Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
The virtual windtunnel: Visualizing modern CFD datasets with a virtual environment
NASA Technical Reports Server (NTRS)
Bryson, Steve
1993-01-01
This paper describes work in progress on a virtual environment designed for the visualization of pre-computed fluid flows. The overall problems involved in the visualization of fluid flow are summarized, including computational, data management, and interface issues. Requirements for a flow visualization are summarized. Many aspects of the implementation of the virtual windtunnel were uniquely determined by these requirements. The user interface is described in detail.
Remote Visualization and Remote Collaboration On Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).
Computer animation challenges for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine
2012-07-01
Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.
Visualization of unsteady computational fluid dynamics
NASA Astrophysics Data System (ADS)
Haimes, Robert
1994-11-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1994-01-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Three-dimensional user interfaces for scientific visualization
NASA Technical Reports Server (NTRS)
Vandam, Andries
1995-01-01
The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.
Techniques for animation of CFD results. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Horowitz, Jay; Hanson, Jeffery C.
1992-01-01
Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.
Hsieh, Paul A.
2001-01-01
This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.
Applications of CFD and visualization techniques
NASA Technical Reports Server (NTRS)
Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.
1992-01-01
In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.
Flow visualization of CFD using graphics workstations
NASA Technical Reports Server (NTRS)
Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon
1987-01-01
High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.
Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.
1993-01-01
This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.
NASA Astrophysics Data System (ADS)
Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho
2010-12-01
We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.
Assessing the activity of sarcoidosis: quantitative /sup 67/Ga-citrate imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajman, W.A.; Greenwald, L.V.; Staton, G.
1984-04-01
Three different methods of quantitating /sup 67/Ga-citrate lung images - a visual index, a computer-assisted index, and the total-lung-to-background ratio - were compared in 71 studies of patients with biopsy-proven sarcoidosis. Fifty consecutive cases were analyzed independently by two different observers using all three methods. In these studies, each index was correlated with the cell differential in the bronchoalveolar lavage fluid. The total-lung-to-background ratio proved to be the simplest to perform; correlated best with the original visual index and the percentage of lymphocytes obtained in bronchoalveolar lavage fluid. Sensitivity for detecting active disease was 84% compared with 64% and 58%more » for the visual and computer-assisted indices, respectively, with no sacrifice in specificity.« less
Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility
NASA Technical Reports Server (NTRS)
Watson, Velvin R.
1991-01-01
A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.
NASA Technical Reports Server (NTRS)
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas
Liu, Daoming; Kenjeres, Sasa
2017-01-01
In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078
A visual programming environment for the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David
1988-01-01
The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.
Segmentation of Unstructured Datasets
NASA Technical Reports Server (NTRS)
Bhat, Smitha
1996-01-01
Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the
Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.
2016-01-01
In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663
The change in critical technologies for computational physics
NASA Technical Reports Server (NTRS)
Watson, Val
1990-01-01
It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.
Displaying Computer Simulations Of Physical Phenomena
NASA Technical Reports Server (NTRS)
Watson, Val
1991-01-01
Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.
The 3D widgets for exploratory scientific visualization
NASA Technical Reports Server (NTRS)
Herndon, Kenneth P.; Meyer, Tom
1995-01-01
Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.
NASA Astrophysics Data System (ADS)
Reznicek, R.
The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.
Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad
2013-12-01
Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations
ERIC Educational Resources Information Center
Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.
2010-01-01
The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Visualization and Tracking of Parallel CFD Simulations
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kremenetsky, Mark
1995-01-01
We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.
Volumetric visualization of 3D data
NASA Technical Reports Server (NTRS)
Russell, Gregory; Miles, Richard
1989-01-01
In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.
Introducing Innovative Approaches to Learning in Fluid Mechanics: A Case Study
ERIC Educational Resources Information Center
Gynnild, Vidar; Myrhaug, Dag; Pettersen, Bjornar
2007-01-01
The purpose of the current article is to examine the impact of laboratory demonstrations and computer visualizations on learning in a third-year fluid mechanics course at Norwegian University of Science and Technology (NTNU). As a first step, on entering the course, students were exposed to a laboratory demonstration focusing on the nature of…
Sampling Scattered Data Onto Rectangular Grids for Volume Visualization
1989-12-01
30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising
Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves
NASA Astrophysics Data System (ADS)
Tessendorf, Jerry
2010-11-01
Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
NASA Technical Reports Server (NTRS)
VanZandt, John
1994-01-01
The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.
Virtual Environments in Scientific Visualization
NASA Technical Reports Server (NTRS)
Bryson, Steve; Lisinski, T. A. (Technical Monitor)
1994-01-01
Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.
GROTTO visualization for decision support
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.
1998-08-01
In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.
Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann
2015-01-01
Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.
Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments
NASA Technical Reports Server (NTRS)
Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.
2001-01-01
Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem
2013-01-01
An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.
Scientific Visualization in High Speed Network Environments
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kutler, Paul (Technical Monitor)
1997-01-01
In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
FAST - A multiprocessed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Visualization of Middle Ear Ossicles in Elder Subjects with Ultra-short Echo Time MR Imaging.
Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki; Suzuki, Kojiro; Iwano, Shingo; Satake, Hiroko; Grodzki, David
2017-04-10
To evaluate the visualization of middle ear ossicles by ultra-short echo time magnetic resonance (MR) imaging at 3T in subjects over 50 years old. Sixty ears from 30 elder patients that underwent surgical or interventional treatment for neurovascular diseases were included (ages: 50-82, median age: 65; 10 men, 20 women). Patients received follow-up MR imaging including routine T 1 - and T 2 -weighted images, time-of-flight MR angiography, and ultra-short echo time imaging (PETRA, pointwise encoding time reduction with radial acquisition). All patients underwent computed tomography (CT) angiography before treatment. Thin-section source CT images were correlated with PETRA images. Scan parameters for PETRA were: TR 3.13, TE 0.07, flip angle 6 degrees, 0.83 × 0.83 × 0.83 mm resolution, 3 min 43 s scan time. Two radiologists retrospectively evaluated the visibility of each ossicular structure as positive or negative using PETRA images. The structures evaluated included the head of the malleus, manubrium of the malleus, body of the incus, long process of the incus, and the stapes. Signal intensity of the ossicles was classified as: between labyrinthine fluid and air, similar to labyrinthine fluid, between labyrinthine fluid and cerebellar parenchyma, or higher than cerebellar parenchyma. In all ears, the body of the incus was visible. The head of the malleus was visualized in 36/60 ears. The manubrium of the malleus and long process of the incus was visualized in 1/60 and 4/60 ears, respectively. The stapes were not visualized in any ear. Signal intensity of the visible structures was between labyrinthine fluid and air in all ears. The body of the incus was consistently visualized with intensity between air and labyrinthine fluid on PETRA images in aged subjects. Poor visualization of the manubrium of the malleus, long process of the incus, and the stapes limits clinical significance of middle ear imaging with current PETRA methods.
Visual Computing Environment Workshop
NASA Technical Reports Server (NTRS)
Lawrence, Charles (Compiler)
1998-01-01
The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.
NASA Technical Reports Server (NTRS)
Robbins, Woodrow E. (Editor); Fisher, Scott S. (Editor)
1989-01-01
Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems.
Interactive Terascale Particle Visualization
NASA Technical Reports Server (NTRS)
Ellsworth, David; Green, Bryan; Moran, Patrick
2004-01-01
This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.
Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell
NASA Astrophysics Data System (ADS)
Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert
2005-07-01
We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .
Visualization of Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient problems require dealing with time.
Flowfield visualization for SSME hot gas manifold
NASA Technical Reports Server (NTRS)
Roger, Robert P.
1988-01-01
The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.
Comparison of PLIF and CFD Results for the Orion CEV RCS Jets
NASA Technical Reports Server (NTRS)
Ivey, Christopher B.; Danehy, Paul M.; Bathel, Brett F.; Dyakonov, Artem A.; Inman, Jennifer A.; Jones, Stephen B.
2011-01-01
Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize and measure centerline streamwise velocity of the Orion Crew Exploration Vehicle (CEV) Reaction Control System (RCS) Jets at NASA Langley Research Center's 31-Inch Mach 10 Air wind tunnel. Fluorescence flow visualizations of pitch, roll, and yaw RCS jets were obtained using different plenum pressures and wind tunnel operating stagnation pressures. For two yaw RCS jet test cases, the PLIF visualizations were compared to computational flow imaging (CFI) images based on Langley Aerothermal Upwind Relaxation Algorithm (LAURA) computational fluid dynamics (CFD) simulations of the flowfield. For the same test cases, the streamwise velocity measurements were compared to CFD. The CFD solution, while showing some unphysical artifacts, generally agree with the experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne
A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less
RVA: A Plugin for ParaView 3.14
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-04
RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less
Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D
2017-06-01
Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.
The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration
NASA Astrophysics Data System (ADS)
Araujo, J. B.; Brusseau, M. L. L.
2017-12-01
Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
Using Computers To Accommodate Learning Disabled Students in Mathematics Classes.
ERIC Educational Resources Information Center
Rapp, Rhonda H.; Gittinger, Dennis J.
A person with a learning disability usually has average or above average intelligence, but has difficulty taking in, remembering, or expressing information. Learning disabilities can involve visual processing speed, short-term memory processing, fluid reasoning, and long-term memory retrieval. These disorders are intrinsic to the individual and…
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Software Aids In Graphical Depiction Of Flow Data
NASA Technical Reports Server (NTRS)
Stegeman, J. D.
1995-01-01
Interactive Data Display System (IDDS) computer program is graphical-display program designed to assist in visualization of three-dimensional flow in turbomachinery. Grid and simulation data files in PLOT3D format required for input. Able to unwrap volumetric data cone associated with centrifugal compressor and display results in easy-to-understand two- or three-dimensional plots. IDDS provides majority of visualization and analysis capability for Integrated Computational Fluid Dynamics and Experiment (ICE) system. IDDS invoked from any subsystem, or used as stand-alone package of display software. Generates contour, vector, shaded, x-y, and carpet plots. Written in C language. Input file format used by IDDS is that of PLOT3D (COSMIC item ARC-12782).
NASA Technical Reports Server (NTRS)
Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.
2015-01-01
A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
Marków, Magdalena; Janecki, Daniel; Orecka, Bogusława; Misiołek, Maciej; Warmuziński, Krzysztof
2017-09-01
Computational fluid dynamics (CFD), a rapidly developing instrument with a number of practical applications, allows calculation and visualization of the changing parameters of airflow in the upper respiratory tract. The aim of this study was to demonstrate the advantages of CFD as an instrument for noninvasive tests of the larynx in patients who had undergone surgical treatment due to bilateral vocal fold paralysis. Surface measurements of the glottic space were made during maximum adduction of the vocal folds. Additionally, the following spirometric parameters were determined: forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF) rate. Based on the measurements, commercial mesh generation software was used to develop a geometrical model of the glottic space. The computations were carried out using a general purpose CFD code. The analysis included patients who were surgically treated for BVFP in the authors' department between 1999 and 2012. The study group consisted of 22 women (91.67%) and 2 men (8.33%). It was observed that the pressure drop calculated for free breathing depends on the area of the glottis and is independent of its shape. Importantly, for areas below approx. 40 mm2, a sudden rise occurred in the resistance to flow; for the smallest glottic areas studied, the pressure drop was almost 6 times higher than for an area of 40 mm2. Consequently, in cases of areas below 40 mm2 even minor enlargement of the glottic opening can lead to a marked improvement in breathing comfort. Computational fluid dynamics is a useful method for calculating and visualizing the changing parameters of airflow in the upper respiratory tract.
Experimental and computational surface and flow-field results for an all-body hypersonic aircraft
NASA Technical Reports Server (NTRS)
Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.
1990-01-01
The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.
Lee, Heow Peuh; Gordon, Bruce R.
2012-01-01
During the past decades, numerous computational fluid dynamics (CFD) studies, constructed from CT or MRI images, have simulated human nasal models. As compared to rhinomanometry and acoustic rhinometry, which provide quantitative information only of nasal airflow, resistance, and cross sectional areas, CFD enables additional measurements of airflow passing through the nasal cavity that help visualize the physiologic impact of alterations in intranasal structures. Therefore, it becomes possible to quantitatively measure, and visually appreciate, the airflow pattern (laminar or turbulent), velocity, pressure, wall shear stress, particle deposition, and temperature changes at different flow rates, in different parts of the nasal cavity. The effects of both existing anatomical factors, as well as post-operative changes, can be assessed. With recent improvements in CFD technology and computing power, there is a promising future for CFD to become a useful tool in planning, predicting, and evaluating outcomes of nasal surgery. This review discusses the possibilities and potential impacts, as well as technical limitations, of using CFD simulation to better understand nasal airflow physiology. PMID:23205221
On the flow through the normal fetal aortic arc at late gestation
NASA Astrophysics Data System (ADS)
Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit
2006-11-01
During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles
Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.
2014-01-01
We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845
NASA Technical Reports Server (NTRS)
Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.
1991-01-01
The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.
Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2011-01-01
A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.
Role of Dual Energy Computed Tomography Imaging in the Diagnosis of Gout
Sehra, Shiv T; Anand, Suneesh; Stallings, Gary W.; Danve, Abhijeet
2017-01-01
Gout is a well-known inflammatory arthritis and affects four percent of the United States population. It results from the deposition of uric acid crystals in joints, tendons, bursae, and other surrounding tissues. Prevalence of gout has increased in the recent decade. Gout is usually seen in conjunction with other chronic comorbid conditions like cardiac disease, metabolic syndrome, and renal disease. The diagnosis of this inflammatory arthritis is confirmed by visualization of monosodium urate (MSU) crystals in the synovial fluid. Though synovial fluid aspiration is the standard of care, it is often deferred because of inaccessibility of small joints, patient assessment during intercritical period, or procedural inexperience in a primary care office. Dual energy computed tomography (DECT) is a relatively new imaging modality which shows great promise in the diagnosis of gout. It is a good noninvasive alternative to synovial fluid aspiration. DECT is increasingly useful in diagnosing cases of gout where synovial fluid fails to demonstrate monosodium urate crystals. In this article, we will review the mechanism, types, advantages, and disadvantages of DECT. PMID:28229032
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Multi-component fluid flow through porous media by interacting lattice gas computer simulation
NASA Astrophysics Data System (ADS)
Cueva-Parra, Luis Alberto
In this work we study structural and transport properties such as power-law behavior of trajectory of each constituent and their center of mass, density profile, mass flux, permeability, velocity profile, phase separation, segregation, and mixing of miscible and immiscible multicomponent fluid flow through rigid and non-consolidated porous media. The considered parameters are the mass ratio of the components, temperature, external pressure, and porosity. Due to its solid theoretical foundation and computational simplicity, the selected approaches are the Interacting Lattice Gas with Monte Carlo Method (Metropolis Algorithm) and direct sampling, combined with particular collision rules. The percolation mechanism is used for modeling initial random porous media. The introduced collision rules allow to model non-consolidated porous media, because part of the kinetic energy of the fluid particles is transfered to barrier particles, which are the components of the porous medium. Having gained kinetic energy, the barrier particles can move. A number of interesting results are observed. Some findings include, (i) phase separation in immiscible fluid flow through a medium with no barrier particles (porosity p P = 1). (ii) For the flow of miscible fluids through rigid porous medium with porosity close to percolation threshold (p C), the flux density (measure of permeability) shows a power law increase ∝ (pC - p) mu with mu = 2.0, and the density profile is found to decay with height ∝ exp(-mA/Bh), consistent with the barometric height law. (iii) Sedimentation and driving of barrier particles in fluid flow through non-consolidated porous medium. This study involves developing computer simulation models with efficient serial and parallel codes, extensive data analysis via graphical utilities, and computer visualization techniques.
3D Feature Extraction for Unstructured Grids
NASA Technical Reports Server (NTRS)
Silver, Deborah
1996-01-01
Visualization techniques provide tools that help scientists identify observed phenomena in scientific simulation. To be useful, these tools must allow the user to extract regions, classify and visualize them, abstract them for simplified representations, and track their evolution. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This article explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and those from Finite Element Analysis.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Holographic data visualization: using synthetic full-parallax holography to share information
NASA Astrophysics Data System (ADS)
Dalenius, Tove N.; Rees, Simon; Richardson, Martin
2017-03-01
This investigation explores representing information through data visualization using the medium holography. It is an exploration from the perspective of a creative practitioner deploying a transdisciplinary approach. The task of visualizing and making use of data and "big data" has been the focus of a large number of research projects during the opening of this century. As the amount of data that can be gathered has increased in a short time our ability to comprehend and get meaning out of the numbers has been brought into attention. This project is looking at the possibility of employing threedimensional imaging using holography to visualize data and additional information. To explore the viability of the concept, this project has set out to transform the visualization of calculated energy and fluid flow data to a holographic medium. A Computational Fluid Dynamics (CFD) model of flow around a vehicle, and a model of Solar irradiation on a building were chosen to investigate the process. As no pre-existing software is available to directly transform the data into a compatible format the team worked collaboratively and transdisciplinary in order to achieve an accurate conversion from the format of the calculation and visualization tools to a configuration suitable for synthetic holography production. The project also investigates ideas for layout and design suitable for holographic visualization of energy data. Two completed holograms will be presented. Future possibilities for developing the concept of Holographic Data Visualization are briefly deliberated upon.
NASA Astrophysics Data System (ADS)
Aziz, A. M. Y.; Harun, M. N.; Syahrom, Ardiyansyah; Omar, A. H.
2017-04-01
This paper presents a study of the hydrodynamics of several rowing blade designs. The study was done using Computational Fluid Dynamics (CFD) which enabled the investigation to be done similar to the experimental study, but with additional hydrodynamic visualization for further analysis and understanding. The CFD method was validated using quasi-static experimental data from Caplan (2007). Besides that, the proposed CFD analyses have improved the precious CFD results with the percentage of error of 6.58 percent of lift and 0.69 percent of drag force compared to 33.65 and 18.75 percent obtained by Coppel (2010). Consequent to the successful validation, the study then proceeded with the real size of Macon, Big balde and Fat blade. It was found that the hydrodynamic performance of the Fat blade was the highest due to the area, aspect ratio and the shape of the blade. Besides that, distribution of pressure for all models were also investigated which deepened the understanding of the blade fluid mechanics of rowing.
Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain
NASA Technical Reports Server (NTRS)
Kao, David; Kramer, Marc; Chaderjian, Neal
2005-01-01
Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.
Modeling Aerosol Particle Deposition on a Person Using Computational Fluid Dynamics
2015-04-03
The particle Stokes number is defined as Stk = Cc ρpUjd 2 p 9µD ’ (1) (1050) (10.5) (5× 10 −6) 2 (9) (1.824× 10−5) (0.015) = 0.112, (3.2) where Cc ’ 1...sizes (5 µm and Stk = 0.11). Therefore, the appropriate modeling of the fluid fluctuations in the near-wall region is crucial for accurate sim- ulations...direction, are summarized in Figures 4.5– 4.10. For visualization purposes, the flow fields and streamlines at two cross sections through the human form
ERIC Educational Resources Information Center
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio
2011-01-01
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
The Poster will present the process of Computational Fluid Dynamics (CFD) simulations through examples supporting the reconstruction of the smoke/dust plumes following the collapse of the WTC towers on September 11, 2001.
Understanding the pathway of toxic air polluta...
Visualization of various working fluids flow regimes in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan
2016-01-01
After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.
Görg, Carsten; Liu, Zhicheng; Kihm, Jaeyeon; Choo, Jaegul; Park, Haesun; Stasko, John
2013-10-01
Investigators across many disciplines and organizations must sift through large collections of text documents to understand and piece together information. Whether they are fighting crime, curing diseases, deciding what car to buy, or researching a new field, inevitably investigators will encounter text documents. Taking a visual analytics approach, we integrate multiple text analysis algorithms with a suite of interactive visualizations to provide a flexible and powerful environment that allows analysts to explore collections of documents while sensemaking. Our particular focus is on the process of integrating automated analyses with interactive visualizations in a smooth and fluid manner. We illustrate this integration through two example scenarios: an academic researcher examining InfoVis and VAST conference papers and a consumer exploring car reviews while pondering a purchase decision. Finally, we provide lessons learned toward the design and implementation of visual analytics systems for document exploration and understanding.
A knowledge based system for scientific data visualization
NASA Technical Reports Server (NTRS)
Senay, Hikmet; Ignatius, Eve
1992-01-01
A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1989-01-01
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.
D3: A Collaborative Infrastructure for Aerospace Design
NASA Technical Reports Server (NTRS)
Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)
2001-01-01
DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.
NASA Astrophysics Data System (ADS)
Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.
2017-08-01
Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.
