Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind
Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.
2016-01-01
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.
1997-01-01
Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.
Solano-Román, Antonio; Alfaro-Arias, Verónica; Cruz-Castillo, Carlos; Orozco-Solano, Allan
2018-03-15
VizGVar was designed to meet the growing need of the research community for improved genomic and proteomic data viewers that benefit from better information visualization. We implemented a new information architecture and applied user centered design principles to provide a new improved way of visualizing genetic information and protein data related to human disease. VizGVar connects the entire database of Ensembl protein motifs, domains, genes and exons with annotated SNPs and somatic variations from PharmGKB and COSMIC. VizGVar precisely represents genetic variations and their respective location by colored curves to designate different types of variations. The structured hierarchy of biological data is reflected in aggregated patterns through different levels, integrating several layers of information at once. VizGVar provides a new interactive, web-based JavaScript visualization of somatic mutations and protein variation, enabling fast and easy discovery of clinically relevant variation patterns. VizGVar is accessible at http://vizport.io/vizgvar; http://vizport.io/vizgvar/doc/. asolano@broadinstitute.org or allan.orozcosolano@ucr.ac.cr.
Quantification and Visualization of Variation in Anatomical Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenta, Nina; Datar, Manasi; Dirksen, Asger
This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.
Visual motion detection and habitat preference in Anolis lizards.
Steinberg, David S; Leal, Manuel
2016-11-01
The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.
Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence
2017-07-01
While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
2008-12-01
Strength through structure The visualization and assessment of inner human bone structures can provide better predictions of fracture risk due to osteoporosis. Using micro-computed tomography (µCT), Christoph Räth from the Max Planck Institute for Extraterrestrial Physics and colleagues based in Munich, Vienna and Salzburg have shown how complex lattice-shaped bone structures can be visualized. The structures were quantified by calculating certain "texture measures" that yield new information about the stability of the bone. A 3D visualization showing the variation with orientation of one of the texture measures for four different bone specimens (from left to right) is shown above. Such analyses may help us to improve our understanding of disease and drug-induced changes in bone structure (C Räth et al. 2008 New J. Phys. 10 125010).
Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.
Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P
2016-05-01
Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visualizing Structure and Dynamics of Disaccharide Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Visualizing spatial population structure with estimated effective migration surfaces
Petkova, Desislava; Novembre, John; Stephens, Matthew
2015-01-01
Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242
Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception
McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P.; Lau, Hakwan
2015-01-01
A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain. PMID:23365229
Soto, David; Rotshtein, Pia; Kanai, Ryota
2014-04-01
Recent research indicates that human attention appears inadvertently biased by items that match the contents of working memory (WM). WM-biases can lead to attentional costs when the memory content matches goal-irrelevant items and to attentional benefits when it matches the sought target. Here we used functional and structural MRI data to determine the neural basis of human variation in WM biases. We asked whether human variation in WM-benefits and WM-costs merely reflects the process of attentional capture by the contents of WM or whether variation in WM biases may be associated with distinct forms of cognitive control over internal WM signals based on selection goals. Human ability to use WM contents to facilitate selection was positively correlated with gray matter volume in the left superior posterior parietal cortex (PPC), while the ability to overcome interference by WM-matching distracters was associated with the left inferior PPC in the anterior IPS. Functional activity in the left PPC, measured by functional MRI, also predicted the magnitude of WM-costs on selection. Both structure and function of left PPC mediate the expression of WM biases in human visual attention. Copyright © 2013 Elsevier Inc. All rights reserved.
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
LenVarDB: database of length-variant protein domains.
Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan
2014-01-01
Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
Visualizing the semantic structure in classical music works.
Chan, Wing-Yi; Qu, Huamin; Mak, Wai-Ho
2010-01-01
A major obstacle in the appreciation of classical music is that extensive training is required to understand musical structure and compositional techniques toward comprehending the thoughts behind the musical work. In this paper, we propose an innovative visualization solution to reveal the semantic structure in classical orchestral works such that users can gain insights into musical structure and appreciate the beauty of music. We formulate the semantic structure into macrolevel layer interactions, microlevel theme variations, and macro-micro relationships between themes and layers to abstract the complicated construction of a musical composition. The visualization has been applied with success in understanding some classical music works as supported by highly promising user study results with the general audience and very positive feedback from music students and experts, demonstrating its effectiveness in conveying the sophistication and beauty of classical music to novice users with informative and intuitive displays.
R-chie: a web server and R package for visualizing RNA secondary structures
Lai, Daniel; Proctor, Jeff R.; Zhu, Jing Yun A.; Meyer, Irmtraud M.
2012-01-01
Visually examining RNA structures can greatly aid in understanding their potential functional roles and in evaluating the performance of structure prediction algorithms. As many functional roles of RNA structures can already be studied given the secondary structure of the RNA, various methods have been devised for visualizing RNA secondary structures. Most of these methods depict a given RNA secondary structure as a planar graph consisting of base-paired stems interconnected by roundish loops. In this article, we present an alternative method of depicting RNA secondary structure as arc diagrams. This is well suited for structures that are difficult or impossible to represent as planar stem-loop diagrams. Arc diagrams can intuitively display pseudo-knotted structures, as well as transient and alternative structural features. In addition, they facilitate the comparison of known and predicted RNA secondary structures. An added benefit is that structure information can be displayed in conjunction with a corresponding multiple sequence alignments, thereby highlighting structure and primary sequence conservation and variation. We have implemented the visualization algorithm as a web server R-chie as well as a corresponding R package called R4RNA, which allows users to run the software locally and across a range of common operating systems. PMID:22434875
Analysis of retinal and cortical components of Retinex algorithms
NASA Astrophysics Data System (ADS)
Yeonan-Kim, Jihyun; Bertalmío, Marcelo
2017-05-01
Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.
Mosaic and Concerted Evolution in the Visual System of Birds
Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N.; Moore, Bret A.; Fernández-Juricic, Esteban; Corfield, Jeremy R.; Krilow, Justin M.; Kolominsky, Jeffrey; Wylie, Douglas R.
2014-01-01
Two main models have been proposed to explain how the relative size of neural structures varies through evolution. In the mosaic evolution model, individual brain structures vary in size independently of each other, whereas in the concerted evolution model developmental constraints result in different parts of the brain varying in size in a coordinated manner. Several studies have shown variation of the relative size of individual nuclei in the vertebrate brain, but it is currently not known if nuclei belonging to the same functional pathway vary independently of each other or in a concerted manner. The visual system of birds offers an ideal opportunity to specifically test which of the two models apply to an entire sensory pathway. Here, we examine the relative size of 9 different visual nuclei across 98 species of birds. This includes data on interspecific variation in the cytoarchitecture and relative size of the isthmal nuclei, which has not been previously reported. We also use a combination of statistical analyses, phylogenetically corrected principal component analysis and evolutionary rates of change on the absolute and relative size of the nine nuclei, to test if visual nuclei evolved in a concerted or mosaic manner. Our results strongly indicate a combination of mosaic and concerted evolution (in the relative size of nine nuclei) within the avian visual system. Specifically, the relative size of the isthmal nuclei and parts of the tectofugal pathway covary across species in a concerted fashion, whereas the relative volume of the other visual nuclei measured vary independently of one another, such as that predicted by the mosaic model. Our results suggest the covariation of different neural structures depends not only on the functional connectivity of each nucleus, but also on the diversity of afferents and efferents of each nucleus. PMID:24621573
Visualizing the molecular sociology at the HeLa cell nuclear periphery.
Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang
2016-02-26
The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. Copyright © 2016, American Association for the Advancement of Science.
Stieb, Sara M; Cortesi, Fabio; Sueess, Lorenz; Carleton, Karen L; Salzburger, Walter; Marshall, N J
2017-03-01
Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae. © 2016 John Wiley & Sons Ltd.
Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi
2014-10-01
We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.
PDBFlex: exploring flexibility in protein structures
Hrabe, Thomas; Li, Zhanwen; Sedova, Mayya; Rotkiewicz, Piotr; Jaroszewski, Lukasz; Godzik, Adam
2016-01-01
The PDBFlex database, available freely and with no login requirements at http://pdbflex.org, provides information on flexibility of protein structures as revealed by the analysis of variations between depositions of different structural models of the same protein in the Protein Data Bank (PDB). PDBFlex collects information on all instances of such depositions, identifying them by a 95% sequence identity threshold, performs analysis of their structural differences and clusters them according to their structural similarities for easy analysis. The PDBFlex contains tools and viewers enabling in-depth examination of structural variability including: 2D-scaling visualization of RMSD distances between structures of the same protein, graphs of average local RMSD in the aligned structures of protein chains, graphical presentation of differences in secondary structure and observed structural disorder (unresolved residues), difference distance maps between all sets of coordinates and 3D views of individual structures and simulated transitions between different conformations, the latter displayed using JSMol visualization software. PMID:26615193
Visual soil evaluation - future research requirements
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick
2017-04-01
A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.
ERIC Educational Resources Information Center
Heyl, Vera; Wahl, Hans-Werner; Mollenkopf, Heidrun
2005-01-01
This work examined the role of visual capacity in connection with psychological, social network related, and socio-structural predictors of out-of-home everyday functioning and emotional well-being. The results are based on a sample of 1519 community dwelling elderly (55-98 years; mean age 70.8 years), 757 of them were living in urban, and 762…
A tactual pilot aid for the approach-and-landing task: Inflight studies
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Fenton, R. E.
1973-01-01
A pilot aid -- a kinesthetic-tactual compensatory display -- for assisting novice pilots in various inflight situations has undergone preliminary inflight testing. The efficacy of this display, as compared with two types of visual displays, was evaluated in both a highly structured approach-and-landing task and a less structured test involving tight turns about a point. In both situations, the displayed quantity was the deviation (alpha sub 0 - alpha) in angle at attack from a desired value alpha sub 0. In the former, the performance with the tactual display was comparable with that obtained using a visual display of (alpha sub 0 - alpha), while in the later, substantial improvements (reduced tracking error (55%), decreased maximum altitude variations (67%), and decreased speed variations (43%)), were obtained using the tactual display. It appears that such a display offers considerable potential for inflight use.
Impacts of soil moisture content on visual soil evaluation
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick
2017-04-01
Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References Guimarães, R.M.C., Ball, B.C. & Tormena, C.A. 2011. Improvements in the visual evaluation of soil structure, Soil Use and Management, 27, 3: 395-403 Shepherd, G.T. 2009. Visual Soil Assessment. Field guide for pastoral grazing and cropping on flat to rolling country. 2nd edn. Horizons regional council, New Zealand.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.
2005-08-01
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.
A computational theory of visual receptive fields.
Lindeberg, Tony
2013-12-01
A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative agreement are obtained for (i) spatial on-center/off-surround and off-center/on-surround receptive fields in the fovea and the LGN, (ii) simple cells with spatial directional preference in V1, (iii) spatio-chromatic double-opponent neurons in V1, (iv) space-time separable spatio-temporal receptive fields in the LGN and V1, and (v) non-separable space-time tilted receptive fields in V1, all within the same unified theory. In addition, the paper presents a more general framework for relating and interpreting these receptive fields conceptually and possibly predicting new receptive field profiles as well as for pre-wiring covariance under scaling, affine, and Galilean transformations into the representations of visual stimuli. This paper describes the basic structure of the necessity results concerning receptive field profiles regarding the mathematical foundation of the theory and outlines how the proposed theory could be used in further studies and modelling of biological vision. It is also shown how receptive field responses can be interpreted physically, as the superposition of relative variations of surface structure and illumination variations, given a logarithmic brightness scale, and how receptive field measurements will be invariant under multiplicative illumination variations and exposure control mechanisms.
Balaram, P; Isaamullah, M; Petry, HM; Bickford, ME; Kaas, JH
2014-01-01
Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. PMID:25521420
Loumann Knudsen, Lars
2003-08-01
To study reproducibility and biological variation of visual acuity in diabetic maculopathy, using two different visual acuity tests, the decimal progression chart and the Freiburg visual acuity test. Twenty-two eyes in 11 diabetic subjects were examined several times within a 12-month period using both visual acuity tests. The most commonly used visual acuity test in Denmark (the decimal progression chart) was compared to the Freiburg visual acuity test (automated testing) in a paired study. Correlation analysis revealed agreement between the two methods (r(2)=0.79; slope=0.82; y-axis intercept=0.01). The mean visual acuity was found to be 15% higher (P<0.0001) with the decimal progression chart than with the Freiburg visual acuity test. The reproducibility was the same in both tests (coefficient of variation: 12% for each test); however, the variation within the 12-month examination period differed significantly. The coefficient of variation was 17% using the decimal progression chart, 35% with the Freiburg visual acuity test. The reproducibility of the two visual acuity tests is comparable under optimal testing conditions in diabetic subjects with macular oedema. However, it appears that the Freiburg visual acuity test is significantly better for detection of biological variation.
Using perceptual rules in interactive visualization
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Treinish, Lloyd A.
1994-05-01
In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.
Hood, Donald C; Anderson, Susan C; Wall, Michael; Raza, Ali S; Kardon, Randy H
2009-09-01
Retinal nerve fiber (RNFL) thickness and visual field loss data from patients with glaucoma were analyzed in the context of a model, to better understand individual variation in structure versus function. Optical coherence tomography (OCT) RNFL thickness and standard automated perimetry (SAP) visual field loss were measured in the arcuate regions of one eye of 140 patients with glaucoma and 82 normal control subjects. An estimate of within-individual (measurement) error was obtained by repeat measures made on different days within a short period in 34 patients and 22 control subjects. A linear model, previously shown to describe the general characteristics of the structure-function data, was extended to predict the variability in the data. For normal control subjects, between-individual error (individual differences) accounted for 87% and 71% of the total variance in OCT and SAP measures, respectively. SAP within-individual error increased and then decreased with increased SAP loss, whereas OCT error remained constant. The linear model with variability (LMV) described much of the variability in the data. However, 12.5% of the patients' points fell outside the 95% boundary. An examination of these points revealed factors that can contribute to the overall variability in the data. These factors include epiretinal membranes, edema, individual variation in field-to-disc mapping, and the location of blood vessels and degree to which they are included by the RNFL algorithm. The model and the partitioning of within- versus between-individual variability helped elucidate the factors contributing to the considerable variability in the structure-versus-function data.
Sulai, Yusufu N.; Scoles, Drew; Harvey, Zachary; Dubra, Alfredo
2015-01-01
Imaging of the retinal vascular structure and perfusion was explored by confocal illumination and nonconfocal detection in an adaptive optics scanning light ophthalmoscope (AOSLO), as an extension of the work by Chui et al. [Biomed. Opt. Express 3, 2537 (2012)]. Five different detection schemes were evaluated at multiple retinal locations: circular mask, annular mask, circular mask with filament, knife-edge, and split-detector. Given the superior image contrast in the reflectance and perfusion maps, the split-detection method was further tested using pupil apodization, polarized detection, and four different wavelengths. None of these variations provided noticeable contrast improvement. The noninvasive visualization of capillary flow and structure provided by AOSLO split-detection shows great promise for studying ocular and systemic conditions that affect the retinal vasculature. PMID:24690655
Balaram, P; Isaamullah, M; Petry, H M; Bickford, M E; Kaas, J H
2015-08-15
Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. © 2015 Wiley Periodicals, Inc.
Matching multiple rigid domain decompositions of proteins
Flynn, Emily; Streinu, Ileana
2017-01-01
We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528
JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES.
Lock, Eric F; Hoadley, Katherine A; Marron, J S; Nobel, Andrew B
2013-03-01
Research in several fields now requires the analysis of datasets in which multiple high-dimensional types of data are available for a common set of objects. In particular, The Cancer Genome Atlas (TCGA) includes data from several diverse genomic technologies on the same cancerous tumor samples. In this paper we introduce Joint and Individual Variation Explained (JIVE), a general decomposition of variation for the integrated analysis of such datasets. The decomposition consists of three terms: a low-rank approximation capturing joint variation across data types, low-rank approximations for structured variation individual to each data type, and residual noise. JIVE quantifies the amount of joint variation between data types, reduces the dimensionality of the data, and provides new directions for the visual exploration of joint and individual structure. The proposed method represents an extension of Principal Component Analysis and has clear advantages over popular two-block methods such as Canonical Correlation Analysis and Partial Least Squares. A JIVE analysis of gene expression and miRNA data on Glioblastoma Multiforme tumor samples reveals gene-miRNA associations and provides better characterization of tumor types.
GALT protein database: querying structural and functional features of GALT enzyme.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2014-09-01
Knowledge of the impact of variations on protein structure can enhance the comprehension of the mechanisms of genetic diseases related to that protein. Here, we present a new version of GALT Protein Database, a Web-accessible data repository for the storage and interrogation of structural effects of variations of the enzyme galactose-1-phosphate uridylyltransferase (GALT), the impairment of which leads to classic Galactosemia, a rare genetic disease. This new version of this database now contains the models of 201 missense variants of GALT enzyme, including heterozygous variants, and it allows users not only to retrieve information about the missense variations affecting this protein, but also to investigate their impact on substrate binding, intersubunit interactions, stability, and other structural features. In addition, it allows the interactive visualization of the models of variants collected into the database. We have developed additional tools to improve the use of the database by nonspecialized users. This Web-accessible database (http://bioinformatica.isa.cnr.it/GALT/GALT2.0) represents a model of tools potentially suitable for application to other proteins that are involved in human pathologies and that are subjected to genetic variations. © 2014 WILEY PERIODICALS, INC.
Noninvasive studies of human visual cortex using neuromagnetic techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aine, C.J.; George, J.S.; Supek, S.
