it's not there, where is it? Locating illusory conjunctions.
Hazeltine, R E; Prinzmetal, W; Elliott, W
1997-02-01
There is evidence that complex objects are decomposed by the visual system into features, such as shape and color. Consistent with this theory is the phenomenon of illusory conjunctions, which occur when features are incorrectly combined to form an illusory object. We analyzed the perceived location of illusory conjunctions to study the roles of color and shape in the location of visual objects. In Experiments 1 and 2, participants located illusory conjunctions about halfway between the veridical locations of the component features. Experiment 3 showed that the distribution of perceived locations was not the mixture of two distributions centered at the 2 feature locations. Experiment 4 replicated these results with an identification task rather than a detection task. We concluded that the locations of illusory conjunctions were not arbitrary but were determined by both constituent shape and color.
Amézquita, Adolfo; Ramos, Óscar; González, Mabel Cristina; Rodríguez, Camilo; Medina, Iliana; Simões, Pedro Ivo; Lima, Albertina Pimentel
2017-04-01
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between-species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic-model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Fink, Bernhard; Neuser, Frauke; Deloux, Gwenelle; Röder, Susanne; Matts, Paul J
2013-03-01
Female hair color is thought to influence physical attractiveness, and although there is some evidence for this assertion, research has yet not addressed the question if and how physical damaging affects the perception of female hair color. Here we investigate whether people are sensitive (in terms of visual attention and age, health and attractiveness perception) to subtle differences in hair images of natural and colored hair before and after physical damaging. We tracked the eye-gaze of 50 men and 50 women aged 31-50 years whilst they viewed randomized pairs of images of 20 natural and 20 colored hair tresses, each pair displaying the same tress before and after controlled cuticle damage. The hair images were then rated for perceived health, attractiveness, and age. Undamaged versions of natural and colored hair were perceived as significantly younger, healthier, and more attractive than corresponding damaged versions. Visual attention to images of undamaged colored hair was significantly higher compared with their damaged counterparts, while in natural hair, the opposite pattern was found. We argue that the divergence in visual attention to undamaged colored female hair and damaged natural female hair and associated ratings is due to differences in social perception and discuss the source of apparent visual difference between undamaged and damaged hair. © 2013 Wiley Periodicals, Inc.
Oberauer, Klaus; Awh, Edward; Sutterer, David W.
2016-01-01
We report four experiments examining whether associations in visual working memory are subject to proactive interference from long term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of three concrete objects in an array. Each array in the WM test consisted of one old (previously learned) object with a new color (old-mismatch), one old object with its old color (old-match), and one new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from long term memory. In the old mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. PMID:27685018
Hoffmann, Brittany; Carlson, Christie; Rao, Deepa A
2014-01-01
The purpose of this work was to assess the use of food colors as a visual aid to determine homogeneous mixing in the extemporaneous preparation of capsules. Six different batches of progesterone slow-release 200-mg capsules were prepared by different mixing methods until visually determined as homogeneous based on yellow food coloring distribution in the preparation by the Central Iowa Compounding Pharmacy, Des Moines, Iowa. UV-Vis spectrophotometry was used to extract and evaluate yellow food coloring content in each of these batches and compared to an in-house, small-batch geometric dilution preparation of progesterone slow- release 200-mg capsules. Of the 6 batches tested, only one, which followed the principles of additive dilution and an appropriate mixing time, was both visually and quantitatively homogeneous in the detection of yellow food coloring. The use of food coloring alone is not a valid quality-assurance tool in determining homogeneous mixing. Principles of geometric and/or additive dilution and appropriate mixing times along with the food color can serve as a quality-assurance tool.
The Sound and Feel of Titrations: A Smartphone Aid for Color-Blind and Visually Impaired Students
ERIC Educational Resources Information Center
Bandyopadhyay, Subhajit; Rathod, Balraj B.
2017-01-01
An Android-based application has been developed to provide color-blind and visually impaired students a multisensory perception of color change observed in a titration. The application records and converts the color information into beep sounds and vibration pulses, which are generated by the smartphone. It uses a range threshold of hue and…
2015-10-13
Scientists spotted a rare wave in Jupiter North Equatorial Belt that had been seen there only once before in this false-color close-up from NASA Hubble Telescope. In Jupiter's North Equatorial Belt, scientists spotted a rare wave that had been seen there only once before. It is similar to a wave that sometimes occurs in Earth's atmosphere when cyclones are forming. This false-color close-up of Jupiter shows cyclones (arrows) and the wave (vertical lines). http://photojournal.jpl.nasa.gov/catalog/PIA19659
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. This false color image of a crater rim illustrates just how complete the dust cover can be. The small white/blue regions on the rim are of areas where the dust cover has been removed - due to heating on sun facing slopes or by gravitational effects. Image information: VIS instrument. Latitude 70.1, Longitude 352.8 East (7.2 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Zabala-Travers, Silvina; Choi, Mina; Cheng, Wei-Chung
2015-01-01
Purpose: Even though the use of color in the interpretation of medical images has increased significantly in recent years, the ad hoc manner in which color is handled and the lack of standard approaches have been associated with suboptimal and inconsistent diagnostic decisions with a negative impact on patient treatment and prognosis. The purpose of this study is to determine if the choice of color scale and display device hardware affects the visual assessment of patterns that have the characteristics of functional medical images. Methods: Perfusion magnetic resonance imaging (MRI) was the basis for designing and performing experiments. Synthetic images resembling brain dynamic-contrast enhanced MRI consisting of scaled mixtures of white, lumpy, and clustered backgrounds were used to assess the performance of a rainbow (“jet”), a heated black-body (“hot”), and a gray (“gray”) color scale with display devices of different quality on the detection of small changes in color intensity. The authors used a two-alternative, forced-choice design where readers were presented with 600 pairs of images. Each pair consisted of two images of the same pattern flipped along the vertical axis with a small difference in intensity. Readers were asked to select the image with the highest intensity. Three differences in intensity were tested on four display devices: a medical-grade three-million-pixel display, a consumer-grade monitor, a tablet device, and a phone. Results: The estimates of percent correct show that jet outperformed hot and gray in the high and low range of the color scales for all devices with a maximum difference in performance of 18% (confidence intervals: 6%, 30%). Performance with hot was different for high and low intensity, comparable to jet for the high range, and worse than gray for lower intensity values. Similar performance was seen between devices using jet and hot, while gray performance was better for handheld devices. Time of performance was shorter with jet. Conclusions: Our findings demonstrate that the choice of color scale and display hardware affects the visual comparative analysis of pseudocolor images. Follow-up studies in clinical settings are being considered to confirm the results with patient images. PMID:26127048
Parameswaran, Vidhya; Anilkumar, S.; Lylajam, S.; Rajesh, C.; Narayan, Vivek
2016-01-01
Background and Objectives: This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. Methods: In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results: Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. Conclusion: This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome. PMID:27746599
Conway, Bevil R.; Kanwisher, Nancy G.