Warnock, Jennifer J; Nemanic, Sarah; O'Donnell, Matthew D; Wiest, Jason E
2014-11-01
To evaluate volume of extra-articular fluid egress and complications associated with 2 fluid ingress/egress techniques for stifle arthroscopy. Ex vivo study. Canine cadavers (n = 14). Four cadavers (8 stifles) were used to validate 3D computed tomographic (CT) methods to quantify stifle joint intra- and extra-articular volumes of iodinated contrast medium. Ten canine cadavers (20 stifles) had preoperative CT, followed by stifle arthroscopy using a 10% solution of iodinated contrast enhanced ingress fluid delivered by pressure bag (2PB) or by arthroscopic peristaltic pump (3FP). All 3FP limbs had an additional fluid egress portal placed by cannula and obturator. Arthroscopy was limited to 20 minutes/joint. The volume of the contrast medium egress into the soft tissues was measured on postoperative 3D CT reconstructed images. Mean percentage of total ingress fluids administered that remained in the joint and extra-articular tissues postoperatively was 8.8 ± 1.2% in 3FP and 33.2 ± 8% in 2PB (P = .014). Two 3FP joints had 4-5 mm egress obturator tracks on the proximal medial trochlear ridge. Two 2PB joints had severe joint collapse from extracapsular fluid precluding further examination. Intermittent visual blurring by joint fluid mixing or fat pad fragmentation/dissolution was noted in 2PB joints. A superior technique was not identified: 2PB had greater egress fluid tissue accumulation, whereas 3FP had better viewing of intra-articular structures with less tissue egress fluid accumulation; however, cartilage damage was induced with the egress obturator. © Copyright 2014 by The American College of Veterinary Surgeons.
Programming the Navier-Stokes computer: An abstract machine model and a visual editor
NASA Technical Reports Server (NTRS)
Middleton, David; Crockett, Tom; Tomboulian, Sherry
1988-01-01
The Navier-Stokes computer is a parallel computer designed to solve Computational Fluid Dynamics problems. Each processor contains several floating point units which can be configured under program control to implement a vector pipeline with several inputs and outputs. Since the development of an effective compiler for this computer appears to be very difficult, machine level programming seems necessary and support tools for this process have been studied. These support tools are organized into a graphical program editor. A programming process is described by which appropriate computations may be efficiently implemented on the Navier-Stokes computer. The graphical editor would support this programming process, verifying various programmer choices for correctness and deducing values such as pipeline delays and network configurations. Step by step details are provided and demonstrated with two example programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo
We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5more » samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.« less
Water intake reverses dehydration associated impaired executive function in healthy young women.
Stachenfeld, Nina S; Leone, Cheryl A; Mitchell, Ellen S; Freese, Eric; Harkness, Laura
2018-03-01
Healthy women do not always consume Recommended Daily Levels of fluid intake ad libitum. We hypothesized that 1) women lose≥1.0% BW during daily activities, 2) that mild body water loss impairs memory and executive function, 3) water intake to recommended daily levels will improve cognitive function. We tested 12 women (26±5yr, 22.5±2.6kg/m 2 BMI). Session 1 was a control (CON) session, during which subjects monitored their food and fluid intake (diary) and activity (Fitbit®). The next two sessions were applied in balanced order: dehydration (DEH) session, where subjects minimized drinking, and a euhydration (EUH) session, where subjects drank Recommended Daily Levels of fluid for their age and sex, or 2500ml/24h. We compared emotion, sensory perception and cognition with computer based visual analog tests and computer based cognitive tasks (Cogstate) at 5PM, i.e. baseline (BL) on the evening prior to the session, and at 7AM, 12PM, and 5PM during the session. Urine specific gravity (USG) was similar at BL across conditions (CON 1.013±0.002, DEH 1.015±0.002, EUH 1.014±0.002) and increased with dehydration (CON 1.011±0.003, DEH 1.021±0.002, EUH 1.010±0.002, P<0.05) by 5PM of the session. Uncontrolled fluid intake and physical activity were similar across sessions. The water challenges did not impact Detection, Identification, One-Card Learning, but EUH improved visual and working memory (Groton Maze Learning Test) errors: CON 40.1±11.1, DEH 40.5±10.1, EUH 33.9±10.9, P<0.05. Executive function [Set Shifting (SETS)] also improved under EUH, errors: BL 22.5±12.7 vs. 5PM 17.8±6.2, P<0.05. Mild dehydration caused deficits in visual and working memory and executive function in healthy young women. These deficits were reversed by drinking water to the European Food Safety Authority and Institute of Medicine requirements of 2.5l/day for adult women. Copyright © 2017 Elsevier Inc. All rights reserved.
Computational Analysis of Human Blood Flow
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck
NASA Astrophysics Data System (ADS)
Chon, Woochong; Amano, Ryoichi S.
Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Childress, Emily M; Kleinstreuer, Clement
2014-03-01
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.
Visualization Techniques Applied to 155-mm Projectile Analysis
2014-11-01
semi-infinite Riemann problems are used in CFD++ to provide upwind flux information to the underlying transport scheme. Approximate Riemann solvers ...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the...the solution files generated by the computational fluid dynamics (CFD) solver for the time-accurate rolling simulations at each timestep for the Mach
Computational Fluid Dynamics Program at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1989-01-01
The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.
Luceri, Salvatore; Baksoellah, Zainab; Ilyas, Abbas; Baydoun, Lamis; Melles, Gerrit R J
2016-12-01
To describe a case that developed "interface fluid syndrome" after previous laser in situ keratomileusis (LASIK) because of Fuchs endothelial dystrophy (FED), which was reversed by Descemet membrane endothelial keratoplasty (DMEK). A 58-year-old male patient presented with bilateral visual impairment owing to FED and visually significant cataract. Cataract surgery was carried out in both eyes followed by DMEK in his left eye. After cataract surgery, visual acuity did not improve sufficiently because corneal thickness increased and a fine cleft with interface fluid developed between the LASIK-flap and the residual stromal bed. After uneventful DMEK in his left eye, the fluid resolved within a week and visual acuity improved rapidly. This case demonstrates that "interface fluid syndrome" after LASIK caused by concomitant endothelial dysfunction may be reversed by DMEK allowing fast visual recovery.
LOFT data acquisition and visual display system (DAVDS) presentation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.G.; Miyasaki, F.S.
1976-03-01
The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Putt, Charles W.
1997-01-01
The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.
NASA Technical Reports Server (NTRS)
Anderson, G. E.; Loo, S. (Inventor)
1985-01-01
A fluid leak indicator for detecting and indicating leaks in visually inaccessible fluid tubing joints, such as those obstructed by insulation includes a bag system and a wicking system surrounding or wrapping the joints under the visual obstructing material. Leaking fluid is collected in the bag or on the wicking material where it is conducted along the wicking material to a visily accessible capturing transparent indicator bulb for providing a visual indication of the leak without requiring a chemical change in the capturing indicator bulb.
WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets
NASA Astrophysics Data System (ADS)
Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.
2010-12-01
WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Morlang, G.M.
1996-06-01
The use of neutron radiography for visualization of fluid flow through flow visualization modules has been very successful. Current experiments at the Penn State Breazeale Reactor serve to verify the mixing and transport of soluble boron under natural flow conditions as would be experienced in a pressurized water reactor. Different flow geometries have been modeled including holes, slots, and baffles. Flow modules are constructed of aluminum box material 1 1/2 inches by 4 inches in varying lengths. An experimental flow system was built which pumps fluid to a head tank and natural circulation flow occurs from the head tank throughmore » the flow visualization module to be radiographed. The entire flow system is mounted on a portable assembly to allow placement of the flow visualization module in front of the neutron beam port. A neutron-transparent fluorinert fluid is used to simulate water at different densities. Boron is modeled by gadolinium oxide powder as a tracer element, which is placed in a mixing assembly and injected into the system by remote operated electric valve, once the reactor is at power. The entire sequence is recorded on real-time video. Still photographs are made frame-by-frame from the video tape. Computers are used to digitally enhance the video and still photographs. The data obtained from the enhancement will be used for verification of simple geometry predictions using the TRAC and RELAP thermal-hydraulic codes. A detailed model of a reactor vessel inlet plenum, downcomer region, flow distribution area and core inlet is being constructed to model the AP600 plenum. Successive radiography experiments of each section of the model under identical conditions will provide a complete vessel/core model for comparison with the thermal-hydraulic codes.« less
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
Novel Visualization Approaches in Environmental Mineralogy
NASA Astrophysics Data System (ADS)
Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.
2006-05-01
Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.
Computing Science and Statistics. Volume 24. Graphics and Visualization
1993-03-01
the dough , turbulent fluid flow, the time between drips of behavior changes radically when the population growth water from a faucet, Brownian motion... cookie which clearly is the discrete parameter analogue of continuous param- appropriate as after dinner fun. eter time series analysis". I strongly...methods. Your fortune cookie of the night reads: One problem that statisticians traditionally seem to "uYou have good friends who will come to your aid in
New Computational Methods for the Prediction and Analysis of Helicopter Noise
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
This paper describes several new methods to predict and analyze rotorcraft noise. These methods are: 1) a combined computational fluid dynamics and Kirchhoff scheme for far-field noise predictions, 2) parallel computer implementation of the Kirchhoff integrations, 3) audio and visual rendering of the computed acoustic predictions over large far-field regions, and 4) acoustic tracebacks to the Kirchhoff surface to pinpoint the sources of the rotor noise. The paper describes each method and presents sample results for three test cases. The first case consists of in-plane high-speed impulsive noise and the other two cases show idealized parallel and oblique blade-vortex interactions. The computed results show good agreement with available experimental data but convey much more information about the far-field noise propagation. When taken together, these new analysis methods exploit the power of new computer technologies and offer the potential to significantly improve our prediction and understanding of rotorcraft noise.
Kim, Jae Hui; Chang, Young Suk; Kim, Jong Woo
2017-12-01
To evaluate the 24-month natural course of visual changes in patients discontinuing treatment despite persistent or recurrent fluid and factors predictive of visual prognosis. This retrospective, observational study included 35 patients (35 eyes) who initially received anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD), but discontinued treatment despite persistent or recurrent fluid. The best-corrected visual acuity (BCVA) at treatment discontinuation was determined and compared with the 24-month BCVA, which was then compared between polypoidal choroidal vasculopathy and other neovascular age-related macular degeneration subtypes. Baseline characteristics predictive of visual outcome and the degree of visual change were also analyzed. The mean number of anti-vascular endothelial growth factor injections before treatment discontinuation was 4.0 ± 1.6. The mean logarithm of minimal angle of resolution of BCVA at treatment discontinuation and that at 24 months were 1.02 ± 0.20 (Snellen equivalents = 20/209) and 1.60 ± 0.56 (20/796), respectively (P < 0.001). The 24-month BCVA was not different between polypoidal choroidal vasculopathy and other neovascular age-related macular degeneration subtypes (P = 0.803). The type of fluid (intraretinal fluid vs. no intraretinal fluid) was predictive of 24-month BCVA (P = 0.004) and the degree of changes in BCVA (P = 0.043). Marked deterioration in visual acuity was noted in patients discontinuing treatment, regardless of neovascular age-related macular degeneration subtypes. The presence of intraretinal fluid was associated with worse visual prognosis, suggesting that patients with intraretinal fluid should be strongly warned about their poor prognosis before they decide to discontinue treatment.
NASA Technical Reports Server (NTRS)
Anderson, George E. (Inventor); Loo, Shu (Inventor)
1989-01-01
A fluid leak indicator (30) for detecting and indicating leaks in visually inaccessible fluid tubing joints (20, 21), such as those obstructed by insulation (24), includes a bag system (25) and a wicking system (30) surrounding or wrapping the joints (20, 21) under the visual obstructing material (24). Leaking fluid is collected in the bag (25) or on the wicking material (34) where it is conducted along the wicking material (34) to a visibly accessible capturing transparent indicator bulb (35) for providing a visual indication of the leak without requiring a chemical change in the capturing indicator bulb (35).
Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor
NASA Astrophysics Data System (ADS)
Brown, Jason B.; Neitzel, G. Paul
1997-11-01
Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.
Closure technique after carotid endarterectomy influences local hemodynamics.
Harrison, Gareth J; How, Thien V; Poole, Robert J; Brennan, John A; Naik, Jagjeeth B; Vallabhaneni, S Rao; Fisher, Robert K
2014-08-01
Meta-analysis supports patch angioplasty after carotid endarterectomy (CEA); however, studies indicate considerable variation in practice. The hemodynamic effect of a patch is unclear and this study attempted to elucidate this and guide patch width selection. Four groups were selected: healthy volunteers and patients undergoing CEA with primary closure, trimmed patch (5 mm), or 8-mm patch angioplasty. Computer-generated three-dimensional models of carotid bifurcations were produced from transverse ultrasound images recorded at 1-mm intervals. Rapid prototyping generated models for flow visualization studies. Computational fluid dynamic studies were performed for each model and validated by flow visualization. Mean wall shear stress (WSS) and oscillatory shear index (OSI) maps were created for each model using pulsatile inflow at 300 mL/min. WSS of <0.4 Pa and OSI >0.3 were considered pathological, predisposing to accretion of intimal hyperplasia. The resultant WSS and OSI maps were compared. The four groups comprised 8 normal carotid arteries, 6 primary closures, 6 trimmed patches, and seven 8-mm patches. Flow visualization identified flow separation and recirculation at the bifurcation increased with a patch and was related to the patch width. Computational fluid dynamic identified that primary closure had the fewest areas of low WSS or elevated OSI but did have mild common carotid artery stenoses at the proximal arteriotomy that caused turbulence. Trimmed patches had more regions of abnormal WSS and OSI at the bifurcation, but 8-mm patches had the largest areas of deleteriously low WSS and high OSI. Qualitative comparison among the four groups confirmed that incorporation of a patch increased areas of low WSS and high OSI at the bifurcation and that this was related to patch width. Closure technique after CEA influences the hemodynamic profile. Patching does not appear to generate favorable flow dynamics. However, a trimmed 5-mm patch may offer hemodynamic benefits over an 8-mm patch and may be the preferred option. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Pre- and postprocessing techniques for determining goodness of computational meshes
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Westermann, T.; Bass, J. M.
1993-01-01
Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics.
Neural networks for calibration tomography
NASA Technical Reports Server (NTRS)
Decker, Arthur
1993-01-01
Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.
Real-time colouring and filtering with graphics shaders
NASA Astrophysics Data System (ADS)
Vohl, D.; Fluke, C. J.; Barnes, D. G.; Hassan, A. H.
2017-11-01
Despite the popularity of the Graphics Processing Unit (GPU) for general purpose computing, one should not forget about the practicality of the GPU for fast scientific visualization. As astronomers have increasing access to three-dimensional (3D) data from instruments and facilities like integral field units and radio interferometers, visualization techniques such as volume rendering offer means to quickly explore spectral cubes as a whole. As most 3D visualization techniques have been developed in fields of research like medical imaging and fluid dynamics, many transfer functions are not optimal for astronomical data. We demonstrate how transfer functions and graphics shaders can be exploited to provide new astronomy-specific explorative colouring methods. We present 12 shaders, including four novel transfer functions specifically designed to produce intuitive and informative 3D visualizations of spectral cube data. We compare their utility to classic colour mapping. The remaining shaders highlight how common computation like filtering, smoothing and line ratio algorithms can be integrated as part of the graphics pipeline. We discuss how this can be achieved by utilizing the parallelism of modern GPUs along with a shading language, letting astronomers apply these new techniques at interactive frame rates. All shaders investigated in this work are included in the open source software shwirl (Vohl 2017).
NASA Astrophysics Data System (ADS)
Santini, Maurizio
2015-11-01
X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.
Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost
2015-12-01
Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. © 2015 Wiley Periodicals, Inc.
Littleton, Helen X; Daigger, Glen T; Strom, Peter F
2007-06-01
A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
Lu, Yang; Bernabeu, Miguel O; Lammer, Jan; Cai, Charles C; Jones, Martin L; Franco, Claudio A; Aiello, Lloyd Paul; Sun, Jennifer K
2016-12-01
Diabetic retinopathy (DR) is the leading cause of visual loss in working-age adults worldwide. Previous studies have found hemodynamic changes in the diabetic eyes, which precede clinically evident pathological alterations of the retinal microvasculature. There is a pressing need for new methods to allow greater understanding of these early hemodynamic changes that occur in DR. In this study, we propose a noninvasive method for the assessment of hemodynamics around the fovea (a region of the eye of paramount importance for vision). The proposed methodology combines adaptive optics scanning laser ophthalmoscopy and computational fluid dynamics modeling. We compare results obtained with this technique with in vivo measurements of blood flow based on blood cell aggregation tracking. Our results suggest that parafoveal hemodynamics, such as capillary velocity, wall shear stress, and capillary perfusion pressure can be noninvasively and reliably characterized with this method in both healthy and diabetic retinopathy patients.
Lu, Yang; Bernabeu, Miguel O.; Lammer, Jan; Cai, Charles C.; Jones, Martin L.; Franco, Claudio A.; Aiello, Lloyd Paul; Sun, Jennifer K.
2016-01-01
Diabetic retinopathy (DR) is the leading cause of visual loss in working-age adults worldwide. Previous studies have found hemodynamic changes in the diabetic eyes, which precede clinically evident pathological alterations of the retinal microvasculature. There is a pressing need for new methods to allow greater understanding of these early hemodynamic changes that occur in DR. In this study, we propose a noninvasive method for the assessment of hemodynamics around the fovea (a region of the eye of paramount importance for vision). The proposed methodology combines adaptive optics scanning laser ophthalmoscopy and computational fluid dynamics modeling. We compare results obtained with this technique with in vivo measurements of blood flow based on blood cell aggregation tracking. Our results suggest that parafoveal hemodynamics, such as capillary velocity, wall shear stress, and capillary perfusion pressure can be noninvasively and reliably characterized with this method in both healthy and diabetic retinopathy patients. PMID:28078170
Introducing Computational Fluid Dynamics Simulation into Olfactory Display
NASA Astrophysics Data System (ADS)
Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi
An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.
A texture-based framework for improving CFD data visualization in a virtual environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivins, Gerrick O'Ron
2005-01-01
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated hut require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, ~10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions are notmore » limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions hut limiting interaction for investigating the field.« less
A texture-based frameowrk for improving CFD data visualization in a virtual environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivins, Gerrick O'Ron
2005-01-01
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated but require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, ~ 10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions aremore » not limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions but limiting interaction for investigating the field.« less
Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue
NASA Astrophysics Data System (ADS)
Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-11-01
Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.
NASA Astrophysics Data System (ADS)
Gerszewski, Daniel James
Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.
Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; ...
2016-03-17
Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaViewmore » plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.« less
Seminar in Flow Visualization at Lafayette College: Variations on the Hertzberg Effect
NASA Astrophysics Data System (ADS)
Rossmann, Jenn Stroud
2013-11-01
Flow visualization reveals an invisible world of fluid dynamics, blending scientific investigation and artistic exploration. The resulting images have inspired, and in some cases themselves become appreciated as, art. At Lafayette College, a sophomore-level seminar in The Art and Science of Flow Visualization exposes students to these techniques and the science of fluid mechanics, and to the photographic methods needed to create effective images that are successful both scientifically and artistically. Unlike other courses in flow visualization, this course assumes no a priori familiarity with fluid flow or with photography. The fundamentals of both are taught and practiced in a studio setting. Students are engaged in an interdisciplinary discourse about fluids and physics, photography, scientific ethics, and historical societal responses to science and art. Relevant texts from several disciplines are read, discussed, and responded to in student writing. This seminar approach makes flow visualization and fluid dynamics a natural part of a liberal education. The development, implementation, and assessment of this team-taught course at Lafayette College will be discussed. Support provided by National Science Foundation.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Visualization of subcutaneous insulin injections by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.
2012-11-01
We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.
Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.
Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A
2018-05-21
Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.
Combination of Kinematics with Flow Visualization to Compute Total Circulation
NASA Technical Reports Server (NTRS)
Brasseur, J. G; Chang, I-Dee
1981-01-01
A method is described in which kinematics is exploited to compute the total circulation of a vortex from relatively simple flow visualization experiments. There are several advantages in the technique, including the newly acquired ability to calculate the changes in strength of a single vortex as it evolves. The main concepts and methodology are discussed in a general way for application to vortices which carry along with them definable regions of essentially irrotational fluid; however, the approach might be generalized to other flows which contain regions of concentrated vorticity. As an illustrative example, an application to the study of the transient changes in total circulation of individual vortex rings as they travel up a tube is described, taking into account the effect of the tube boundary. The accuracy of the method, assessed in part by a direct comparison with a laser Doppler measurement is felt to be well within experimental precision for vortex rings over a wide range of Reynolds numbers.
Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.
2005-01-01
A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.
Flow visualization methods for field test verification of CFD analysis of an open gloveport
Strons, Philip; Bailey, James L.
2017-01-01
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
Lukasczyk, Jonas; Weber, Gunther; Maciejewski, Ross; ...
2017-06-01
Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of features for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels are related to eachmore » other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to each other and enables users to effectively follow the evolution of components for different levels simultaneously. We show the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology simulations.« less
Castro, Marcelo A.