1990-01-01
The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterizemore » the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Feng, Yulin; Zhang, Kailiang; Li, Hui; Wang, Fang; Zhou, Baozeng; Fang, Mingxu; Wang, Weichao; Wei, Jun; Wong, H. S. Philip
2017-07-01
The surface potential (SP) variations in mono and multilayer molybdenum disulfide (MoS2) are visualized in situ and detected using Kelvin probe force microscopy (KPFM) in different humidity conditions for the first time. N-type doping, which originates from the SiO2 substrate, is discovered in the exfoliated MoS2 and is accompanied by a screening length of five layers. The influence of water, which serves as an environmental gating for MoS2, is investigated by controlling the relative humidities (RHs) in the environmental chamber. A monotonic decrease in the SP is observed when the threshold concentration is achieved. This corresponds to the Fermi level variation, which is dominated by different processes. The results also indicate that water adsorption could result in MoS2 p-type doping and provide compensation that partially counteracts the substrate effect. Under this condition, the interlayer screening effect is influenced because of the water dipole-induced electric field. Density functional theory calculations are performed to determine the band structure variations and the interactions between water molecules and between water molecules and the MoS2 surface in mono and trilayer MoS2 under different RHs. The calculations are in excellent agreement with the experimental results. We propose that in situ measurements of the SP using KPFM under different environmental regimes is a noninvasive and effective method to provide real-time visualization and detection of electronic property variations in two-dimensional materials.
NASA Astrophysics Data System (ADS)
Burberry, C. M.
2012-12-01
It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along strike. The analog models, constrained by data from exploration wells, indicate that this change in geometry is related to a change in mechanical stratigraphy along the strike of the belt. Results from the kinematic and dynamic analysis of the digital model will also be presented. Additional implications of such a workflow and visualization system include the possibility of creating and viewing multiple cross-sections, including sections created at oblique angles to the original model. This allows the analysis of the non-plane strain component of the models and thus a more complete analysis, understanding and visualization of the deformed region. This workflow and visualization system is applicable to any region where traditional field methods must be coupled with remote data, intensely processed depth data, or analog modeling systems in order to generate valid geologic or geophsyical models.
Visualization of prostatic nerves by polarization-sensitive optical coherence tomography
Yoon, Yeoreum; Jeon, Seung Hwan; Park, Yong Hyun; Jang, Won Hyuk; Lee, Ji Youl; Kim, Ki Hean
2016-01-01
Preservation of prostatic nerves is critical to recovery of a man’s sexual potency after radical prostatectomy. A real-time imaging method of prostatic nerves will be helpful for nerve-sparing radical prostatectomy (NSRP). Polarization-sensitive optical coherence tomography (PS-OCT), which provides both structural and birefringent information of tissue, was applied for detection of prostatic nerves in both rat and human prostate specimens, ex vivo. PS-OCT imaging of rat prostate specimens visualized highly scattering and birefringent fibrous structures superficially, and these birefringent structures were confirmed to be nerves by histology or multiphoton microscopy (MPM). PS-OCT could easily distinguish these birefringent structures from surrounding other tissue compartments such as prostatic glands and fats. PS-OCT imaging of human prostatectomy specimens visualized two different birefringent structures, appearing fibrous and sheet-like. The fibrous ones were confirmed to be nerves by histology, and the sheet-like ones were considered to be fascias surrounding the human prostate. PS-OCT imaging of human prostatectomy specimens along the perimeter showed spatial variation in the amount of birefringent fibrous structures which was consistent with anatomy. These results demonstrate the feasibility of PS-OCT for detection of prostatic nerves, and this study will provide a basis for intraoperative use of PS-OCT. PMID:27699090
Scoring nuclear pleomorphism using a visual BoF modulated by a graph structure
NASA Astrophysics Data System (ADS)
Moncayo-Martínez, Ricardo; Romo-Bucheli, David; Arias, Viviana; Romero, Eduardo
2017-11-01
Nuclear pleomorphism has been recognized as a key histological criterium in breast cancer grading systems (such as Bloom Richardson and Nothingham grading systems). However, the nuclear pleomorphism assessment is subjective and presents high inter-reader variability. Automatic algorithms might facilitate quantitative estimation of nuclear variations in shape and size. Nevertheless, the automatic segmentation of the nuclei is difficult and still and open research problem. This paper presents a method using a bag of multi-scale visual features, modulated by a graph structure, to grade nuclei in breast cancer microscopical fields. This strategy constructs hematoxylin-eosin image patches, each containing a nucleus that is represented by a set of visual words in the BoF. The contribution of each visual word is computed by examining the visual words in an associated graph built when projecting the multi-dimensional BoF to a bi-dimensional plane where local relationships are conserved. The methodology was evaluated using 14 breast cancer cases of the Cancer Genome Atlas database. From these cases, a set of 134 microscopical fields was extracted, and under a leave-one-out validation scheme, an average F-score of 0.68 was obtained.
Ensminger, Amanda L.; Shawkey, Matthew D.; Lucas, Jeffrey R.; Fernández-Juricic, Esteban
2017-01-01
ABSTRACT Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds (Molothrus ater), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. PMID:29247048
Ronald, Kelly L; Ensminger, Amanda L; Shawkey, Matthew D; Lucas, Jeffrey R; Fernández-Juricic, Esteban
2017-12-15
Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds ( Molothrus ater ), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. © 2017. Published by The Company of Biologists Ltd.
Ross, Lars A; Del Bene, Victor A; Molholm, Sophie; Jae Woo, Young; Andrade, Gizely N; Abrahams, Brett S; Foxe, John J
2017-11-01
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals. Copyright © 2017 Elsevier Inc. All rights reserved.
Do we understand high-level vision?
Cox, David Daniel
2014-04-01
'High-level' vision lacks a single, agreed upon definition, but it might usefully be defined as those stages of visual processing that transition from analyzing local image structure to analyzing structure of the external world that produced those images. Much work in the last several decades has focused on object recognition as a framing problem for the study of high-level visual cortex, and much progress has been made in this direction. This approach presumes that the operational goal of the visual system is to read-out the identity of an object (or objects) in a scene, in spite of variation in the position, size, lighting and the presence of other nearby objects. However, while object recognition as a operational framing of high-level is intuitive appealing, it is by no means the only task that visual cortex might do, and the study of object recognition is beset by challenges in building stimulus sets that adequately sample the infinite space of possible stimuli. Here I review the successes and limitations of this work, and ask whether we should reframe our approaches to understanding high-level vision. Copyright © 2014. Published by Elsevier Ltd.
Liu, Tianyin; Yeh, Su-Ling
2018-01-01
The left-side bias (LSB) effect observed in face and expert Chinese character perception is suggested to be an expertise marker for visual object recognition. However, in character perception this effect is limited to characters printed in a familiar font (font-sensitive LSB effect). Here we investigated whether the LSB and font-sensitive LSB effects depend on participants’ familiarity with global structure or local component information of the stimuli through examining their transfer effects across simplified and traditional Chinese scripts: the two Chinese scripts share similar overall structures but differ in the visual complexity of local components in general. We found that LSB in expert Chinese character processing could be transferred to the Chinese script that the readers are unfamiliar with. In contrast, the font-sensitive LSB effect did not transfer, and was limited to characters with the visual complexity the readers were most familiar with. These effects suggest that the LSB effect may be generalized to another visual category with similar overall structures; in contrast, effects of within-category variations such as fonts may depend on familiarity with local component information of the stimuli, and thus may be limited to the exemplars of the category that experts are typically exposed to. PMID:29608570
A rodent model for the study of invariant visual object recognition
Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J.; Cox, David D.
2009-01-01
The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability—known as “invariant” object recognition—is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing. PMID:19429704
NASA Astrophysics Data System (ADS)
Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri
2017-08-01
Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.
NASA Astrophysics Data System (ADS)
Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri
2018-06-01
Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.
2013-01-01
Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color patterns. Our results indicate the need to identify the developmental mechanisms responsible for the control of the size, shape, and orientation of nanocrystals, and the superposition of specific chromatophore types. This study opens up new perspectives on Phelsuma lizards as models in evolutionary developmental biology. PMID:24099066
Cross-flow vortex structure and transition measurements using multi-element hot films
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.
1991-01-01
An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.
Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis
Brazhe, A. R.; Pavlov, A. N.; Erokhova, L. A.; Yusipovich, A. I.; Maksimov, G. V.; Mosekilde, E.; Sosnovtseva, O. V.
2006-01-01
The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties. PMID:19669463
Puangchit, Paralee; Ishigaki, Mika; Yasui, Yui; Kajita, Misato; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro
2017-12-04
The energy metabolism and embryogenesis of fertilized Japanese medaka eggs were investigated in vivo at the molecular level using near-infrared (NIR) spectroscopy and imaging. Changes in chemical components, such as proteins and lipids, in yolk sphere and embryonic body were studied over the course of embryonic development. Metabolic changes that represent variations in the concentrations and molecular compositions of proteins and lipids in the yolk part, particularly on the 1 st day after fertilization and the day just before hatching, were successfully identified in the 4900-4000 cm -1 wavenumber region. The yolk components were shown to have specific functions at the very early and final stages of the embryonic development. Proteins with α-helix- or β-sheet-rich structures clearly showed the different variation patterns within the developing egg. Furthermore, the distribution of lipids could be selectively visualized using data from the higher wavenumber region. Detailed embryonic structures were clearly depicted in the NIR images using the data from the 6400-5500 cm -1 region in which the embryo parts had some characteristic peaks due to unsaturated fatty acids. It was made clear that yolk and embryo parts had different components especially lipid components. The present study provides new insights into material variations in the fertilized egg during its growth. NIR imaging proved to be valuable in investigating the embryogenesis in vivo at the molecular level in terms of changes in biomolecular concentrations and compositions, metabolic differentiation, and detailed information about embryonic structures without the need for staining.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
Examining the cognitive demands of analogy instructions compared to explicit instructions.
Tse, Choi Yeung Andy; Wong, Andus; Whitehill, Tara; Ma, Estella; Masters, Rich
2016-10-01
In many learning domains, instructions are presented explicitly despite high cognitive demands associated with their processing. This study examined cognitive demands imposed on working memory by different types of instruction to speak with maximum pitch variation: visual analogy, verbal analogy and explicit verbal instruction. Forty participants were asked to memorise a set of 16 visual and verbal stimuli while reading aloud a Cantonese paragraph with maximum pitch variation. Instructions about how to achieve maximum pitch variation were presented via visual analogy, verbal analogy, explicit rules or no instruction. Pitch variation was assessed off-line, using standard deviation of fundamental frequency. Immediately after reading, participants recalled as many stimuli as possible. Analogy instructions resulted in significantly increased pitch variation compared to explicit instructions or no instructions. Explicit instructions resulted in poorest recall of stimuli. Visual analogy instructions resulted in significantly poorer recall of visual stimuli than verbal stimuli. The findings suggest that non-propositional instructions presented via analogy may be less cognitively demanding than instructions that are presented explicitly. Processing analogy instructions that are presented as a visual representation is likely to load primarily visuospatial components of working memory rather than phonological components. The findings are discussed with reference to speech therapy and human cognition.
Ensminger, Amanda L; Fernández-Juricic, Esteban
2014-01-01
Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform "better" in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling).
Ensminger, Amanda L.; Fernández-Juricic, Esteban
2014-01-01
Between-individual variation has been documented in a wide variety of taxa, especially for behavioral characteristics; however, intra-population variation in sensory systems has not received similar attention in wild animals. We measured a key trait of the visual system, the density of retinal cone photoreceptors, in a wild population of house sparrows (Passer domesticus). We tested whether individuals differed from each other in cone densities given within-individual variation across the retina and across eyes. We further tested whether the existing variation could lead to individual differences in two aspects of perception: visual resolution and chromatic contrast. We found consistent between-individual variation in the densities of all five types of avian cones, involved in chromatic and achromatic vision. Using perceptual modeling, we found that this degree of variation translated into significant between-individual differences in visual resolution and the chromatic contrast of a plumage signal that has been associated with mate choice and agonistic interactions. However, there was no evidence for a relationship between individual visual resolution and chromatic contrast. The implication is that some birds may have the sensory potential to perform “better” in certain visual tasks, but not necessarily in both resolution and contrast simultaneously. Overall, our findings (a) highlight the need to consider multiple individuals when characterizing sensory traits of a species, and (b) provide some mechanistic basis for between-individual variation in different behaviors (i.e., animal personalities) and for testing the predictions of several widely accepted hypotheses (e.g., honest signaling). PMID:25372039
Sivaprasad, Sobha; Gupta, Bhaskar; Gulliford, Martin C; Dodhia, Hiten; Mann, Samantha; Nagi, Dinesh; Evans, Jennifer
2012-01-01
To provide estimates of visual impairment in people with diabetes attending screening in a multi-ethnic population in England (United Kingdom). The Diabetic Retinopathy In Various Ethnic groups in UK (DRIVE UK) Study is a cross-sectional study on the ethnic variations of the prevalence of DR and visual impairment in two multi-racial cohorts in the UK. People on the diabetes register in West Yorkshire and South East London who were screened, treated or monitored between April 2008 to July 2009 (London) or August 2009 (West Yorkshire) were included in the study. Data on age, gender, ethnic group, visual acuity and diabetic retinopathy were collected. Ethnic group was defined according to the 2011 census classification. The two main ethnic minority groups represented here are Blacks ("Black/African/Caribbean/Black British") and South Asians ("Asians originating from the Indian subcontinent"). We examined the prevalence of visual impairment in the better eye using three cut-off points (a) loss of vision sufficient for driving (approximately <6/9) (b) visual impairment (<6/12) and (c) severe visual impairment (<6/60), standardising the prevalence of visual impairment in the minority ethnic groups to the age-structure of the white population. Data on visual acuity and were available on 50,331 individuals 3.4% of people diagnosed with diabetes and attending screening were visually impaired (95% confidence intervals (CI) 3.2% to 3.5%) and 0.39% severely visually impaired (0.33% to 0.44%). Blacks and South Asians had a higher prevalence of visual impairment (directly age standardised prevalence 4.6%, 95% CI 4.0% to 5.1% and 6.9%, 95% CI 5.8% to 8.0% respectively) compared to white people (3.3%, 95% CI 3.1% to 3.5%). Visual loss was also more prevalent with increasing age, type 1 diabetes and in people living in Yorkshire. Visual impairment remains an important public health problem in people with diabetes, and is more prevalent in the minority ethnic groups in the UK.
Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess
2015-01-01
Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a number of occipital lobe gyri even after accounting for these cofactors, but was again found to be more highly correlated with the frontal cortex than with the occipital cortex. These results indicate that eye volume explains only a small amount of variation in orbital and visual cortical volume, and that the eye and orbit are generally more structurally associated with the frontal lobes than they are functionally associated with the visual cortex of the occipital lobes. Results also demonstrate that these components of the visual system are highly complex and influenced by a multitude of factors in humans. PMID:26250048
The primary visual cortex in the neural circuit for visual orienting
NASA Astrophysics Data System (ADS)
Zhaoping, Li
The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.
Four Year-Olds Use Norm-Based Coding for Face Identity
ERIC Educational Resources Information Center
Jeffery, Linda; Read, Ainsley; Rhodes, Gillian
2013-01-01
Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged…
FTO gene variant modulates the neural correlates of visual food perception.
Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc
2016-03-01
Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploring variation-aware contig graphs for (comparative) metagenomics using MaryGold
Nijkamp, Jurgen F.; Pop, Mihai; Reinders, Marcel J. T.; de Ridder, Dick
2013-01-01
Motivation: Although many tools are available to study variation and its impact in single genomes, there is a lack of algorithms for finding such variation in metagenomes. This hampers the interpretation of metagenomics sequencing datasets, which are increasingly acquired in research on the (human) microbiome, in environmental studies and in the study of processes in the production of foods and beverages. Existing algorithms often depend on the use of reference genomes, which pose a problem when a metagenome of a priori unknown strain composition is studied. In this article, we develop a method to perform reference-free detection and visual exploration of genomic variation, both within a single metagenome and between metagenomes. Results: We present the MaryGold algorithm and its implementation, which efficiently detects bubble structures in contig graphs using graph decomposition. These bubbles represent variable genomic regions in closely related strains in metagenomic samples. The variation found is presented in a condensed Circos-based visualization, which allows for easy exploration and interpretation of the found variation. We validated the algorithm on two simulated datasets containing three respectively seven Escherichia coli genomes and showed that finding allelic variation in these genomes improves assemblies. Additionally, we applied MaryGold to publicly available real metagenomic datasets, enabling us to find within-sample genomic variation in the metagenomes of a kimchi fermentation process, the microbiome of a premature infant and in microbial communities living on acid mine drainage. Moreover, we used MaryGold for between-sample variation detection and exploration by comparing sequencing data sampled at different time points for both of these datasets. Availability: MaryGold has been written in C++ and Python and can be downloaded from http://bioinformatics.tudelft.nl/software Contact: d.deridder@tudelft.nl PMID:24058058
Sensory system plasticity in a visually specialized, nocturnal spider.
Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A
2017-04-21
The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.