2016-01-01
The existence of color-processing regions in the human ventral visual pathway (VVP) has long been known from patient and imaging studies, but their location in the cortex relative to other regions, their selectivity for color compared with other properties (shape and object category), and their relationship to color-processing regions found in nonhuman primates remain unclear. We addressed these questions by scanning 13 subjects with fMRI while they viewed two versions of movie clips (colored, achromatic) of five different object classes (faces, scenes, bodies, objects, scrambled objects). We identified regions in each subject that were selective for color, faces, places, and object shape, and measured responses within these regions to the 10 conditions in independently acquired data. We report two key findings. First, the three previously reported color-biased regions (located within a band running posterior–anterior along the VVP, present in most of our subjects) were sandwiched between face-selective cortex and place-selective cortex, forming parallel bands of face, color, and place selectivity that tracked the fusiform gyrus/collateral sulcus. Second, the posterior color-biased regions showed little or no selectivity for object shape or for particular stimulus categories and showed no interaction of color preference with stimulus category, suggesting that they code color independently of shape or stimulus category; moreover, the shape-biased lateral occipital region showed no significant color bias. These observations mirror results in macaque inferior temporal cortex (Lafer-Sousa and Conway, 2013), and taken together, these results suggest a homology in which the entire tripartite face/color/place system of primates migrated onto the ventral surface in humans over the course of evolution. SIGNIFICANCE STATEMENT Here we report that color-biased cortex is sandwiched between face-selective and place-selective cortex on the bottom surface of the brain in humans. This face/color/place organization mirrors that seen on the lateral surface of the temporal lobe in macaques, suggesting that the entire tripartite system is homologous between species. This result validates the use of macaques as a model for human vision, making possible more powerful investigations into the connectivity, precise neural codes, and development of this part of the brain. In addition, we find substantial segregation of color from shape selectivity in posterior regions, as observed in macaques, indicating a considerable dissociation of the processing of shape and color in both species. PMID:26843649
Color blindness among multiple sclerosis patients in Isfahan.
Shaygannejad, Vahid; Golabchi, Khodayar; Dehghani, Alireza; Ashtari, Fereshteh; Haghighi, Sepehr; Mirzendehdel, Mahsa; Ghasemi, Majid
2012-03-01
Multiple sclerosis (MS) is a disease of young and middle aged individuals with a demyelinative axonal damage nature in central nervous system that causes various signs and symptoms. As color vision needs normal function of optic nerve and macula, it is proposed that MS can alter it via influencing optic nerve. In this survey, we evaluated color vision abnormalities and its relationship with history of optic neuritis and abnormal visual evoked potentials (VEPs) among MS patients. The case group was included of clinically definitive MS patients and the same number of normal population was enrolled as the control group. Color vision of all the participants was evaluated by Ishihara test and then visual evoked potential (VEPs) and history of optic neuritis (ON) was assessed among them. Then, frequency of color blindness was compared between the case and the control group. Finally, color blinded patients were compared to those with the history of ON and abnormal VEPs. 63 MS patients and the same number of normal populations were enrolled in this study. 12 patients had color blindness based on the Ishihara test; only 3 of them were among the control group, which showed a significant different between the two groups (P = 0.013). There was a significant relationship between the color blindness and abnormal VEP (R = 0.53, P = 0.023) but not for the color blindness and ON (P = 0.67). This study demonstrates a significant correlation between color blindness and multiple sclerosis including ones with abnormal prolonged VEP latencies. Therefore, in individuals with acquired color vision impairment, an evaluation for potentially serious underlying diseases like MS is essential.
Color discrimination errors associate with axial motor impairments in Parkinson's disease.
Bohnen, Nicolaas I; Haugen, Jacob; Ridder, Andrew; Kotagal, Vikas; Albin, Roger L; Frey, Kirk A; Müller, Martijn L T M
2017-01-01
Visual function deficits are more common in imbalance-predominant compared to tremor-predominant PD suggesting a pathophysiological role of impaired visual functions in axial motor impairments. To investigate the relationship between changes in color discrimination and motor impairments in PD while accounting for cognitive or other confounder factors. PD subjects (n=49, age 66.7±8.3 years; Hoehn & Yahr stage 2.6±0.6) completed color discrimination assessment using the Farnsworth-Munsell 100 Hue Color Vision Test, neuropsychological, motor assessments and [ 11 C]dihydrotetrabenazine vesicular monoamine transporter type 2 PET imaging. MDS-UPDRS sub-scores for cardinal motor features were computed. Timed up and go mobility and walking tests were assessed in 48 subjects. Bivariate correlation coefficients between color discrimination and motor variables were significant only for the Timed up and go (R S =0.44, P=0.0018) and the MDS-UPDRS axial motor scores (R S =0.38, P=0.0068). Multiple regression confounder analysis using the Timed up and go as outcome parameter showed a significant total model (F (5,43) = 7.3, P<0.0001) with significant regressor effects for color discrimination (standardized β=0.32, t=2.6, P=0.012), global cognitive Z-score (β=-0.33, t=-2.5, P=0.018), duration of disease (β=0.26, t=1.8, P=0.038), but not for age or striatal dopaminergic binding. The color discrimination test was also a significant independent regressor in the MDS-UPDRS axial motor model (standardized β=0.29, t=2.4, P=0.022; total model t (5,43) = 6.4, P=0.0002). Color discrimination errors associate with axial motor features in PD independent of cognitive deficits, nigrostriatal dopaminergic denervation, and other confounder variables. These findings may reflect shared pathophysiology between color discrimination visual impairments and axial motor burden in PD.
How to identify up to 30 colors without training: color concept retrieval by free color naming
NASA Astrophysics Data System (ADS)
Derefeldt, Gunilla A. M.; Swartling, Tiina
1994-05-01
Used as a redundant code, color is shown to be advantageous in visual search tasks. It enhances attention, detection, and recall of information. Neuropsychological and neurophysiological findings have shown color and spatial perception to be interrelated functions. Studies on eye movements show that colored symbols are easier to detect and that eye fixations are more correctly directed to color-coded symbols. Usually between 5 and 15 colors have been found useful in classification tasks, but this umber can be increased to between 20 to 30 by careful selection of colors, and by a subject's practice with the identification task and familiarity with the particular colors. Recent neurophysiological findings concerning the language-concept connection in color suggest that color concept retrieval would be enhanced by free color naming or by the use of natural associations between color concepts and color words. To test this hypothesis, we had subjects give their own free associations to a set of 35 colors presented on a display. They were able to identify as many as 30 colors without training.