2013-01-01
About a decade ago, the first image-based computational hemodynamic studies of cerebral aneurysms were presented. Their potential for clinical applications was the result of a right combination of medical image processing, vascular reconstruction, and grid generation techniques used to reconstruct personalized domains for computational fluid and solid dynamics solvers and data analysis and visualization techniques. A considerable number of studies have captivated the attention of clinicians, neurosurgeons, and neuroradiologists, who realized the ability of those tools to help in understanding the role played by hemodynamics in the natural history and management of intracranial aneurysms. This paper intends to summarize the most relevant results in the field reported during the last years. PMID:24967285
O-Charoen, Sirimon; Srivannavit, Onnop; Gulari, Erdogan
2008-01-01
Microfluidic microarrays have been developed for economical and rapid parallel synthesis of oligonucleotide and peptide libraries. For a synthesis system to be reproducible and uniform, it is crucial to have a uniform reagent delivery throughout the system. Computational fluid dynamics (CFD) is used to model and simulate the microfluidic microarrays to study geometrical effects on flow patterns. By proper design geometry, flow uniformity could be obtained in every microreactor in the microarrays. PMID:17480053
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
Developing Chemistry and Kinetic Modeling Tools for Low-Temperature Plasma Simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Beckwith, Kris; Davidson, Bradley; Kruger, Scott; Pankin, Alexei; Roark, Christine; Stoltz, Peter
2015-09-01
We discuss the use of proper orthogonal decomposition (POD) methods in VSim, a FDTD plasma simulation code capable of both PIC/MCC and fluid modeling. POD methods efficiently generate smooth representations of noisy self-consistent or test-particle PIC data, and are thus advantageous in computing macroscopic fluid quantities from large PIC datasets (e.g. for particle-based closure computations) and in constructing optimal visual representations of the underlying physics. They may also confer performance advantages for massively parallel simulations, due to the significant reduction in dataset sizes conferred by truncated singular-value decompositions of the PIC data. We also demonstrate how complex LTP chemistry scenarios can be modeled in VSim via an interface with MUNCHKIN, a developing standalone python/C++/SQL code that identifies reaction paths for given input species, solves 1D rate equations for the time-dependent chemical evolution of the system, and generates corresponding VSim input blocks with appropriate cross-sections/reaction rates. MUNCHKIN also computes reaction rates from user-specified distribution functions, and conducts principal path analyses to reduce the number of simulated chemical reactions. Supported by U.S. Department of Energy SBIR program, Award DE-SC0009501.
NASA Astrophysics Data System (ADS)
Zakirov, T.; Galeev, A.; Khramchenkov, M.
2018-05-01
The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.
Computational prediction of hemolysis in a centrifugal ventricular assist device.
Pinotti, M; Rosa, E S
1995-03-01
This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Ross, Stephen R.; Wang, Yunzhi; Wu, Dee H.; Cornwell, Benjamin O.; Ray, Bappaditya; Zheng, Bin
2017-03-01
Aneurysmal subarachnoid hemorrhage (aSAH) is a form of hemorrhagic stroke that affects middle-aged individuals and associated with significant morbidity and/or mortality especially those presenting with higher clinical and radiologic grades at the time of admission. Previous studies suggested that blood extravasated after aneurysmal rupture was a potentially clinical prognosis factor. But all such studies used qualitative scales to predict prognosis. The purpose of this study is to develop and test a new interactive computer-aided detection (CAD) tool to detect, segment and quantify brain hemorrhage and ventricular cerebrospinal fluid on non-contrasted brain CT images. First, CAD segments brain skull using a multilayer region growing algorithm with adaptively adjusted thresholds. Second, CAD assigns pixels inside the segmented brain region into one of three classes namely, normal brain tissue, blood and fluid. Third, to avoid "black-box" approach and increase accuracy in quantification of these two image markers using CT images with large noise variation in different cases, a graphic User Interface (GUI) was implemented and allows users to visually examine segmentation results. If a user likes to correct any errors (i.e., deleting clinically irrelevant blood or fluid regions, or fill in the holes inside the relevant blood or fluid regions), he/she can manually define the region and select a corresponding correction function. CAD will automatically perform correction and update the computed data. The new CAD tool is now being used in clinical and research settings to estimate various quantitatively radiological parameters/markers to determine radiological severity of aSAH at presentation and correlate the estimations with various homeostatic/metabolic derangements and predict clinical outcome.
Computational study of the heat transfer of an avian egg in a tray.
Eren Ozcan, S; Andriessens, S; Berckmans, D
2010-04-01
The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.
Experimental aerothermodynamic research of hypersonic aircraft
NASA Technical Reports Server (NTRS)
Cleary, Joseph W.
1987-01-01
The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.
"Tools For Analysis and Visualization of Large Time- Varying CFD Data Sets"
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; vanGelder, Allen
1999-01-01
During the four years of this grant (including the one year extension), we have explored many aspects of the visualization of large CFD (Computational Fluid Dynamics) datasets. These have included new direct volume rendering approaches, hierarchical methods, volume decimation, error metrics, parallelization, hardware texture mapping, and methods for analyzing and comparing images. First, we implemented an extremely general direct volume rendering approach that can be used to render rectilinear, curvilinear, or tetrahedral grids, including overlapping multiple zone grids, and time-varying grids. Next, we developed techniques for associating the sample data with a k-d tree, a simple hierarchial data model to approximate samples in the regions covered by each node of the tree, and an error metric for the accuracy of the model. We also explored a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Computer Graphics) '96. In our initial implementation, we automatically image the volume from 32 approximately evenly distributed positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation.
Ciani, Cesare; Doty, Stephen B.; Fritton, Susannah P.
2009-01-01
Bone is a composite porous material with two functional levels of porosity: the vascular porosity that surrounds blood vessels and the lacunar-canalicular porosity that surrounds the osteocytes. Both the vascular porosity and lacunar-canalicular porosity are directly involved in interstitial fluid flow, thought to play an important role in bone’s maintenance. Because of the small dimensions of the lacunar-canalicular porosity, interstitial fluid space has been difficult to visualize and quantify. We report a new staining protocol that is reliable and easily reproducible, using fluorescein isothiocyanate (FITC) as a probe visualized by confocal microscopy. Reconstructed FITC-stained cross sections enable effective visualization of bone microstructure and microporosities. This new staining process can be used to analyze interstitial fluid space, providing high-resolution quantification of the vascular pores and the lacunar-canalicular network of cortical and cancellous bone. PMID:19442607
Seeing Fluid Physics via Visual Expertise Training
NASA Astrophysics Data System (ADS)
Hertzberg, Jean; Goodman, Katherine; Curran, Tim
2016-11-01
In a course on Flow Visualization, students often expressed that their perception of fluid flows had increased, implying the acquisition of a type of visual expertise, akin to that of radiologists or dog show judges. In the first steps towards measuring this expertise, we emulated an experimental design from psychology. The study had two groups of participants: "novices" with no formal fluids education, and "experts" who had passed as least one fluid mechanics course. All participants were trained to place static images of fluid flows into two categories (laminar and turbulent). Half the participants were trained on flow images with a specific format (Von Kármán vortex streets), and the other half on a broader group. Novices' results were in line with past perceptual expertise studies, showing that it is easier to transfer learning from a broad category to a new specific format than vice versa. In contrast, experts did not have a significant difference between training conditions, suggesting the experts did not undergo the same learning process as the novices. We theorize that expert subjects were able to access their conceptual knowledge about fluids to perform this new, visual task. This finding supports new ways of understanding conceptual learning.
NASA Astrophysics Data System (ADS)
Hou, Vivian W.; Davis, Calvin G.; Davis, Greg E.; Seibel, Eric J.
2016-03-01
Intrathecal fluorescein (ITF) enhances detection of cerebrospinal fluid rhinorrhea (CSFR). Clinically administered doses fall in the range of 0.1ml to 0.5ml of 5% to 10% fluorescein (1.3×10-3M to 1.3×10-2M). Though uncommon, significant morbidities associated with high doses of fluorescein have been reported. High concentrations are necessary for white light visual assessment; in contrast, fluorescent imaging enhances signal contrast and requires lower ITF concentrations for visualization. The ultrathin and flexible, multimodal scanning fiber endoscope (SFE) can visualize nanomolar concentrations of fluorescein as pseudocolor over reflectance, video-rate imaging. The application of the SFE for CSFR detection was assessed in a cadaver study. Briefly, 10μM (1×10-5M) fluorescein, 100X-1000X less than the standard clinical dose, was injected intra-cranially into the epidural space through an orbital roof puncture. The resulting rhinorrhea was assessed with a conventional, rigid ENT scope and second with the SFE in both video reflectance and multimodal fluorescent imaging modes. Neither system could visualize the 10μM ITF during white light imaging however the nanomolar sensitive SFE visualized the rhinorrhea during fluorescent imaging. Despite the low concentration used, a target-to-background ratio of 5.6 +/- 2.7 was achieved. To demonstrate SFE guidance of CSFR detection and repair, de-identified patient computed tomography (CT) scans were used to generate 3D printed phantoms. Cases were selected for unique anatomical features and overall clinical difficulty as determined by an experienced ENT clinician (GED). The sensitivity and minimally invasive nature of the SFE provide a unique platform for enhancing diagnosis and monitoring interventions in surgical endoscopic approaches into the sinuses.
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-01-01
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-05-15
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.
Off-surface infrared flow visualization
NASA Technical Reports Server (NTRS)
Manuel, Gregory S. (Inventor); Obara, Clifford J. (Inventor); Daryabeigi, Kamran (Inventor); Alderfer, David W. (Inventor)
1993-01-01
A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization.
Rabbi, Md Shifat-E; Hasan, Md Kamrul
2017-02-01
Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions. To measure the speckle density of the fluid filled lesions, two new criteria based on oscillation count of the windowed radio frequency signal and local variance of the normalized B-mode image are used. An improved speckle tracking technique is also proposed for strain imaging of the solid lesions and background. A wavelet-based integration technique is then proposed for combining the strain images from these two techniques for visualizing both the solid and fluid filled lesions from a common framework. The final output of our algorithm is a high quality composite strain image which can effectively visualize both solid and fluid filled breast lesions in addition to the speckle content of the fluid filled lesions for their discrimination. The performance of our algorithm is evaluated using the in vivo patient data and compared with recently reported techniques. The results show that both the solid and fluid filled lesions can be better visualized using our technique and the fluid filled lesions can be classified with good accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
Visualization of grid-generated turbulence in He II using PTV
NASA Astrophysics Data System (ADS)
Mastracci, B.; Guo, W.
2017-12-01
Due to its low viscosity, cryogenic He II has potential use for simulating large-scale, high Reynolds number turbulent flow in a compact and efficient apparatus. To realize this potential, the behavior of the fluid in the simplest cases, such as turbulence generated by flow past a mesh grid, must be well understood. We have designed, constructed, and commissioned an apparatus to visualize the evolution of turbulence in the wake of a mesh grid towed through He II. Visualization is accomplished using the particle tracking velocimetry (PTV) technique, where μm-sized tracer particles are introduced to the flow, illuminated with a planar laser sheet, and recorded by a scientific imaging camera; the particles move with the fluid, and tracking their motion with a computer algorithm results in a complete map of the turbulent velocity field in the imaging region. In our experiment, this region is inside a carefully designed He II filled cast acrylic channel measuring approximately 16 × 16 × 330 mm. One of three different grids, which have mesh numbers M = 3, 3.75, or 5 mm, can be attached to the pulling system which moves it through the channel with constant velocity up to 600 mm/s. The consequent motion of the solidified deuterium tracer particles is used to investigate the energy statistics, effective kinematic viscosity, and quantized vortex dynamics in turbulent He II.
Advanced optical measuring systems for measuring the properties of fluids and structures
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
NASA Technical Reports Server (NTRS)
Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.
Vortex filament method as a tool for computational visualization of quantum turbulence
Hänninen, Risto; Baggaley, Andrew W.
2014-01-01
The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873
Orbital cellulitis and brain abscess – rare complications of maxillo-spheno-ethmoidal rhinosinusitis
Constantin, Farah; Niculescu, Patricia-Alexandra; Petre, Oana; Balasa, Daniel; Tunas, Alexandru; Rusu, Ioana; Lupascu, Mihai; Orodel, Cristiana
2017-01-01
Sinus infections can be complicated by ocular infections and, in late phases, by brain parenchyma infection. The article debates the case of a 12-year-old patient suffering from paucisymptomatic maxillo-spheno-ethmoidal rhinosinusitis, which was later complicated by orbital cellulitis, ending with the development of a brain abscess. The treatment is complex, initially targeting the source of the infection through draining the collection by middle maxillary antrostomy and anterior posterior ethmoidectomy, then the ablation of the brain abscess and postoperatively with prolonged massive antibiotherapy. Abbreviation: URI = upper respiratory infection, CT = computer tomography, MRI = magnetic resonance imaging, BA = brain abscess, VAS = visual scale of pain, ENT = ear, nose, throat, RE VA = right eye visual acuity, RE = right eye, CSF = cerebrospinal fluid PMID:29450387
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.
1991-01-01
A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.
Jones, Cameron C; McDonough, James M; Capasso, Patrizio; Wang, Dongfang; Rosenstein, Kyle S; Zwischenberger, Joseph B
2013-10-01
Computational fluid dynamics (CFD) is a useful tool in characterizing artificial lung designs by providing predictions of device performance through analyses of pressure distribution, perfusion dynamics, and gas transport properties. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. Biplane X-ray digital subtraction angiography was used to visualize flow of a blood analogue through a commercial membrane oxygenator at 1-4.5 L/min. Permeability and inertial coefficients of the Ergun equation were experimentally determined to be 180 and 2.4, respectively. Numerical simulations treating the fiber bundle as a single momentum sink according to the Ergun equation accurately predicted pressure losses across the fiber membrane, but significantly underestimated velocity magnitudes in the fiber bundle. A scaling constant was incorporated into the numerical porosity and reduced the average difference between experimental and numerical values in the porous media regions from 44 ± 4% to 6 ± 5%.
Virtual reality in radiology: virtual intervention
NASA Astrophysics Data System (ADS)
Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.
1995-04-01
Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).
Efficient LBM visual simulation on face-centered cubic lattices.
Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus
2009-01-01
The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.
Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.
2014-01-01
We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasseff, Byron
2016-07-29
NUFLOOD Version 1.x is a surface-water hydrodynamic package designed for the simulation of overland flow of fluids. It consists of various routines to address a wide range of applications (e.g., rainfall-runoff, tsunami, storm surge) and real time, interactive visualization tools. NUFLOOD has been designed for general-purpose computers and workstations containing multi-core processors and/or graphics processing units. The software is easy to use and extensible, constructed in mind for instructors, students, and practicing engineers. NUFLOOD is intended to assist the water resource community in planning against water-related natural disasters.
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk
2014-01-01
Purpose To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. Methods A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initialintravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Results Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. Conclusions IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism. PMID:25120338
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong
2014-08-01
To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.
EDITORIAL: Focus on Visualization in Physics FOCUS ON VISUALIZATION IN PHYSICS
NASA Astrophysics Data System (ADS)
Sanders, Barry C.; Senden, Tim; Springel, Volker
2008-12-01
Advances in physics are intimately connected with developments in a new technology, the telescope, precision clocks, even the computer all have heralded a shift in thinking. These landmark developments open new opportunities accelerating research and in turn new scientific directions. These technological drivers often correspond to new instruments, but equally might just as well flag a new mathematical tool, an algorithm or even means to visualize physics in a new way. Early on in this twenty-first century, scientific communities are just starting to explore the potential of digital visualization. Whether visualization is used to represent and communicate complex concepts, or to understand and interpret experimental data, or to visualize solutions to complex dynamical equations, the basic tools of visualization are shared in each of these applications and implementations. High-performance computing exemplifies the integration of visualization with leading research. Visualization is an indispensable tool for analyzing and interpreting complex three-dimensional dynamics as well as to diagnose numerical problems in intricate parallel calculation algorithms. The effectiveness of visualization arises by exploiting the unmatched capability of the human eye and visual cortex to process the large information content of images. In a brief glance, we recognize patterns or identify subtle features even in noisy data, something that is difficult or impossible to achieve with more traditional forms of data analysis. Importantly, visualizations guide the intuition of researchers and help to comprehend physical phenomena that lie far outside of direct experience. In fact, visualizations literally allow us to see what would otherwise remain completely invisible. For example, artificial imagery created to visualize the distribution of dark matter in the Universe has been instrumental to develop the notion of a cosmic web, and for helping to establish the current standard model of cosmology wherein this (in principle invisible) dark matter dominates the cosmic matter content. The advantages of visualization found for simulated data also hold for real world data as well. With the application of computerized acquisition many scientific disciplines are witnessing exponential growth rates of the volume of accumulated raw data, which often makes it daunting to condense the information into a manageable form, a challenge that can be addressed by modern visualization techniques. Such visualizations are also often an enticing way to communicate scientific results to the general public. This need for visualization is especially true in basic science, with its reliance on a benevolent and interested general public that drives the need for high-quality visualizations. Despite the widespread use of visualization, this technology has suffered from a lack of the unifying influence of shared common experiences. As with any emerging technology practitioners have often independently found solutions to similar problems. It is the aim of this focus issue to celebrate the importance of visualization, report on its growing use by the broad community of physicists, including biophysics, chemical physics, geophysics, astrophysics, and medical physics, and provide an opportunity for the diverse community of scientists using visualization to share work in one issue of a journal that itself is in the vanguard of supporting visualization and multimedia. A remarkable breadth and diversity of visualization in physics is to be found in this issue spanning fundamental aspects of relativity theory to computational fluid dynamics. The topics span length scales that are as small as quantum phenomena to the entire observable Universe. We have been impressed by the quality of the submissions and hope that this snap-shot will introduce, inform, motivate and maybe even help to unify visualization in physics. Readers are also directed to the December issue of Physics World which includes the following features highlighting work in this collection and other novel uses of visualization techniques: 'A feast of visualization' Physics World December 2008 pp 20 23 'Seeing the quantum world' by Barry Sanders Physics World December 2008 pp 24 27 'A picture of the cosmos' by Mark SubbaRao and Miguel Aragon-Calvo Physics World December 2008 pp 29 32 'Thinking outside the cube' by César A Hidalgo Physics World December 2008 pp 34 37 Focus on Visualization in Physics Contents Visualization of spiral and scroll waves in simulated and experimental cardiac tissue E M Cherry and F H Fenton Visualization of large scale structure from the Sloan Digital Sky Survey M U SubbaRao, M A Aragón-Calvo, H W Chen, J M Quashnock, A S Szalay and D G York How computers can help us in creating an intuitive access to relativity Hanns Ruder, Daniel Weiskopf, Hans-Peter Nollert and Thomas Müller Lagrangian particle tracking in three dimensions via single-camera in-line digital holography Jiang Lu, Jacob P Fugal, Hansen Nordsiek, Ewe Wei Saw, Raymond A Shaw and Weidong Yang Quantifying spatial heterogeneity from images Andrew E Pomerantz and Yi-Qiao Song Disaggregation and scientific visualization of earthscapes considering trends and spatial dependence structures S Grunwald Strength through structure: visualization and local assessment of the trabecular bone structure C Räth, R Monetti, J Bauer, I Sidorenko, D Müller, M Matsuura, E-M Lochmüller, P Zysset and F Eckstein Thermonuclear supernovae: a multi-scale astrophysical problem challenging numerical simulations and visualization F K Röpke and R Bruckschen Visualization needs and techniques for astrophysical simulations W Kapferer and T Riser Flow visualization and field line advection in computational fluid dynamics: application to magnetic fields and turbulent flows Pablo Mininni, Ed Lee, Alan Norton and John Clyne Splotch: visualizing cosmological simulations K Dolag, M Reinecke, C Gheller and S Imboden Visualizing a silicon quantum computer Barry C Sanders, Lloyd C L Hollenberg, Darran Edmundson and Andrew Edmundson Colliding galaxies, rotating neutron stars and merging black holes—visualizing high dimensional datasets on arbitrary meshes Werner Benger A low complexity visualization tool that helps to perform complex systems analysis M G Beiró, J I Alvarez-Hamelin and J R Busch Visualizing astrophysical N-body systems John Dubinski
Vendemia, Nicholas; Chao, Jerry; Ivanidze, Jana; Sanelli, Pina; Spinelli, Henry M
2011-01-01
Medpor (Porex Surgical, Inc, Newnan, GA) is composed of porous polyethylene and is commonly used in craniofacial reconstruction. When complications such as seroma or abscess formation arise, diagnostic modalities are limited because Medpor is radiolucent on conventional radiologic studies. This poses a problem in situations where imaging is necessary to distinguish the implant from surrounding tissues. To present a clinically useful method for imaging Medpor with conventional computed tomographic (CT) scanning. Eleven patients (12 total implants) who have undergone reconstructive surgery with Medpor were included in the study. A retrospective review of CT scans done between 1 and 16 months postoperatively was performed using 3 distinct CT window settings. Measurements of implant dimensions and Hounsfield units were recorded and qualitatively assessed. Of the 3 distinct window settings studied, namely, "bone" (W1100/L450), "soft tissue"; (W500/L50), and "implant" (W800/L200), the implant window proved the most ideal, allowing the investigators to visualize and evaluate Medpor in all cases. Qualitative analysis revealed that Medpor implants were able to be distinguished from surrounding tissue in both the implant and soft tissue windows, with a density falling between that of fat and fluid. In 1 case, Medpor could not be visualized in the soft tissue window, although it could be visualized in the implant window. Quantitative analysis demonstrated a mean (SD) density of -38.7 (7.4) Hounsfield units. Medpor may be optimally visualized on conventional CT scans using the implant window settings W800/L200, which can aid in imaging Medpor and diagnosing implant-related complications.