Facial patterns in a tropical social wasp correlate with colony membership
NASA Astrophysics Data System (ADS)
Baracchi, David; Turillazzi, Stefano; Chittka, Lars
2016-10-01
Social insects excel in discriminating nestmates from intruders, typically relying on colony odours. Remarkably, some wasp species achieve such discrimination using visual information. However, while it is universally accepted that odours mediate a group level recognition, the ability to recognise colony members visually has been considered possible only via individual recognition by which wasps discriminate `friends' and `foes'. Using geometric morphometric analysis, which is a technique based on a rigorous statistical theory of shape allowing quantitative multivariate analyses on structure shapes, we first quantified facial marking variation of Liostenogaster flavolineata wasps. We then compared this facial variation with that of chemical profiles (generated by cuticular hydrocarbons) within and between colonies. Principal component analysis and discriminant analysis applied to sets of variables containing pure shape information showed that despite appreciable intra-colony variation, the faces of females belonging to the same colony resemble one another more than those of outsiders. This colony-specific variation in facial patterns was on a par with that observed for odours. While the occurrence of face discrimination at the colony level remains to be tested by behavioural experiments, overall our results suggest that, in this species, wasp faces display adequate information that might be potentially perceived and used by wasps for colony level recognition.
Signal polymorphism under a constant environment: the odd cross in a web decorating spider
NASA Astrophysics Data System (ADS)
Walter, André; Elgar, Mark A.
2016-12-01
The quality of many animal signals varies, perhaps through their use in different contexts or by representing an adaptive response to reduce the risk of exploitation. Spiders of the orb weaver genus Argiope add linear, cruciate or circular silk structures to their orb webs, creating inter- and intra-specific polymorphic visual signals. Different decoration patterns are frequently attributed to different signal effects, but this view is contradicted by commonly observed intraspecific variation in decorating behaviour. Adults of Argiope mascordi are bimodal web decorators, building two distinct patterns, circular and cruciate silk structures. We investigated the variation of patterns under controlled, invariant laboratory conditions. Circular decorations were most frequent, but individuals often switch to the other pattern. This variation neither increased nor decreased over time, suggesting that pattern variability is primarily intrinsic rather than an exclusive response to environmental changes. Accordingly, we discuss the evolutionary implications in the light of the conservation of a single signal function through maintaining the variation of its quality and the alternative view that silk decorations may not represent adaptive signals at all.
Hellmann, B; Güntürkün, O
2001-01-01
Visual information processing within the ascending tectofugal pathway to the forebrain undergoes essential rearrangements between the mesencephalic tectum opticum and the diencephalic nucleus rotundus of birds. The outer tectal layers constitute a two-dimensional map of the visual surrounding, whereas nucleus rotundus is characterized by functional domains in which different visual features such as movement, color, or luminance are processed in parallel. Morphologic correlates of this reorganization were investigated by means of focal injections of the neuronal tracer choleratoxin subunit B into different regions of the nuclei rotundus and triangularis of the pigeon. Dependent on the thalamic injection site, variations in the retrograde labeling pattern of ascending tectal efferents were observed. All rotundal projecting neurons were located within the deep tectal layer 13. Five different cell populations were distinguished that could be differentiated according to their dendritic ramifications within different retinorecipient laminae and their axons projecting to different subcomponents of the nucleus rotundus. Because retinorecipient tectal layers differ in their input from distinct classes of retinal ganglion cells, each tectorotundal cell type probably processes different aspects of the visual surrounding. Therefore, the differential input/output connections of the five tectorotundal cell groups might constitute the structural basis for spatially segregated parallel information processing of different stimulus aspects within the tectofugal visual system. Because two of five rotundal projecting cell groups additionally exhibited quantitative shifts along the dorsoventral extension of the tectum, data also indicate visual field-dependent alterations in information processing for particular visual features. Copyright 2001 Wiley-Liss, Inc.
Classification of the venous architecture of the pineal gland by 7T MRI.
Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo
2011-10-01
Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Chow, John W; Stokic, Dobrivoje S
2018-03-01
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Visual neuroscience before the neuron.
Wade, Nicholas J
2004-01-01
Visual neuroscience is considered to be a contemporary concern, based in large part on relating characteristics of neural functioning to visual experience. It presupposes a detailed knowledge of neural activity for which the neuron doctrine is a fundamental tenet. However, long before either the neuron doctrine had been advanced or the nerve cell had been described, attempts were made to estimate the dimensions of nerve fibres from measures of visual resolution. In the seventeenth century, the microscopes of Hooke and van Leeuwenhoek were unable to resolve structures as small as nerves adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibres but his experiments on the limits of visual resolution. Hooke determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the terminations of fibres of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibres were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibres in the retina as one 7200th part of an inch (0.0035 mm), based on the resolution of one minute of arc as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli. The measurement of visual acuity was refined by Mayer in 1755, with dots, gratings, and grids used as stimuli. In the 1830s, Treviranus fused the microscopic and acuity approaches to determine the dimensions of nerve fibres. His indirect estimates of the dimensions of retinal fibres were close to those derived from microscopic observation. However, the suggestion that the retina consisted of terminations of nerve fibres influenced his detailed illustrations of its microscopic structure. Contrary to the situation that obtained after the microscopic structure of the retina had been established, a function of vision (acuity) was used to determine the dimensions of the structures (retinal elements) that were thought to mediate it.
Scale-dependent variation in forest structures in naturally dynamic boreal forest landscapes
NASA Astrophysics Data System (ADS)
Kulha, Niko; Pasanen, Leena; De Grandpré, Louis; Kuuluvainen, Timo; Aakala, Tuomas
2017-04-01
Natural forest structures vary at multiple spatial scales. This variation reflects the occurrence of driving factors, such as disturbances and variation in soil or topography. To explore and understand the linkages of forest structural characteristics and factors driving their variation, we need to recognize how the structural characteristics vary in relation to spatial scale. This can be achieved by identifying scale-dependent features in forest structure within unmanaged forest landscapes. By identifying these features and examining their relationship with potential driving factors, we can better understand the dynamics of forest structural development. Here, we examine the spatial variation in forest structures at multiple spatial scales, utilizing data from old-growth boreal forests in two regions with contrasting disturbance regimes: northern Finland and north-eastern Québec, Canada ( 67° 45'N, 29° 36'E, 49° 39'N, 67° 55'W, respectively). The three landscapes (4 km2 each) in Finland are dominated by Pinus sylvestris and Picea abies, whereas the two landscapes in Québec are dominated by Abies balsamea and Picea mariana. Québec's forests are a subject to cyclic outbreaks of the eastern spruce budworm, causing extensive mortality especially in A. balsamea-dominated stands. In the Finnish landscapes, gap- to patch-scale disturbances due to tree senescence, fungi and wind, as well as infrequent surface fires in areas dominated by P. sylvestris, prevail. Owing to the differences in the species compositions and the disturbance regimes, we expect differing scales of variation between the landscapes. To quantify patterns of variation, we visually interpret stereopairs of recent aerial photographs. From the photographs, we collect information on forest canopy coverage, species composition and dead wood. For the interpretation, each 4 km2 plot is divided into 0.1ha square cells (4096 per plot). Interpretations are validated against field observations and compiled to raster maps. We analyze the raster maps with Bayesian scale space approach (iBSiZer), which aims in capturing credible variations at different spatial scales. As a result, we can detect structural entities (e.g. patches with higher canopy cover), which deviate credibly from their surroundings. The detected entities can further be linked to specific drivers. Our results show that the role of a particular driving factor varies in relation to spatial scale. For example, in the Finnish landscapes, topoedaphic factors exerted a stronger control on broad-scale forest structural characteristics, whereas recent disturbances (quantified as the amount of dead wood) appeared to play an important role in explaining the smaller scale variation of forest structures. Here, we showcase the methodology used in the detection of scale-dependent forest structural entities and present the results of our analysis of the spatial scales of variation in the natural boreal forest structures.
McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan
2018-01-01
The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787
Amplitude interpretation and visualization of three-dimensional reflection data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enachescu, M.E.
1994-07-01
Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less
Examination of silicon solar cells by means of the Scanning Laser Acoustic Microscope (SLAM)
NASA Technical Reports Server (NTRS)
Vorres, C.; Yuhas, D. E.
1981-01-01
The Scanning Laser Acoustic Microscope produces images of internal structure in materials. The acoustic microscope is an imaging system based upon acoustic rather than electromagnetic waves. Variations in the elastic propertis are primarily responsible for structure visualized in acoustic micrographs. The instrument used in these investigations is the SONOMICROSCOPE 100 which can be operated at ultrasonic frequencies of from 30 MHz to 500 MHz. The examination of the silicon solar cells was made at 100 MHz. Data are presented in the form of photomicrographs.
The use of radar and visual observations to characterize the surface structure of the planet Mercury
NASA Technical Reports Server (NTRS)
Clark, P. E.; Kobrick, M.; Jurgens, R. F.
1985-01-01
An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.
Vortex shedding within laminar separation bubbles forming over an airfoil
NASA Astrophysics Data System (ADS)
Kirk, Thomas M.; Yarusevych, Serhiy
2017-05-01
Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.
Structural and Functional Bases for Individual Differences in Motor Learning
Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi
2013-01-01
People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562
NASA Astrophysics Data System (ADS)
Hacker, Silke; Handels, Heinz
2006-03-01
Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.
Photoacoustic tomography guided diffuse optical tomography for small-animal model
NASA Astrophysics Data System (ADS)
Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao
2015-03-01
Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.
Classification of document page images based on visual similarity of layout structures
NASA Astrophysics Data System (ADS)
Shin, Christian K.; Doermann, David S.
1999-12-01
Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.
Doerschner, K.; Boyaci, H.; Maloney, L. T.
2007-01-01
We investigated limits on the human visual system’s ability to discount directional variation in complex lights field when estimating Lambertian surface color. Directional variation in the light field was represented in the frequency domain using spherical harmonics. The bidirectional reflectance distribution function of a Lambertian surface acts as a low-pass filter on directional variation in the light field. Consequently, the visual system needs to discount only the low-pass component of the incident light corresponding to the first nine terms of a spherical harmonics expansion (Basri & Jacobs, 2001; Ramamoorthi & Hanrahan, 2001) to accurately estimate surface color. We test experimentally whether the visual system discounts directional variation in the light field up to this physical limit. Our results are consistent with the claim that the visual system can compensate for all of the complexity in the light field that affects the appearance of Lambertian surfaces. PMID:18053846
AgRISTARS. Supporting research: Algorithms for scene modelling
NASA Technical Reports Server (NTRS)
Rassbach, M. E. (Principal Investigator)
1982-01-01
The requirements for a comprehensive analysis of LANDSAT or other visual data scenes are defined. The development of a general model of a scene and a computer algorithm for finding the particular model for a given scene is discussed. The modelling system includes a boundary analysis subsystem, which detects all the boundaries and lines in the image and builds a boundary graph; a continuous variation analysis subsystem, which finds gradual variations not well approximated by a boundary structure; and a miscellaneous features analysis, which includes texture, line parallelism, etc. The noise reduction capabilities of this method and its use in image rectification and registration are discussed.
Denoising Medical Images using Calculus of Variations
Kohan, Mahdi Nakhaie; Behnam, Hamid
2011-01-01
We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674
Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas
2015-12-01
We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Tan, J; Kavanaugh, J
Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less
Structural and Maturational Covariance in Early Childhood Brain Development.
Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H
2017-03-01
Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Laminar Flow in the Ocean Ekman Layer
NASA Astrophysics Data System (ADS)
Woods, J. T. H.
INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES
Guide for Visual Inspection of Structural Concrete Building Components.
1991-07-01
Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the
Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.
Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.
Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi
2016-12-01
Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Visualizing Gyrokinetic Turbulence in a Tokamak
NASA Astrophysics Data System (ADS)
Stantchev, George
2005-10-01
Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.
Stochastic digital holography for visualizing inside strongly refracting transparent objects.
Desse, Jean-Michel; Picart, Pascal
2015-01-01
This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.
Object segmentation controls image reconstruction from natural scenes
2017-01-01
The structure of the physical world projects images onto our eyes. However, those images are often poorly representative of environmental structure: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. The challenge for the visual cortex is to sort these two types of features according to their utility in ultimately reconstructing percepts and interpreting the constituents of the scene. We describe a novel paradigm that enabled us to selectively evaluate the relative role played by these two feature classes in signal reconstruction from corrupted images. Our measurements demonstrate that this process is quickly dominated by the inferred structure of the environment, and only minimally controlled by variations of raw image content. The inferential mechanism is spatially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual processing for more efficient feature extraction without altering the intrinsic transduction noise. The basic properties of this process can be partially captured by a combination of small-scale circuit models and large-scale network architectures. Taken together, our results challenge compartmentalized notions of bottom-up/top-down perception and suggest instead that these two modes are best viewed as an integrated perceptual mechanism. PMID:28827801
Functional Architecture of the Retina: Development and Disease
Hoon, Mrinalini; Okawa, Haruhisa; Santina, Luca Della; Wong, Rachel O.L.
2014-01-01
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. PMID:24984227
Functional architecture of the retina: development and disease.
Hoon, Mrinalini; Okawa, Haruhisa; Della Santina, Luca; Wong, Rachel O L
2014-09-01
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hughes, J M; Oiseth, S K; Purslow, P P; Warner, R D
2014-11-01
The colour, water-holding capacity (WHC) and tenderness of meat are primary determinants of visual and sensory appeal. Although there are many factors which influence these quality traits, the end-results of their influence is often through key changes to the structure of muscle proteins and their spatial arrangement. Water acts as a plasticiser of muscle proteins and water is lost from the myofibrillar lattice structure as a result of protein denaturation and consequent reductions in the muscle fibre volume with increasing cooking temperature. Changes in the myofilament lattice arrangement also impact the light scattering properties and the perceived paleness of the meat. Causes of variation in the quality traits of raw meat do not generally correspond to variations in cooked meat and the differences observed between the raw muscle and cooked or further processed meat are discussed. The review will also identify the gaps in our knowledge and where further investigation would beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Local statistics of retinal optic flow for self-motion through natural sceneries.
Calow, Dirk; Lappe, Markus
2007-12-01
Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.
Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Rosenberger, Franz
1998-01-01
Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.
Atomic-Scale Control of Electron Transport through Single Molecules
NASA Astrophysics Data System (ADS)
Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.
2010-04-01
Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.
Rochais, C; Sébilleau, M; Houdebine, M; Bec, P; Hausberger, M; Henry, S
2017-08-01
Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses' spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal's home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: 'overall' attention when the horse merely gazed at the stimulus and 'fixed' attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P < 0.05). The validity of this novel test as a predictor of individual attentional skills was assessed by comparing the results, for the same horses, with those obtained in both a 'classical' experimental attention test the 'five-choice serial reaction time task' (5-CSRTT) and a work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals' attention characteristics and the impact of different factors of variation on attention.
NASA Astrophysics Data System (ADS)
Rochais, C.; Sébilleau, M.; Houdebine, M.; Bec, P.; Hausberger, M.; Henry, S.
2017-08-01
Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses' spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal's home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: `overall' attention when the horse merely gazed at the stimulus and `fixed' attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P < 0.05). The validity of this novel test as a predictor of individual attentional skills was assessed by comparing the results, for the same horses, with those obtained in both a `classical' experimental attention test the `five-choice serial reaction time task' (5-CSRTT) and a work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals' attention characteristics and the impact of different factors of variation on attention.
Little, Anthony C; DeBruine, Lisa M; Jones, Benedict C
2011-07-07
Evolutionary approaches to human attractiveness have documented several traits that are proposed to be attractive across individuals and cultures, although both cross-individual and cross-cultural variations are also often found. Previous studies show that parasite prevalence and mortality/health are related to cultural variation in preferences for attractive traits. Visual experience of pathogen cues may mediate such variable preferences. Here we showed individuals slideshows of images with cues to low and high pathogen prevalence and measured their visual preferences for face traits. We found that both men and women moderated their preferences for facial masculinity and symmetry according to recent experience of visual cues to environmental pathogens. Change in preferences was seen mainly for opposite-sex faces, with women preferring more masculine and more symmetric male faces and men preferring more feminine and more symmetric female faces after exposure to pathogen cues than when not exposed to such cues. Cues to environmental pathogens had no significant effects on preferences for same-sex faces. These data complement studies of cross-cultural differences in preferences by suggesting a mechanism for variation in mate preferences. Similar visual experience could lead to within-cultural agreement and differing visual experience could lead to cross-cultural variation. Overall, our data demonstrate that preferences can be strategically flexible according to recent visual experience with pathogen cues. Given that cues to pathogens may signal an increase in contagion/mortality risk, it may be adaptive to shift visual preferences in favour of proposed good-gene markers in environments where such cues are more evident.
Little, Anthony C.; DeBruine, Lisa M.; Jones, Benedict C.
2011-01-01
Evolutionary approaches to human attractiveness have documented several traits that are proposed to be attractive across individuals and cultures, although both cross-individual and cross-cultural variations are also often found. Previous studies show that parasite prevalence and mortality/health are related to cultural variation in preferences for attractive traits. Visual experience of pathogen cues may mediate such variable preferences. Here we showed individuals slideshows of images with cues to low and high pathogen prevalence and measured their visual preferences for face traits. We found that both men and women moderated their preferences for facial masculinity and symmetry according to recent experience of visual cues to environmental pathogens. Change in preferences was seen mainly for opposite-sex faces, with women preferring more masculine and more symmetric male faces and men preferring more feminine and more symmetric female faces after exposure to pathogen cues than when not exposed to such cues. Cues to environmental pathogens had no significant effects on preferences for same-sex faces. These data complement studies of cross-cultural differences in preferences by suggesting a mechanism for variation in mate preferences. Similar visual experience could lead to within-cultural agreement and differing visual experience could lead to cross-cultural variation. Overall, our data demonstrate that preferences can be strategically flexible according to recent visual experience with pathogen cues. Given that cues to pathogens may signal an increase in contagion/mortality risk, it may be adaptive to shift visual preferences in favour of proposed good-gene markers in environments where such cues are more evident. PMID:21123269
NASA Astrophysics Data System (ADS)
Hidema, R.