Visualization and analysis for multidimensional gene expressions signature of cigarette smoking
NASA Astrophysics Data System (ADS)
Wang, Changbo; Xiao, Zhao; Zhang, Tianlun; Cui, Jin; Pang, Chenming
2011-11-01
Biologists often use gene chip to get massive experimental data in the field of bioscience and chemical sciences. Facing a large amount of experimental data, researchers often need to find out a few interesting data or simple regulations. This paper presents a set of methods to visualize and analyze the data for gene expression signatures of people who smoke. We use the latest research data from National Center for Biotechnology Information. Totally, there are more than 400 thousand expressions data. Using these data, we can use parallel coordinates method to visualize the different gene expressions between smokers and nonsmokers and we can distinguish non-smokers, former smokers and current smokers by using the different colors. It can be easy to find out which gene is more important during the lung cancer angiogenesis in the smoking people. In another way, we can use a hierarchical model to visualize the inner relation of different genes. The location of the nodes shows different expression moment and the distance to the root shows the sequence of the expression. We can use the ring layout to represent all the nodes, and connect the different nodes which are related with color lines. Combined with the parallel coordinates method, the visualization result show the important genes and some inner relation obviously, which is useful for examination and prevention of lung cancer.
STS-42 MS Hilmers and Payload Specialist Merbold use IML-1 visual stimulator
1992-01-30
STS042-203-024 (22-30 Jan. 1992) --- Astronaut David C. Hilmers (right), STS-42 mission specialist, assists European Space Agency (ESA) payload specialist Ulf Merbold with the visual stimulator experiment on the Space Shuttle Discovery's middeck. This particular test is part of an ongoing study of the Space Adaptation Syndrome (SAS). Seated in a stationary mini-sled, Merbold (or any other subject for this test) stares at an umbrella-shaped rotating dome with a pattern of colored dots on its interior. While observing the rotating dome, the subject turns a knob to indicate his perception of body rotation. The strength of circular vection is calculated by comparing the signals from the dome and the knob. The greater the false sense of circular vection, the more the subject is relying on visual information instead of otolith information.
Kamitani, Toshiaki; Kuroiwa, Yoshiyuki
2009-01-01
Recent studies demonstrated an altered P3 component and prolonged reaction time during the visual discrimination tasks in multiple system atrophy (MSA). In MSA, however, little is known about the N2 component which is known to be closely related to the visual discrimination process. We therefore compared the N2 component as well as the N1 and P3 components in 17 MSA patients with these components in 10 normal controls, by using a visual selective attention task to color or to shape. While the P3 in MSA was significantly delayed in selective attention to shape, the N2 in MSA was significantly delayed in selective attention to color. N1 was normally preserved both in attention to color and in attention to shape. Our electrophysiological results indicate that the color discrimination process during selective attention is impaired in MSA.
Klaver, Peter; Talsma, Durk
2013-11-01
We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.
2008-10-01
and Risley , 2006) provided an invaluable insight into the scope and capability of emerging visualization techniques. While the latter provided some...Richmond BC (CAN);MacDonald Dettwiler and Associates Ltd, Dartmouth NS (CAN). Davenport, M. and Risley , C. (2006). Information Visualization: The...Spatial Time Late 7 Color of square Size of ellipse/circle Color of circle 8 Color of wedge Angular width of wedge Hourglass fill 9
Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.
Dent, Kevin
2010-01-01
In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.
Pigeons (Columba livia) show change blindness in a color-change detection task.
Herbranson, Walter T; Jeffers, Jacob S
2017-07-01
Change blindness is a phenomenon whereby changes to a stimulus are more likely go unnoticed under certain circumstances. Pigeons learned a change detection task, in which they observed sequential stimulus displays consisting of individual colors back-projected onto three response keys. The color of one response key changed during each sequence and pecks to the key that displayed the change were reinforced. Pigeons showed a change blindness effect, in that change detection accuracy was worse when there was an inter-stimulus interval interrupting the transition between consecutive stimulus displays. Birds successfully transferred to stimulus displays involving novel colors, indicating that pigeons learned a general change detection rule. Furthermore, analysis of responses to specific color combinations showed that pigeons could detect changes involving both spectral and non-spectral colors and that accuracy was better for changes involving greater differences in wavelength. These results build upon previous investigations of change blindness in both humans and pigeons and suggest that change blindness may be a general consequence of selective visual attention relevant to multiple species and stimulus dimensions.
Onga, Chie; Nakashima, Satoru
2014-01-01
Visible darkfield reflectance spectroscopy equipped with a color mapping system has been developed and applied to a brown-colored Rokko granite sample. Sample reflectance spectra converted to Kubelka-Munk (KM) spectra show similar features to goethite and lepidocrocite. Raman microspectroscopy on the granite sample surface confirms the presence of these minerals. Here, L*a*b* color values (second Commission Internationale d'Eclairage [CIELab] 1976 color space) were determined from the sample reflection spectra. Grey, yellow, and brown zones of the granite show different L*, a*, and b* values. In the a*-b* diagram, a* and b* values in the grey and brown zones are on the lepidocrocite/ferrihydrite trends, but their values in the brown zone are larger than those in the grey zone. The yellow zone shows data points close to the goethite trend. Iron (hydr)oxide-rich areas can be visualized by means of large a* and b* values in the L*, a*, and b* maps. Although the present method has some problems and limitations, the visible darkfield reflectance spectroscopy can be a useful method for colored-material characterization.
Minimizing Skin Color Differences Does Not Eliminate the Own-Race Recognition Advantage in Infants
Anzures, Gizelle; Pascalis, Olivier; Quinn, Paul C.; Slater, Alan M.; Lee, Kang
2011-01-01
An abundance of experience with own-race faces and limited to no experience with other-race faces has been associated with better recognition memory for own-race faces in infants, children, and adults. This study investigated the developmental origins of this other-race effect (ORE) by examining the role of a salient perceptual property of faces—that of skin color. Six- and 9-month-olds’ recognition memory for own- and other-race faces was examined using infant-controlled habituation and visual-paired comparison at test. Infants were shown own- or other-race faces in color or with skin color cues minimized in grayscale images. Results for the color stimuli replicated previous findings that infants show an ORE in face recognition memory. Results for the grayscale stimuli showed that even when a salient perceptual cue to race, such as skin color information, is minimized, 6- to 9-month-olds, nonetheless, show an ORE in their face recognition memory. Infants’ use of shape-based and configural cues for face recognition is discussed. PMID:22039335
Visual Processing during Short-Term Memory Binding in Mild Alzheimer's Disease.
Fernández, Gerardo; Orozco, David; Agamennoni, Osvaldo; Schumacher, Marcela; Sañudo, Silvana; Biondi, Juan; Parra, Mario A
2018-01-01
Patients with Alzheimer's disease (AD) typically present with attentional and oculomotor abnormalities that can have an impact on visual processing and associated cognitive functions. Over the last few years, we have witnessed a shift toward the analyses of eye movement behaviors as a means to further our understanding of the pathophysiology of common disorders such as AD. However, little work has been done to unveil the link between eye moment abnormalities and poor performance on cognitive tasks known to be markers for AD patients, such as the short-term memory-binding task. We analyzed eye movement fixation behaviors of thirteen healthy older adults (Controls) and thirteen patients with probable mild AD while they performed the visual short-term memory binding task. The short-term memory binding task asks participants to detect changes across two consecutive arrays of two bicolored object whose features (i.e., colors) have to be remembered separately (i.e., Unbound Colors), or combined within integrated objects (i.e., Bound Colors). Patients with mild AD showed the well-known pattern of selective memory binding impairments. This was accompanied by significant impairments in their eye movements only when they processed Bound Colors. Patients with mild AD remarkably decreased their mean gaze duration during the encoding of color-color bindings. These findings open new windows of research into the pathophysiological mechanisms of memory deficits in AD patients and the link between its phenotypic expressions (i.e., oculomotor and cognitive disorders). We discuss these findings considering current trends regarding clinical assessment, neural correlates, and potential avenues for robust biomarkers.