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Obara, Clifford J.; Fisher, Bruce D.; Fisher, David F.
2001-01-01
Geometrical, flight, computational fluid dynamics (CFD), and wind-tunnel studies for the F-16XL-1 airplane are summarized over a wide range of test conditions. Details are as follows: (1) For geometry, the upper surface of the airplane and the numerical surface description compare reasonably well. (2) For flight, CFD, and wind-tunnel surface pressures, the comparisons are generally good at low angles of attack at both subsonic and transonic speeds, however, local differences are present. In addition, the shock location at transonic speeds from wind-tunnel pressure contours is near the aileron hinge line and generally is in correlative agreement with flight results. (3) For boundary layers, flight profiles were predicted reasonably well for attached flow and underneath the primary vortex but not for the secondary vortex. Flight data indicate the presence of an interaction of the secondary vortex system and the boundary layer and the boundary-layer measurements show the secondary vortex located more outboard than predicted. (4) Predicted and measured skin friction distributions showed qualitative agreement for a two vortex system. (5) Web-based data-extraction and computational-graphical tools have proven useful in expediting the preceding comparisons. (6) Data fusion has produced insightful results for a variety of visualization-based data sets.
The Transformative Experience in Engineering Education
NASA Astrophysics Data System (ADS)
Goodman, Katherine Ann
This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
Background Oriented Schlieren Using Celestial Objects
NASA Technical Reports Server (NTRS)
Haering, Edward, A., Jr. (Inventor); Hill, Michael A (Inventor)
2017-01-01
The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.
Achilles, N; Pasch, N; Lintermann, A; Schröder, W; Mösges, R
2013-02-01
This systematic review aims first to summarize the previous areas of application of computational fluid dynamics (CFD) and then to demonstrate that CFD is also a suitable instrument for generating three-dimensional images that depict drug effects on nasal mucosa. Special emphasis is placed on the three-dimensional visualization of the antiobstructive effect of nasal steroids and antihistamines in the treatment of allergic rhinitis. In the beginning, CFD technology was only used to demonstrate physiological and pathophysiological airflow conditions in the nose and to aid in preoperative planning and postoperative monitoring of surgical outcome in the field of rhinosurgery. The first studies using CFD examined nasal respiratory physiology, important functions of the nose, such as conditioning and warming of inspired air, and the influence of pathophysiological changes on nasal breathing. Also, postoperative outcome of surgical procedures could be "predicted" using the nasal airflow model. Later studies focused on the three-dimensional visualization of the effect of nasal sprays in healthy subjects and postoperative patients. A completely new approach, however, was the use of CFD in the area of allergic rhinitis and the treatment of its cardinal symptom of nasal obstruction. In two clinical trials, a suitable patient with a positive history of allergic rhinitis was enrolled during a symptom-free period after the pollen season. The patient developed typical allergic rhinitis symptoms after provocation with birch pollen. The 3-D visualization showed that the antiallergic treatment successfully counteracted the effects of nasal allergen provocation on nasal airflow. These observations were attributed to the antiobstructive effect of a nasal steroid (mometasone furoate) and a systemic antihistamine (levocetirizine), respectively. CFD therefore constitutes a non-invasive, precise, reliable and objective examination procedure for generating three-dimensional images that depict the effects of drugs used in the treatment of allergic rhinitis.
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
Bedside sonography for the diagnosis of esophageal food impaction.
Singleton, Jennifer; Schafer, Jesse M; Hinson, Jeremiah S; Kane, Erin M; Wright, Sherieka; Hoffmann, Beatrice
2017-05-01
Esophageal foreign body (EFB) and impaction are common gastrointestinal emergencies. Detection with standard imaging can be challenging. Computed tomography is a commonly used non-invasive imaging modality, but is not 100% sensitive and not always feasible. Sensitivity of plain film x-ray varies widely and the addition of a barium swallow can obscure evaluation by subsequent esophagogastroduodenoscopy (EGD). Use of emergency ultrasound (EUS) for detection of EFB in adults has not been previously studied. To evaluate the role of EUS in detection of EFB and to characterize sonographic findings. A case control series of five patients with clinical suspicion of EFB underwent EUS, and findings were compared to five healthy controls. Patients were evaluated for persistent air-fluid levels after swallowing, esophageal dilatation, and visualization of EFB. All patients with suspected EFB had esophageal dilatation (17.5mm vs 9.3mm in healthy controls; p=0.0011) and persistent air-fluid levels after swallowing. EFB was visualized on EUS in 60% of patients. All patients had EFB confirmed on EGD except one, who vomited a significant food bolus during EUS and prior to EGD. In patients with suspected EFB, point-of-care ultrasound may identify those with impaction. Suggestive findings include cervical esophageal dilatation and persistent intraluminal air-fluid levels after swallowing. EUS is a rapid, convenient test with the potential to expedite definitive management while decreasing cost and radiation exposure in this patient population. Copyright © 2017 Elsevier Inc. All rights reserved.
Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M
2008-03-01
The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Braun, M. Jack
1994-01-01
The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.
Design and Development of Low-Cost Water Tunnel for Educational Purpose
NASA Astrophysics Data System (ADS)
Zahari, M.; Dol, S. S.
2015-04-01
The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.
Instrumentation, performance visualization, and debugging tools for multiprocessors
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.
1991-01-01
The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James L.
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.
2017-06-01
Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.
Alperin, Noam; Bagci, Ahmet M; Oliu, Carlos J; Lee, Sang H; Lam, Byron L
2017-10-16
Notice of retraction: the article "Role of Cerebral Spinal Fluid in Space Flight Induced Ocular Changes and Visual Impairment in Astronauts" by Alperin et al This article has been retracted due to security concerns raised by NASA, the sponsoring agency. © RSNA, 2017.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
NASA Astrophysics Data System (ADS)
Trujillo, Steven Mathew
Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a more uniform flow in the near-wall region resulting from wall oscillation. Quantitative analyses of the visualizations supported the velocity-based Reynolds-stress reductions; the same data also revealed that the quasi-streamwise vortical structures above the wall did not appear to be altered significantly by the wall motion.
A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration.
Schmidt-Erfurth, Ursula; Waldstein, Sebastian M
2016-01-01
Neovascular age-related macular degeneration (AMD) has undergone substantial break-throughs in diagnostic as well as therapeutic respect, with optical coherence tomography (OCT) allowing to identify disease morphology in great detail, and intravitreal anti-vascular endothelial growth factor therapy providing unprecedented benefit. However, these two paths have yet not been combined in an optimal way, real-world outcomes are inferior to expectations, and disease management is largely inefficient in the real-world setting. This dilemma can be solved by identification of valid biomarkers relevant for visual function, disease activity and prognosis, which can provide solid guidance for therapeutic management on an individual level as well as on the population base. Qualitative and quantitative morphological features obtained by advanced OCT provide novel insight into exudative and degenerative stages of neovascular AMD. However, conclusions from structure/function correlations evolve differently from previous paradigms. While central retinal thickness was used as biomarker for guiding retreatment management in clinical trials and practice, fluid localization in different compartments offers superior prognostic value: Intraretinal cystoid fluid has a negative impact on visual acuity and is considered as degenerative when persisting through the initial therapeutic interval. Subretinal fluid is associated with superior visual benefit and a lower rate of progression towards geographic atrophy. Detachment of the retinal pigment epithelium was identified as most pathognomonic biomarker, often irresponsive to therapy and responsible for visual decline during a pro-re-nata regimen. Alterations of neurosensory tissue are usually associated with irreversible loss of functional elements and a negative prognosis. Novel OCT technologies offer crucial insight into corresponding changes at the level of the photoreceptor--retinal pigment epithelial--choriocapillary unit, identifying the biological limits of therapeutic interventions. To optimally benefit from high-resolution multi-modal imaging, an integrated analysis of all functional and structural features is required involving reliable automated algorithms and computational data analyses. Using innovative analysis methods, retinal biomarkers can be used to provide efficient personalized therapy for the individual patient, predictive disease- and population-based models for large-scale management and identifying promising targets for the development of novel therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Personal computer (PC) based image processing applied to fluid mechanics research
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
Lee, Won-Ho; Lee, Jong-Chul
2018-09-01
A numerical simulation was developed for magnetic nanoparticles in a liquid dielectric to investigate the AC breakdown voltage of the magnetic nanofluids according to the volume concentration of the magnetic nanoparticles. In prior research, we found that the dielectric breakdown voltage of the transformer oil-based magnetic nanofluids was positively or negatively affected according to the amount of magnetic nanoparticles under a testing condition of dielectric fluids, and the trajectory of the magnetic nanoparticles in a fabricated chip was visualized to verify the related phenomena via measurements and computations. In this study, a numerical simulation of magnetic nanoparticles in an insulating fluid was developed to model particle tracing for AC breakdown mechanisms happened to a sphere-sphere electrode configuration and to propose a possible mechanism regarding the change in the breakdown strength due to the behavior of the magnetic nanoparticles with different applied voltages.
Fluid structure interaction model for biological systems in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Aziz, Asim; Shoaib, Muhammad
2016-06-01
In the present paper a one-dimensional mathematical model of a cerebral aneurysm is considered. The model combines the interaction between the arterial wall structure, blood pressure and the cerebral spinal fluid (CSF) that is around the aneurysm. CSF is considered electrically conducting in the presence of a uniform magnetic field. Therefore, it may be possible to control pressure and its flow behavior by using an appropriate magnetic field. Hence, such studies have potential for the treatment of Cerebral aneurysms, diseases of heart and blood vessels. The modeled mathematical equations are solved algebraically and the displacement of the arterial wall is plotted to visualize the wall movement. It is evident from the graphs the inclusion of magnetic field reduce the movement of the arterial wall and in turn prevent the rupture of the cerebral aneurysm. The solution is also investigated using computational tools for various other parameters involve in the model.
Laser-Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.
2005-01-01
OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.
Three-Dimensional User Interfaces for Immersive Virtual Reality
NASA Technical Reports Server (NTRS)
vanDam, Andries
1997-01-01
The focus of this grant was to experiment with novel user interfaces for immersive Virtual Reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. Our primary test application was a scientific visualization application for viewing Computational Fluid Dynamics (CFD) datasets. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past year, and extends last year's final report of the first three years of the grant.
Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.
2014-01-01
Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.
Chylothorax diagnosis: can the clinical chemistry laboratory do more?
Gibbons, Stephen M; Ahmed, Farhan
2015-01-01
Chylothorax is a rare anatomical disruption of the thoracic duct associated with a significant degree of morbidity and mortality. Diagnosis usually relies upon lipid analysis and visual inspection of the pleural fluid. However, this may be subject to incorrect interpretation. The aim of this study was to compare pleural fluid lipid analysis and visual inspection against lipoprotein electrophoresis. Nine pleural effusion samples suspected of being chylothorax were analysed. A combination of fluid lipid analysis and visual inspection was compared with lipoprotein electrophoresis for the detection of chylothorax. There was 89% concordance between the two methods. Using lipoprotein electrophoresis as gold standard, calculated sensitivity, specificity, negative predictive value and positive predictive value for lipid analysis/visual inspection were 83%, 100%, 100% and 75%, respectively. Examination of pleural effusion samples by lipoprotein electrophoresis may provide important additional information in the diagnosis of chylothorax. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
High-Performance Computing and Visualization | Energy Systems Integration
Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system
Bowel perforation detection using metabolic fluorescent chlorophylls
NASA Astrophysics Data System (ADS)
Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook
2016-03-01
Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.
Visualization in aerospace research with a large wall display system
NASA Astrophysics Data System (ADS)
Matsuo, Yuichi
2002-05-01
National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2015-04-01
Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction is thermodynamically favorable under a broad range of conditions. This includes low temperatures and absence of microbial catalysators. Our approach has potential for use in other applications that involve exploration of relationships in geochemical simulation model data.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Damaris: Addressing performance variability in data management for post-petascale simulations
Dorier, Matthieu; Antoniu, Gabriel; Cappello, Franck; ...
2016-10-01
With exascale computing on the horizon, reducing performance variability in data management tasks (storage, visualization, analysis, etc.) is becoming a key challenge in sustaining high performance. Here, this variability significantly impacts the overall application performance at scale and its predictability over time. In this article, we present Damaris, a system that leverages dedicated cores in multicore nodes to offload data management tasks, including I/O, data compression, scheduling of data movements, in situ analysis, and visualization. We evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 computational fluid dynamic simulation on four platforms, including NICS’s Kraken and NCSA’s Blue Waters.more » Our results show that (1) Damaris fully hides the I/O variability as well as all I/O-related costs, thus making simulation performance predictable; (2) it increases the sustained write throughput by a factor of up to 15 compared with standard I/O approaches; (3) it allows almost perfect scalability of the simulation up to over 9,000 cores, as opposed to state-of-the-art approaches that fail to scale; and (4) it enables a seamless connection to the VisIt visualization software to perform in situ analysis and visualization in a way that impacts neither the performance of the simulation nor its variability. In addition, we extended our implementation of Damaris to also support the use of dedicated nodes and conducted a thorough comparison of the two approaches—dedicated cores and dedicated nodes—for I/O tasks with the aforementioned applications.« less
Damaris: Addressing performance variability in data management for post-petascale simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorier, Matthieu; Antoniu, Gabriel; Cappello, Franck
With exascale computing on the horizon, reducing performance variability in data management tasks (storage, visualization, analysis, etc.) is becoming a key challenge in sustaining high performance. Here, this variability significantly impacts the overall application performance at scale and its predictability over time. In this article, we present Damaris, a system that leverages dedicated cores in multicore nodes to offload data management tasks, including I/O, data compression, scheduling of data movements, in situ analysis, and visualization. We evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 computational fluid dynamic simulation on four platforms, including NICS’s Kraken and NCSA’s Blue Waters.more » Our results show that (1) Damaris fully hides the I/O variability as well as all I/O-related costs, thus making simulation performance predictable; (2) it increases the sustained write throughput by a factor of up to 15 compared with standard I/O approaches; (3) it allows almost perfect scalability of the simulation up to over 9,000 cores, as opposed to state-of-the-art approaches that fail to scale; and (4) it enables a seamless connection to the VisIt visualization software to perform in situ analysis and visualization in a way that impacts neither the performance of the simulation nor its variability. In addition, we extended our implementation of Damaris to also support the use of dedicated nodes and conducted a thorough comparison of the two approaches—dedicated cores and dedicated nodes—for I/O tasks with the aforementioned applications.« less
Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
Visualization of time-varying MRI data for MS lesion analysis
NASA Astrophysics Data System (ADS)
Tory, Melanie K.; Moeller, Torsten; Atkins, M. Stella
2001-05-01
Conventional methods to diagnose and follow treatment of Multiple Sclerosis require radiologists and technicians to compare current images with older images of a particular patient, on a slic-by-slice basis. Although there has been progress in creating 3D displays of medical images, little attempt has been made to design visual tools that emphasize change over time. We implemented several ideas that attempt to address this deficiency. In one approach, isosurfaces of segmented lesions at each time step were displayed either on the same image (each time step in a different color), or consecutively in an animation. In a second approach, voxel- wise differences between time steps were calculated and displayed statically using ray casting. Animation was used to show cumulative changes over time. Finally, in a method borrowed from computational fluid dynamics (CFD), glyphs (small arrow-like objects) were rendered with a surface model of the lesions to indicate changes at localized points.
CFD Data Sets on the WWW for Education and Testing
NASA Technical Reports Server (NTRS)
Globus, Al; Lasinski, T. A. (Technical Monitor)
1995-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center has begun the development of a Computational Fluid Dynamics (CFD) data set archive on the World Wide Web (WWW) at URL http://www.nas.nasa.gov/NAS/DataSets/. Data sets are integrated with related information such as research papers, metadata, visualizations, etc. In this paper, four classes of users are identified and discussed: students, visualization developers, CFD practitioners, and management. Bandwidth and security issues are briefly reviewed and the status of the archive as of May 1995 is examined. Routine network distribution of data sets is likely to have profound implications for the conduct of science. The exact nature of these changes is subject to speculation, but the ability for anyone to examine the data, in addition to the investigator's analysis, may well play an important role in the future.
Interactive Visualization of Computational Fluid Dynamics using Mosaic
NASA Technical Reports Server (NTRS)
Clucas, Jean; Watson, Velvin; Chancellor, Marisa K. (Technical Monitor)
1994-01-01
The Web provides new Methods for accessing Information world-wide, but the current text-and-pictures approach neither utilizes all the Web's possibilities not provides for its limitations. While the inclusion of pictures and animations in a paper communicates more effectively than text alone, It Is essentially an extension of the concept of "publication." Also, as use of the Web increases putting images and animations online will quickly load even the "Information Superhighway." We need to find forms of communication that take advantage of the special nature of the Web. This paper presents one approach: the use of the Internet and the Mosaic interface for data sharing and collaborative analysis. We will describe (and In the presentation, demonstrate) our approach: using FAST (Flow Analysis Software Toolkit), a scientific visualization package, as a data viewer and interactive tool called from MOSAIC. Our intent is to stimulate the development of other tools that utilize the unique nature of electronic communication.
NASA Astrophysics Data System (ADS)
Atkins, Daniel L.
Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during cooling. Low-temperature additives modified the crystal habit of the Jet A fuel. Crystal shapes and sizes were recorded for use in future computational modeling. In the second segment, a computational fluid dynamics model was developed that simulates the solidification of jet fuel due to freezing in a buoyancy-driven flow. Flow resistance caused by porous crystal structures that exist in liquid-solid regions is simulated through the use of a momentum resistance source term. (Abstract shortened by UMI.)
A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation
NASA Astrophysics Data System (ADS)
Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.
2014-11-01
In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).
Moreira Neto, Carlos Augusto; Moreira Junior, Carlos Augusto
2013-01-01
To evaluate 5 patients with serous macular detachment due to optic disc pit that were submitted to pars plana vitrectomy and were followed for at least 7 years. Patients were submitted to pars plana vitrectomy, posterior hyaloid removal, autologous serum injection and gas-fluid exchange, without laser photocoagulation, and were evaluated pre and post-operatively with visual acuity and Amsler grid testing, retinography, and recently, with autofluorescence imaging and high resolution OCT. All 5 eyes improved visual acuity significantly following the surgical procedure maintaining good vision throughout the follow-up period. Mean pre-operative visual acuity was 20/400 and final visual acuity was 20/27 with a mean follow-up time of 13.6 years. No recurrences of serous detachments were observed. OCT examinations demonstrated an attached retina up to the margin of the pit. Serous macular detachments due to optic disc pits were adequately treated with pars plana vitrectomy and gas fluid exchange, without the need for laser photocoagulation, maintaining excellent visual results for a long period of time.
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
Experimental and numerical study of the British Experimental Rotor Programme blade
NASA Technical Reports Server (NTRS)
Brocklehurst, Alan; Duque, Earl P. N.
1990-01-01
Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.
1983-01-01
A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.
Bringing "Scientific Expeditions" Into the Schools
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as simulations or measurements of fluid dynamics). The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics (CFD) and wind tunnel testing. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualiZation of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: 1. The visual is much higher in resolution (1280xl024 pixels with 24 bits of color) than typical video format transmitted over the network. 2. The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). 3. A rich variety of guided expeditions through the data can be included easily. 4. A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. 5. The scenes can be viewed in 3D using stereo vision. 6. The network bandwidth used for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.)
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Optical elements formed by compressed gases: Analysis and potential applications
NASA Technical Reports Server (NTRS)
Howes, W. L.
1986-01-01
Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.
CAPRI: Using a Geometric Foundation for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
2002-01-01
CAPRI (Computational Analysis Programming Interface) is a software development tool intended to make computerized design, simulation and analysis faster and more efficient. The computational steps traditionally taken for most engineering analysis (Computational Fluid Dynamics (CFD), structural analysis, etc.) are: Surface Generation, usually by employing a Computer Aided Design (CAD) system; Grid Generation, preparing the volume for the simulation; Flow Solver, producing the results at the specified operational point; Post-processing Visualization, interactively attempting to understand the results. It should be noted that the structures problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go IGES files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D) data formats and the upcoming CGNS). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Instead of the serial approach to analysis, CAPRI takes a geometry centric approach. CAPRI is a software building tool-kit that refers to two ideas: (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. The connection to the geometry is made through an Application Programming Interface (API) and not a file system.
Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.
1993-01-01
An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.
Computational analysis of unmanned aerial vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran
2017-01-01
A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.
Development of a Multi-Disciplinary Computing Environment (MDICE)
NASA Technical Reports Server (NTRS)
Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.
1999-01-01
The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.
Active microrheology and simultaneous visualization of sheared phospholipid monolayers
Choi, S.Q.; Steltenkamp, S.; Zasadzinski, J.A.; Squires, T.M.