2014-08-01
In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.
Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421
Scop3D: three-dimensional visualization of sequence conservation.
Vermeire, Tessa; Vermaere, Stijn; Schepens, Bert; Saelens, Xavier; Van Gucht, Steven; Martens, Lennart; Vandermarliere, Elien
2015-04-01
The integration of a protein's structure with its known sequence variation provides insight on how that protein evolves, for instance in terms of (changing) function or immunogenicity. Yet, collating the corresponding sequence variants into a multiple sequence alignment, calculating each position's conservation, and mapping this information back onto a relevant structure is not straightforward. We therefore built the Sequence Conservation on Protein 3D structure (scop3D) tool to perform these tasks automatically. The output consists of two modified PDB files in which the B-values for each position are replaced by the percentage sequence conservation, or the information entropy for each position, respectively. Furthermore, text files with absolute and relative amino acid occurrences for each position are also provided, along with snapshots of the protein from six distinct directions in space. The visualization provided by scop3D can for instance be used as an aid in vaccine development or to identify antigenic hotspots, which we here demonstrate based on an analysis of the fusion proteins of human respiratory syncytial virus and mumps virus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.
2012-01-01
Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824
Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A
2012-08-01
Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.
Phonetically Irregular Word Pronunciation and Cortical Thickness in the Adult Brain
Blackmon, Karen; Barr, William B.; Kuzniecky, Ruben; DuBois, Jonathan; Carlson, Chad; Quinn, Brian T.; Blumberg, Mark; Halgren, Eric; Hagler, Donald J.; Mikhly, Mark; Devinsky, Orrin; McDonald, Carrie R.; Dale, Anders M.; Thesen, Thomas
2010-01-01
Accurate pronunciation of phonetically irregular words (exception words) requires prior exposure to unique relationships between orthographic and phonemic features. Whether such word knowledge is accompanied by structural variation in areas associated with orthographic-to-phonemic transformations has not been investigated. We used high resolution MRI to determine whether performance on a visual word-reading test composed of phonetically irregular words, the Wechsler Test of Adult Reading (WTAR), is associated with regional variations in cortical structure. A sample of 60 right-handed, neurologically intact individuals were administered the WTAR and underwent 3T volumetric MRI. Using quantitative, surface-based image analysis, cortical thickness was estimated at each vertex on the cortical mantle and correlated with WTAR scores while controlling for age. Higher scores on the WTAR were associated with thicker cortex in bilateral anterior superior temporal gyrus, bilateral angular gyrus/posterior superior temporal gyrus, and left hemisphere intraparietal sulcus. Higher scores were also associated with thinner cortex in left hemisphere posterior fusiform gyrus and central sulcus, bilateral inferior frontal gyrus, and right hemisphere lingual gyrus and supramarginal gyrus. These results suggest that the ability to correctly pronounce phonetically irregular words is associated with structural variations in cortical areas that are commonly activated in functional neuroimaging studies of word reading, including areas associated with grapheme-to–phonemic conversion. PMID:20302944
The Interaction of Color Realism and Pictorial Recall Memory.
ERIC Educational Resources Information Center
Berry, Louis H.
This study investigated the interaction of variations in color realism on pictorial recall memory in order to better understand the effects of variations in color realism, and to draw comparisons between visual recall memory and visual recognition memory in terms of color information processing. Stimulus materials used were three sets of slides,…
Sharkey, Camilla R; Fujimoto, M Stanley; Lord, Nathan P; Shin, Seunggwan; McKenna, Duane D; Suvorov, Anton; Martin, Gavin J; Bybee, Seth M
2017-01-31
Opsin proteins are fundamental components of animal vision whose structure largely determines the sensitivity of visual pigments to different wavelengths of light. Surprisingly little is known about opsin evolution in beetles, even though they are the most species rich animal group on Earth and exhibit considerable variation in visual system sensitivities. We reveal the patterns of opsin evolution across 62 beetle species and relatives. Our results show that the major insect opsin class (SW) that typically confers sensitivity to "blue" wavelengths was lost ~300 million years ago, before the origin of modern beetles. We propose that UV and LW opsin gene duplications have restored the potential for trichromacy (three separate channels for colour vision) in beetles up to 12 times and more specifically, duplications within the UV opsin class have likely led to the restoration of "blue" sensitivity up to 10 times. This finding reveals unexpected plasticity within the insect visual system and highlights its remarkable ability to evolve and adapt to the available light and visual cues present in the environment.
Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF
NASA Technical Reports Server (NTRS)
Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.
2014-01-01
The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.
Zeng, Dong; Gao, Yuanyuan; Huang, Jing; Bian, Zhaoying; Zhang, Hua; Lu, Lijun; Ma, Jianhua
2016-10-01
Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.
Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E
2014-03-01
Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.
Hurtado-Gonzales, Jorge L.; Loew, Ellis R.; Uy, J. Albert C.
2014-01-01
The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments. PMID:24987856
Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos
2012-02-06
The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural features visualized ex vivo in the current study offering insights at the ultrastuctural level of intermediate phases which impact drug solubilization.
Tsafrir, D; Tsafrir, I; Ein-Dor, L; Zuk, O; Notterman, D A; Domany, E
2005-05-15
We introduce a novel unsupervised approach for the organization and visualization of multidimensional data. At the heart of the method is a presentation of the full pairwise distance matrix of the data points, viewed in pseudocolor. The ordering of points is iteratively permuted in search of a linear ordering, which can be used to study embedded shapes. Several examples indicate how the shapes of certain structures in the data (elongated, circular and compact) manifest themselves visually in our permuted distance matrix. It is important to identify the elongated objects since they are often associated with a set of hidden variables, underlying continuous variation in the data. The problem of determining an optimal linear ordering is shown to be NP-Complete, and therefore an iterative search algorithm with O(n3) step-complexity is suggested. By using sorting points into neighborhoods, i.e. SPIN to analyze colon cancer expression data we were able to address the serious problem of sample heterogeneity, which hinders identification of metastasis related genes in our data. Our methodology brings to light the continuous variation of heterogeneity--starting with homogeneous tumor samples and gradually increasing the amount of another tissue. Ordering the samples according to their degree of contamination by unrelated tissue allows the separation of genes associated with irrelevant contamination from those related to cancer progression. Software package will be available for academic users upon request.
Estimating ankle rotational constraints from anatomic structure
NASA Astrophysics Data System (ADS)
Baker, H. H.; Bruckner, Janice S.; Langdon, John H.
1992-09-01
Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.
Visual Complexity and Pictorial Memory: A Fifteen Year Research Perspective.
ERIC Educational Resources Information Center
Berry, Louis H.
For 15 years an ongoing research project at the University of Pittsburgh has focused on the effects of variations in visual complexity and color on the storage and retrieval of visual information by learners. Research has shown that visual materials facilitate instruction, but has not fully delineated the interactions of visual complexity and…
Litherland, Lenore; Collin, Shaun P; Fritsches, Kerstin A
2009-11-01
Elasmobranch fishes utilise their vision as an important source of sensory information, and a range of visual adaptations have been shown to reflect the ecological diversity of this vertebrate group. This study investigates the hypotheses that visual optics can predict differences in habitat and behaviour and that visual optics change with ontogenetic growth of the eye to maintain optical performance. The study examines eye structure, pupillary movement, transmission properties of the ocular media, focal properties of the lens, tapetum structure and variations in optical performance with ontogenetic growth in two elasmobranch species: the carcharhinid sandbar shark, Carcharhinus plumbeus, inhabiting nearshore coastal waters, and the squalid shortspine spurdog, Squalus mitsukurii, inhabiting deeper waters of the continental shelf and slope. The optical properties appear to be well tuned for the visual needs of each species. Eyes continue to grow throughout life, resulting in an ontogenetic shift in the focal ratio of the eye. The eyes of C. plumbeus are optimised for vision under variable light conditions, which change during development as the animal probes new light environments in its search for food and mates. By contrast, the eyes of S. mitsukurii are specifically adapted to enhance retinal illumination within a dim light environment, and the detection of bioluminescent prey may be optimised with the use of lenticular short-wavelength-absorbing filters. Our findings suggest that the light environment strongly influences optical features in this class of vertebrates and that optical properties of the eye may be useful predictors of habitat and behaviour for lesser-known species of this vertebrate group.
Visual discrimination of local surface structure: slant, tilt, and curvedness.
Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan
2006-03-01
In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.
NASA Astrophysics Data System (ADS)
Cuvelier, Daphne; Sarrazin, Jozée; Colaço, Ana; Copley, Jon; Desbruyères, Daniel; Glover, Adrian G.; Tyler, Paul; Serrão Santos, Ricardo
2009-11-01
Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.
Moire interferometry patterns for rotational alignment of structures
NASA Astrophysics Data System (ADS)
Heidari, Esmaeil; Harding, Kevin
2016-08-01
In some manufacturing applications the alignment of fine structures formed on the surface of a part such as micro-scribed patterns on solar panels can be critical to the panel performance. Variations in pattern uniformity may degrade the efficiency of the solar panel if the pattern deviates significantly from designed parameters. This paper will explore the use of moire patterns to interpret the angular alignment of such structures on 3 dimensional non-planar shapes. The moire interferometry pattern creates a beat between the scribed pattern and a reference pattern that is a function of both the shape of the part as well as the shape of the scribed pattern. Both the part shape variations and the patterns of interest are typically much smaller than can be seen visually. Similar challenges exist when inspecting specular models or testing low quality optics. The moire effect allows small displacements to be measured from patterns that are well below the resolution of the camera systems that are used to view the patterns. Issues such as the separation of the shape of the part from the alignment of the fine structure as well as resolution and robustness of the technique will be explored in this paper.
2015-11-05
the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M
Visualization of flows in a motored rotary combustion engine using holographic interferometry
NASA Technical Reports Server (NTRS)
Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.
1986-01-01
The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.
Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.
2016-01-01
Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David
2014-02-19
A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.
Flow Structure and Force Variation with Aspect Ratio for a Two-Degree-of-Freedom Flapping Wing
NASA Astrophysics Data System (ADS)
Burge, Matthew; Favale, James; Ringuette, Matthew
2014-11-01
We investigate experimentally the effect of aspect ratio (AR) on the flow structure and forces of a two-degree-of-freedom flapping wing. Flapping wings are known to produce complex and unsteady vortex loop structures, and the objective is to characterize their variation with AR and how this influences the lift force. Previous results on rotating wings demonstrated that changes in AR significantly affect the three-dimensional flow structure and lift coefficient. This is primarily due to the relatively greater influence of the tip vortex for lower AR. At Reynolds number of order O(103) we test wings of AR = 2-4, values typically found in nature, with simplified planform shapes. The lift force is measured using a submersible transducer at the base of the wing in a glycerin-water mixture. The qualitative, three-dimensional vortex loop structure for different ARs is obtained using multi-color dye flow visualization. Guided by this, quantitative three-component flow information, namely vorticity, the Q-criterion, and circulation, is acquired from stereoscopic particle image velocimetry in key planes. Of interest is how these parameters and the vortex loop topology vary with AR, and their connection to features in the unsteady force signal. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.
Monitoring earthen dams and levees with ambient seismic noise
NASA Astrophysics Data System (ADS)
Planès, T.; Mooney, M.; Rittgers, J. B.; Kanning, W.; Draganov, D.
2017-12-01
Internal erosion is a major cause of failure of earthen dams and levees and is difficult to detect at an early stage by traditional visual inspection techniques. The passive and non-invasive ambient-noise correlation technique could help detect and locate internal changes taking place within these structures. First, we apply this passive seismic method to monitor a canal embankment model submitted to piping erosion, in laboratory-controlled conditions. We then present the monitoring of a sea levee in the Netherlands. A 150m-long section of the dike shows sandboils in the drainage ditch located downstream of the levee. These sandboils are the sign of concentrated seepage and potential initiation of internal erosion in the structure. Using the ambient-noise correlation technique, we retrieve surface waves propagating along the crest of the dike. Temporal variations of the seismic wave velocity are then computed during the tide cycle. These velocity variations are correlated with local in-situ pore water pressure measurements and are possibly influenced by the presence of concentrated seepage paths.
Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus
Jehee, Janneke F. M.; Ballard, Dana H.
2009-01-01
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529
Variations of water's local-structure induced by solvation of NaCl
NASA Astrophysics Data System (ADS)
Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia
2010-03-01
The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G.; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-01-01
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency. PMID:27688597
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-02-12
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.
Genome U-Plot: a whole genome visualization.
Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George
2018-05-15
The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.
Accuracy of quantitative visual soil assessment
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne
2016-04-01
Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7 farmers carried out quantitative visual observations all independently from each other. All observers assessed five sites, having a sand, peat or clay soil. For almost all quantitative visual observations the spread of observed values was low (coefficient of variation < 1.0), except for the number of biopores and gley mottles. Furthermore, farmers' observed mean values were significantly higher than soil scientists' mean values, for soil structure, amount of gley mottles and compaction. This study showed that VSA could be a valuable tool to assess soil quality. Subjectivity, due to the background of the observer, might influence the outcome of visual assessment of some soil properties. In countries where soil analyses can easily be carried out, VSA might be a good replenishment to available soil chemical analyses, and in countries where it is not feasible to carry out soil analyses, VSA might be a good start to assess soil quality.
Method Matters: Systematic Effects of Testing Procedure on Visual Working Memory Sensitivity
ERIC Educational Resources Information Center
Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.
2010-01-01
Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This article presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Dong; Zhang, Xinyu; Bian, Zhaoying, E-mail: zybian@smu.edu.cn, E-mail: jhma@smu.edu.cn
Purpose: Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. Methods: Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivativesmore » of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. Results: In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. Conclusions: This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plomp, M; Leighton, T; Wheeler, K
2005-02-18
We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less
Interdependence of peat and vegetation in a tropical peat swamp forest.
Page, S E; Rieley, J O; Shotyk, W; Weiss, D
1999-01-01
The visual uniformity of tropical peat swamp forest masks the considerable variation in forest structure that has evolved in response to differences and changes in peat characteristics over many millennia. Details are presented of forest structure and tree composition of the principal peat swamp forest types in the upper catchment of Sungai Sebangau, Central Kalimantan, Indonesia, in relation to thickness and hydrology of the peat. Consideration is given to data on peat geochemistry and age of peat that provide evidence of the ombrotrophic nature of this vast peatland and its mode of formation. The future sustainability of this ecosystem is predicted from information available on climate change and human impact in this region. PMID:11605630
NASA Astrophysics Data System (ADS)
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.
Stone, Edwin M.; Cideciyan, Artur V.; Aleman, Tomas S.; Scheetz, Todd E.; Sumaroka, Alexander; Ehlinger, Mary A.; Schwartz, Sharon B.; Fishman, Gerald A.; Traboulsi, Elias I.; Lam, Byron L.; Fulton, Anne B.; Mullins, Robert F.; Sheffield, Val C.; Jacobson, Samuel G.
2014-01-01
Objective To investigate whether mutations in NPHP5 can cause Leber congenital amaurosis (LCA) without early-onset renal disease. Methods DNA samples from 276 individuals with non-syndromic LCA were screened for variations in the NPHP5 gene. Each had been previously screened for mutations in 8 known LCA genes without identifying a disease-causing genotype. Results Nine of the 276 LCA probands (3.2%) harbored 2 plausible disease-causing mutations (7 different alleles) in NPHP5. Four of these have been previously reported in patients with Senior-Loken syndrome (F141del, R461X, H506del, and R489X) and 3 are novel (A111del, E346X, and R455X). All 9 patients had severe visual loss from early childhood but none had overt renal disease in the first decade of life. Two patients were diagnosed with nephronophthisis in the second decade. Retinal imaging studies showed retained photoreceptor nuclei and retinal pigment epithelium integrity mainly in the cone-rich central retina, a phenotype with strong similarities to that of NPHP6 disease. Conclusions Mutations in NPHP5 can cause LCA without early-onset renal disease. Abnormalities observed in the photoreceptor outer segments (a cilial structure) may explain the severe visual loss in NPHP5-associated LCA. Clinical Relevance The persistence of central photoreceptor nuclei despite severe visual loss in NPHP5 disease is encouraging for future therapeutic interventions. PMID:21220633
Developing, deploying and reflecting on a web-based geologic simulation tool
NASA Astrophysics Data System (ADS)
Cockett, R.
2015-12-01
Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.
Using joint ICA to link function and structure using MEG and DTI in schizophrenia
Stephen, JM; Coffman, BA; Jung, RE; Bustillo, JR; Aine, CJ; Calhoun, VD
2013-01-01
In this study we employed joint independent component analysis (jICA) to perform a novel multivariate integration of magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data to investigate the link between function and structure. This model-free approach allows one to identify covariation across modalities with different temporal and spatial scales [temporal variation in MEG and spatial variation in fractional anisotropy (FA) maps]. Healthy controls (HC) and patients with schizophrenia (SP) participated in an auditory/visual multisensory integration paradigm to probe cortical connectivity in schizophrenia. To allow direct comparisons across participants and groups, the MEG data were registered to an average head position and regional waveforms were obtained by calculating the local field power of the planar gradiometers. Diffusion tensor images obtained in the same individuals were preprocessed to provide FA maps for each participant. The MEG/FA data were then integrated using the jICA software (http://mialab.mrn.org/software/fit). We identified MEG/FA components that demonstrated significantly different (p < 0.05) covariation in MEG/FA data between diagnostic groups (SP vs. HC) and three components that captured the predominant sensory responses in the MEG data. Lower FA values in bilateral posterior parietal regions, which include anterior/posterior association tracts, were associated with reduced MEG amplitude (120-170 ms) of the visual response in occipital sensors in SP relative to HC. Additionally, increased FA in a right medial frontal region was linked with larger amplitude late MEG activity (300-400 ms) in bilateral central channels for SP relative to HC. Step-wise linear regression provided evidence that right temporal, occipital and late central components were significant predictors of reaction time and cognitive performance based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) cognitive assessment battery. These results point to dysfunction in a posterior visual processing network in schizophrenia, with reduced MEG amplitude, reduced FA and poorer overall performance on the MATRICS. Interestingly, the spatial location of the MEG activity and the associated FA regions are spatially consistent with white matter regions that subserve these brain areas. This novel approach provides evidence for significant pairing between function (electrophysiology) and structure (white matter integrity) and demonstrates the sensitivity of this multivariate, multimodal integration technique to group differences in function and structure. PMID:23777757
Scaffolding Learning from Molecular Visualizations
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Linn, Marcia C.