Huang, Kuo-Chen; Chiu, Tsai-Lan
2007-04-01
This study investigated the effects of color combinations for the figure/icon background, icon shape, and line width of the icon border on visual search performance on a liquid crystal display screen. In a circular stimulus array, subjects had to search for a target item which had a diameter of 20 cm and included one target and 19 distractors. Analysis showed that the icon shape significantly affected search performance. The correct response time was significantly shorter for circular icons than for triangular icons, for icon borders with a line width of 3 pixels than for 1 or 2 pixels, and for 2 pixels than for 1 pixel. The color combination also significantly affected the visual search performance: white/yellow, white/blue, black-red, and black/ yellow color combinations for the figure/icon background had shorter correct response times compared to yellow/blue, red/green, yellow/green, and blue/red. However, no effects were found for the line width of the icon border or the icon shape on the error rate. Results have implications for graphics-based design of interfaces, such as for mobile phones, Web sites, and PDAs, as well as complex industrial processes.
Ripoll, Guillermo; Alcalde, María J; Argüello, Anastasio; Córdoba, María G; Panea, Begoña
2018-05-01
The use of milk replacers to feed suckling kids could affect the shelf life and appearance of the meat. Leg chops were evaluated by consumers and the instrumental color was measured. A machine learning algorithm was used to relate them. The aim of this experiment was to study the shelf life of the meat of kids reared with dam's milk or milk replacers and to ascertain which illuminant and instrumental color variables are used by consumers as criteria to evaluate that visual appraisal. Meat from kids reared with milk replacers was more valuable and had a longer shelf life than meat from kids reared with natural milk. Consumers used the color of the whole surface of the leg chop to assess the appearance of meat. Lightness and hue angle were the prime cues used to evaluate the appearance of meat. Illuminant D65 was more useful for relating the visual appraisal with the instrumental color using a machine learning algorithm. The machine learning algorithms showed that the underlying rules used by consumers to evaluate the appearance of suckling kid meat are not at all linear and can be computationally schematized into a simple algorithm. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Visual functions of workers exposed to organic solvents in petrochemical industries
Indhushree, R.; Monica, R.; Coral, K.; Angayarkanni, Narayanasamy; Punitham, R.; Subburathinam, B. M.; Krishnakumar, R.; Santanam, P. P.
2016-01-01
Aim: The purpose of this study was to evaluate the visual functions of workers exposed to organic solvents in petrochemical industries. Materials and Methods: Thirty workers from the petroleum refinery and 30 age-matched controls (mean age) were recruited. Visual functions and occupational exposure levels were assessed among both the groups. Visual acuity, contrast sensitivity, color vision, and visual fields were evaluated at the workplace. The biological samples, namely blood and urine, were collected at the workplace and transported to the laboratory for analysis. The urinary excretion of hippuric and methylhippuric acid as well as creatinine was measured by high performance liquid chromatography. Results: The mean age of the workers and controls were 39.7 ± 7.6 years and 38.6 ± 8.1, years respectively. The mean years of experience of the workers were 15.6 ± 6.8 years. Visual acuity was >0.01 LogMAR among both the control and case groups. The contrast sensitivity was reduced at 12cpd among workers. Comparison between groups was done using independent sample t-test. The mean difference in color confusion index was 0.11 ± 0.05 (P = 0.037*). The mean difference in visual fields was −0.31 ± 0.36 dB (P = 0.933). The mean difference in urinary hippuric acid level (urinary metabolite of toluene) between the groups was 0.19 ± 0.96 g/g creatinine (P = 0.049FNx01). The mean difference in the excretion of methylhippuric acid (urinary metabolite of xylene) was 0.06 ± 0.04g/g creatinine (P = 0.154). We also found that exposure was a significant risk factor for color vision defect with an odds ratio of 4.43 (95% CI: 1.36–14.4); P = 0.013. Conclusion: The study results showed that contrast sensitivity and color vision were affected among workers in petrochemical industry. PMID:28446838
Modifying the visual appearance of metal nanoparticle composites by infrared laser annealing
NASA Astrophysics Data System (ADS)
Halabica, Andrej; Indrobo, J. C.; Magruder, R. H., III; Haglund, R. F., Jr.; Epp, J. M.; Rashkeev, S.; Boatner, L. A.; Pennycook, S. J.; Pantelides, S. T.
2007-03-01
It has long been known that noble-metal nanoparticles in insulators can alter their visual appearance. Many metal nanoparticle composites can be created by ion implantation and subsequent annealing to initiate phase separation, nucleation and growth of nanoparticles. The size and size distribution of the nanoparticles - and therefore the color of the composite - are determined by the chemistry and thermodynamics of the annealing process. In this paper we report that we can also alter the color of gold- and silver-implanted silica and alumina by tunable infrared laser irradiation. Essentially a variant of rapid thermal annealing, this laser treatment can shift the plasmon band of the nanoparticles by tens of nm, resulting in significantly altered visual appearance. The amount of energy delivered to the implanted layer, and the subsequent color variation, can be adjusted by changing the wavelength and fluence of the laser. This makes it possible, as we will show, to write or pattern the composite material with 200 μm linewidths. This work is partially supported by DOE (DE-AC05-00OR22725), NSF (DMR-0513048), and by Alcoa Inc.
Renoult, J P; Thomann, M; Schaefer, H M; Cheptou, P-O
2013-11-01
Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
How daylight influences high-order chromatic descriptors in natural images.