2011-01-01
Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries. PMID:21587229
77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1
NASA Technical Reports Server (NTRS)
Williams, Robert W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith
Zhou, Ye; Herring, Jackson
2017-05-12
Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.
Special issue of Computers and Fluids in honor of Cecil E. (Chuck) Leith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye; Herring, Jackson
Here, this special issue of Computers and Fluids is dedicated to Cecil E. (Chuck) Leith in honor of his research contributions, leadership in the areas of statistical fluid mechanics, computational fluid dynamics, and climate theory. Leith's contribution to these fields emerged from his interest in solving complex fluid flow problems--even those at high Mach numbers--in an era well before large scale supercomputing became the dominant mode of inquiry into these fields. Yet the issues raised and solved by his research effort are still of vital interest today.
Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade
2016-11-01
turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis
Harnessing vision for computation.
Changizi, Mark
2008-01-01
Might it be possible to harness the visual system to carry out artificial computations, somewhat akin to how DNA has been harnessed to carry out computation? I provide the beginnings of a research programme attempting to do this. In particular, new techniques are described for building 'visual circuits' (or 'visual software') using wire, NOT, OR, and AND gates in a visual 6modality such that our visual system acts as 'visual hardware' computing the circuit, and generating a resultant perception which is the output.
Computational fluid dynamics applications to improve crop production systems
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Visualization study of counterflow in superfluid 4He using metastable helium molecules.
Guo, W; Cahn, S B; Nikkel, J A; Vinen, W F; McKinsey, D N
2010-07-23
Heat is transferred in superfluid 4He via a process known as thermal counterflow. It has been known for many years that above a critical heat current the superfluid component in this counterflow becomes turbulent. It has been suspected that the normal-fluid component may become turbulent as well, but experimental verification is difficult without a technique for visualizing the flow. Here we report a series of visualization studies on the normal-fluid component in a thermal counterflow performed by imaging the motion of seeded metastable helium molecules using a laser-induced-fluorescence technique. We present evidence that the flow of the normal fluid is indeed turbulent at relatively large velocities. Thermal counterflow in which both components are turbulent presents us with a theoretically challenging type of turbulent behavior that is new to physics.
Visualization of fluid dynamics at NASA Ames
NASA Technical Reports Server (NTRS)
Watson, Val
1989-01-01
The hardware and software currently used for visualization of fluid dynamics at NASA Ames is described. The software includes programs to create scenes (for example particle traces representing the flow over an aircraft), programs to interactively view the scenes, and programs to control the creation of video tapes and 16mm movies. The hardware includes high performance graphics workstations, a high speed network, digital video equipment, and film recorders.
Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Sarukkai, Sekhar R.; Mehra, Pankaj; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper presents a methodology for debugging the performance of message-passing programs on both tightly coupled and loosely coupled distributed-memory machines. The AIMS (Automated Instrumentation and Monitoring System) toolkit, a suite of software tools for measurement and analysis of performance, is introduced and its application illustrated using several benchmark programs drawn from the field of computational fluid dynamics. AIMS includes (i) Xinstrument, a powerful source-code instrumentor, which supports both Fortran77 and C as well as a number of different message-passing libraries including Intel's NX Thinking Machines' CMMD, and PVM; (ii) Monitor, a library of timestamping and trace -collection routines that run on supercomputers (such as Intel's iPSC/860, Delta, and Paragon and Thinking Machines' CM5) as well as on networks of workstations (including Convex Cluster and SparcStations connected by a LAN); (iii) Visualization Kernel, a trace-animation facility that supports source-code clickback, simultaneous visualization of computation and communication patterns, as well as analysis of data movements; (iv) Statistics Kernel, an advanced profiling facility, that associates a variety of performance data with various syntactic components of a parallel program; (v) Index Kernel, a diagnostic tool that helps pinpoint performance bottlenecks through the use of abstract indices; (vi) Modeling Kernel, a facility for automated modeling of message-passing programs that supports both simulation -based and analytical approaches to performance prediction and scalability analysis; (vii) Intrusion Compensator, a utility for recovering true performance from observed performance by removing the overheads of monitoring and their effects on the communication pattern of the program; and (viii) Compatibility Tools, that convert AIMS-generated traces into formats used by other performance-visualization tools, such as ParaGraph, Pablo, and certain AVS/Explorer modules.
Deformation of a 3D granular media caused by fluid invasion
NASA Astrophysics Data System (ADS)
Dalbe, M. J.; Juanes, R.
2016-12-01
Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.
Deformation of a 3D granular media caused by fluid invasion
NASA Astrophysics Data System (ADS)
Dalbe, Marie-Julie; Juanes, Ruben
2016-11-01
Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing. Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
30 CFR 250.514 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and... shall include both a visual and an audible warning device. (c) When coming out of the hole with drill... collars that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...
Flight of the dragonflies and damselflies.
Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti
2016-09-26
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.
Flight of the dragonflies and damselflies
Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti
2016-01-01
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528779
Long-term evaluation of a new ventriculoperitoneal shunt valve system in a dog.
Filgueiras, Richard da Rocha; Martins, Christine de Souza; de Almeida, Ricardo Miyasaka; Silva, Rosana Marques; da Rocha, Martha de Souza Teixeira; Firmino, Fernanda de Paula; Maguilnik, Samara; Medeiros, Luíza Quintão
2009-12-01
To report on the use of a new ventriculoperitoneal shunt (VPS) valve system utilized in a dog with hydrocephalus and to describe the clinical course over 20 months after implantation. A 3-month-old female Lhasa Apso dog was presented with lateral strabismus, domed calvarium, and visual deficits. A lateral skull radiograph revealed a persistent fontanelle. Transfontanellar ultrasonographic examination and computed tomographic examination showed excessive accumulation of fluid within the ventricles. The owner had observed symptoms as early as 1 month after birth, suggesting congenital hydrocephalus. A VPS with a new valve system that inhibits cerebrospinal fluid overdrainage and obstruction of the catheter was implanted. The dog showed clinical improvement 48 hours after the procedure. Twenty days after shunt implantation, another computed tomography scan was performed that showed reduction in ventricle size. The evaluation of VPS patency was carried out 20 months after surgery and demonstrated that the system was working properly without obstruction. There are reports in the literature describing the use of several devices to perform VPS in dogs. A new device not previously described in the veterinary literature was used in this case report, and according to the manufacturer's description, this device inhibits proteinaceous build-up, which is usually responsible for subsequent catheter obstructions.
HART-II Acoustic Predictions using a Coupled CFD/CSD Method
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2009-01-01
This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.
Physically-Based Modelling and Real-Time Simulation of Fluids.
NASA Astrophysics Data System (ADS)
Chen, Jim Xiong
1995-01-01
Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.
The efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment.
Jang, Ji Hye; Kim, Yu Cheol; Kim, Kwang Soo
2009-12-01
This study was designed to evaluate the efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment. We retrospectively reviewed the records of 33 consecutive patients (35 eyes) who underwent fluid-gas exchange treatment for postvitrectomy retinal detachment using the two-needle pars plana approach technique. The retinal reattachment rate was 80.0% after complete intravitreal gas disappearance following the fluid-gas exchange; the overall success rate was 65.7%. Visual acuity was improved or stable in 80.0% of cases; a two-line or greater vision improvement or a best-corrected visual acuity of 0.4 or better occurred in 62.9% of cases. The success rates for superior retinal detachments and posterior pole retinal detachments were 76.5% and 85.7%, respectively. Fluid-gas exchange represents a simple and cost-effective alternative outpatient procedure for retinal reattachment without reoperation for the treatment of superior and posterior pole retinal detachments.
Nielsen, Flemming K; Egund, Niels; Jørgensen, Anette; Peters, David A; Jurik, Anne Grethe
2016-11-16
Bone marrow lesions (BMLs) in knee osteoarthritis (OA) can be assessed using fluid sensitive and contrast enhanced sequences. The association between BMLs and symptoms has been investigated in several studies but only using fluid sensitive sequences. Our aims were to assess BMLs by contrast enhanced MRI sequences in comparison with a fluid sensitive STIR sequence using two different segmentation methods and to analyze the association between the MR findings and disability and pain. Twenty-two patients (mean age 61 years, range 41-79 years) with medial femoro-tibial knee OA obtained MRI and filled out a WOMAC questionnaire at baseline and follow-up (median interval of 334 days). STIR, dynamic contrast enhanced-MRI (DCE-MRI) and fat saturated T1 post-contrast (T1 CE FS) MRI sequences were obtained. All STIR and T1 CE FS sequences were assessed independently by two readers for STIR-BMLs and contrast enhancing areas of BMLs (CEA-BMLs) using manual segmentation and computer assisted segmentation, and the measurements were compared. DCE-MRIs were assessed for the relative distribution of voxels with an inflammatory enhancement pattern, N voxel , in the bone marrow. All findings were compared to WOMAC scores, including pain and overall symptoms, and changes from baseline to follow-up were analyzed. The average volume of CEA-BML was smaller than the STIR-BML volume by manual segmentation. The opposite was found for computer assisted segmentation where the average CEA-BML volume was larger than the STIR-BML volume. The contradictory finding by computer assisted segmentation was partly caused by a number of outliers with an apparent generally increased signal intensity in the anterior parts of the femoral condyle and tibial plateau causing an overestimation of the CEA-BML volume. Both CEA-BML, STIR-BML and N voxel were significantly correlated with symptoms and to a similar degree. A significant reduction in total WOMAC score was seen at follow-up, but no significant changes were observed for either CEA-BML, STIR-BML or N voxel . Neither the degree nor the volume of contrast enhancement in BMLs seems to add any clinical information compared to BMLs visualized by fluid sensitive sequences. Manual segmentation may be needed to obtain valid CEA-BML measurements.
Fluid-flow of a row of jets in crossflow - A numerical study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Benson, T. J.
1992-01-01
A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.
NASA Astrophysics Data System (ADS)
Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan
2017-12-01
Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.
NASA Astrophysics Data System (ADS)
Pelanti, Marica; Shyue, Keh-Ming
2015-05-01
The authors regret that one erroneous plot of the numerical results for a dodecane liquid-vapor shock tube problem was included in Fig. 3, p. 346, of the article [1]. Specifically, the graph of the vapor-liquid temperature difference (Tv -Tl) displayed at the bottom-right corner of Fig. 3 in [1] is not correct due to some wrong settings introduced in the temperature visualization tool. The error pertains solely to simulation data post-processing, and it is not related to the numerical methods and programs employed to run the experiment. We display here in Fig. 1 the correct temperature difference plot, generated from our original results computed for the dodecane shock tube test described in [1]. We think that is important to notify this correction to avoid any confusion.
Imaging Polarimetry in Central Serous Chorioretinopathy
MIURA, MASAHIRO; ELSNER, ANN E.; WEBER, ANKE; CHENEY, MICHAEL C.; OSAKO, MASAHIRO; USUI, MASAHIKO; IWASAKI, TAKUYA
2006-01-01
PURPOSE To evaluate a noninvasive technique to detect the leakage point of central serous chorioretinopathy (CSR), using a polarimetry method. DESIGN Prospective cohort study. METHODS SETTING Institutional practice. PATIENTS We examined 30 eyes of 30 patients with CSR. MAIN OUTCOME MEASURES Polarimetry images were recorded using the GDx-N (Laser Diagnostic Technologies). We computed four images that differed in their polarization content: a depolarized light image, an average reflectance image, a parallel polarized light image, and a birefringence image. Each polarimetry image was compared with abnormalities seen on fluorescein angiography. RESULTS In all eyes, leakage area could be clearly visualized as a bright area in the depolarized light images. Michelson contrasts for the leakage areas were 0.58 ± 0.28 in the depolarized light images, 0.17 ± 0.11 in the average reflectance images, 0.09 ± 0.09 in the parallel polarized light images, and 0.11 ± 0.21 in the birefringence images from the same raw data. Michelson contrasts in depolarized light images were significantly higher than for the other three images (P < .0001, for all tests, paired t test). The fluid accumulated in the retina was well-visualized in the average and parallel polarized light images. CONCLUSIONS Polarization-sensitive imaging could readily localize the leakage point and area of fluid in CSR. This may assist with the rapid, noninvasive assessment of CSR. PMID:16376644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Geoffrey
United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).
Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes
NASA Astrophysics Data System (ADS)
Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David
2017-04-01
This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non-stationary dynamicss and structure of stratified fluid flows around a wedge were also studied based of the fundamental equations set using numerical modeling. Due to breaking of naturally existing background diffusion flux of stratifying agent by an impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. The flow is characterized by a wide range of values of internal scales that are absent in a homogeneous liquid. Numerical solution of the fundamental system with the boundary conditions is constructed using a solver such as stratifiedFoam developed within the frame of the open source computational package OpenFOAM using the finite volume method. The computations were performed in parallel using computing resources of the Scientific Research Supercomputer Complex of MSU (SRCC MSU) and the technological platform UniHUB. The evolution of the flow pattern of the wedge by stratified flow has been demonstrated. The complex structure of the fields of physical quantities and their gradients has been shown. Observed in experiment are multiple flow components, including upstream disturbances, internal waves and the downstream wake with submerged transient vortices well reproduced. Structural elements of flow differ in size and laws of variation in space and time. Rich fine flow structure visualized in vicinity and far from the obstacle. The global efficiency of the mixing process is measured and compared with previous estimates of mixing efficiency.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Numerical simulation of hemorrhage in human injury
NASA Astrophysics Data System (ADS)
Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff
2015-11-01
Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Bershader, D.; Hanson, R.
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
Bioeffects due to acoustic droplet vaporization
NASA Astrophysics Data System (ADS)
Bull, Joseph
2015-11-01
Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
[Discrimination of varieties of brake fluid using visual-near infrared spectra].
Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong
2008-06-01
A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
NASA Astrophysics Data System (ADS)
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
Clay, Olivio J.; Edwards, Jerri D.; Ross, Lesley A.; Okonkwo, Ozioma; Wadley, Virginia G.; Roth, David L.; Ball, Karlene K.
2010-01-01
Objectives: To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. Additionally, the common cause, sensory degradation and speed of processing hypotheses were compared. Methods: Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Results: Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. Discussion: The findings support both the sensory degradation and speed of processing accounts of age-related cognitive decline. Further, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained. PMID:19436063
Visualizing the shape of soft solid and fluid contacts between two surfaces
NASA Astrophysics Data System (ADS)
Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen
The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.
Computational Fluid Dynamics: Past, Present, And Future
NASA Technical Reports Server (NTRS)
Kutler, Paul
1988-01-01
Paper reviews development of computational fluid dynamics and explores future prospects of technology. Report covers such topics as computer technology, turbulence, development of solution methodology, developemnt of algorithms, definition of flow geometries, generation of computational grids, and pre- and post-data processing.
Spatial distribution of dialysate in patients and its implications to intradialysate diffusion.
Hills, Brian A; Birch, Seamus; Burke, John R; LaMont, Anthony C
2002-01-01
To visualize and quantify the spatial distribution of dialysate in patients on continuous ambulatory peritoneal dialysis (CAPD) and, hence, estimate diffusion times for fluid "pockets" wherever intradialysate concentration gradients may not be dissipated by convective currents. Contrast medium was added to the dialysate of three supine CAPD patients before an exchange prior to computed tomographic (CT) scanning. Spatial information in the CT scanner was then downloaded to other computers and processed to produce impressive three-dimensional models of dialysate distribution using "wire frame technology." Models differed between patients but all demonstrated pooling of dialysate in the paracolic gutters, subphrenic space, and, especially, in the pelvic cavity. Some pockets of fluid were almost isolated. Quantitatively, the models can account for over 80% of the volume of the exchange (2.5 L), displaying an effective area of contact of 913-450 cm2 between parietal peritoneum and dialysate. This amounts to only 11% -21% of the anatomic area, again emphasizing the uneven distribution of dialysate. Ignoring very thin (< 0.1 mm) films of dialysate, the bulk (80%) had mean thicknesses ranging from 1.6 to 1.9 cm. Transcendental equations for bulk diffusion were then applied to these findings to determine a theoretical time for urea of about 2-3 hours to half-saturation, or 5-7 hours to 80% saturation, in the absence of convective currents. The distribution of dialysate within the peritoneal cavity is very uneven, resulting in long diffusion times in fluid pockets wherever convective currents may be minimal. Hence, intradialysate diffusion should not be ignored when modeling peritoneal dialysis.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
Microfluidic Model Porous Media: Fabrication and Applications.
Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing
2018-05-01
Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Microgravity Induced Fluid Redistribution Autoregulatory and Hydrostatic Enhancements
NASA Technical Reports Server (NTRS)
Myers, J. G.; Werner, C.; Nelson, E. S.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2017-01-01
Space flight induces a marked cephalad (headward) redistribution of blood and interstitial fluid potentially resulting in a loss of venous tone and reduction in heart muscle efficiency upon introduction into the microgravity environment. Using various types of computational models, we are investigating how this fluid redistribution may induce intracranial pressure changes, relevant to reported reductions in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Methods: We utilize a lumped parameter cardiovascular system (CVS) model, augmented by compartments comprising the cerebral spinal fluid (CSF) space, as the primary tool to describe how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. Models of ocular fluid pressures and biomechanics then accept the output of the above model as boundary condition input to allow more detailed, local analysis (see IWS Abstract by Ethier et al.). Recently, we enhanced the capabilities our previously reported CVS model through the implementation of robust autoregulatory mechanisms and a more fundamental approach to the implementation of hydrostatic mechanisms. Modifying the approach of Blanco et al., we implemented auto-regulation in a quasi-static manner, as an averaged effect across the span of one heartbeat. This approach reduced the higher frequency perturbations from the regulatory mechanism and was intended to allow longer simulation times (days) than models that implement within-beat regulatory mechanisms (minutes). A more fundamental approach to hydrostatics was implemented by a quasi-1D approach, in which compartment descriptions include compartment length, orientation and relative position, allowed for modeling of body orientation, relative body positioning and, in the future, alternative gravity environments. At this time the inclusion of hydrostatic mechanisms supplies additional capabilities to train and validate the CVS model with terrestrial data. Results and Conclusions: With the implementation of auto-regulation and hydrostatic modeling capabilities, the model performs as expected in the maintaining the CA (Central Artery) compartment pressure when simulating orientations ranging from supine to standing. The model appears to generally overpredict heart rate and thus cardiac output, possibly indicating sensitivity to the nominal heart rate, which is used as an initial set point of the regulation mechanisms. Despite this sensitivity, the model performs consistently for many hours of simulation time, indicating the success of our quasi-static implementation approach.
RIP-REMOTE INTERACTIVE PARTICLE-TRACER
NASA Technical Reports Server (NTRS)
Rogers, S. E.
1994-01-01
Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
Using Computers in Fluids Engineering Education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1998-01-01
Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1967-01-01
Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
USDA-ARS?s Scientific Manuscript database
Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
NASA Astrophysics Data System (ADS)
Fan, Yanfeng; Hassan, Ibrahim
2010-09-01
The present paper investigates experimentally and numerically a scaled-up micromixer that combines the mixing principles of focusing/diverging and flow split-and-recombine. The micromixer consists of two units called “cross” and “omega”, which are similar to a zigzag structure. The total length is 199.5 mm with a depth of 3 mm. Fluorescence technique is used in the present study for local quantitative measurements of concentration. Two syringe pumps are used to supply the working fluids at two inlets. The testing range of Reynolds number is at 1 ≤ Re ≤ 50. The results of the experiment, obtained by fluorescence technique, are supported by the mixing visualization. The experimental results show that the mixing efficiency decreases at Re ≤ 10 and increases at Re ≥ 10. This is caused by the change in mixing mechanism from mass-diffusion domination to mass-convection domination. After five cells, the mixing efficiency reaches to 70% at Re = 50. The computational fluid dynamics is applied to assist in the understanding of fluid characteristics in channels. The simulation has a good agreement with the experiment. Based on the simulation results, vortices are observed in the channels at high Re, which could stretch and fold the fluids to enhance the effect of mass-convection on mixing. This design has the potential to be developed for micromixers with high flow rates.
Ishimaru, Kyoko; Ohba, Seigo; Yoshimura, Hitoshi; Matsuda, Shinpei; Ishimaru, Jun-Ichi; Sano, Kazuo
2015-02-01
We investigated the correlation between the antioxidant capacity of synovial fluid and radiological findings of intra-articular structures in patients with disorders of the temporomandibular joint (TMJ). We recruited 21 patients (9 men and 12 women, aged 18-84 years of age) with such disorders, excluding myofascial pain and dysfunction syndrome, or other muscular disorders. The clinical variables recorded included age, sex, interincisal distance, and visual analogue pain scores (VAS). Radiological findings were obtained from diagnostic arthrogram and cone-beam computed tomography (CT). The antioxidant capacity of the synovial fluid was measured by chemiluminescence. Eleven patients were radiologically diagnosed with closed lock, and the remaining 10 with no closed lock. An anchored intra-articular disc was most often seen on cone-beam CT (n=19) followed by perforated disc (n=7), osteoarthrosis (n=7), and anterior disc displacement without reduction (n=5). Although there were no significant differences between antioxidant capacity and age, sex, VAS, or any findings on cone-beam CT, antioxidant capacity was significantly decreased in the patients with closed lock compared with those who did not have closed lock (p=0.02). The results suggest an association between the oxidative stress of the synovial fluid and closed-lock in disorders of the TMJ. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Computing Project, Marc develops high-fidelity turbulence models to enhance simulation accuracy and efficient numerical algorithms for future high performance computing hardware architectures. Research Interests High performance computing High order numerical methods for computational fluid dynamics Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Kabilan, Senthil; Carson, James P.