2013-01-01
Powerful online visualizations can make unobservable scientific phenomena visible and improve student understanding. Instead, they often confuse or mislead students. To clarify the impact of molecular visualizations for middle school students we explored three design variations implemented in a Web-based Inquiry Science Environment (WISE) unit on…
VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.
Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal
2014-12-01
Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.
NASA Astrophysics Data System (ADS)
Puntambekar, Kanan Prakash
The advancement of organic electronics for applications in solar energy conversion, printed circuitry, displays, and solid-state lighting depends upon optimization of structure and properties for a variety of organic semiconductor interfaces. Organic semiconductor/insulator (O/I) and organic-metal (O/M) interfaces, in particular, are critical to the operation of organic thin film transistors (OTFTs) currently being developed for printed flexible electronics. Scanning probe microscopy (SPM) is a powerful tool to isolate and characterize the bottlenecks to charge transport at these interfaces. This thesis establishes a direct correlation between the structural disorder and electrical complexity at these interfaces, using various SPM based methods and discusses the implications of such complexity on device performance. To examine the O/M interfaces, surface potentials of operating pentacene TFTs with two different contact geometries (bottom or top) were mapped by Kelvin probe force microscopy (KFM). The surface potential distribution was used to isolate the potential drops at the source and drain contacts. Simultaneously obtained topography and surface potential maps elucidated the correlation between the morphology and contact resistance at the O/M interface; the bottom contact TFTs were observed to be contact limited at large gate voltages, while the top contact TFTs were not contact limited. A direct correlation between structural defects and electric potential variations at the pentacene and silicon dioxide, a common insulator, is demonstrated. Lateral force microscopy (LFM) generates striking images of the polycrystalline microstructure of a monolayer thick pentacene film, allowing clear visualization of the grain boundary network. Further more, surface potential wells localized at the grain boundaries were observed by KFM, suggesting that the grain boundaries may serve as charge carrier (hole) traps. Line dislocations were also revealed in the second monolayer by chemical etching and SPM and produce strong variations in the surface potential that must affect the interfacial charge conductance. Structural disorder at the O/I and O/M interfaces degrades both injection and transport of charge, and therefore needs to be minimized. Thus both visualization and correlation of structural and electrical complexity at these interfaces have important implications for understanding electrical transport in OTFTs and for defining strategies to improve device performance.
NASA Astrophysics Data System (ADS)
Adamo, M.; Nappi, C.; Sarnelli, E.
2010-09-01
The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.
The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel
BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.
2009-01-01
Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For ReC = O(104), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and ReC = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195
Three filters for visualization of phase objects with large variations of phase gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagan, Arkadiusz; Antosiewicz, Tomasz J.; Szoplik, Tomasz
2009-02-20
We propose three amplitude filters for visualization of phase objects. They interact with the spectra of pure-phase objects in the frequency plane and are based on tangent and error functions as well as antisymmetric combination of square roots. The error function is a normalized form of the Gaussian function. The antisymmetric square-root filter is composed of two square-root filters to widen its spatial frequency spectral range. Their advantage over other known amplitude frequency-domain filters, such as linear or square-root graded ones, is that they allow high-contrast visualization of objects with large variations of phase gradients.
Visual Complexity in Orthographic Learning: Modeling Learning across Writing System Variations
ERIC Educational Resources Information Center
Chang, Li-Yun; Plaut, David C.; Perfetti, Charles A.
2016-01-01
The visual complexity of orthographies varies across writing systems. Prior research has shown that complexity strongly influences the initial stage of reading development: the perceptual learning of grapheme forms. This study presents a computational simulation that examines the degree to which visual complexity leads to grapheme learning…
Using Scientific Visualization to Represent Soil Hydrology Dynamics
ERIC Educational Resources Information Center
Dolliver, H. A. S.; Bell, J. C.
2006-01-01
Understanding the relationships between soil, landscape, and hydrology is important for making sustainable land management decisions. In this study, scientific visualization was explored as a means to visually represent the complex spatial and temporal variations in the hydrologic status of soils. Soil hydrology data was collected at seven…
Vupparaboina, Kiran Kumar; Nizampatnam, Srinath; Chhablani, Jay; Richhariya, Ashutosh; Jana, Soumya
2015-12-01
A variety of vision ailments are indicated by anomalies in the choroid layer of the posterior visual section. Consequently, choroidal thickness and volume measurements, usually performed by experts based on optical coherence tomography (OCT) images, have assumed diagnostic significance. Now, to save precious expert time, it has become imperative to develop automated methods. To this end, one requires choroid outer boundary (COB) detection as a crucial step, where difficulty arises as the COB divides the choroidal granularity and the scleral uniformity only notionally, without marked brightness variation. In this backdrop, we measure the structural dissimilarity between choroid and sclera by structural similarity (SSIM) index, and hence estimate the COB by thresholding. Subsequently, smooth COB estimates, mimicking manual delineation, are obtained using tensor voting. On five datasets, each consisting of 97 adult OCT B-scans, automated and manual segmentation results agree visually. We also demonstrate close statistical match (greater than 99.6% correlation) between choroidal thickness distributions obtained algorithmically and manually. Further, quantitative superiority of our method is established over existing results by respective factors of 27.67% and 76.04% in two quotient measures defined relative to observer repeatability. Finally, automated choroidal volume estimation, being attempted for the first time, also yields results in close agreement with that of manual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual attention to variation in female facial skin color distribution.
Fink, Bernhard; Matts, Paul J; Klingenberg, Heiner; Kuntze, Sebastian; Weege, Bettina; Grammer, Karl
2008-06-01
Visible skin condition of women is argued to influence human physical attraction. Recent research has shown that people are sensitive to variation in skin color distribution, and such variation affects visual perception of female facial attractiveness, healthiness, and age. The eye gaze of 39 males and females, aged 13 to 45 years, was tracked while they viewed images of shape- and topography-standardized stimulus faces that varied only in terms of skin color distribution. The number of fixations and dwell time were significantly higher when viewing stimulus faces with the homogeneous skin color distribution of young people, compared with those of more elderly people. In accordance with recent research, facial stimuli with even skin tones were also judged to be younger and received higher attractiveness ratings. Finally, visual attention measures were negatively correlated with perceived age, but positively associated with attractiveness judgments. Variation in visible skin color distribution (independent of facial form and skin surface topography) is able to selectively attract people's attention toward female faces, and this higher attention results in more positive statements about a woman's face.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei
2013-01-01
Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124
Vision and the dimensions of nerve fibers.
Wade, Nicholas J
2005-12-01
Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.
Hypothesis exploration with visualization of variance
2014-01-01
Background The Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes—to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics—wide-scale, systematic study of phenotypes—to neuropsychiatry research. Results This paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles—patterns of values across phenotypes—that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes. Conclusions The ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports ‘natural selection’ on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics. PMID:25097666
Pappas, Theofanis; Founti, Panayiota; Yin, Xiang Jun; Koskosas, Archimidis; Anastasopoulos, Eleftherios; Salonikiou, Angeliki; Kilintzis, Vasilios; Antoniadis, Antonios; Ziakas, Nikolaos; Topouzis, Fotis
2016-04-01
To compare Heidelberg Retina Tomograph (HRT) optic disc parameters and structure-function correlation between primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma (PEXG). Prospective, observation case series. A total of 54 POAG and 33 PEXG cases, consecutively recruited from a University Glaucoma Service, underwent a comprehensive ophthalmic examination, including HRT optic disc imaging. Glaucoma definition required the presence of both structural and functional damage. One eye per subject was included in the analysis. T test, Mann-Whitney U test, and analysis of covariance were used to compare HRT parameters between POAG and PEXG, adjusting for age, mean deviation (MD) in the visual field, intraocular pressure, and disc area. The correlation between HRT and MD was assessed in each group. Cup area (P=0.048), height variation contour (P=0.016), and cup/disc area ratio (P=0.023) were higher in POAG, whereas the mean retinal nerve fiber layer thickness (P=0.048), retinal nerve fiber layer cross-section area (P=0.044), and rim area (P=0.048) were lower in POAG, compared with PEXG. The correlation of HRT parameters with MD was significant only in the POAG group. At a similar level of functional damage, POAG subjects presented with more pronounced structural damage than PEXG subjects. The correlation between HRT and visual field parameters was more evident in POAG, compared with PEXG.
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components. PMID:22363479
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.
2017-01-01
Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway that processes “where” it is located. This view has been challenged by recent studies revealing the existence of “what” and “where” information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of “what” and “where” information in both pathways, visual representations may still differ fundamentally in the two pathways. PMID:28821655
Blue Whale Visual and Acoustic Encounter Rates in the Southern California Bight
2007-07-01
blue whale (Balaenoptera musculus) visual and acoustic encounter rates was quantitatively evaluated using hourly counts of detected whales during...surveys occurring in April, there were visual and acoustic detections of blue whales in all surveyed months and regions. Encounter rate is...difference between acoustic encounters of singing whales and visual encounters suggest seasonal variation in the ability of each method to detect blue
Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.
Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J
2017-02-01
Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.
Xi, Guan; Sheng, Lan; Zhang, Ivan; Du, Jiahui; Zhang, Ting; Chen, Qiaonan; Li, Guiying; Zhang, Ying; Song, Yue; Li, Jianhua; Zhang, Yu-Mo; Zhang, Sean Xiao-An
2017-11-01
Interest and effort toward new materials for rewritable paper have increased dramatically because of the exciting advantages for sustainable development and better nature life cycle. Inspired by how nature works within living systems, herein, we have used fluorans, as a concept verification, to endow original acidochromic, basochromic or photochromic molecules with broader properties, such as switchable with solvent, water, heat, electricity, stress, other force, etc., via simplified methods (i.e., via variation of submolecular structure or microenvironments). The hydrochromic visual change and reversible behavior of selected molecules have been explored, and the primary mechanism at the atomic or subatomic level has been hypothesized. In addition, several newly demonstrated hydrochromic fluorans have been utilized for water-jet rewritable paper (WJRP), which exhibit great photostability, high hydrochromic contrast, and fast responsive rate and which can be reused at least 30 times without significant variation. The water-jet prints have good resolution and various colors and can keep legibility after a few months or years. This improved performance is a major step toward practical applications of WJRP.
Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.
McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Wedmann, Sonja; Noh, Heeso; Cao, Hui
2011-11-01
Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.
Genovar: a detection and visualization tool for genomic variants.
Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung
2012-05-08
Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.
NASA Astrophysics Data System (ADS)
Alluwimi, Muhammed Saad
Glaucoma is the second leading cause of the blindness worldwide. It is a group of chronic, progressive, and potentially blinding optic neuropathies characterized by abnormalities of the optic nerve head and/or retinal nerve fiber layer (RNFL) associated with visual field abnormality. When diagnosing and managing patients with glaucoma, clinicians evaluate the agreement between structural and functional measures. However, it has been widely recognized that there is often a discordance between structural and functional (e.g., perimetry) measures in glaucoma, posing a challenge for clinicians to make their decisions. As explained in the literature, this discordance may relate to high normal between-subject variation, insufficient knowledge of the RNFL bundle organization, sparse spacing of the perimetric locations used to measure the functional performance of ganglion cells, high test-retest variation for the most commonly used stimulus for perimetry, and poor perimetric sampling of the macula. The aim of this thesis was to overcome this discordance by conducting three experiments: First, asymmetry analysis was used to reduce between-subject variation of the macular thickness and ganglion cell thickness measurements with OCT. This variation was decreased at particular regions of the macula. Outside the macula, the variation remained high leading to the second experiment in which customized closely-spaced perimetric locations were presented at wedge defects, guided by the OCT en face images of the RNFL bundles. A rapid suprathreshold perimetric strategy was used and perimetric defect was, in most cases, in correspondence with the structural defect. To threshold perimetric defects, an elongated blur-resistant stimulus was oriented within damaged RNFL bundles. It was found that contrast sensitivities were below the 95% normal limit in 37 of 44 locations. The latter experiment focused on wedge defects outside the macula, which led to the third experiment in which the goal was to investigate the feasibility of a basis to individualize perimetric locations within the macula guided by structural damage seen on OCT en face images. In preliminary data, it was feasible to individualize perimetric locations within the macula. In this thesis, the agreement between structural and functional measures was improved in glaucoma, by developing methods and techniques that provided a framework to help overcome challenges in clinical decision making.
Little, Anthony C
2013-10-01
Steroid sex hormones are responsible for some of the differences between men and women. In this article, I review evidence that steroid sex hormones impact on visual processing. Given prominent sex-differences, I focus on three topics for sex hormone effects for which there is most research available: 1. Preference and mate choice, 2. Emotion and recognition, and 3. Cerebral/perceptual asymmetries and visual-spatial abilities. For each topic, researchers have examined sex hormones and visual processing using various methods. I review indirect evidence addressing variation according to: menstrual cycle phase, pregnancy, puberty, and menopause. I further address studies of variation in testosterone and a measure of prenatal testosterone, 2D:4D, on visual processing. The most conclusive evidence, however, comes from experiments. Studies in which hormones are administrated are discussed. Overall, many studies demonstrate that sex steroids are associated with visual processing. However, findings are sometimes inconsistent, differences in methodology make strong comparisons between studies difficult, and we generally know more about activational than organizational effects. Copyright © 2013 Elsevier Inc. All rights reserved.
Modulatory compartments in cortex and local regulation of cholinergic tone.
Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A
2016-09-01
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visualizing the Quality of Vectur Features - a Proposal for Cadastral Maps
NASA Astrophysics Data System (ADS)
Navratil, G.; Leopoldseder, V.
2017-09-01
A well-known problem of geographical information is the communication of the quality level. It can be either done verbally / numerically or it can be done graphically. The graphical form is especially useful if the quality has a spatial variation because the spatial distribution is visualized as well. The problem of spatial variation of quality is an issue for cadastral maps. Non-experts cannot determine the quality at a specific location. Therefore a visual representation was tested for the Austrian cadastre. A map sheet was redesigned to give some indication of cadastral quality and presented to both experts and non-experts. The paper presents the result of the interviews.
NASA Astrophysics Data System (ADS)
Tsao, Thomas R.; Tsao, Doris
1997-04-01
In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.
A methodology for coupling a visual enhancement device to human visual attention
NASA Astrophysics Data System (ADS)
Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman
2009-02-01
The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.
Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement
O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban
2010-01-01
Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645
Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.
O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban
2010-09-22
Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.
NASA Astrophysics Data System (ADS)
Tabrizian, P.; Petrasova, A.; Baran, P.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.
2017-12-01
Viewshed modelling- a process of defining, parsing and analysis of landscape visual space's structure within GIS- has been commonly used in applications ranging from landscape planning and ecosystem services assessment to geography and archaeology. However, less effort has been made to understand whether and to what extent these objective analyses predict actual on-the-ground perception of human observer. Moreover, viewshed modelling at the human-scale level require incorporation of fine-grained landscape structure (eg., vegetation) and patterns (e.g, landcover) that are typically omitted from visibility calculations or unrealistically simulated leading to significant error in predicting visual attributes. This poster illustrates how photorealistic Immersive Virtual Environments and high-resolution geospatial data can be used to integrate objective and subjective assessments of visual characteristics at the human-scale level. We performed viewshed modelling for a systematically sampled set of viewpoints (N=340) across an urban park using open-source GIS (GRASS GIS). For each point a binary viewshed was computed on a 3D surface model derived from high-density leaf-off LIDAR (QL2) points. Viewshed map was combined with high-resolution landcover (.5m) derived through fusion of orthoimagery, lidar vegetation, and vector data. Geo-statistics and landscape structure analysis was performed to compute topological and compositional metrics for visual-scale (e.g., openness), complexity (pattern, shape and object diversity), and naturalness. Based on the viewshed model output, a sample of 24 viewpoints representing the variation of visual characteristics were selected and geolocated. For each location, 360o imagery were captured using a DSL camera mounted on a GIGA PAN robot. We programmed a virtual reality application through which human subjects (N=100) immersively experienced a random representation of selected environments via a head-mounted display (Oculus Rift CV1), and rated each location on perceived openness, naturalness and complexity. Regression models were performed to correlate model outputs with participants' responses. The results indicated strong, significant correlations for openness, and naturalness and moderate correlation for complexity estimations.
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
Poison frog colors are honest signals of toxicity, particularly for bird predators.