Ojeda, Juan; Nieves, Juan Luis; Romero, Javier
2017-07-01
Despite the global and local daylight changes naturally occurring in natural scenes, the human visual system usually adapts quite well to those changes, developing a stable color perception. Nevertheless, the influence of daylight in modeling natural image statistics is not fully understood and has received little attention. The aim of this work was to analyze the influence of daylight changes in different high-order chromatic descriptors (i.e., color volume, color gamut, and number of discernible colors) derived from 350 color images, which were rendered under 108 natural illuminants with Correlated Color Temperatures (CCT) from 2735 to 25,889 K. Results suggest that chromatic and luminance information is almost constant and does not depend on the CCT of the illuminant for values above 14,000 K. Nevertheless, differences between the red-green and blue-yellow image components were found below that CCT, with most of the statistical descriptors analyzed showing local extremes in the range 2950 K-6300 K. Uniform regions and areas of the images attracting observers' attention were also considered in this analysis and were characterized by their patchiness index and their saliency maps. Meanwhile, the results of the patchiness index do not show a clear dependence on CCT, and it is remarkable that a significant reduction in the number of discernible colors (58% on average) was found when the images were masked with their corresponding saliency maps. Our results suggest that chromatic diversity, as defined in terms of the discernible colors, can be strongly reduced when an observer scans a natural scene. These findings support the idea that a reduction in the number of discernible colors will guide visual saliency and attention. Whatever the modeling is mediating the neural representation of natural images, natural image statistics, it is clear that natural image statistics should take into account those local maxima and minima depending on the daylight illumination and the reduction of the number of discernible colors when salient regions are considered.
Measurement of meat color using a computer vision system.
Girolami, Antonio; Napolitano, Fabio; Faraone, Daniela; Braghieri, Ada
2013-01-01
The limits of the colorimeter and a technique of image analysis in evaluating the color of beef, pork, and chicken were investigated. The Minolta CR-400 colorimeter and a computer vision system (CVS) were employed to measure colorimetric characteristics. To evaluate the chromatic fidelity of the image of the sample displayed on the monitor, a similarity test was carried out using a trained panel. The panelists found the digital images of the samples visualized on the monitor very similar to the actual ones (P<0.001). During the first similarity test the panelists observed at the same time both the actual meat sample and the sample image on the monitor in order to evaluate the similarity between them (test A). Moreover, the panelists were asked to evaluate the similarity between two colors, both generated by the software Adobe Photoshop CS3 one using the L, a and b values read by the colorimeter and the other obtained using the CVS (test B); which of the two colors was more similar to the sample visualized on the monitor was also assessed (test C). The panelists found the digital images very similar to the actual samples (P<0.001). As to the similarity (test B) between the CVS- and colorimeter-based colors the panelists found significant differences between them (P<0.001). Test C showed that the color of the sample on the monitor was more similar to the CVS generated color than to the colorimeter generated color. The differences between the values of the L, a, b, hue angle and chroma obtained with the CVS and the colorimeter were statistically significant (P<0.05-0.001). These results showed that the colorimeter did not generate coordinates corresponding to the true color of meat. Instead, the CVS method seemed to give valid measurements that reproduced a color very similar to the real one. Copyright © 2012 Elsevier Ltd. All rights reserved.
Eguchi, Akihiro; Neymotin, Samuel A.; Stringer, Simon M.
2014-01-01
Although many computational models have been proposed to explain orientation maps in primary visual cortex (V1), it is not yet known how similar clusters of color-selective neurons in macaque V1/V2 are connected and develop. In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. Each color input is decomposed into a red, green, and blue representation and transmitted to the visual cortex via a simulated optic nerve in a luminance channel and red–green and blue–yellow opponent color channels. Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1 output layer makes synaptic connections to neighboring neurons and receives the three types of signals in the different channels from the corresponding photoreceptor position. Synaptic weights are randomized and learned using spike-timing-dependent plasticity (STDP). After training with natural images, the neurons display heightened sensitivity to specific colors. Information-theoretic analysis reveals mutual information between particular stimuli and responses, and that the information reaches a maximum with fewer neurons in the higher layers, indicating that estimations of the input colors can be done using the output of fewer cells in the later stages of cortical processing. In addition, cells with similar color receptive fields form clusters. Analysis of spiking activity reveals increased firing synchrony between neurons when particular color inputs are presented or removed (ON-cell/OFF-cell). PMID:24659956
A Simple Principled Approach for Modeling and Understanding Uniform Color Metrics
Smet, Kevin A.G.; Webster, Michael A.; Whitehead, Lorne A.
2016-01-01
An important goal in characterizing human color vision is to order color percepts in a way that captures their similarities and differences. This has resulted in the continuing evolution of “uniform color spaces,” in which the distances within the space represent the perceptual differences between the stimuli. While these metrics are now very successful in predicting how color percepts are scaled, they do so in largely empirical, ad hoc ways, with limited reference to actual mechanisms of color vision. In this article our aim is to instead begin with general and plausible assumptions about color coding, and then develop a model of color appearance that explicitly incorporates them. We show that many of the features of empirically-defined color order systems (such as those of Munsell, Pantone, NCS, and others) as well as many of the basic phenomena of color perception, emerge naturally from fairly simple principles of color information encoding in the visual system and how it can be optimized for the spectral characteristics of the environment. PMID:26974939
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Polarization-color mapping strategies: catching up with color theory
NASA Astrophysics Data System (ADS)
Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott
2017-09-01
Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Validation of a Spectral Method for Quantitative Measurement of Color in Protein Drug Solutions.
Yin, Jian; Swartz, Trevor E; Zhang, Jian; Patapoff, Thomas W; Chen, Bartolo; Marhoul, Joseph; Shih, Norman; Kabakoff, Bruce; Rahimi, Kimia
2016-01-01
A quantitative spectral method has been developed to precisely measure the color of protein solutions. In this method, a spectrophotometer is utilized for capturing the visible absorption spectrum of a protein solution, which can then be converted to color values (L*a*b*) that represent human perception of color in a quantitative three-dimensional space. These quantitative values (L*a*b*) allow for calculating the best match of a sample's color to a European Pharmacopoeia reference color solution. In order to qualify this instrument and assay for use in clinical quality control, a technical assessment was conducted to evaluate the assay suitability and precision. Setting acceptance criteria for this study required development and implementation of a unique statistical method for assessing precision in 3-dimensional space. Different instruments, cuvettes, protein solutions, and analysts were compared in this study. The instrument accuracy, repeatability, and assay precision were determined. The instrument and assay are found suitable for use in assessing color of drug substances and drug products and is comparable to the current European Pharmacopoeia visual assessment method. In the biotechnology industry, a visual assessment is the most commonly used method for color characterization, batch release, and stability testing of liquid protein drug solutions. Using this method, an analyst visually determines the color of the sample by choosing the closest match to a standard color series. This visual method can be subjective because it requires an analyst to make a judgment of the best match of color of the sample to the standard color series, and it does not capture data on hue and chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we developed a quantitative spectral method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. In this study, we established a statistical method for assessing precision in 3-dimensional space and demonstrated that the quantitative spectral method is comparable with respect to precision and accuracy to the current European Pharmacopoeia visual assessment method. © PDA, Inc. 2016.
Hurtado-Gonzales, Jorge L.; Loew, Ellis R.; Uy, J. Albert C.
2014-01-01
The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments. PMID:24987856
Visual search asymmetries within color-coded and intensity-coded displays.
Yamani, Yusuke; McCarley, Jason S
2010-06-01
Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Pigeon visual short-term memory directly compared to primates.
Wright, Anthony A; Elmore, L Caitlin
2016-02-01
Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gomes, Gary G.
1986-05-01
A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.