2014-08-07
Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, T.; Huang, Q.; Liu, Q.
2014-12-01
Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
None
2018-05-11
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-09
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which ismore » collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).« less
Displaying CFD Solution Parameters on Arbitrary Cut Planes
NASA Technical Reports Server (NTRS)
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Ability Structure in 10-11 Year-Old Children and the Theory of Fluid and Crystallized Intelligence
ERIC Educational Resources Information Center
Undheim, Johan Olav
1976-01-01
Using a simple structure factor analysis of test data of 144 fourth grade children in Norway, second order factors interpreted to represent Broad Visualization, Speediness, Fluid, and Crystallized intelligence intercorrelated substantially, the correlation between Fluid and Crystallized intelligence being the highest. (Author/BW)
Processing speed in recurrent visual networks correlates with general intelligence.
Jolij, Jacob; Huisman, Danielle; Scholte, Steven; Hamel, Ronald; Kemner, Chantal; Lamme, Victor A F
2007-01-08
Studies on the neural basis of general fluid intelligence strongly suggest that a smarter brain processes information faster. Different brain areas, however, are interconnected by both feedforward and feedback projections. Whether both types of connections or only one of the two types are faster in smarter brains remains unclear. Here we show, by measuring visual evoked potentials during a texture discrimination task, that general fluid intelligence shows a strong correlation with processing speed in recurrent visual networks, while there is no correlation with speed of feedforward connections. The hypothesis that a smarter brain runs faster may need to be refined: a smarter brain's feedback connections run faster.
Oscillatory flow in the cochlea visualized by a magnetic resonance imaging technique.
Denk, W; Keolian, R M; Ogawa, S; Jelinski, L W
1993-02-15
We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear. It permits the detection of displacements far smaller than the spatial resolution. The method is demonstrated on a phantom and on living rats. It is projected to have applications for auditory research, for the visualization of vocal tract dynamics during speech and singing, and for determination of the spatial distribution of mechanical relaxations in materials.
High-speed imaging of submerged jet: visualization analysis using proper orthogonality decomposition
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; He, Chuangxin
2016-11-01
In the present study, the submerged jet at low Reynolds numbers was visualized using laser induced fluoresce and high-speed imaging in a water tank. Well-controlled calibration was made to determine linear dependency region of the fluoresce intensity on its concentration. Subsequently, the jet fluid issuing from a circular pipe was visualized using a high-speed camera. The animation sequence of the visualized jet flow field was supplied for the snapshot proper orthogonality decomposition (POD) analysis. Spatio-temporally varying structures superimposed in the unsteady fluid flow were identified, e.g., the axisymmetric mode and the helical mode, which were reflected from the dominant POD modes. The coefficients of the POD modes give strong indication of temporal and spectral features of the corresponding unsteady events. The reconstruction using the time-mean visualization and the selected POD modes was conducted to reveal the convective motion of the buried vortical structures. National Natural Science Foundation of China.
Distributed GPU Computing in GIScience
NASA Astrophysics Data System (ADS)
Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.
2013-12-01
Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9(3), 378-394. 2. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D Environmental Data Using Many-core Graphics Processing Units (GPUs) and Multi-core Central Processing Units (CPUs). Computers & Geosciences, 59(9), 78-89. 3. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.
Visual ergonomics and computer work--is it all about computer glasses?
Jonsson, Christina
2012-01-01
The Swedish Provisions on Work with Display Screen Equipment and the EU Directive on the minimum safety and health requirements for work with display screen equipment cover several important visual ergonomics aspects. But a review of cases and questions to the Swedish Work Environment Authority clearly shows that most attention is given to the demands for eyesight tests and special computer glasses. Other important visual ergonomics factors are at risk of being neglected. Today computers are used everywhere, both at work and at home. Computers can be laptops, PDA's, tablet computers, smart phones, etc. The demands on eyesight tests and computer glasses still apply but the visual demands and the visual ergonomics conditions are quite different compared to the use of a stationary computer. Based on this review, we raise the question if the demand on the employer to provide the employees with computer glasses is outdated.
In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations.
Dutta, Soumya; Chen, Chun-Ming; Heinlein, Gregory; Shen, Han-Wei; Chen, Jen-Ping
2017-01-01
Study of flow instability in turbine engine compressors is crucial to understand the inception and evolution of engine stall. Aerodynamics experts have been working on detecting the early signs of stall in order to devise novel stall suppression technologies. A state-of-the-art Navier-Stokes based, time-accurate computational fluid dynamics simulator, TURBO, has been developed in NASA to enhance the understanding of flow phenomena undergoing rotating stall. Despite the proven high modeling accuracy of TURBO, the excessive simulation data prohibits post-hoc analysis in both storage and I/O time. To address these issues and allow the expert to perform scalable stall analysis, we have designed an in situ distribution guided stall analysis technique. Our method summarizes statistics of important properties of the simulation data in situ using a probabilistic data modeling scheme. This data summarization enables statistical anomaly detection for flow instability in post analysis, which reveals the spatiotemporal trends of rotating stall for the expert to conceive new hypotheses. Furthermore, the verification of the hypotheses and exploratory visualization using the summarized data are realized using probabilistic visualization techniques such as uncertain isocontouring. Positive feedback from the domain scientist has indicated the efficacy of our system in exploratory stall analysis.
Research in Applied Mathematics, Fluid Mechanics and Computer Science
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
Tomographic data fusion with CFD simulations associated with a planar sensor
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, S.; Sun, S.; Zhou, W.; Schlaberg, I. H. I.; Wang, M.; Yan, Y.
2017-04-01
Tomographic techniques have great abilities to interrogate the combustion processes, especially when it is combined with the physical models of the combustion itself. In this study, a data fusion algorithm is developed to investigate the flame distribution of a swirl-induced environmental (EV) burner, a new type of burner for low NOx combustion. An electric capacitance tomography (ECT) system is used to acquire 3D flame images and computational fluid dynamics (CFD) is applied to calculate an initial distribution of the temperature profile for the EV burner. Experiments were also carried out to visualize flames at a series of locations above the burner. While the ECT images essentially agree with the CFD temperature distribution, discrepancies exist at a certain height. When data fusion is applied, the discrepancy is visibly reduced and the ECT images are improved. The methods used in this study can lead to a new route where combustion visualization can be much improved and applied to clean energy conversion and new burner development.
Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms
2003-03-01
problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes
NASA Technical Reports Server (NTRS)
Birch, T. J.; Allen, J. M.; Wilcox, F. J.
2000-01-01
This paper describes a series of wind tunnel experiments carried out with the aim of providing data suitable for evaluating the performance of Computational Fluid Dynamics (CFD) codes. The configurations and flow conditions studied are most relevant to slender supersonic missiles. However, the data obtained, which includes forces and moments, surface pressures, flowfield surveys and a selection of flow visualization images, should he of interest to other CFD practitioners. Results for three test cases are presented and discussed in this paper. These cases have been the subject of a collaborative study concerned with the evaluation of Navier-Stokes solvers for missiles, carried out under the auspices of The Technical Cooperation Programme (TTCP).
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Automated Extraction of Secondary Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne M.; Haimes, Robert
2005-01-01
The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1977-01-01
Computer quantification methods were used to analyze the Skylab electroencephalographic data obtained during the course of the M133 series of experiments. This undertaking was prompted by initial observations made during visual analysis of the tape-recorded sleep records where there appeared to be an increase of the alpha-rhythm frequency during some inflight recording sessions, as compared to preflight baseline observations. A number of potential etiological factors are identified and their various possible influences discussed. The presence of the zero-g state is thought to be an important factor, possibly influencing EEG through alteration of vestibular function and/or by producing fluid shifts secondary to loss of hydrostatic pressure.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
Seals Research at Texas A/M University
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.
1991-01-01
The Turbomachinery Laboratory at Texas A&M has been providing experimental data and computational codes for the design seals for many years. The program began with the development of a Halon based seal test rig. This facility provided information about the effective stiffness and damping in whirling seals. The Halon effectively simulated cryogenic fluids. Another test facility was developed (using air as the working fluid) where the stiffness and damping matrices can be determined. This data was used to develop bulk flow models of the seal's effect upon rotating machinery; in conjunction with this research, a bulk flow model for calculation of performance and rotordynamic coefficients of annular pressure seals of arbitrary non-uniform clearance for barotropic fluids such as LH2, LOX, LN2, and CH4 was developed. This program is very efficient (fast) and converges for very large eccentricities. Currently, work is being performed on a bulk flow analysis of the effects of the impeller-shroud interaction upon the stability of pumps. The data was used along with data from other researchers to develop an empirical leakage prediction code for MSFC. Presently, the flow field inside labyrinth and annular seals are being studied in detail. An advanced 3-D Doppler anemometer system is being used to measure the mean velocity and entire Reynolds stress tensor distribution throughout the seals. Concentric and statically eccentric seals were studied; presently, whirling seals are being studied. The data obtained are providing valuable information about the flow phenomena occurring inside the seals, as well as a data base for comparison with numerical predictions and for turbulence model development. A finite difference computer code was developed for solving the Reynolds averaged Navier Stokes equation inside labyrinth seals. A multi-scale k-epsilon turbulence model is currently being evaluated. A new seal geometry was designed and patented using a computer code. A large scale, 2-D seal flow visualization facility is also being developed.
Biglino, Giovanni; Giardini, Alessandro; Hsia, Tain-Yen; Figliola, Richard; Taylor, Andrew M.; Schievano, Silvia
2013-01-01
First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of validation data as well as hydrodynamic information. Such models can be tuned to respond to differing the patient physiologies. Experimental set-ups can also be compatible with visualization techniques, like particle image velocimetry and cardiovascular magnetic resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale computational models include detailed three-dimensional (3D) anatomical information coupled to a lumped parameter network representing the remainder of the circulation. These models output both overall hemodynamic parameters while also enabling to investigate the local fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter models can also be employed to model Stage 1 palliation, taking advantage of a much lower computational cost, albeit missing the 3D anatomical component. Finally, analytical techniques, such as wave intensity analysis, can be employed to study the Norwood physiology, providing a mechanistic perspective on the ventriculo-arterial coupling for this specific surgical scenario. PMID:24400277
Randolph, Susan A
2017-07-01
With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.
Interfacial gauge methods for incompressible fluid dynamics
Saye, R.
2016-06-10
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less
Analyses of ACPL thermal/fluid conditioning system
NASA Technical Reports Server (NTRS)
Stephen, L. A.; Usher, L. H.
1976-01-01
Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
ERIC Educational Resources Information Center
Siu, Kin Wai Michael; Lam, Mei Seung
2012-01-01
Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…
Computer Skill Acquisition and Retention: The Effects of Computer-Aided Self-Explanation
ERIC Educational Resources Information Center
Chi, Tai-Yin
2016-01-01
This research presents an experimental study to determine to what extent computer skill learners can benefit from generating self-explanation with the aid of different computer-based visualization technologies. Self-explanation was stimulated with dynamic visualization (Screencast), static visualization (Screenshot), or verbal instructions only,…
21 CFR 884.1660 - Transcervical endoscope (amnioscope) and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... visualize the fetus or amniotic fluid and to sample fetal blood or amniotic fluid. This generic type of device may include obturators, instruments used through an operating channel, light sources and cables...
The subscale orbital fluid transfer experiment
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry
1995-01-01
The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, examination of methods for accurately metering the amount of liquid transferred between the two tanks, examination of possible test fluids, and consideration of the materials to use for the elastomeric diaphragm. The objective of the visual observation is to locate the fluid-vapor interfaces and, if possible, quantify the amount of vapor and the area of the interface. It is proposed to use video cameras to view the overall process in each tank and to place borescopes or other devices through the tank walls to obtain detailed, undistorted views inside the tanks of critical portions of the transfer process. Further work will continue to find an economical means for providing this detailed view, which clearly would increase the data obtained from the experiment.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel
NASA Astrophysics Data System (ADS)
Dewangan, Satish Kumar
2018-05-01
Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.
Computer program for computing the properties of seventeen fluids. [cryogenic liquids
NASA Technical Reports Server (NTRS)
Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.
1992-01-01
The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.
Image communication scheme based on dynamic visual cryptography and computer generated holography
NASA Astrophysics Data System (ADS)
Palevicius, Paulius; Ragulskis, Minvydas
2015-01-01
Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
Gloaguen, Pauline; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves
2017-01-01
Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. PMID:28442501
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
Visualization of a Capsule Entry Vehicle Reaction-Control System (RCS) Thruster
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Wilkes, J. A.; Brauckmann, G. J.; Alderfer, D. W.; Jones, S. B.; Patry, D. P.
2006-01-01
Planar laser-induced fluorescence (PLIF) was used to visualize the reaction control system (RCS) jet flow emanating from the aft-body of an Apollo-geometry capsule test article in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The RCS jet was oriented normal to the aft surface of the model and had a nominal Mach number of 2.94. The composition of the jet gas by mass was 95% nitrogen (N2) and 5% nitric oxide (NO). The RCS jet flowrate varied between zero and 0.5 standard liters per minute and the angle of attack and tunnel stagnation pressure were also varied. PLIF was used to excite the NO molecules for flow visualization. These flow visualization images were processed to determine the trajectory and to quantify the flapping of the RCS jet. The spatial resolution of the jet trajectory measurement was about 1 mm and the single-shot precision of the measurement was estimated to be 0.02 mm in the far field of the jet plume. The jet flapping, measured by the standard deviation of the jet centerline position was as large as 0.9 mm, while the jet was 1.5-4 mm in diameter (full width at half maximum). Schlieren flow visualization images were obtained for comparison with the PLIF. Surface pressures were also measured and presented. Virtual Diagnostics Interface (VIDI) technology developed at NASA Langley was used to superimpose and visualize the data sets. The measurements demonstrate some of the capabilities of the PLIF method while providing a test case for computational fluid dynamics (CFD) validation.
Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods
NASA Technical Reports Server (NTRS)
Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)
1997-01-01
This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.
Ledbetter, Alexander K; Sohlberg, McKay Moore; Fickas, Stephen F; Horney, Mark A; McIntosh, Kent
2017-11-06
This study evaluated a computer-based prompting intervention for improving expository essay writing after acquired brain injury (ABI). Four undergraduate participants aged 18-21 with mild-moderate ABI and impaired fluid cognition at least 6 months post-injury reported difficulty with the writing process after injury. The study employed a non-concurrent multiple probe across participants, in a single-case design. Outcome measures included essay quality scores and number of revisions to writing counted then coded by type using a revision taxonomy. An inter-scorer agreement procedure was completed for quality scores for 50% of essays, with data indicating that agreement exceeded a goal of 85%. Visual analysis of results showed increased essay quality for all participants in intervention phase compared with baseline, maintained 1 week after. Statistical analyses showed statistically significant results for two of the four participants. The authors discuss external cuing for self-monitoring and tapping of existing writing knowledge as possible explanations for improvement. The study provides preliminary evidence that computer-based prompting has potential to improve writing quality for undergraduates with ABI.
Computer-Based Tutoring of Visual Concepts: From Novice to Experts.
ERIC Educational Resources Information Center
Sharples, Mike
1991-01-01
Description of ways in which computers might be used to teach visual concepts discusses hypermedia systems; describes computer-generated tutorials; explains the use of computers to create learning aids such as concept maps, feature spaces, and structural models; and gives examples of visual concept teaching in medical education. (10 references)…
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J., Mei, J.
2012-01-01
These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.
That is Cool: the Nature Of Aesthetics in Fluid Physics
NASA Astrophysics Data System (ADS)
Hertzberg, Jean
2013-11-01
Aesthetics has historically been defined as the study of beauty and thus as a metric of art. More recently, psychologists are using the term to describe a spectrum of responses from ``I hate it'' to ``I love it.'' In the context of fluid physics, what is beautiful? What elicits a ``Wow! Awesome! Cool!'' response versus a snore? Can we use aesthetics to deepen or change students' or the public's perceptions of physics and/or the world around them? For example, students seem to appreciate the aesthetics of destruction: environmental fluid dynamics such as storms, tornadoes, floods and wildfires are often responsible for massive destruction, yet humans draw pleasure from watching such physics and the attendant destruction from a safe distance. Can this voyeurism be turned to our advantage in communicating science? Observations of student and Facebook Flow Visualization group choices for fluid physics that draw a positive aesthetic response are sorted into empirical categories; the aesthetics of beauty, power, destruction, and oddness. Each aesthetic will be illustrated with examples drawn from flow visualizations from both the Flow Visualization course (MCEN 4151) taught at the University of Colorado, Boulder, and sources on the web. This work is supported by NSF: EEC 1240294.
Rheoscopic Fluids in a Post-Kalliroscope World
NASA Astrophysics Data System (ADS)
Borrero-Echeverry, Daniel; Crowley, Christopher J.
2016-11-01
In rheoscopic flow visualization the working fluid is seeded with small plate-shaped particles, which preferentially align in the flow due to their anisotropy. This leads to preferential light scattering, which highlights qualitatively different regions of the flow. For the past four decades, the gold standard in rheoscopic flow visualization has been Kalliroscope, a commercial product consisting of crystalline guanine particles. Guanine is a shiny compound extracted from fish scales and has traditionally been used in cosmetics to provide a pearlescent effect. It stands out among other options for rheoscopic flow visualization (e.g., aluminum flakes or coated mica particles) due to its relatively good density match with water. Guanine extraction, however, is an expensive process and as the cosmetics industry has adopted less expensive alternatives, commercial guanine production has dropped, leading to the closure of the Kalliroscope Corporation in 2014. In this talk, we discuss our recent discovery of a rheoscopic fluid based on stearic acid crystals, which has an overall performance similar to, and in some cases superior to, Kalliroscope. This rheoscopic fluid can be extracted from household items making it very inexpensive and readily accessible to researchers around the world.
Faster Aerodynamic Simulation With Cart3D
NASA Technical Reports Server (NTRS)
2003-01-01
A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.
NASA Technical Reports Server (NTRS)
Blotzer, Michael J.; Woods, Jody L.
2009-01-01
This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.
Visual Memories Bypass Normalization.
Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam
2018-05-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.
Visual Memories Bypass Normalization
Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam
2018-01-01
How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038
Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom
2010-01-01
Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...
Hann, Angus; Chu, Kevin; Greenslade, Jaimi; Williams, Julian; Brown, Anthony
2015-01-01
This study aimed to determine if performing cerebrospinal fluid spectrophotometry in addition to visual inspection detects more ruptured cerebral aneurysms than performing cerebrospinal fluid visual inspection alone in patients with a normal head CT scan but suspected of suffering an aneurysmal subarachnoid haemorrhage (SAH). We performed a single-centre retrospective study of patients presenting to the emergency department of a tertiary hospital who underwent both head CT scan and lumbar puncture to exclude SAH. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of an approach utilising both spectrophotometry and visual inspection (combined approach) was compared to visual inspection alone. A total of 409 patients (mean age 37.8 years, 56.2% female) were recruited and six (1.5%) had a cerebral aneurysm on angiography. The sensitivity of visual inspection was 50% (95% confidence interval [CI]: 12.4-82.6%), specificity was 99% (95% CI: 97.5-99.7%), PPV was 42.9% (95% CI: 10.4-81.3%) and NPV was 99.2% (95% CI: 97.8-99.8%). The combined approach had a sensitivity of 100% (95% CI: 54.1-100%), specificity of 79.7% (95% CI: 75.4-83.5%), PPV of 6.8% (95% CI: 2.6-14.3%) and a NPV of 100% (95% CI: 98.8-100%). The sensitivity of the combined approach was not significantly different to that of visual inspection alone (p=0.25). Visual inspection had a significantly higher specificity than the combined approach (p<0.01). The combined approach detected more cases of aneurysmal SAH than visual inspection alone, however the difference in sensitivity was not statistically significant. Visual xanthochromia should prompt angiography because of a superior specificity and PPV. Due to its reduced sensitivity, caution should be applied when using only visual inspection of the supernatant. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Lee, Hyung C.
1993-01-01
An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.
NASA Technical Reports Server (NTRS)
Reinsch, K. G. (Editor); Schmidt, W. (Editor); Ecer, A. (Editor); Haeuser, Jochem (Editor); Periaux, J. (Editor)
1992-01-01
A conference was held on parallel computational fluid dynamics and produced related papers. Topics discussed in these papers include: parallel implicit and explicit solvers for compressible flow, parallel computational techniques for Euler and Navier-Stokes equations, grid generation techniques for parallel computers, and aerodynamic simulation om massively parallel systems.
Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee
1994-01-01
A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
Scientific Visualization and Computational Science: Natural Partners
NASA Technical Reports Server (NTRS)
Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.
Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields
NASA Astrophysics Data System (ADS)
Wetzel, M.; Herman, C.
The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.
Nanometer-scale imaging and pore-scale fluid flow modeling inchalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir
2005-08-23
For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next,more » the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.« less
Van Stappen, Jeroen F; Meftah, Redouane; Boone, Marijn A; Bultreys, Tom; De Kock, Tim; Blykers, Benjamin K; Senger, Kim; Olaussen, Snorre; Cnudde, Veerle
2018-04-17
On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO 2 sequestration site. The fractures' properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800-1000 m.
Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium
NASA Astrophysics Data System (ADS)
Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei
2017-11-01
Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.
Visual problems in young adults due to computer use.
Moschos, M M; Chatziralli, I P; Siasou, G; Papazisis, L
2012-04-01
Computer use can cause visual problems. The purpose of our study was to evaluate visual problems due to computer use in young adults. Participants in our study were 87 adults, 48 male and 39 female, mean aged 31.3 years old (SD 7.6). All the participants completed a questionnaire regarding visual problems detected after computer use. The mean daily use of computers was 3.2 hours (SD 2.7). 65.5 % of the participants complained for dry eye, mainly after more than 2.5 hours of computer use. 32 persons (36.8 %) had a foreign body sensation in their eyes, while 15 participants (17.2 %) complained for blurred vision which caused difficulties in driving, after 3.25 hours of continuous computer use. 10.3 % of the participants sought medical advice for their problem. There was a statistically significant correlation between the frequency of visual problems and the duration of computer use (p = 0.021). 79.3 % of the participants use artificial tears during or after long use of computers, so as not to feel any ocular discomfort. The main symptom after computer use in young adults was dry eye. All visual problems associated with the duration of computer use. Artificial tears play an important role in the treatment of ocular discomfort after computer use. © Georg Thieme Verlag KG Stuttgart · New York.
A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS
Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
Visualization Tools for Teaching Computer Security
ERIC Educational Resources Information Center
Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng
2010-01-01
Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…
Wang, Chao; Tian, Zhongbin; Liu, Jian; Jing, Linkai; Paliwal, Nikhil; Wang, Shengzhang; Zhang, Ying; Xiang, Jianping; Siddiqui, Adnan H; Meng, Hui; Yang, Xinjian
2016-07-02
The aim of this study was to quantify the effect of the new Low-profile Visualized Intraluminal Support (LVIS®D) device and the difference of fluid diverting effect compared with the Pipeline device and the Enterprise stent using computational fluid dynamics (CFD). In this research, we simulated three aneurysms constructed from 3D digital subtraction angiography (DSA). The Enterprise, LVIS and the Pipeline device were virtually conformed to fit into the vessel lumen and placed across the aneurysm orifice. Computational fluid dynamics analysis was performed to compare the hemodynamic differences such as WSS, Velocity and Pressure among these stents. Control referred to the unstented model, the percentage of hemodynamic changes were all compared to Control. A single LVIS stent caused more wall shear stress reduction than double Enterprise stents (39.96 vs. 30.51 %) and velocity (23.13 vs. 18.64 %). Significant reduction in wall shear stress (63.88 %) and velocity (46.05 %) was observed in the double-LVIS stents. A single Pipeline showed less reduction in WSS (51.08 %) and velocity (37.87 %) compared with double-LVIS stent. The double-Pipeline stents resulted in the most reduction in WSS (72.37 %) and velocity (54.26 %). Moreover, the pressure increased with minuscule extent after stenting, compared with the unstented model. This is the first study analyzing flow modifications associated with LVIS stents. We found that the LVIS stent has certain hemodynamic effects on cerebral aneurysms: a single LVIS stent caused more flow reductions than the double-Enterprise stent but less than a Pipeline device. Nevertheless, the double-LVIS stent resulted in a better flow diverting effect than a Pipeline device.
Techniques to derive geometries for image-based Eulerian computations
Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.
2014-01-01
Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses
NASA Astrophysics Data System (ADS)
Luo, Hao; Fytanidis, Dimitrios K.; Schmidt, Arthur R.; García, Marcelo H.
2018-07-01
The complexity of open channel confluences stems from flow mixing, secondary circulation, post-confluence flow separation, contraction and backwater effects. These effects in turn result in a large number of parameters required to adequately quantify the junction induced hydraulic resistance and describe mean flow pattern and turbulent flow structures due to flow merging. The recent development in computing power advances the application of 3D Computational Fluid Dynamics (CFD) codes to visualize and understand the Confluence Hydrodynamic Zone (CHZ). Nevertheless, 1D approaches remain the mainstay in large drainage network or waterway system modeling considering computational efficiency and data availability. This paper presents (i) a modified 1D nonlinear dynamic model; (ii) a fully 3D non-hydrostatic, Reynolds-averaged Navier-Stokes Equations (RANS)-based, Computational Fluid Dynamics (CFD) model; (iii) an analysis of changing confluence hydrodynamics and 3D turbulent flow structure under various controls; (iv) a comparison of flow features (i.e. upstream water depths, energy losses and post-confluence contraction) predicted by 1D and 3D models; and (v) parameterization of 3D flow characteristics in 1D modeling through the computation of correction coefficients associated with contraction, energy and momentum. The present comprehensive 3D numerical investigation highlights the driving mechanisms for junction induced energy losses. Moreover, the comparative 1D and 3D study quantifies the deviation of 1D approximations and associated underlying assumptions from the 'true' resultant flow field. The study may also shed light on improving the accuracy of the 1D large network modeling through the parameterization of the complex 3D feature of the flow field and correction of interior boundary conditions at junctions of larger angles and/or with substantial lateral inflows. Moreover, the enclosed numerical investigations may enhance the understanding of the primary mechanisms contributing to hydraulic structure induced turbulent flow behavior and increased hydraulic resistance.
A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments
NASA Astrophysics Data System (ADS)
Vanorio, T.; Di Bonito, C.; Clark, A. C.
2014-12-01
As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses that can be offered for curricula in Earth Sciences. The primary goal is to open up a research laboratory such as the one available at Stanford to promising students worldwide who are currently left out of such educational resources.
Integrated Computational System for Aerodynamic Steering and Visualization
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus
1999-01-01
In February of 1994, an effort from the Fluid Dynamics and Information Sciences Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace Company and Stanford University was initiated to develop, demonstrate, validate and disseminate automated software for numerical aerodynamic simulation. The goal of the initiative was to develop a tri-discipline approach encompassing CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve the utility of CFD in the design cycle. This approach would then be represented through an intelligent computational system which could accept an engineer's definition of a problem and construct an optimal and reliable CFD solution. Stanford University's role focused on developing technologies that advance visualization capabilities for analysis of CFD data, extract specific flow features useful for the design process, and compare CFD data with experimental data. During the years 1995-1997, Stanford University focused on developing techniques in the area of tensor visualization and flow feature extraction. Software libraries were created enabling feature extraction and exploration of tensor fields. As a proof of concept, a prototype system called the Integrated Computational System (ICS) was developed to demonstrate CFD design cycle. The current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will (1) briefly review the technologies developed during 1995-1997 (2) describe current technologies in the area of comparison techniques, (4) describe the theory of our new method researched during the grant year (5) summarize a few of the results and finally (6) discuss work within the last 6 months that are direct extensions from the grant.
NASA Technical Reports Server (NTRS)
Otto, C. A.; Norsk, P.; Shelhamer, M. J.; Davis, J. R.
2015-01-01
The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.
Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.
Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan
2015-12-07
Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.
Computational fluid dynamics - The coming revolution
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1982-01-01
The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.
Xiang, J; Tutino, V M; Snyder, K V; Meng, H
2014-10-01
Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.
Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group
2018-05-07
Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...
2017-05-23
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, M.H.A; Wassermann, F.; Grundmann, S.
The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers.
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
CFD simulation of flow through heart: a perspective review.
Khalafvand, S S; Ng, E Y K; Zhong, L
2011-01-01
The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.
Computer program for analysis of hemodynamic response to head-up tilt test
NASA Astrophysics Data System (ADS)
ŚwiÄ tek, Eliza; Cybulski, Gerard; Koźluk, Edward; PiÄ tkowska, Agnieszka; Niewiadomski, Wiktor
2014-11-01
The aim of this work was to create a computer program, written in the MATLAB environment, which enables the visualization and analysis of hemodynamic parameters recorded during a passive tilt test using the CNS Task Force Monitor System. The application was created to help in the assessment of the relationship between the values and dynamics of changes of the selected parameters and the risk of orthostatic syncope. The signal analysis included: R-R intervals (RRI), heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), mean blood pressure (mBP), stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR), total peripheral resistance index (TPRI), ventricular ejection time (LVET) and thoracic fluid content (TFC). The program enables the user to visualize waveforms for a selected parameter and to perform smoothing with selected moving average parameters. It allows one to construct the graph of means for any range, and the Poincare plot for a selected time range. The program automatically determines the average value of the parameter before tilt, its minimum and maximum value immediately after changing positions and the times of their occurrence. It is possible to correct the automatically detected points manually. For the RR interval, it determines the acceleration index (AI) and the brake index (BI). It is possible to save calculated values to an XLS with a name specified by user. The application has a user-friendly graphical interface and can run on a computer that has no MATLAB software.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Astrophysics Data System (ADS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-08-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Application-Controlled Demand Paging for Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)
1997-01-01
In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Delfrate, John H.; Richwine, David M.
1991-01-01
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Rositano, Salvador A.; Greenleaf, John E.
1976-01-01
The mechanisms that control the size of the visual field during positive acceleration are poorly understood, but involve mainly the arterial blood pressure at the eye level and intraocular pressure (IOP) (3). Fluid and electrolyte shifts that occur in the general circulation during acceleration may well influence the rate at which the visual field collapses. This could, in turn, suggest the relative influences that arterial blood pressure, IOP, and various compensatory mechanisms have upon acceleration tolerance. Such knowledge could also be of use in the design and development of protective techniques for use in the acceleration environment. The present investigation was performed to study blood withdrawal (hypovolemia) and subsequent reinfusion, oral fluid replacement upon IOP, and the rate at which the visual field collapses during gradual onset +G(sub z) acceleration (0.5 G/min).
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
NASA Astrophysics Data System (ADS)
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
Flow field measurements in the cell culture unit
NASA Technical Reports Server (NTRS)
Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy
2002-01-01
The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the CSC flow environment are presented and discussed. The final configuration of the CSC employs magnetic stir bars with angled paddles to achieve the necessary flow requirements within the CSC.
Computational fluid dynamics: An engineering tool?
NASA Astrophysics Data System (ADS)
Anderson, J. D., Jr.
1982-06-01
Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.
2014-08-01
performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Peshkov, Ilya, E-mail: peshkov@math.nsc.ru; Romenski, Evgeniy, E-mail: evrom@math.nsc.ru
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. Inmore » that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier–Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.« less
Using Real-Life Experiences to Teach Computer Concepts
ERIC Educational Resources Information Center
Read, Alexis
2012-01-01
Teaching computer concepts to individuals with visual impairments (that is, those who are blind or visually impaired) presents some unique challenges. Students often have difficulty remembering to perform certain steps or have difficulty remembering specific keystrokes when using computers. Many cannot visualize the way in which complex computing…
Erdogan, Gurkan; Unlu, Cihan; Karasu, Bugra; Kardes, Esra; Ergin, Ahmet
2016-07-01
To evaluate the efficacy and safety of peripheral vitrectomy under air infusion in comparison with fluid infusion in patients undergoing 23-gauge pars plana vitrectomy for primary rhegmatogenous retinal detachment. A total of 80 eyes of 80 patients with primary rhegmatogenous retinal detachment were enrolled into the study. Forty cases underwent peripheral vitrectomy under air infusion (air group), and a control group of equal number underwent peripheral vitrectomy under fluid infusion (fluid group). Peripheral iatrogenic retinal breaks during peripheral vitrectomy, postoperative visual acuities, and retinal redetachment rates were compared. The number of eyes with peripheral iatrogenic retinal breaks in air group during peripheral vitrectomy was statistically comparable with that in fluid group (1/40 and 4/40, 2.5% and 10%, respectively; P = 0.16). Scleral depression was necessitated in 7 of 40 cases (17.5%) during the operation in the air group. There were no statistically significant differences between the groups in means of postoperative visual acuity and retinal redetachment (P = 0.18 and P = 1.0, respectively). Peripheral vitrectomy under air infusion for primary rhegmatogenous retinal detachment revealed comparable results with fluid infusion in terms of intraoperative and postoperative complications and surgical outcomes.
NASA Astrophysics Data System (ADS)
Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete
2018-04-01
In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: Shocks; Vortex ores; Regions of Recirculation; Boundary Layers; Wakes.
NASA Astrophysics Data System (ADS)
Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.
2007-10-01
The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.
Muñoz-Ruiz, Miguel Ángel; Hall, Anette; Mattila, Jussi; Koikkalainen, Juha; Herukka, Sanna-Kaisa; Husso, Minna; Hänninen, Tuomo; Vanninen, Ritva; Liu, Yawu; Hallikainen, Merja; Lötjönen, Jyrki; Remes, Anne M.; Alafuzoff, Irina; Soininen, Hilkka; Hartikainen, Päivi
2016-01-01
Background Disease State Index (DSI) and its visualization, Disease State Fingerprint (DSF), form a computer-assisted clinical decision making tool that combines patient data and compares them with cases with known outcomes. Aims To investigate the ability of the DSI to diagnose frontotemporal dementia (FTD) and Alzheimer's disease (AD). Methods The study cohort consisted of 38 patients with FTD, 57 with AD and 22 controls. Autopsy verification of FTD with TDP-43 positive pathology was available for 14 and AD pathology for 12 cases. We utilized data from neuropsychological tests, volumetric magnetic resonance imaging, single-photon emission tomography, cerebrospinal fluid biomarkers and the APOE genotype. The DSI classification results were calculated with a combination of leave-one-out cross-validation and bootstrapping. A DSF visualization of a FTD patient is presented as an example. Results The DSI distinguishes controls from FTD (area under the receiver-operator curve, AUC = 0.99) and AD (AUC = 1.00) very well and achieves a good differential diagnosis between AD and FTD (AUC = 0.89). In subsamples of autopsy-confirmed cases (AUC = 0.97) and clinically diagnosed cases (AUC = 0.94), differential diagnosis of AD and FTD performs very well. Conclusions DSI is a promising computer-assisted biomarker approach for aiding in the diagnostic process of dementing diseases. Here, DSI separates controls from dementia and differentiates between AD and FTD. PMID:27703465
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Visualizing Matrix Multiplication
ERIC Educational Resources Information Center
Daugulis, Peteris; Sondore, Anita
2018-01-01
Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…
RF Models for Plasma-Surface Interactions in VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Remote visualization and scale analysis of large turbulence datatsets
NASA Astrophysics Data System (ADS)
Livescu, D.; Pulido, J.; Burns, R.; Canada, C.; Ahrens, J.; Hamann, B.
2015-12-01
Accurate simulations of turbulent flows require solving all the dynamically relevant scales of motions. This technique, called Direct Numerical Simulation, has been successfully applied to a variety of simple flows; however, the large-scale flows encountered in Geophysical Fluid Dynamics (GFD) would require meshes outside the range of the most powerful supercomputers for the foreseeable future. Nevertheless, the current generation of petascale computers has enabled unprecedented simulations of many types of turbulent flows which focus on various GFD aspects, from the idealized configurations extensively studied in the past to more complex flows closer to the practical applications. The pace at which such simulations are performed only continues to increase; however, the simulations themselves are restricted to a small number of groups with access to large computational platforms. Yet the petabytes of turbulence data offer almost limitless information on many different aspects of the flow, from the hierarchy of turbulence moments, spectra and correlations, to structure-functions, geometrical properties, etc. The ability to share such datasets with other groups can significantly reduce the time to analyze the data, help the creative process and increase the pace of discovery. Using the largest DOE supercomputing platforms, we have performed some of the biggest turbulence simulations to date, in various configurations, addressing specific aspects of turbulence production and mixing mechanisms. Until recently, the visualization and analysis of such datasets was restricted by access to large supercomputers. The public Johns Hopkins Turbulence database simplifies the access to multi-Terabyte turbulence datasets and facilitates turbulence analysis through the use of commodity hardware. First, one of our datasets, which is part of the database, will be described and then a framework that adds high-speed visualization and wavelet support for multi-resolution analysis of turbulence will be highlighted. The addition of wavelet support reduces the latency and bandwidth requirements for visualization, allowing for many concurrent users, and enables new types of analyses, including scale decomposition and coherent feature extraction.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Scientific Visualization, Seeing the Unseeable
LBNL
2017-12-09
June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
A collision scheme for hybrid fluid-particle simulation of plasmas
NASA Astrophysics Data System (ADS)
Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John
2006-10-01
Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).
Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai
2015-11-01
Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.
Fluid-structure finite-element vibrational analysis
NASA Technical Reports Server (NTRS)
Feng, G. C.; Kiefling, L.
1974-01-01
A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.
Method and apparatus for accurately manipulating an object during microelectrophoresis
Parvin, Bahram A.; Maestre, Marcos F.; Fish, Richard H.; Johnston, William E.
1997-01-01
An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage.
Method and apparatus for accurately manipulating an object during microelectrophoresis
Parvin, B.A.; Maestre, M.F.; Fish, R.H.; Johnston, W.E.
1997-09-23
An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations and reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data. Visual servoing includes an imaging device and computer system to determine the location of the object. A second stage having a plurality of tubes positioned on top of the second stage, can be accurately positioned by visual servoing so that one end of one of the plurality of tubes surrounds at least part of the object on the first stage. 11 figs.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.; Farmer, R.
1985-01-01
An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.
Interactive client side data visualization with d3.js
NASA Astrophysics Data System (ADS)
Rodzianko, A.; Versteeg, R.; Johnson, D. V.; Soltanian, M. R.; Versteeg, O. J.; Girouard, M.
2015-12-01
Geoscience data associated with near surface research and operational sites is increasingly voluminous and heterogeneous (both in terms of providers and data types - e.g. geochemical, hydrological, geophysical, modeling data, of varying spatiotemporal characteristics). Such data allows scientists to investigate fundamental hydrological and geochemical processes relevant to agriculture, water resources and climate change. For scientists to easily share, model and interpret such data requires novel tools with capabilities for interactive data visualization. Under sponsorship of the US Department of Energy, Subsurface Insights is developing the Predictive Assimilative Framework (PAF): a cloud based subsurface monitoring platform which can manage, process and visualize large heterogeneous datasets. Over the last year we transitioned our visualization method from a server side approach (in which images and animations were generated using Jfreechart and Visit) to a client side one that utilizes the D3 Javascript library. Datasets are retrieved using web service calls to the server, returned as JSON objects and visualized within the browser. Users can interactively explore primary and secondary datasets from various field locations. Our current capabilities include interactive data contouring and heterogeneous time series data visualization. While this approach is very powerful and not necessarily unique, special attention needs to be paid to latency and responsiveness issues as well as to issues as cross browser code compatibility so that users have an identical, fluid and frustration-free experience across different computational platforms. We gratefully acknowledge support from the US Department of Energy under SBIR Award DOE DE-SC0009732, the use of data from the Lawrence Berkeley National Laboratory (LBNL) Sustainable Systems SFA Rifle field site and collaboration with LBNL SFA scientists.
Auralization of CFD Vorticity Using an Auditory Illusion
NASA Astrophysics Data System (ADS)
Volpe, C. R.
2005-12-01
One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally, the simple approach of mapping clockwise and counterclockwise rotations to actual pitch increases and decreases, eventually results in sounds that the listener cannot hear. In this alternate presentation using an auditory illusion, repeated rotations of a stream-tube are replaced with continual increases or decreases in apparent pitch. These apparent pitch changes can continue without bound, yet never exceed the range of frequencies that the listener can hear. The effectiveness of this presentation technique has been studied, and empirical results, obtained through formal user testing and statistical analysis, are presented. These results demonstrate that an aural data presentation using an auditory illusion can improve performance in locating key data characteristics, a task that demonstrates a certain level of understanding of the data. The experiments show that this holds true even when the user expresses a subjective preference and greater confidence in a visual presentation. The CFD data used in the research comes from a number of different industrial domains, but the advantages of this technique could be equally applicable to the study of earth sciences involving fluid mechanics, such as atmospheric or ocean sciences. Furthermore, the approach is applicable not only to CFD data, but to any type of data in which a quantity that is cyclic in nature, such as orientation, needs to be presented. Although the techniques and tools were originally developed with scientists and engineers in mind, they can also be used to aid students, particularly those who are visually impaired or who have difficulty interpreting certain spatial relationships visually.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
Gloaguen, Pauline; Bournais, Sylvain; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Tardif, Marianne; Kuntz, Marcel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves; Curien, Gilles
2017-06-01
Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis ( Arabidopsis thaliana ) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. © 2017 American Society of Plant Biologists. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)
1993-01-01
The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.