Maan, Martine E; Cummings, Molly E
2012-01-01
Antipredator defenses and warning signals typically evolve in concert. However, the extensive variation across taxa in both these components of predator deterrence and the relationship between them are poorly understood. Here we test whether there is a predictive relationship between visual conspicuousness and toxicity levels across 10 populations of the color-polymorphic strawberry poison frog, Dendrobates pumilio. Using a mouse-based toxicity assay, we find extreme variation in toxicity between frog populations. This variation is significantly positively correlated with frog coloration brightness, a viewer-independent measure of visual conspicuousness (i.e., total reflectance flux). We also examine conspicuousness from the view of three potential predator taxa, as well as conspecific frogs, using taxon-specific visual detection models and three natural background substrates. We find very strong positive relationships between frog toxicity and conspicuousness for bird-specific perceptual models. Weaker but still positive correlations are found for crab and D. pumilio conspecific visual perception, while frog coloration as viewed by snakes is not related to toxicity. These results suggest that poison frog colors can be honest signals of prey unpalatability to predators and that birds in particular may exert selection on aposematic signal design. © 2011 by The University of Chicago.
1983-06-01
Niven, J.I., McFarland, R.A., and Roughton, F.J. Variations in Visual Thresholds During Carbon Monoxide and Hypoxic Anoxia (abstract). Fed. Proc...and Niven, J.I. Visual Thresholds as an Index of the Modification of the Effects of Anoxia by Glucose. Am. J. Physiol. 144:378-88. 1945. 71... Diphosphoglycerate and Night Vision. Aviat. Space Environ. Med. 52(1):41-44. 1981. 100. Sexton, M., Malone, F. and Farnsworth, D. The Effect of Ultra- violet
Wang, Yonggang; Xin, Mengyang; Bai, Han; Zhao, Yangdong
2017-02-17
The primary purpose of this study was to examine the association between variations in visual behavior measures and subjective sleepiness levels across age groups over time to determine a quantitative method of measuring drivers' sleepiness levels. A total of 128 volunteer drivers in 4 age groups were asked to finish 2-, 3-, and 4-h continuous driving tasks on expressways, during which the driver's fixation, saccade, and blink measures were recorded by an eye-tracking system and the subjective sleepiness level was measured through the Stanford Sleepiness Scale. Two-way repeated measures analysis of variance was then used to examine the change in visual behavior measures across age groups over time and compare the interactive effects of these 2 factors on the dependent visual measures. Drivers' visual behavior measures and subjective sleepiness levels vary significantly over time but not across age groups. A statistically significant interaction between age group and driving duration was found in drivers' pupil diameter, deviation of search angle, saccade amplitude, blink frequency, blink duration, and closure duration. Additionally, change in a driver's subjective sleepiness level is positively or negatively associated with variation in visual behavior measures, and such relationships can be expressed in regression models for different period of driving duration. Driving duration affects drivers' sleepiness significantly, so the amount of continuous driving time should be strictly controlled. Moreover, driving sleepiness can be quantified through the change rate of drivers' visual behavior measures to alert drivers of sleepiness risk and to encourage rest periods. These results provide insight into potential strategies for reducing and preventing traffic accidents and injuries.
The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds
Martin, Graham R.
2014-01-01
Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position. PMID:24395967
ERIC Educational Resources Information Center
Kelly, Resa M.
2014-01-01
Molecular visualizations have been widely endorsed by many chemical educators as an efficient way to convey the dynamic and atomic-level details of chemistry events. Research indicates that students who use molecular visualizations are able to incorporate most of the intended features of the animations into their explanations. However, studies…
Saccadic adaptation to a systematically varying disturbance.
Cassanello, Carlos R; Ohl, Sven; Rolfs, Martin
2016-08-01
Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step-following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)-consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that-in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback-the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. Copyright © 2016 the American Physiological Society.
Saccadic adaptation to a systematically varying disturbance
Ohl, Sven; Rolfs, Martin
2016-01-01
Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step—following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)—consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that—in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback—the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease. PMID:27098027
CircosVCF: circos visualization of whole-genome sequence variations stored in VCF files.
Drori, E; Levy, D; Smirin-Yosef, P; Rahimi, O; Salmon-Divon, M
2017-05-01
Visualization of whole-genomic variations in a meaningful manner assists researchers in gaining new insights into the underlying data, especially when it comes in the context of whole genome comparisons. CircosVCF is a web based visualization tool for genome-wide variant data described in VCF files, using circos plots. The user friendly interface of CircosVCF supports an interactive design of the circles in the plot, and the integration of additional information such as experimental data or annotations. The provided visualization capabilities give a broad overview of the genomic relationships between genomes, and allow identification of specific meaningful SNPs regions. CircosVCF was implemented in JavaScript and is available at http://www.ariel.ac.il/research/fbl/software. malisa@ariel.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Genome Variation Map: a data repository of genome variations in BIG Data Center
Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang
2018-01-01
Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473
[The relationship between eyeball structure and visual acuity in high myopia].
Liu, Yi-Chang; Xia, Wen-Tao; Zhu, Guang-You; Zhou, Xing-Tao; Fan, Li-Hua; Liu, Rui-Jue; Chen, Jie-Min
2010-06-01
To explore the relationship between eyeball structure and visual acuity in high myopia. Totally, 152 people (283 eyeballs) with different levels of myopia were tested for visual acuity, axial length, and fundus. All cases were classified according to diopter, axial length, and fundus. The relationships between diopter, axial length, fundus and visual acuity were studied. The mathematical models were established for visual acuity and eyeball structure markers. The visual acuity showed a moderate correlation with fundus class, comus, axial length and diopter ([r] > 0.4, P < 0.000 1). The visual acuity in people with the axial length longer than 30.00 mm, diopter above -20.00 D and fundus in 4th class were mostly below 0.5. The mathematical models were established by visual acuity and eyeball structure markers. The visual acuity should decline with axial length extension, diopter deepening and pathological deterioration of fundus. To detect the structure changes by combining different kinds of objective methods can help to assess and to judge the vision in high myopia.
Smith, Lachlan J; Fazzalari, Nicola L
2006-01-01
Elastic fibres are critical components of the extracellular matrix in dynamic biological structures that undergo extension and recoil. Their presence has been demonstrated in the anulus fibrosus of the human lumbar intervertebral disc; however, a detailed regional analysis of their density and arrangement has not been undertaken, limiting our understanding of their structural and functional roles. In this investigation we have quantitatively described regional variations in elastic fibre density in the anulus fibrosus of the human L3–L4 intervertebral disc using histochemistry and light microscopy. Additionally, a multiplanar comparison of patterns of elastic fibre distribution in the intralamellar and interlamellar zones was undertaken. Novel imaging techniques were developed to facilitate the visualization of elastic fibres otherwise masked by dense surrounding matrix. Elastic fibre density was found to be significantly higher in the lamellae of the posterolateral region of the anulus than the anterolateral, and significantly higher in the outer regions than the inner, suggesting that elastic fibre density in each region of the anulus is commensurate with the magnitude of the tensile deformations experienced in bending and torsion. Elastic fibre arrangments in intralamellar and interlamellar zones were shown to be architecturally distinct, suggesting that they perform multiple functional roles within the anulus matrix structural hierarchy. PMID:16928204
Bumstead, Matt; Liang, Kunyu; Hanta, Gregory; Hui, Lok Shu; Turak, Ayse
2018-01-24
Order classification is particularly important in photonics, optoelectronics, nanotechnology, biology, and biomedicine, as self-assembled and living systems tend to be ordered well but not perfectly. Engineering sets of experimental protocols that can accurately reproduce specific desired patterns can be a challenge when (dis)ordered outcomes look visually similar. Robust comparisons between similar samples, especially with limited data sets, need a finely tuned ensemble of accurate analysis tools. Here we introduce our numerical Mathematica package disLocate, a suite of tools to rapidly quantify the spatial structure of a two-dimensional dispersion of objects. The full range of tools available in disLocate give different insights into the quality and type of order present in a given dispersion, accessing the translational, orientational and entropic order. The utility of this package allows for researchers to extract the variation and confidence range within finite sets of data (single images) using different structure metrics to quantify local variation in disorder. Containing all metrics within one package allows for researchers to easily and rapidly extract many different parameters simultaneously, allowing robust conclusions to be drawn on the order of a given system. Quantifying the experimental trends which produce desired morphologies enables engineering of novel methods to direct self-assembly.
Microstructural correlates of infant functional development: example of the visual pathways.
Dubois, Jessica; Dehaene-Lambertz, Ghislaine; Soarès, Catherine; Cointepas, Yann; Le Bihan, Denis; Hertz-Pannier, Lucie
2008-02-20
The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological significance remains uncertain. Here, we investigated the microstructural correlates of early functional development by combining DTI and visual event-related potentials (VEPs) in 15 one- to 4-month-old healthy infants. Interindividual variations of the apparent conduction speed, computed from the latency of the first positive VEP wave (P1), were significantly correlated with the infants' age and DTI indices measured in the optic radiations. This demonstrates that fractional anisotropy and transverse diffusivity are structural markers of functionally efficient myelination. Moreover, these indices computed along the optic radiations showed an early wave of maturation in the anterior region, with the posterior region catching up later in development, which suggests two asynchronous fronts of myelination in both the geniculocortical and corticogeniculate fibers. Thus, in addition to microstructural information, DTI provides noninvasive exquisite information on the functional development of the brain in human infants.
Neuropsychological Correlates of Normal Variation in Emotional Response to Visual Stimuli
Robinson, Robert G.; Paradiso, Sergio; Mizrahi, Romina; Fiedorowicz, Jess G.; Kouzoukas, Dimitrios E.; Moser, David J.
2007-01-01
Although the neural substrates of induced emotion have been the focus of numerous investigations, the factors related to individual variation in emotional experience have rarely been investigated in older adults. Twenty-six older normal subjects (mean age, 54) were shown color slides to elicit emotions of sadness, fear, or happiness and asked to rate the intensity of their emotional responses. Subjects who experienced negative emotion most intensely showed relative impairment on every aspect of the Wisconsin Card Sorting Test. Intense positive emotion was associated with relatively impaired performance on the Rey Complex Figure Test. The volume of frontal brain structures, however, was not associated with emotion responses. Hemisphere-specific executive dysfunction was associated with greater intensity of emotional experience in normal older subjects. The role of these differences in intensity of induced emotion and impairment in executive function in daily social and vocational activity should be investigated. PMID:17299297
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Gangnus, Sergei V.; Matcher, Stephen J.
2005-08-01
Polarization-sensitive optical coherence tomography has been used to spatially map the birefringence of equine articular cartilage. Images obtained in the vicinity of visible osteoarthritic lesions display a characteristic disruption of the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. ×2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We suggest that whilst some of this variation may be due to changes in the intrinsic birefringence of the tissue, the 3-D orientation of the collagen fibers relative to the plane of the joint surface should also be taken into account. We propose a method based on multiple angles of illumination to determine the polar angle of the collagen fibers.
Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven
2014-07-16
The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.
A new visually evoked cerebral blood flow response analysis using a low-frequency estimation.
Rey, Beatriz; Naranjo, Valery; Parkhutik, Vera; Tembl, José; Alcañiz, Mariano
2010-03-01
Transcranial Doppler (TCD) has been widely used to monitor cerebral blood flow velocity (BFV) during the performance of cognitive tasks compared with repose periods. Although one of its main advantages is its high temporal resolution, only some of the previous functional TCD studies have focused on the analysis of the temporal evolution of the BFV signal and none of them has performed a spectral analysis of the signal. In this study, maximum BFV data in both posterior cerebral arteries was monitored during a visual perception task (10 cycles of alternating darkness and illumination) for 23 subjects. A peak was located in the low-frequency band of the spectrum of the maximum BFV of each subject both during visual stimulation and repose periods. The frequency of this peak was in the range between 0.037 and 0.098Hz, depending on the subject, the vessel and the experimental condition. The component of the signal at this frequency, which is associated with the slow variations caused by the visual stimuli, was estimated. That way, the variations in BFV caused by the experimental stimuli were isolated from the variations caused by other factors. This low-frequency estimation signal was used to obtain parameters about the temporal evolution and the magnitude variations of the BFV in a reliable way, thus, characterizing the neurovascular coupling of the participants. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; ...
2016-07-26
We have employed scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode in order to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi 1/3Fe 1/3Mn 4/3O 4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. Our study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material.
Heat transfer variations of bicycle helmets.
Brühwiler, P A; Buyan, M; Huber, R; Bogerd, C P; Sznitman, J; Graf, S F; Rösgen, T
2006-09-01
Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.
Power profiles and short-term visual performance of soft contact lenses.
Papas, Eric; Dahms, Anne; Carnt, Nicole; Tahhan, Nina; Ehrmann, Klaus
2009-04-01
To investigate the manner in which contemporary soft contact lenses differ in the distribution of optical power within their optic zones and establish if these variations affect the vision of wearers or the prescribing procedure for back vertex power (BVP). By using a Visionix VC 2001 contact lens power analyzer, power profiles were measured across the optic zones of the following contemporary contact lenses ACUVUE 2, ACUVUE ADVANCE, O2OPTIX, NIGHT & DAY and PureVision. Single BVP measures were obtained using a Nikon projection lensometer. Visual performance was assessed in 28 masked subjects who wore each lens type in random order. Measurements taken were high and low contrast visual acuity in normal illumination (250 Cd/m), high contrast acuity in reduced illumination (5 Cd/m), subjective visual quality using a numerical rating scale, and visual satisfaction rating using a Likert scale. Marked differences in the distribution of optical power across the optic zone were evident among the lens types. No significant differences were found for any of the visual performance variables (p > 0.05, analysis of variance with repeated measures and Friedman test). Variations in power profile between contemporary soft lens types exist but do not, in general, result in measurable visual performance differences in the short term, nor do they substantially influence the BVP required for optimal correction.
NASA Astrophysics Data System (ADS)
Deratzou, Susan
This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.
The gradient index lens of the eye: an opto-biological synchrony.
Pierscionek, Barbara K; Regini, Justyn W
2012-07-01
The refractive power of a lens is determined largely by its surface curvatures and the refractive index of its medium. These properties can also be used to control the sharpness of focus and hence the image quality. One of the most effective ways of doing this is with a gradient index. Eye lenses of all species, thus far, measured, are gradient index (GRIN) structures. The index gradation is one that increases from the periphery of the lens to its centre but the steepness of the gradient and the magnitudes of the refractive index vary so that the optics of the lens accords with visual demands. The structural proteins, the crystallins, which create the index gradient, also vary from species to species, in type and relative distribution across the tissue. The crystallin classes do not contribute equally to the refractive index, and this may be related to their structure and amino acid content. This article compares GRIN forms in eye lenses of varying species, the relevance of these forms to visual requirements, and the relationship between refractive index and the structural proteins. Consideration is given to the dynamics of a living lens, potential variations in the GRIN form with physiological changes and the possible link between discontinuities in the gradient and growth. Finally, the property of birefringence and the characteristic polarisation patterns seen in highly ordered crystals that have also been observed in specially prepared eye lenses are described and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly
2012-03-06
Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.
NASA Astrophysics Data System (ADS)
Rocco, Alessandra S.; Coppola, Giuseppe; Ferraro, Pietro; Foti, Giuseppe; Iodice, Mario
2004-09-01
Optical fiber sensors are the ideal system to monitor "smart structures" and on-site/real time stress measurements: they can be in fact easily embedded or attached to the structures under test and are not affected by electro- magnetic noise. In particular a signal from a Fiber Bragg grating sensor (FBG) may be processed such that its information remains immune to optical power fluctuations. Different interrogation methods can be used for reading out Bragg wavelength shifts. In this paper we propose a very simple interferometric method for interrogating FBG sensors, based on bi-polished silicon sample acting like an etalon tuneable filter (ETF). The Bragg wavelength shift can be evaluated by analyzing the spectral response of signal reflected by the FBG sensor and filtered by the ETF that is continuously and rapidly tuned. Tuning was obtained by rotating the ETF. Variation in the strain at the FBG causes a phase shift in the analyzed signal. The overall spectral signal, collected with time, consists in an interferometric figure which finesse and fringe contrast depending on the geometrical sizes and facets reflectivity of the silicon sample. The fringe pattern, expressed by the Airy's formula, depends on the wavelength l of the incident radiation and on the angle of incidence. The phase of fringe pattern can be retrieved by a standard FFT method giving quantitative measurements of the quasi-static strain variation sensed by the FBG. In this way, the method allows a valuable visualization of the time-evolution of the incremental strain applied to the FBG. Principle of functioning of this method is described and first results obtained employing such configuration, are reported.
Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths
McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Wedmann, Sonja; Noh, Heeso; Cao, Hui
2011-01-01
Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene. PMID:22110404
Normal central retinal function and structure preserved in retinitis pigmentosa.
Jacobson, Samuel G; Roman, Alejandro J; Aleman, Tomas S; Sumaroka, Alexander; Herrera, Waldo; Windsor, Elizabeth A M; Atkinson, Lori A; Schwartz, Sharon B; Steinberg, Janet D; Cideciyan, Artur V
2010-02-01
To determine whether normal function and structure, as recently found in forms of Usher syndrome, also occur in a population of patients with nonsyndromic retinitis pigmentosa (RP). Patients with simplex, multiplex, or autosomal recessive RP (n = 238; ages 9-82 years) were studied with static chromatic perimetry. A subset was evaluated with optical coherence tomography (OCT). Co-localized visual sensitivity and photoreceptor nuclear layer thickness were measured across the central retina to establish the relationship of function and structure. Comparisons were made to patients with Usher syndrome (n = 83, ages 10-69 years). Cross-sectional psychophysical data identified patients with RP who had normal rod- and cone-mediated function in the central retina. There were two other patterns with greater dysfunction, and longitudinal data confirmed that progression can occur from normal rod and cone function to cone-only central islands. The retinal extent of normal laminar architecture by OCT corresponded to the extent of normal visual function in patients with RP. Central retinal preservation of normal function and structure did not show a relationship with age or retained peripheral function. Usher syndrome results were like those in nonsyndromic RP. Regional disease variation is a well-known finding in RP. Unexpected was the observation that patients with presumed recessive RP can have regions with functionally and structurally normal retina. Such patients will require special consideration in future clinical trials of either focal or systemic treatment. Whether there is a common molecular mechanism shared by forms of RP with normal regions of retina warrants further study.
Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants.
Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A; Sayyaf Dezfuli, Bahram
2016-06-01
An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias connected to human personnel; and of CVA/LDA, could be an objective, sensitive and specific approach to study fish gill lamellar pathology. Furthermore this approach enabled discrimination with sufficient confidence between exposure classes or pathological states and avoided misdiagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping
Madec, Simon; Irfan, Kamran; Lopez, Jeremy; Comar, Alexis; Hemmerlé, Matthieu; Dutartre, Dan; Praud, Sebastien; Tixier, Marie Helene
2018-01-01
Abstract Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00–20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0.33). The potential of these findings for the development of a high-throughput method for determining leaf-rolling based on aerial drone observations are considered. PMID:29617837
ERIC Educational Resources Information Center
Ennis, Kim; Priebe, Carly; Sharipova, Mayya; West, Kim
2012-01-01
Revealing the core of a teaching philosophy is the key to a concise and meaningful philosophy statement, but it can be an elusive goal. This paper offers a visual, kinesthetic, and holistic process for expanding the horizons of self-reflection, self-analysis, and self-knowledge. Mystery montage, a variation of visual mapping, storyboarding, and…
Genome Variation Map: a data repository of genome variations in BIG Data Center.
Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang
2018-01-04
The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Color vision: "OH-site" rule for seeing red and green.
Sekharan, Sivakumar; Katayama, Kota; Kandori, Hideki; Morokuma, Keiji
2012-06-27
Eyes gather information, and color forms an extremely important component of the information, more so in the case of animals to forage and navigate within their immediate environment. By using the ONIOM (QM/MM) (ONIOM = our own N-layer integrated molecular orbital plus molecular mechanics) method, we report a comprehensive theoretical analysis of the structure and molecular mechanism of spectral tuning of monkey red- and green-sensitive visual pigments. We show that interaction of retinal with three hydroxyl-bearing amino acids near the β-ionone ring part of the retinal in opsin, A164S, F261Y, and A269T, increases the electron delocalization, decreases the bond length alternation, and leads to variation in the wavelength of maximal absorbance of the retinal in the red- and green-sensitive visual pigments. On the basis of the analysis, we propose the "OH-site" rule for seeing red and green. This rule is also shown to account for the spectral shifts obtained from hydroxyl-bearing amino acids near the Schiff base in different visual pigments: at site 292 (A292S, A292Y, and A292T) in bovine and at site 111 (Y111) in squid opsins. Therefore, the OH-site rule is shown to be site-specific and not pigment-specific and thus can be used for tracking spectral shifts in any visual pigment.
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Monitoring the tidal response of a sea levee with ambient seismic noise
NASA Astrophysics Data System (ADS)
Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan
2017-03-01
Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated, even if one data object lies behind another. Stereoscopic viewing is another powerful tool to investigate 3-D relationships between objects. This form of immersion is constructed through viewing two separate images that are interleaved--typically 48 frames per second, per eye--and synced through an emitter and a set of specialized polarizing eyeglasses. The polarizing lenses flicker at an equivalent rate, blanking the eye for which a particular image was not drawn, producing the desired stereo effect. Volumetric visualization of the ARAD 3-D seismic dataset will be presented. The effective use of transparency reveals detailed structure of the melt-lens beneath the 9°03'N overlapping spreading center (OSC) along the East Pacific Rise, including melt-filled fractures within the propagating rift-tip. In addition, range-gated images of seismic reflectivity will be co-registered to investigate the physical properties (melt versus mush) of the magma chamber at this locale. Surface visualization of a dense, 2-D grid of MCS seismic data beneath Axial seamount (Juan de Fuca Ridge) will also be highlighted, including relationships between the summit caldera and rift zones, and the underlying (and humongous) magma chamber. A selection of Quicktime movies will be shown. Popcorn will be served, really!
NASA Technical Reports Server (NTRS)
Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.
Visual photometry: accuracy and precision
NASA Astrophysics Data System (ADS)
Whiting, Alan
2018-01-01
Visual photometry, estimation by eye of the brightness of stars, remains an important source of data even in the age of widespread precision instruments. However, the eye-brain system differs from electronic detectors and its results may be expected to differ in several respects. I examine a selection of well-observed variables from the AAVSO database to determine several internal characteristics of this data set. Visual estimates scatter around the fitted curves with a standard deviation of 0.14 to 0.34 magnitudes, most clustered in the 0.21-0.25 range. The variation of the scatter does not seem to correlate with color, type of variable, or depth or speed of variation of the star’s brightness. The scatter of an individual observer’s observations changes from star to star, in step with the overall scatter. The shape of the deviations from the fitted curve is non-Gaussian, with positive excess kurtosis (more outlying observations). These results have implications for use of visual data, as well as other citizen science efforts.
On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation
2015-03-01
SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new
Prado, Jérôme; Carp, Joshua; Weissman, Daniel H
2011-01-01
Although variations of response time (RT) within a particular experimental condition are typically ignored, they may sometimes reflect meaningful changes in the efficiency of cognitive and neural processes. In the present study, we investigated whether trial-by-trial variations of response time (RT) in a cross-modal selective attention task were associated with variations of functional connectivity between brain regions that are thought to underlie attention. Sixteen healthy young adults performed an audiovisual selective attention task, which involved attending to a relevant visual letter while ignoring an irrelevant auditory letter, as we recorded their brain activity using functional magnetic resonance imaging (fMRI). In line with predictions, variations of RT were associated with variations of functional connectivity between the anterior cingulate cortex and various other brain regions that are posited to underlie attentional control, such as the right dorsolateral prefrontal cortex and bilateral regions of the posterior parietal cortex. They were also linked to variations of functional connectivity between anatomically early and anatomically late regions of the relevant-modality visual cortex whose communication is thought to be modulated by attentional control processes. By revealing that variations of RT in a selective attention task are linked to variations of functional connectivity in the attentional network, the present findings suggest that variations of attention may contribute to trial-by-trial fluctuations of behavioral performance. Copyright © 2010 Elsevier Inc. All rights reserved.
Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2
NASA Astrophysics Data System (ADS)
Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.
2007-08-01
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
New presentation method for magnetic resonance angiography images based on skeletonization
NASA Astrophysics Data System (ADS)
Nystroem, Ingela; Smedby, Orjan
2000-04-01
Magnetic resonance angiography (MRA) images are usually presented as maximum intensity projections (MIP), and the choice of viewing direction is then critical for the detection of stenoses. We propose a presentation method that uses skeletonization and distance transformations, which visualizes variations in vessel width independent of viewing direction. In the skeletonization, the object is reduced to a surface skeleton and further to a curve skeleton. The skeletal voxels are labeled with their distance to the original background. For the curve skeleton, the distance values correspond to the minimum radius of the object at that point, i.e., half the minimum diameter of the blood vessel at that level. The following image processing steps are performed: resampling to cubic voxels, segmentation of the blood vessels, skeletonization ,and reverse distance transformation on the curve skeleton. The reconstructed vessels may be visualized with any projection method. Preliminary results are shown. They indicate that locations of possible stenoses may be identified by presenting the vessels as a structure with the minimum radius at each point.
Iodine imaging using spectral analysis. [radiography for visualization of small blood vessels
NASA Technical Reports Server (NTRS)
Macovski, A.
1978-01-01
Existing radiographic imaging systems provide images which represent an integration or averaging over the energy spectrum. In order to provide noninvasive angiography it is necessary to image the relatively small amounts of iodine which are available following an intravenous administration. This is accomplished by making use of the special spectral characteristics of iodine. Two methods will be presented. One involves a special grating for encoding the iodine information in the form of a fine line pattern. This is subsequently decoded to provide images of iodinated structures which are otherwise almost invisible. The second method utilizes a scanned X-ray beam which is rapidly switched in the high energy region. In this region, iodine experiences significant variations in the attenuation coefficient while bone and soft tissue do not. An efficient and accurate X-ray detector can be used with scanned X-ray beams. This provides a high degree of sensitivity enabling the visualization of small vessels containing relatively dilute iodine.
A comparative study of new and current methods for dental micro-CT image denoising
Lashgari, Mojtaba; Qin, Jie; Swain, Michael
2016-01-01
Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583
Moore, Colin W; Wilson, Timothy D; Rice, Charles L
2017-01-01
Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.
Flow Structure along the 1303 UCAV
NASA Astrophysics Data System (ADS)
Kosoglu, Mehmet A.; Rockwell, Donald
2007-11-01
The 1303 Unmanned Combat Air Vehicle is representative of a variety of UCAVs with blended wing-body configurations. Flow structure along a scale model of this configuration was investigated using dye visualization and particle image velocimetry for variations of Reynolds number and angle-of-attack. Both of these parameters substantially influence onset and structure of the leading-edge vortex (LEV) and a separation bubble/stall region along the tip. The onset of formation of the LEV initially occurs at a location well downstream of the apex and moves upstream for increasing values of either Reynolds number or angle-of-attack. In cases where a separation bubble or stall region exists, quantitative information on its structure was obtained via PIV imaging on a plane nearly parallel to the surface of the wing. By acquiring images on planes at successively larger elevations from the surface, it was possible to gain insight into the space-time features of the three-dimensional and highly time-dependent structure of the bubble or stall region. Time-averaged images indicate that maximum velocity defect decreases in magnitude and moves downstream with increasing elevation from the surface.
The visual attention span deficit in Chinese children with reading fluency difficulty.
Zhao, Jing; Liu, Menglian; Liu, Hanlong; Huang, Chen
2018-02-01
With reading development, some children fail to learn to read fluently. However, reading fluency difficulty (RFD) has not been fully investigated. The present study explored the underlying mechanism of RFD from the aspect of visual attention span. Fourteen Chinese children with RFD and fourteen age-matched normal readers participated. The visual 1-back task was adopted to examine visual attention span. Reaction time and accuracy were recorded, and relevant d-prime (d') scores were computed. Results showed that children with RFD exhibited lower accuracy and lower d' values than the controls did in the visual 1-back task, revealing a visual attention span deficit. Further analyses on d' values revealed that the attention distribution seemed to exhibit an inverted U-shaped pattern without lateralization for normal readers, but a W-shaped pattern with a rightward bias for children with RFD, which was discussed based on between-group variation in reading strategies. Results of the correlation analyses showed that visual attention span was associated with reading fluency at the sentence level for normal readers, but was related to reading fluency at the single-character level for children with RFD. The different patterns in correlations between groups revealed that visual attention span might be affected by the variation in reading strategies. The current findings extend previous data from alphabetic languages to Chinese, a logographic language with a particularly deep orthography, and have implications for reading-dysfluency remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mixing apples with oranges: Visual attention deficits in schizophrenia.
Caprile, Claudia; Cuevas-Esteban, Jorge; Ochoa, Susana; Usall, Judith; Navarra, Jordi
2015-09-01
Patients with schizophrenia usually present cognitive deficits. We investigated possible anomalies at filtering out irrelevant visual information in this psychiatric disorder. Associations between these anomalies and positive and/or negative symptomatology were also addressed. A group of individuals with schizophrenia and a control group of healthy adults performed a Garner task. In Experiment 1, participants had to rapidly classify visual stimuli according to their colour while ignoring their shape. These two perceptual dimensions are reported to be "separable" by visual selective attention. In Experiment 2, participants classified the width of other visual stimuli while trying to ignore their height. These two visual dimensions are considered as being "integral" and cannot be attended separately. While healthy perceivers were, in Experiment 1, able to exclusively respond to colour, an irrelevant variation in shape increased colour-based reaction times (RTs) in the group of patients. In Experiment 2, RTs when classifying width increased in both groups as a consequence of perceiving a variation in the irrelevant dimension (height). However, this interfering effect was larger in the group of schizophrenic patients than in the control group. Further analyses revealed that these alterations in filtering out irrelevant visual information correlated with positive symptoms in PANSS scale. A possible limitation of the study is the relatively small sample. Our findings suggest the presence of attention deficits in filtering out irrelevant visual information in schizophrenia that could be related to positive symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking
Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua
2014-01-01
To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Chen, Duan; Chen, Zhan; Wei, Guo-Wei
2012-01-01
Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.
Vision Problems and Reduced Reading Outcomes in Queensland Schoolchildren.
Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M
2017-03-01
To assess the relationship between vision and reading outcomes in Indigenous and non-Indigenous schoolchildren to determine whether vision problems are associated with lower reading outcomes in these populations. Vision testing and reading assessments were performed on 508 Indigenous and non-Indigenous schoolchildren in Queensland, Australia divided into two age groups: Grades 1 and 2 (6-7 years of age) and Grades 6 and 7 (12-13 years of age). Vision parameters measured included cycloplegic refraction, near point of convergence, heterophoria, fusional vergence range, rapid automatized naming, and visual motor integration. The following vision conditions were then classified based on the vision findings: uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration. Reading accuracy and reading comprehension were measured with the Neale reading test. The effect of uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration on reading accuracy and reading comprehension were investigated with ANCOVAs. The ANCOVAs explained a significant proportion of variance in both reading accuracy and reading comprehension scores in both age groups, with 40% of the variation in reading accuracy and 33% of the variation in reading comprehension explained in the younger age group, and 27% and 10% of the variation in reading accuracy and reading comprehension, respectively, in the older age group. The vision parameters of visual motor integration and rapid automatized naming were significant predictors in all ANCOVAs (P < .01). The direction of the relationship was such that reduced reading results were explained by reduced visual motor integration and rapid automatized naming results. Both reduced rapid automatized naming and visual motor integration were associated with poorer reading outcomes in Indigenous and non-Indigenous children. This is an important finding given the recent emphasis placed on Indigenous children's reading skills and the fact that reduced rapid automatized naming and visual motor integration skills are more common in this group.
Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.
2017-01-01
Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Implications on visual apperception: energy, duration, structure and synchronization.
Bókkon, I; Vimal, Ram Lakhan Pandey
2010-07-01
Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.
Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish
Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.
2013-01-01
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
Maddock, Richard J; Buonocore, Michael H; Lavoie, Shawn P; Copeland, Linda E; Kile, Shawn J; Richards, Anne L; Ryan, John M
2006-11-22
Proton magnetic resonance spectroscopy ((1)H-MRS) studies showing increased lactate during neural activation support a broader role for lactate in brain energy metabolism than was traditionally recognized. Proton MRS measures of brain lactate responses have been used to study regional brain metabolism in clinical populations. This study examined whether variations in blood glucose influence the lactate response to visual stimulation in the visual cortex. Six subjects were scanned twice, receiving either saline or 21% glucose intravenously. Using (1)H-MRS at 1.5 Tesla with a long echo time (TE=288 ms), the lactate doublet was visible at 1.32 ppm in the visual cortex of all subjects. Lactate increased significantly from resting to visual stimulation. Hyperglycemia had no effect on this increase. The order of the slice-selective gradients for defining the spectroscopy voxel had a pronounced effect on the extent of contamination by signal originating outside the voxel. The results of this preliminary study demonstrate a method for observing a consistent activity-stimulated increase in brain lactate at 1.5 T and show that variations in blood glucose across the normal range have little effect on this response.
NASA Technical Reports Server (NTRS)
Young, L. R.
1975-01-01
Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.
Canonical Visual Size for Real-World Objects
Konkle, Talia; Oliva, Aude
2012-01-01
Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required observers to access existing object knowledge, we observed that real-world objects have a consistent visual size at which they are drawn, imagined, and preferentially viewed. Importantly, this visual size is proportional to the logarithm of the assumed size of the object in the world, and is best characterized not as a fixed visual angle, but by the ratio of the object and the frame of space around it. Akin to the previous literature on canonical perspective, we term this consistent visual size information the canonical visual size. PMID:20822298
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Functional architecture of visual emotion recognition ability: A latent variable approach.
Lewis, Gary J; Lefevre, Carmen E; Young, Andrew W
2016-05-01
Emotion recognition has been a focus of considerable attention for several decades. However, despite this interest, the underlying structure of individual differences in emotion recognition ability has been largely overlooked and thus is poorly understood. For example, limited knowledge exists concerning whether recognition ability for one emotion (e.g., disgust) generalizes to other emotions (e.g., anger, fear). Furthermore, it is unclear whether emotion recognition ability generalizes across modalities, such that those who are good at recognizing emotions from the face, for example, are also good at identifying emotions from nonfacial cues (such as cues conveyed via the body). The primary goal of the current set of studies was to address these questions through establishing the structure of individual differences in visual emotion recognition ability. In three independent samples (Study 1: n = 640; Study 2: n = 389; Study 3: n = 303), we observed that the ability to recognize visually presented emotions is based on different sources of variation: a supramodal emotion-general factor, supramodal emotion-specific factors, and face- and within-modality emotion-specific factors. In addition, we found evidence that general intelligence and alexithymia were associated with supramodal emotion recognition ability. Autism-like traits, empathic concern, and alexithymia were independently associated with face-specific emotion recognition ability. These results (a) provide a platform for further individual differences research on emotion recognition ability, (b) indicate that differentiating levels within the architecture of emotion recognition ability is of high importance, and (c) show that the capacity to understand expressions of emotion in others is linked to broader affective and cognitive processes. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.
2013-09-01
With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.
Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.
Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa
2012-08-01
The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.