Motivational incentives modulate age differences in visual perception.
Spaniol, Julia; Voss, Andreas; Bowen, Holly J; Grady, Cheryl L
2011-12-01
This study examined whether motivational incentives modulate age-related perceptual deficits. Younger and older adults performed a perceptual discrimination task in which bicolored stimuli had to be classified according to their dominating color. The valent color was associated with either a positive or negative payoff, whereas the neutral color was not associated with a payoff. Effects of incentives on perceptual efficiency and response bias were estimated using the diffusion model (Ratcliff, 1978). Perception of neutral stimuli showed age-related decline, whereas perception of valent stimuli, both positive and negative, showed no age difference. This finding is interpreted in terms of preserved top-down control over the allocation of perceptual processing resources in healthy aging.
ERIC Educational Resources Information Center
Bourquin, Eugene A.; Emerson, Robert Wall; Sauerburger, Dona; Barlow, Janet
2017-01-01
Introduction: A new market trend offers long canes for individuals with visual impairments in a variety of colors; however, the impact of these colors is unknown to orientation and mobility (O&M) specialists and individuals who are blind or who have low vision. The authors examined the impact of cane color on drivers' yielding behaviors; also,…
Three-color mixing for classifying agricultural products for safety and quality
NASA Astrophysics Data System (ADS)
Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Kim, Moon S.
2006-05-01
A three-color mixing application for food safety inspection is presented. It is shown that the chromaticness of the visual signal resulting from the three-color mixing achieved through our device is directly related to the three-band ratio of light intensity at three selected wavebands. An optical visual device using three-color mixing to implement the three-band ratio criterion is presented. Inspection through human vision assisted by an optical device that implements the three-band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical three-color mixing technique are given for the inspection of chicken carcasses with various diseases and for apples with fecal contamination. With proper selection of the three narrow wavebands, discrimination by chromaticness that has a direct relation with the three-band ratio can work very well. In particular, compared with the previously presented two-color mixing application, the conditions of chicken carcasses were more easily identified using the three-color mixing application. The novel three-color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.
Effects of visual attention on chromatic and achromatic detection sensitivities.
Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko
2014-05-01
Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.
Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni
2017-10-01
Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.
NASA Astrophysics Data System (ADS)
Saito, Daisuke; Saito, Keiichi; Notomi, Kazuhiro; Saito, Masao
This paper presents the visibility ordering of several web safe colors. The research of web page visibility is important because of the rapid dissemination of the World Wide Web. The combination of a foreground color and a background color is an important factor in providing sufficient visibility. Therefore, the rating of color combination visibility is necessary when developing accessible web sites. In this study, the visibility of several web-safe color combinations was examined using psychological methodology, i.e., paired comparison. Eighteen chromatic and 3 achromatic web-safe colors were employed for visual stimuli. Twenty-eight subjects ranging from ages 21 to 75 were recruited, and all were with normal color sensation. They looked at two different colored characters simultaneously on the white background and were instructed to identify which one enabled them to see more clearly. In examining the relationship between the psychological rankings of the color combinations and the visual sensations, each color combination was first scored as to the visibility by Thurstone's paired comparison technique. Secondly, the visual sensation was deduced by applying Weber-Fechner's law to the luminance of the foreground colors. As results, the luminance of a foreground color influenced the visibility; however the visibility rating is difficult only using the luminance of web-safe colors. These indicate that the chromaticity and chroma saturation are necessary in rating of chromatic web-safe color visibility.
A Study on Visibility Rating of Several Representative Web-Safe Colors
NASA Astrophysics Data System (ADS)
Saito, Daisuke; Saito, Keiichi; Notomi, Kazuhiro; Saito, Masao
This paper presents the visibility ordering of several web-safe colors. The research of web site visibility is important because of the rapid dissemination of the World Wide Web. The combination of a foreground color and a background color is an important factor in providing sufficient visibility. Therefore, the rating of color combination visibility is necessary when developing accessible web sites. In this study, the visibility of several web-safe color combinations was examined using psychological methodology, i.e., a paired comparison. Eighteen chromatic web-safe colors were employed for visual stimuli. Nine students ranging from ages 21 to 29 (average 23.7) were recruited, and all were with normal color sensation. These nine subjects looked at two different colored characters simultaneously on the white background and were instructed to identify which one enabled them to see more clearly. In examining the relationship between the psychological rankings of the color combinations and the visual sensations, each color combination was first scored as to the visibility by Thurstone's paired comparisons technique. Secondly, the visual sensation was deduced by applying Weber-Fechner's law to the luminance of the foreground colors. As results, the luminance of a foreground color influenced the visibility; however the visibility rating is difficult only using the luminance of web-safe colors. These indicate that the chromaticity and chroma saturation are necessary in rating of chromatic web-safe color visibility.
The Tehran Eye Study: research design and eye examination protocol
Hashemi, Hassan; Fotouhi, Akbar; Mohammad, Kazem
2003-01-01
Background Visual impairment has a profound impact on society. The majority of visually impaired people live in developing countries, and since most disorders leading to visual impairment are preventable or curable, their control is a priority in these countries. Considering the complicated epidemiology of visual impairment and the wide variety of factors involved, region specific intervention strategies are required for every community. Therefore, providing appropriate data is one of the first steps in these communities, as it is in Iran. The objectives of this study are to describe the prevalence and causes of visual impairment in the population of Tehran city; the prevalence of refractive errors, lens opacity, ocular hypertension, and color blindness in this population, and also the familial aggregation of refractive errors, lens opacity, ocular hypertension, and color blindness within the study sample. Methods Design Through a population-based, cross-sectional study, a total of 5300 Tehran citizens will be selected from 160 clusters using a stratified cluster random sampling strategy. The eligible people will be enumerated through a door-to-door household survey in the selected clusters and will be invited. All participants will be transferred to a clinic for measurements of uncorrected, best corrected and presenting visual acuity; manifest, subjective and cycloplegic refraction; color vision test; Goldmann applanation tonometry; examination of the external eye, anterior segment, media, and fundus; and an interview about demographic characteristics and history of eye diseases, eye trauma, diabetes mellitus, high blood pressure, and ophthalmologic cares. The study design and eye examination protocol are described. Conclusion We expect that findings from the TES will show the status of visual problems and their causes in the community. This study can highlight the people who should be targeted by visual impairment prevention programs. PMID:12859794
The Tehran Eye Study: research design and eye examination protocol.