Data, Analysis, and Visualization | Computational Science | NREL
Data, Analysis, and Visualization Data, Analysis, and Visualization Data management, data analysis . At NREL, our data management, data analysis, and scientific visualization capabilities help move the approaches to image analysis and computer vision. Data Management and Big Data Systems, software, and tools
Tzu, Jonathan H; Flynn, Harry W; Berrocal, Audina M; Smiddy, William E; Murray, Timothy G; Fisher, Yale L
2013-01-01
The purpose of this retrospective study was to evaluate the characteristic features, including spectral-domain optical coherence tomography (SD-OCT), clinical course, and outcome of treatment if given for patients with optic disc pit maculopathy. We investigated a consecutive series of patients with a diagnosis of optic pit maculopathy treated between 2001 and 2012 at the Bascom Palmer Eye Institute. Patients were divided into two main groups, ie, patients who were observed without surgery and patients who received surgical intervention. The main outcome measures were presenting and final visual acuity, and changes in SD-OCT imaging were recorded. Other data including age, gender, eye, age of onset, length of follow-up, location of optic pit, and location of fluid by OCT were also recorded. On OCT, 67% (12/18) of the eyes showed schisis-like cavities, 22% (4/18) had only subretinal fluid, and 17% (3/18) had only a schisis-like cavity without subretinal fluid. In the patients managed by observation, visual acuity was ≥20/200 in 6/8 eyes initially and 6/8 eyes at last follow-up. Ten of 18 patients received either focal laser, surgery or both. Six of 10 eyes undergoing surgery had initial visual acuity ≥ 20/200, and 8 of 10 eyes undergoing surgery had a visual acuity of ≥20/200 at last follow-up. In this study, many eyes were observed and remained stable during follow-up. In eyes with reduced vision, surgical intervention produced variable outcomes, and persistent intraretinal/subretinal fluid was a common occurrence.
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
ERIC Educational Resources Information Center
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation. PMID:28824513
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L; Hanrahan, Patrick
2014-04-29
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA
2011-02-01
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA
2012-03-20
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, S.; Zacharia, T.; Baltas, N.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Smith, R P; Dias, J J; Ullah, A; Bhowal, B
2009-05-01
Corrective surgery for Dupuytren's disease represents a significant proportion of a hand surgeon's workload. The decision to go ahead with surgery and the success of surgery requires measuring the degree of contracture of the diseased finger(s). This is performed in clinic with a goniometer, pre- and postoperatively. Monitoring the recurrence of the contracture can inform on surgical outcome, research and audit. We compared visual and computer software-aided estimation of Dupuytren's contractures to clinical goniometric measurements in 60 patients with Dupuytren's disease. Patients' hands were digitally photographed. There were 76 contracted finger joints--70 proximal interphalangeal joints and six distal interphalangeal joints. The degrees of contracture of these images were visually assessed by six orthopaedic staff of differing seniority and re-assessed with computer software. Across assessors, the Pearson correlation between the goniometric measurements and the visual estimations was 0.83 and this significantly improved to 0.88 with computer software. Reliability with intra-class correlations achieved 0.78 and 0.92 for the visual and computer-aided estimations, respectively, and with test-retest analysis, 0.92 for visual estimation and 0.95 for computer-aided measurements. Visual estimations of Dupuytren's contractures correlate well with actual clinical goniometric measurements and improve further if measured with computer software. Digital images permit monitoring of contracture after surgery and may facilitate research into disease progression and auditing of surgical technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.
2015-04-02
A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less
A Computational Model of Spatial Visualization Capacity
ERIC Educational Resources Information Center
Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.
2008-01-01
Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…
Learning about Locomotion Patterns from Visualizations: Effects of Presentation Format and Realism
ERIC Educational Resources Information Center
Imhof, Birgit; Scheiter, Katharina; Gerjets, Peter
2011-01-01
The rapid development of computer graphics technology has made possible an easy integration of dynamic visualizations into computer-based learning environments. This study examines the relative effectiveness of dynamic visualizations, compared either to sequentially or simultaneously presented static visualizations. Moreover, the degree of realism…
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
Musical Interfaces: Visualization and Reconstruction of Music with a Microfluidic Two-Phase Flow
Mak, Sze Yi; Li, Zida; Frere, Arnaud; Chan, Tat Chuen; Shum, Ho Cheung
2014-01-01
Detection of sound wave in fluids can hardly be realized because of the lack of approaches to visualize the very minute sound-induced fluid motion. In this paper, we demonstrate the first direct visualization of music in the form of ripples at a microfluidic aqueous-aqueous interface with an ultra-low interfacial tension. The interfaces respond to sound of different frequency and amplitude robustly with sufficiently precise time resolution for the recording of musical notes and even subsequent reconstruction with high fidelity. Our work shows the possibility of sensing and transmitting vibrations as tiny as those induced by sound. This robust control of the interfacial dynamics enables a platform for investigating the mechanical properties of microstructures and for studying frequency-dependent phenomena, for example, in biological systems. PMID:25327509
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Fluid dynamics computer programs for NERVA turbopump
NASA Technical Reports Server (NTRS)
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Real-time visualization and analysis of airflow field by use of digital holography
NASA Astrophysics Data System (ADS)
Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin
2013-04-01
The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
NASA Technical Reports Server (NTRS)
Marshall, S. E.; Bernhard, R.
1984-01-01
A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.
Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques
NASA Technical Reports Server (NTRS)
Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom
1993-01-01
A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo
2016-11-01
After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.
Ahmed, N; Zheng, Ziyi; Mueller, K
2012-12-01
Due to the inherent characteristics of the visualization process, most of the problems in this field have strong ties with human cognition and perception. This makes the human brain and sensory system the only truly appropriate evaluation platform for evaluating and fine-tuning a new visualization method or paradigm. However, getting humans to volunteer for these purposes has always been a significant obstacle, and thus this phase of the development process has traditionally formed a bottleneck, slowing down progress in visualization research. We propose to take advantage of the newly emerging field of Human Computation (HC) to overcome these challenges. HC promotes the idea that rather than considering humans as users of the computational system, they can be made part of a hybrid computational loop consisting of traditional computation resources and the human brain and sensory system. This approach is particularly successful in cases where part of the computational problem is considered intractable using known computer algorithms but is trivial to common sense human knowledge. In this paper, we focus on HC from the perspective of solving visualization problems and also outline a framework by which humans can be easily seduced to volunteer their HC resources. We introduce a purpose-driven game titled "Disguise" which serves as a prototypical example for how the evaluation of visualization algorithms can be mapped into a fun and addicting activity, allowing this task to be accomplished in an extensive yet cost effective way. Finally, we sketch out a framework that transcends from the pure evaluation of existing visualization methods to the design of a new one.
Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.
Spiegel, Martin; Redel, Thomas; Zhang, Y; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof
2009-01-01
Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality. Meshes with a coarse spatial resolution may lead to an inaccurate flow pattern. Meshes with a large number of elements will result in unnecessarily high computation time which is undesirable should CFD be used for planning in the interventional setting. Most CFD simulations reported for these vascular pathologies have used tetrahedral meshes. We illustrate the use of polyhedral volume elements in comparison to tetrahedral meshing on two different geometries, a sidewall aneurysm of the internal carotid artery and a basilar bifurcation aneurysm. The spatial mesh resolution ranges between 5,119 and 228,118 volume elements. The evaluation of the different meshes was based on the wall shear stress previously identified as a one possible parameter for assessing aneurysm growth. Polyhedral meshes showed better accuracy, lower memory demand, shorter computational speed and faster convergence behavior (on average 369 iterations less).
Seedorf, Jens; Schmidt, Ralf-Gunther
2017-08-01
Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.
NASA Astrophysics Data System (ADS)
Ellis, T. D.
2014-12-01
Too often in geoscience education are the computer skills necessary for success in the workforce put off until the last years of undergraduate education. This is especially true in meteorology, a form of geophysical fluid dynamics many people encounter on a daily basis. Meteorologists often need to know specialized computer skills, including the use of scripting languages to automate handling large bundles of data, manipulating four-dimensional arrays (with three spatial dimensions and one time dimension), visualizing said datasets simply and effectively for publication, and performing statistical analysis of those datasets. Such topics are often addressed only at the senior undergraduate level or graduate school. At SUNY Oneonta, we are piloting a course that teaches these skills to third-semester students with the intent of building confidence in these skills throughout students' careers and with the of building a tool-box of skills that can be used in upper-division courses and undergraduate research. This poster will present the methods used in building this course, the kinds of activities designed, the desired student learning outcomes, and our assessment of those outcomes, and new initiatives engaged since the completion of the NSF-funded portion of the project in 2012.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
1998-01-01
This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.
Use of computational fluid dynamics in respiratory medicine.
Fernández Tena, Ana; Casan Clarà, Pere
2015-06-01
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L; Hanrahan, Patrick
2015-03-03
A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes multiple operand names, each operand corresponding to one or more fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first operands with the columns shelf and to associate one or more second operands with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first operands, and each pane has a y-axis defined based on data for the one or more second operands.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2015-11-10
A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes a plurality of fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first fields with the columns shelf and to associate one or more second fields with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first fields, and each pane has a y-axis defined based on data for the one or more second fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geveci, Berk; Maynard, Robert
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less
Vectorization on the star computer of several numerical methods for a fluid flow problem
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2017-08-01
Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow.
38 CFR 4.76a - Computation of average concentric contraction of visual fields.
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentric contraction of visual fields. 4.76a Section 4.76a Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Organs of Special Sense § 4.76a Computation of average concentric contraction of visual fields. Table III—Normal Visual...
Mathematical modeling of impact of two metal plates using two-fluid approach
NASA Astrophysics Data System (ADS)
Utkin, P. S.; Fortova, S. V.
2018-01-01
The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.
40 CFR 65.119 - Recordkeeping provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... agitators equipped with a dual mechanical seal system that includes barrier fluid system, the owner or... assessment that identifies the representative composition of the process fluid. The assessment shall be based... pump visual inspections as specified in § 65.107(b)(4). (ii) Documentation of dual mechanical seal pump...
The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock
NASA Astrophysics Data System (ADS)
Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart
2017-11-01
Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.
Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju
2015-12-01
Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice.
NASA Astrophysics Data System (ADS)
Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi
2018-04-01
To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.
Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors
NASA Astrophysics Data System (ADS)
Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.
2008-05-01
This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.
NASA Technical Reports Server (NTRS)
Stenger, M.; Lee, S.; Platts, S.; Macias, B.; Lui, J.; Ebert, D.; Sargsyan, A.; Dulchavsky, S.; Alferova, I.; Yarmanova, E.;
2013-01-01
With the conclusion of the Space Shuttle program, NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed in Space Shuttle crewmembers after their short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound changes in vision, some with objective structural and functional findings such as papilledema and choroidal folds on ophthalmologic examination. Globe flattening, optic nerve sheath dilatation, optic nerve tortuosity, and other findings have been noted in imaging studies. This pattern is referred to as visual impairment and intracranial pressure (VIIP) syndrome. The VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) is associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been systematically tested. The purpose of this study is to objectively characterize the fluid distribution and compartmentalization associated with long-duration space flight, and to correlate the findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, can be predicted by crewmember baseline data and responses to acute hemodynamic manipulations (such as head-down tilt tests) obtained before flight. Lastly, we will evaluate the patterns of fluid distribution in astronaut subjects on the ISS during the use of lower body negative pressure (LBNP) and respiratory maneuvers to characterize and explain general and individual responses during space flight.
Applied Computational Fluid Dynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1994-01-01
The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Visualization of fluid turbulence and acoustic cavitation during phacoemulsification.
Tognetto, Daniele; Sanguinetti, Giorgia; Sirotti, Paolo; Brezar, Edoardo; Ravalico, Giuseppe
2005-02-01
To describe a technique for visualizing fluid turbulence and cavitational energy created by ultrasonic phaco tips. University Eye Clinic of Trieste, Trieste, Italy. Generation of cavitational energy by the phaco tip was visualized using an optical test bench comprising several components. The technique uses a telescope system to expand a laser light source into a coherent, collimated beam of light with a diameter of approximately 50.0 mm. The expanded laser beam shines on the test tube containing the tip activated in a medium of water or ophthalmic viscosurgical device (OVD). Two precision optical collimators complete the optical test bench and form the system used to focus data onto a charge-coupled device television camera connected to a recorder. Images of irrigation, irrigation combined with aspiration, irrigation/aspiration, and phacosonication were obtained with the tip immersed in a tube containing water or OVD. Optical image processing enabled acoustic cavitation to be visualized during phacosonication. The system is a possible means of evaluating a single phaco apparatus power setting and comparing phaco machines and techniques.
The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data
NASA Astrophysics Data System (ADS)
Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris
2010-05-01
Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery, maps, and data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers within a common 3D coordinate space. Data management within the OEF handles and hides the inevitable quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Heuristics are used to extract necessary metadata used to guide data and visual operations. Derived data representations are computed to better support fluid interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization makes use of 3D graphics hardware support found on today's computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.
NASA Astrophysics Data System (ADS)
Whitford, Dennis J.
2002-05-01
This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
TetrUSS Capabilities for S and C Applications
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Parikh, Paresh
2004-01-01
TetrUSS is a suite of loosely coupled computational fluid dynamics software that is packaged into a complete flow analysis system. The system components consist of tools for geometry setup, grid generation, flow solution, visualization, and various utilities tools. Development began in 1990 and it has evolved into a proven and stable system for Euler and Navier-Stokes analysis and design of unconventional configurations. It is 1) well developed and validated, 2) has a broad base of support, and 3) is presently is a workhorse code because of the level of confidence that has been established through wide use. The entire system can now run on linux or mac architectures. In the following slides, I will highlight more of the features of the VGRID and USM3D codes.
A Textbook for a First Course in Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
U.S. Air Force Aircrew Flight Protective Eyewear Program
2013-02-01
MIL-DTL-32000), fire - resistant hydraulic fluid (MIL-PRF-46170), petroleum-based hydraulic fluid (MIL-PRF-6083), gasoline (87% octane), motor oil...UPLC installed. ABRASION FPE spectacles and goggles shall maximize resistance to scratching/ abrasion to minimize interference with vision...Visual Area ................................................................................. 2 3.0 BALLISTIC AND IMPACT RESISTANCE : BALLISTIC
ERIC Educational Resources Information Center
Hsiao, Janet H.; Lam, Sze Man
2013-01-01
Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face…
Potential applications of computational fluid dynamics to biofluid analysis
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.
1988-01-01
Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.
NASA Technical Reports Server (NTRS)
Kutler, Paul; Yee, Helen
1987-01-01
Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.
The coupling of fluids, dynamics, and controls on advanced architecture computers
NASA Technical Reports Server (NTRS)
Atwood, Christopher
1995-01-01
This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.
How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling
Veale, Richard; Hafed, Ziad M.
2017-01-01
Inherent in visual scene analysis is a bottleneck associated with the need to sequentially sample locations with foveating eye movements. The concept of a ‘saliency map’ topographically encoding stimulus conspicuity over the visual scene has proven to be an efficient predictor of eye movements. Our work reviews insights into the neurobiological implementation of visual salience computation. We start by summarizing the role that different visual brain areas play in salience computation, whether at the level of feature analysis for bottom-up salience or at the level of goal-directed priority maps for output behaviour. We then delve into how a subcortical structure, the superior colliculus (SC), participates in salience computation. The SC represents a visual saliency map via a centre-surround inhibition mechanism in the superficial layers, which feeds into priority selection mechanisms in the deeper layers, thereby affecting saccadic and microsaccadic eye movements. Lateral interactions in the local SC circuit are particularly important for controlling active populations of neurons. This, in turn, might help explain long-range effects, such as those of peripheral cues on tiny microsaccades. Finally, we show how a combination of in vitro neurophysiology and large-scale computational modelling is able to clarify how salience computation is implemented in the local circuit of the SC. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044023
NASA Astrophysics Data System (ADS)
Ishii, Katsuya
2011-08-01
This issue includes a special section on computational fluid dynamics (CFD) in memory of the late Professor Kunio Kuwahara, who passed away on 15 September 2008, at the age of 66. In this special section, five articles are included that are based on the lectures and discussions at `The 7th International Nobeyama Workshop on CFD: To the Memory of Professor Kuwahara' held in Tokyo on 23 and 24 September 2009. Professor Kuwahara started his research in fluid dynamics under Professor Imai at the University of Tokyo. His first paper was published in 1969 with the title 'Steady Viscous Flow within Circular Boundary', with Professor Imai. In this paper, he combined theoretical and numerical methods in fluid dynamics. Since that time, he made significant and seminal contributions to computational fluid dynamics. He undertook pioneering numerical studies on the vortex method in 1970s. From then to the early nineties, he developed numerical analyses on a variety of three-dimensional unsteady phenomena of incompressible and compressible fluid flows and/or complex fluid flows using his own supercomputers with academic and industrial co-workers and members of his private research institute, ICFD in Tokyo. In addition, a number of senior and young researchers of fluid mechanics around the world were invited to ICFD and the Nobeyama workshops, which were held near his villa, and they intensively discussed new frontier problems of fluid physics and fluid engineering at Professor Kuwahara's kind hospitality. At the memorial Nobeyama workshop held in 2009, 24 overseas speakers presented their papers, including the talks of Dr J P Boris (Naval Research Laboratory), Dr E S Oran (Naval Research Laboratory), Professor Z J Wang (Iowa State University), Dr M Meinke (RWTH Aachen), Professor K Ghia (University of Cincinnati), Professor U Ghia (University of Cincinnati), Professor F Hussain (University of Houston), Professor M Farge (École Normale Superieure), Professor J Y Yong (National Taiwan University), and Professor H S Kwak (Kumoh National Institute of Technology). For his contributions to CFD, Professor Kuwahara received Awards from the Japan Society of Automobile Engineers and the Japan Society of Mechanical Engineers in 1992, the Computational Mechanics Achievement Award from the Japan Society of Mechanical Engineers in 1993, and the Max Planck Research Award in 1993. He received the Computational Mechanics Award from the Japan Society of Mechanical Engineers again in 2008. Professor Kuwahara also supported the development of the Japan Society of Fluid Mechanics, whose office is located in the same building as ICFD. In the proceedings of the 6th International Nobeyama Workshop on CFD to commemorate the 60th birthday of Professor Kuwahara, Professor Jae Min Hyun of KAIST wrote 'The major professional achievement of Professor Kuwahara may be compressed into two main categories. First and foremost, Professor Kuwahara will long be recorded as the front-line pioneer in using numerical computations to tackle complex problems in fluid mechanics. ...Another important contribution of Professor Kuwahara was in the training and fostering of talented manpower of computational mechanics research.'[1] Among the various topics of the five papers in this special section are examples of Professor Kuwahara's works mentioned by Professor Hyun. The main authors of all papers have grown up in the research circle of Professor Kuwahara. All the papers demostrate the challenge of new aspects of computational fluid dynamics; a new numerical method for compressible flows, thermo-acoustic flows of helium gas in a small tube, electro-osmic flows in a micro/nano channel, MHD flows over a wavy disk, and a new extraction method of multi-object aircraft design rules. Last but not least, this special section is cordially dedicated to the late Professor Kuwahara and his family. Reference [1] Hyun J M 2005 Preface of New Developments in Computational Fluid Dynamics vol 90 Notes on Numerical Fluid Mechanics and Multidisciplinary Design ed K Fujii et al (Berlin: Springer)
A collection of flow visualization techniques used in the Aerodynamic Research Branch
NASA Technical Reports Server (NTRS)
1984-01-01
Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.
Specialized computer architectures for computational aerodynamics
NASA Technical Reports Server (NTRS)
Stevenson, D. K.
1978-01-01
In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.
Current capabilities and future directions in computational fluid dynamics
NASA Technical Reports Server (NTRS)
1986-01-01
A summary of significant findings is given, followed by specific recommendations for future directions of emphasis for computational fluid dynamics development. The discussion is organized into three application areas: external aerodynamics, hypersonics, and propulsion - and followed by a turbulence modeling synopsis.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
On the Use of Computers for Teaching Fluid Mechanics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.
Computational Fluid Dynamics at ICMA (Institute for Computational Mathematics and Applications)
1988-10-18
PERSONAL. AUTHOR(S) Charles A. Hall and Thomas A. Porsching 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (YearMOth, De ) 1. PAGE COUNT...of ten ICtA (Institute for Computational Mathe- matics and Applications) personnel, relating to the general area of computational fluid mechanics...questions raised in the previous subsection. Our previous work in this area concentrated on a study of the differential geometric aspects of the prob- lem
Collisional transport across the magnetic field in drift-fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.
2016-03-15
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less
Parallel aeroelastic computations for wing and wing-body configurations
NASA Technical Reports Server (NTRS)
Byun, Chansup
1994-01-01
The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
ERIC Educational Resources Information Center
Wang, Tsui-Ying; Huang, Ho-Chuan; Huang, Hsiu-Shuang
2006-01-01
We propose a computer-assisted cancellation test system (CACTS) to understand the visual attention performance and visual search strategies in school children. The main aim of this paper is to present our design and development of the CACTS and demonstrate some ways in which computer techniques can allow the educator not only to obtain more…
NASA Astrophysics Data System (ADS)
Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi
2018-04-01
The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.