Hashemi, Hassan; Fotouhi, Akbar; Mohammad, Kazem
2003-07-15
Visual impairment has a profound impact on society. The majority of visually impaired people live in developing countries, and since most disorders leading to visual impairment are preventable or curable, their control is a priority in these countries. Considering the complicated epidemiology of visual impairment and the wide variety of factors involved, region specific intervention strategies are required for every community. Therefore, providing appropriate data is one of the first steps in these communities, as it is in Iran. The objectives of this study are to describe the prevalence and causes of visual impairment in the population of Tehran city; the prevalence of refractive errors, lens opacity, ocular hypertension, and color blindness in this population, and also the familial aggregation of refractive errors, lens opacity, ocular hypertension, and color blindness within the study sample. Through a population-based, cross-sectional study, a total of 5300 Tehran citizens will be selected from 160 clusters using a stratified cluster random sampling strategy. The eligible people will be enumerated through a door-to-door household survey in the selected clusters and will be invited. All participants will be transferred to a clinic for measurements of uncorrected, best corrected and presenting visual acuity; manifest, subjective and cycloplegic refraction; color vision test; Goldmann applanation tonometry; examination of the external eye, anterior segment, media, and fundus; and an interview about demographic characteristics and history of eye diseases, eye trauma, diabetes mellitus, high blood pressure, and ophthalmologic cares. The study design and eye examination protocol are described. We expect that findings from the TES will show the status of visual problems and their causes in the community. This study can highlight the people who should be targeted by visual impairment prevention programs.
Color image guided depth image super resolution using fusion filter
NASA Astrophysics Data System (ADS)
He, Jin; Liang, Bin; He, Ying; Yang, Jun
2018-04-01
Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.
Incidental orthographic learning during a color detection task.
Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R
2017-09-01
Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Enhancing micrographs obtained with a scanning acoustic microscope using false-color encoding
NASA Astrophysics Data System (ADS)
Hammer, R.; Hollis, R. L.
1982-04-01
The periodic signal variations observed in reflection acoustic microscopy when lens-to-sample spacing is changed lead to reversals in image contrast. This contrast mechanism can be described by a V(Z) function, where V is the transducer voltage and Z the lens-to-sample spacing. In this work we show how by obtaining V(Z) curves from each plane of a complex sample, judicious choices of focal positions can be made to optimize signals from planes of interest, which allows color encoding of the image from each plane in an overlay image. We present false-color micrographs obtained in this way, along with A scans and V(Z) curves to demonstrate the technique.
Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.
Bannert, Michael M; Bartels, Andreas
2018-04-11
Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an imagery task, suggesting it forms a perceptual hub for color perception. Copyright © 2018 the authors 0270-6474/18/383657-12$15.00/0.
Continuous hierarchical slope-aspect color display for parametric surfaces
NASA Technical Reports Server (NTRS)
Moellering, Harold J. (Inventor); Kimerling, A. Jon (Inventor)
1994-01-01
A method for generating an image of a parametric surface, such as the aspect of terrain which maximizes color contrast to permit easy discrimination of the magnitude, ranges, intervals or classes of a surface parameter while making it easy for the user to visualize the form of the surface, such as a landscape. The four pole colors of the opponent process color theory are utilized to represent intervals or classes at 90 degree angles. The color perceived as having maximum measured luminance is selected to portray the color having an azimuth of an assumed light source and the color showing minimum measured luminance portrays the diametrically opposite azimuth. The 90 degree intermediate azimuths are portrayed by unique colors of intermediate measured luminance, such as red and green. Colors between these four pole colors are used which are perceived as mixtures or combinations of their bounding colors and are arranged progressively between their bounding colors to have perceived proportional mixtures of the bounding colors which are proportional to the interval's angular distance from its bounding colors.
The IAT shows no evidence for Kandinsky's color-shape associations
Makin, Alexis D. J.; Wuerger, Sophie M.
2013-01-01
In the early twentieth century, the Bauhaus revolutionized art and design by using simple colors and forms. Wassily Kandinsky was especially interested in the relationship of these two visual attributes and postulated a fundamental correspondence between color and form: yellow triangle, red square and blue circle. Subsequent empirical studies used preference judgments to test Kandinsky's original color-form combinations, usually yielding inconsistent results. We have set out to test the validity of these postulated associations by using the Implicit Association Test. Participants pressed one of two buttons on each trial. On some trials they classified shapes (e.g., circle or triangle). On interleaved trials they classified colors (e.g., blue or yellow). Response times should theoretically be faster when the button mapping follows Kandinsky's associations: For example, when the left key is used to report blue or circle and the right is used for yellow and triangle, than when the response mapping is the opposite of this (blue or triangle, yellow or circle). Our findings suggest that there is no implicit association between the original color-form combinations. Of the three combinations we tested, there was only a marginal effect in one case. It can be concluded that the IAT does not support Kandinsky's postulated color-form associations, and that these are probably not a universal property of the visual system. PMID:24062709
[A study of biomechanical method for urine test based on color difference estimation].
Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Zhou, Fengkun
2008-02-01
The biochemical analysis of urine is an important inspection and diagnosis method in hospitals. The conventional method of urine analysis covers mainly colorimetric visual appraisement and automation detection, in which the colorimetric visual appraisement technique has been superseded basically, and the automation detection method is adopted in hospital; moreover, the price of urine biochemical analyzer on market is around twenty thousand RMB yuan (Y), which is hard to enter into ordinary families. It is known that computer vision system is not subject to the physiological and psychological influence of person, its appraisement standard is objective and steady. Therefore, according to the color theory, we have established a computer vision system, which can carry through collection, management, display, and appraisement of color difference between the color of standard threshold value and the color of urine test paper after reaction with urine liquid, and then the level of an illness can be judged accurately. In this paper, we introduce the Urine Test Biochemical Analysis method, which is new and can be popularized in families. Experimental result shows that this test method is easy-to-use and cost-effective. It can realize the monitoring of a whole course and can find extensive applications.
Selective weighting of action-related feature dimensions in visual working memory.
Heuer, Anna; Schubö, Anna
2017-08-01
Planning an action primes feature dimensions that are relevant for that particular action, increasing the impact of these dimensions on perceptual processing. Here, we investigated whether action planning also affects the short-term maintenance of visual information. In a combined memory and movement task, participants were to memorize items defined by size or color while preparing either a grasping or a pointing movement. Whereas size is a relevant feature dimension for grasping, color can be used to localize the goal object and guide a pointing movement. The results showed that memory for items defined by size was better during the preparation of a grasping movement than during the preparation of a pointing movement. Conversely, memory for color tended to be better when a pointing movement rather than a grasping movement was being planned. This pattern was not only observed when the memory task was embedded within the preparation period of the movement, but also when the movement to be performed was only indicated during the retention interval of the memory task. These findings reveal that a weighting of information in visual working memory according to action relevance can even be implemented at the representational level during maintenance, demonstrating that our actions continue to influence visual processing beyond the perceptual stage.
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1
Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A.; Lee, Barry B.; Alonso, Jose Manuel
2015-01-01
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. PMID:24464943
Rules infants look by: Testing the assumption of transitivity in visual salience.
Kibbe, Melissa M; Kaldy, Zsuzsa; Blaser, Erik
2018-01-01
What drives infants' attention in complex visual scenes? Early models of infant attention suggested that the degree to which different visual features were detectable determines their attentional priority. Here, we tested this by asking whether two targets - defined by different features, but each equally salient when evaluated independently - would drive attention equally when pitted head-to-head. In Experiment 1, we presented 6-month-old infants with an array of gabor patches in which a target region varied either in color or spatial frequency from the background. Using a forced-choice preferential-looking method, we measured how readily infants fixated the target as its featural difference from the background was parametrically increased. Then, in Experiment 2, we used these psychometric preference functions to choose values for color and spatial frequency targets that were equally salient (preferred), and pitted them against each other within the same display. We reasoned that, if salience is transitive, then the stimuli should be iso-salient and infants should therefore show no systematic preference for either stimulus. On the contrary, we found that infants consistently preferred the color-defined stimulus. This suggests that computing visual salience in more complex scenes needs to include factors above and beyond local salience values.
NASA Astrophysics Data System (ADS)
Buck, Z.
2013-04-01
As we turn more and more to high-end computing to understand the Universe at cosmological scales, visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better understanding the use of visualizations to mediate astronomy learning across formal and informal settings. The aspect of my research that I present here uses quantitative methods to investigate how learners are relying on color to interpret dark matter in a cosmology visualization. The concept of dark matter is vital to our current understanding of the Universe, and yet we do not know how to effectively present dark matter visually to support learning. I employ an alternative treatment post-test only experimental design, in which members of an equivalent sample are randomly assigned to one of three treatment groups, followed by treatment and a post-test. Results indicate significant correlation (p < .05) between the color of dark matter in the visualization and survey responses, implying that aesthetic variations like color can have a profound effect on audience interpretation of a cosmology visualization.
Visual mismatch negativity and categorization.
Czigler, István
2014-07-01
Visual mismatch negativity (vMMN) component of event-related potentials is elicited by stimuli violating the category rule of stimulus sequences, even if such stimuli are outside the focus of attention. Category-related vMMN emerges to colors, and color-related vMMN is sensitive to language-related effects. A higher-order perceptual category, bilateral symmetry is also represented in the memory processes underlying vMMN. As a relatively large body of research shows, violating the emotional category of human faces elicits vMMN. Another face-related category sensitive to the violation of regular presentation is gender. Finally, vMMN was elicited to the laterality of hands. As results on category-related vMMN show, stimulus representation in the non-conscious change detection system is fairly complex, and it is not restricted to the registration of elementary perceptual regularities.
Visual Discrimination of Color Normals and Color Deficients. Final Report.
ERIC Educational Resources Information Center
Chen, Yih-Wen
Since visual discrimination is one of the factors involved in learning from instructional media, the present study was designed (1) to investigate the effects of hue contrast, illuminant intensity, brightness contrast, and viewing distance on the discrimination accuracy of those who see color normally and those who do not, and (2) to investigate…
Display Device Color Management and Visual Surveillance of Vehicles
ERIC Educational Resources Information Center
Srivastava, Satyam
2011-01-01
Digital imaging has seen an enormous growth in the last decade. Today users have numerous choices in creating, accessing, and viewing digital image/video content. Color management is important to ensure consistent visual experience across imaging systems. This is typically achieved using color profiles. In this thesis we identify the limitations…
Integration of color, orientation, and size functional domains in the ventral pathway
Ghose, Geoffrey M.; Ts’o, Daniel Y.
2017-01-01
Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155
Costa, Thiago Leiros; Barboni, Mirella Telles Salgueiro; Moura, Ana Laura de Araújo; Bonci, Daniela Maria Oliveira; Gualtieri, Mirella; de Lima Silveira, Luiz Carlos; Ventura, Dora Fix
2012-01-01
The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6±6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24–2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann–Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = −0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = −0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created. PMID:22916187
Oberauer, Klaus; Awh, Edward; Sutterer, David W
2017-01-01
We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3 concrete objects in an array. Each array in the WM test consisted of 1 old (previously learned) object with a new color (old-mismatch), 1 old object with its old color (old-match), and 1 new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from LTM. In the old-mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
Leintz, Rachel; Bond, John W
2013-05-01
Comparisons are made between the visualization of fingerprint corrosion ridge detail on fired brass cartridge casings, where fingerprint sweat was deposited prefiring, using both ultraviolet (UV) and visible (natural daylight) light sources. A reflected ultraviolet imaging system (RUVIS), normally used for visualizing latent fingerprint sweat deposits, is compared with optical interference and digital color mapping of visible light, the latter using apparatus constructed to easily enable selection of the optimum viewing angle. Results show that reflected UV, with a monochromatic UV source of 254 nm, was unable to visualize fingerprint ridge detail on any of 12 casings analyzed, whereas optical interference and digital color mapping using natural daylight yielded ridge detail on three casings. Reasons for the lack of success with RUVIS are discussed in terms of the variation in thickness of the thin film of metal oxide corrosion and absorption wavelengths for the corrosion products of brass. © 2013 American Academy of Forensic Sciences.
Audiovisual Association Learning in the Absence of Primary Visual Cortex.
Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice
2015-01-01
Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.
Oxaliplatin-Related Ocular Toxicity
Mesquida, Marina; Sanchez-Dalmau, Bernardo; Ortiz-Perez, Santiago; Pelegrín, Laura; Molina-Fernandez, Juan José; Figueras-Roca, Marc; Casaroli-Marano, Ricardo; Adán, Alfredo
2010-01-01
We report the case of a 52-year-old woman with advanced colorectal cancer who was treated with oxaliplatin on a FOLFOX schedule. After 3 cycles of chemotherapy, she started to complain of visual loss, altered color vision and neurological symptoms. Due to the suspicion of ocular and neurological toxicity, antineoplastic treatment was stopped. Her visual field showed a concentric bilateral scotoma and the electrooculogram test revealed severe impairment of the retinal pigment epithelium. Visual acuity, color vision and visual field recovered completely 8 months later, although electrooculogram remained abnormal. Ocular toxicity has been reported as an infrequent adverse event of oxaliplatin. Findings in this case indicate toxicity of this chemotherapeutic agent on the retinal pigment epithelium, which has not been reported before. This damage could be permanent, and it thus differs from previously described oxaliplatin-induced ocular toxicities, which are usually transient and reversible. With increasing use of oxaliplatin as first-line treatment in advanced colorectal cancer, we have to be aware of this possible toxicity. PMID:21151636
Visual search for feature and conjunction targets with an attention deficit.
Arguin, M; Joanette, Y; Cavanagh, P
1993-01-01
Abstract Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or color) or for a conjunction target (orientation and color) in unilateral displays in which the number of items presented was variable. Ocular fixation was controlled so that trials on which eye movements occurred were cancelled. While brain-damaged subjects with a visual attention disorder (VAD subjects) performed similarly to normal controls in feature search tasks, they showed a marked deficit in conjunction search. Specifically, VAD subjects exhibited an important reduction of their serial search rates for a conjunction target with contralesional displays. In support of Treisman's feature integration theory, a visual attention deficit leads to a marked impairment in feature integration whereas it does not appear to affect feature encoding.