Conveying Movement in Music and Prosody
Hedger, Stephen C.; Nusbaum, Howard C.; Hoeckner, Berthold
2013-01-01
We investigated whether acoustic variation of musical properties can analogically convey descriptive information about an object. Specifically, we tested whether information from the temporal structure in music interacts with perception of a visual image to form an analog perceptual representation as a natural part of music perception. In Experiment 1, listeners heard music with an accelerating or decelerating temporal pattern, and then saw a picture of a still or moving object and decided whether it was animate or inanimate – a task unrelated to the patterning of the music. Object classification was faster when musical motion matched visually depicted motion. In Experiment 2, participants heard spoken sentences that were accompanied by accelerating or decelerating music, and then were presented with a picture of a still or moving object. When motion information in the music matched motion information in the picture, participants were similarly faster to respond. Fast and slow temporal patterns without acceleration and deceleration, however, did not make participants faster when they saw a picture depicting congruent motion information (Experiment 3), suggesting that understanding temporal structure information in music may depend on specific metaphors about motion in music. Taken together, these results suggest that visuo-spatial referential information can be analogically conveyed and represented by music and can be integrated with speech or influence the understanding of speech. PMID:24146920
Creative Arts and Crafts for Children with Visual Handicaps.
ERIC Educational Resources Information Center
Sykes, Kim C.; And Others
This teaching guide gives instructions for 23 creative art or craft projects thought to be appropriate for use with visually handicapped children. Usually included for each project are the educational objective, materials and equipment needed, procedure, possible variations, and photographs. The following types of activity are recommended: tempera…
An indication for "granny glasses".
Brodie, S E
1995-01-01
A young woman with a large astigmatic refractive error obtained no visual improvement with glasses. Repeated manifest refractions revealed persistent variations in the apparent cylinder axis. A suitable choice of spectacle frames facilitated a satisfactory outcome. The pitfalls inherent in the clinical specification of cylinder axis, and the potential visual consequences, are discussed.
Assertiveness by Older Adults with Visual Impairment: Context Matters
ERIC Educational Resources Information Center
Ryan, Ellen Bouchard; Anas, Ann P.; Mays, Heather
2008-01-01
Within a communication predicament of aging and disability framework, this study examined the impact of two types of contextual variation on perceptions of older adult assertiveness within problematic service encounters. Young (N = 66) and older (N = 66) participants evaluated conversational scenarios in which a visually-impaired older woman…
Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David
2017-03-15
Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
Eye shape and retinal topography in owls (Aves: Strigiformes).
Lisney, Thomas J; Iwaniuk, Andrew N; Bandet, Mischa V; Wylie, Douglas R
2012-01-01
The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or 'openness' of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88-2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77-1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba) does not. A size-frequency analysis of cell soma area indicates that a number of different RGC classes are represented in owls, including a population of large RGCs (cell soma area >150 µm(2)) that resemble the giant RGCs reported in other vertebrates. In conclusion, eye shape and retinal topography in owls vary among species and this variation is associated with different activity patterns and habitat preferences, thereby supporting similar observations in other vertebrates. Copyright © 2012 S. Karger AG, Basel.
Alvarez, George A.; Nakayama, Ken; Konkle, Talia
2016-01-01
Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing. PMID:27832600
Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L
2018-06-21
Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.
Structural texture similarity metrics for image analysis and retrieval.
Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L
2013-07-01
We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.
Fagot, Joël; De Lillo, Carlo
2011-12-01
Two experiments assessed if non-human primates can be meaningfully compared to humans in a non-verbal test of serial recall. A procedure was used that was derived from variations of the Corsi test, designed to test the effects of sequence structure and movement path length in humans. Two baboons were tested in Experiment 1. The monkeys showed several attributes of human serial recall. These included an easier recall of sequences with a shorter number of items and of sequences characterized by a shorter path length when the number of items was kept constant. However, the accuracy and speed of processing did not indicate that the monkeys were able to benefit from the spatiotemporal structure of sequences. Humans tested in Experiment 2 showed a quantitatively longer memory span, and, in contrast with monkeys, benefitted from sequence structure. The results are discussed in relation to differences in how human and non-human primates segment complex visual patterns. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho
2011-01-01
Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…
Drawing the Line between Constituent Structure and Coherence Relations in Visual Narratives
ERIC Educational Resources Information Center
Cohn, Neil; Bender, Patrick
2017-01-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the…
NASA Astrophysics Data System (ADS)
van Beurden, Maurice H. P. H.; Ijsselsteijn, Wijnand A.; de Kort, Yvonne A. W.
2011-03-01
Stereoscopic displays are known to offer a number of key advantages in visualizing complex 3D structures or datasets. The large majority of studies that focus on evaluating stereoscopic displays for professional applications use completion time and/or the percentage of correct answers to measure potential performance advantages. However, completion time and accuracy may not fully reflect all the benefits of stereoscopic displays. In this paper, we argue that perceived workload is an additional valuable indicator reflecting the extent to which users can benefit from using stereoscopic displays. We performed an experiment in which participants were asked to perform a visual path-tracing task within a convoluted 3D wireframe structure, varying in level of complexity of the visualised structure and level of disparity of the visualisation. The results showed that an optimal performance (completion time, accuracy and workload), depend both on task difficulty and disparity level. Stereoscopic disparity revealed a faster and more accurate task performance, whereas we observed a trend that performance on difficult tasks stands to benefit more from higher levels of disparity than performance on easy tasks. Perceived workload (as measured using the NASA-TLX) showed a similar response pattern, providing evidence that perceived workload is sensitive to variations in disparity as well as task difficulty. This suggests that perceived workload could be a useful concept, in addition to standard performance indicators, in characterising and measuring human performance advantages when using stereoscopic displays.
Three visualization approaches for communicating and exploring PIT tag data
Letcher, Benjamin; Walker, Jeffrey D.; O'Donnell, Matthew; Whiteley, Andrew R.; Nislow, Keith; Coombs, Jason
2018-01-01
As the number, size and complexity of ecological datasets has increased, narrative and interactive raw data visualizations have emerged as important tools for exploring and understanding these large datasets. As a demonstration, we developed three visualizations to communicate and explore passive integrated transponder tag data from two long-term field studies. We created three independent visualizations for the same dataset, allowing separate entry points for users with different goals and experience levels. The first visualization uses a narrative approach to introduce users to the study. The second visualization provides interactive cross-filters that allow users to explore multi-variate relationships in the dataset. The last visualization allows users to visualize the movement histories of individual fish within the stream network. This suite of visualization tools allows a progressive discovery of more detailed information and should make the data accessible to users with a wide variety of backgrounds and interests.
Identification of structural variation in mouse genomes.
Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz
2014-01-01
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Matcher, Stephen J.
2006-08-01
Osteoarthritis is a painful condition, causing restricted mobility in the articular joints. In this paper we present a review of different optical techniques that might be used to clarify the etiology of degeneration of connective joint tissues, such as bone and articular cartilage. Significant correlation (R2 = 0.8) between bone mineral density and scattering coefficient of cortical bone tissue are found by using Integrating Sphere Technique. Optical Coherence Tomography and Polarization-Sensitive Optical Coherence Tomography images of cartilage tissue are presented. They were performed as series of angle-dependant measurements for different location along the surface. Method for spatial mapping the birefringence of equine articular cartilage is proposed. Variations in band spacing of birefringence obtained from visually healthy and abnormal cartilage samples are compared. Visible osteoarthritic lesions are characterized by a loss of the regular birefringence bands shown by normal cartilage. We discuss the hypothesis that some of these variations may be due to changes in intrinsic structure of tissue.
Conservation implications of anthropogenic impacts on visual communication and camouflage.
Delhey, Kaspar; Peters, Anne
2017-02-01
Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently, these effects are best understood for auditory and chemosensory modalities, and recent reviews highlight their importance for conservation. We examined how anthropogenic changes to the visual environment (ambient light, transmission, and backgrounds) affect visual communication and camouflage and considered the implications of these effects for conservation. Human changes to the visual environment can increase predation risk by affecting camouflage effectiveness, lead to maladaptive patterns of mate choice, and disrupt mutualistic interactions between pollinators and plants. Implications for conservation are particularly evident for disrupted camouflage due to its tight links with survival. The conservation importance of impaired visual communication is less documented. The effects of anthropogenic changes on visual communication and camouflage may be severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when human-induced modifications to the visual environment are evolutionarily novel (i.e., very different from natural variation); affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and behavioral, sensory, or physiological plasticity; and the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. Our findings suggest that anthropogenic effects on the visual environment may be of similar importance relative to conservation as anthropogenic effects on other sensory modalities. © 2016 Society for Conservation Biology.
Predation risk modifies behaviour by shaping the response of identified brain neurons.
Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel
2016-04-15
Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.
A fast and automatic fusion algorithm for unregistered multi-exposure image sequence
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Feihong
2014-09-01
Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.
Rutowski, Ronald L; Warrant, Eric J
2002-02-01
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.
Visual symptoms associated with refractive errors among Thangka artists of Kathmandu valley.
Dhungel, Deepa; Shrestha, Gauri Shankar
2017-12-21
Prolong near work, especially among people with uncorrected refractive error is considered a potential source of visual symptoms. The present study aims to determine the visual symptoms and the association of those with refractive errors among Thangka artists. In a descriptive cross-sectional study, 242 (46.1%) participants of 525 thangka artists examined, with age ranged between 16 years to 39 years which comprised of 112 participants with significant refractive errors and 130 absolutely emmetropic participants, were enrolled from six Thangka painting schools. The visual symptoms were assessed using a structured questionnaire consisting of nine items and scoring from 0 to 6 consecutive scales. The eye examination included detailed anterior and posterior segment examination, objective and subjective refraction, and assessment of heterophoria, vergence and accommodation. Symptoms were presented in percentage and median. Variation in distribution of participants and symptoms was analysed using the Kruskal Wallis test for mean, and the correlation with the Pearson correlation coefficient. A significance level of 0.05 was applied for 95% confidence interval. The majority of participants (65.1%) among refractive error group (REG) were above the age of 30 years, with a male predominance (61.6%), compared to the participants in the normal cohort group (NCG), where majority of them (72.3%) were below 30 years of age (72.3%) and female (51.5%). Overall, the visual symptoms are high among Thangka artists. However, blurred vision (p = 0.003) and dry eye (p = 0.004) are higher among the REG than the NCG. Females have slightly higher symptoms than males. Most of the symptoms, such as sore/aching eye (p = 0.003), feeling dry (p = 0.005) and blurred vision (p = 0.02) are significantly associated with astigmatism. Thangka artists present with significant proportion of refractive error and visual symptoms, especially among females. The most commonly reported symptoms are blurred vision, dry eye and watering of the eye. The visual symptoms are more correlated with astigmatism.
Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.
Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi
2017-02-17
Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.
Category learning increases discriminability of relevant object dimensions in visual cortex.
Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel
2013-04-01
Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.
Visual performance with changes in eccentricity in PROSE device: a case report.
Jagadeesh, Divya; Mahadevan, Rajeswari
2014-01-01
This case report describes the variations in visual performance of a subject with moderate keratoconus with changes in front surface eccentricities (FSEs) of PROSE (Prosthetic Replacement of Ocular Surface Ecosystem). PROSE device of 0.6 FSE provided maximum visual improvement and reduction in Higher Order Aberrations (HOAs) compared to 0, 0.3 and 0.8 FSEs in this clinical condition. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis.
Rodriguez-Mena, Diego; Almarcegui, Carmen; Dolz, Isabel; Herrero, Raquel; Bambo, Maria P; Fernandez, Javier; Pablo, Luis E; Garcia-Martin, Elena
2013-08-01
To evaluate the ability of visual evoked potentials and pattern electroretinograms (PERG) to detect subclinical axonal damage in patients during the early diagnostic stage of multiple sclerosis (MS). The authors also compared the ability of optical coherence tomography (OCT), PERG, and visual evoked potentials to detect axonal loss in MS patients and correlated the functional and structural properties of the retinal nerve fiber layer. Two hundred twenty-eight eyes of 114 subjects (57 MS patients and 57 age- and sex-matched healthy controls) were included. The visual pathway was evaluated based on functional and structural assessments. All patients underwent a complete ophthalmic examination that included assessment of visual acuity, ocular motility, intraocular pressure, visual field, papillary morphology, OCT, visual evoked potentials, and PERG. Visual evoked potentials (P100 latency and amplitude), PERG (N95 amplitude and N95/P50 ratio), and OCT parameters differed significantly between MS patients and healthy subjects. Moderate significant correlations were found between visual evoked potentials or PERG parameters and OCT measurements. Axonal damage in ganglion cells of the visual pathway can be detected based on structural measures provided by OCT in MS patients and by the N95 component and N95/P50 index of PERG, thus providing good correlation between function and structure.
AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING.
ERIC Educational Resources Information Center
Illuminating Engineering Society, New York, NY.
THIS IS A GUIDE FOR SCHOOL LIGHTING, DESIGNED FOR EDUCATORS AS WELL AS ARCHITECTS. IT MAKES USE OF RECENT RESEARCH, NOTABLY THE BLACKWELL REPORT ON EVALUATION OF VISUAL TASKS. THE GUIDE BEGINS WITH AN OVERVIEW OF CHANGING GOALS AND NEEDS OF SCHOOL LIGHTING, AND A TABULATION OF COMMON CLASSROOM VISUAL TASKS THAT REQUIRE VARIATIONS IN LIGHTING.…
Individual Differences in Visual Word Recognition: Insights from the English Lexicon Project
ERIC Educational Resources Information Center
Yap, Melvin J.; Balota, David A.; Sibley, Daragh E.; Ratcliff, Roger
2012-01-01
Empirical work and models of visual word recognition have traditionally focused on group-level performance. Despite the emphasis on the prototypical reader, there is clear evidence that variation in reading skill modulates word recognition performance. In the present study, we examined differences among individuals who contributed to the English…
Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
van Oevelen, Dick
2018-01-01
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403
Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G
2017-01-01
Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Tsun-Po; Beazley, Claude; Montgomery, Stephen B; Dimas, Antigone S; Gutierrez-Arcelus, Maria; Stranger, Barbara E; Deloukas, Panos; Dermitzakis, Emmanouil T
2010-10-01
Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. http://www.sanger.ac.uk/resources/software/genevar.
Coherent modulation of stimulus colour can affect visually induced self-motion perception.
Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2010-01-01
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.
Automatic video summarization driven by a spatio-temporal attention model
NASA Astrophysics Data System (ADS)
Barland, R.; Saadane, A.
2008-02-01
According to the literature, automatic video summarization techniques can be classified in two parts, following the output nature: "video skims", which are generated using portions of the original video and "key-frame sets", which correspond to the images, selected from the original video, having a significant semantic content. The difference between these two categories is reduced when we consider automatic procedures. Most of the published approaches are based on the image signal and use either pixel characterization or histogram techniques or image decomposition by blocks. However, few of them integrate properties of the Human Visual System (HVS). In this paper, we propose to extract keyframes for video summarization by studying the variations of salient information between two consecutive frames. For each frame, a saliency map is produced simulating the human visual attention by a bottom-up (signal-dependent) approach. This approach includes three parallel channels for processing three early visual features: intensity, color and temporal contrasts. For each channel, the variations of the salient information between two consecutive frames are computed. These outputs are then combined to produce the global saliency variation which determines the key-frames. Psychophysical experiments have been defined and conducted to analyze the relevance of the proposed key-frame extraction algorithm.
NASA Astrophysics Data System (ADS)
Decoster, Robin; Toomey, Rachel; Smits, Dirk; Mol, Harrie; Verhelle, Filip; Butler, Marie-Louise
2016-03-01
Introduction: Radiographers evaluate anatomical structures to judge clinical acceptability of a radiograph. Whether a radiograph is deemed acceptable for diagnosis or not depends on the individual decision of the radiographer. Individual decisions cause variation in the accepted image quality. To minimise these variations definitions of acceptability, such as in RadLex, were developed. On which criteria radiographers attribute a RadLex categories to radiographs is unknown. Insight into these criteria helps to further optimise definitions and reduce variability in acceptance between radiographers. Therefore, this work aims the evaluation of the correlation between the RadLex classification and the evaluation of anatomical structures, using a Visual Grading Analysis (VGA) Methods: Four radiographers evaluated the visibility of five anatomical structures of 25 lateral cervical spine radiographs on a secondary class display with a VGA. They judged clinical acceptability of each radiograph using RadLex. Relations between VGAS and RadLex category were analysed with Kendall's Tau correlation and Nagelkerke pseudo-R². Results: The overall VGA score (VGAS) and the RadLex score correlate (rτ= 0.62, p<0.01, R2=0.72) strongly. The observers' evaluation of contrast between bone, air (trachea) and soft tissue has low value in predicting (rτ=0.55, p<0.01, R2=0.03) the RadLex score. The reproduction of spinous processes (rτ=0.67, p<0.01, R2=0.31) and the evaluation of the exposure (rτ=0.65, p<0.01, R2=0.56) have a strong correlation with high predictive value for the RadLex score. Conclusion: RadLex scores and VGAS correlate positively, strongly and significantly. The predictive value of bony structures may support the use of these in the judgement of clinical acceptability. Considerable inter-observer variations in the VGAS within a certain RadLex category, suggest that observers use of observer specific cut-off values.
KinView: A visual comparative sequence analysis tool for integrated kinome research
McSkimming, Daniel Ian; Dastgheib, Shima; Baffi, Timothy R.; Byrne, Dominic P.; Ferries, Samantha; Scott, Steven Thomas; Newton, Alexandra C.; Eyers, Claire E.; Kochut, Krzysztof J.; Eyers, Patrick A.
2017-01-01
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats. PMID:27731453
Contrasting Drainage and Stratification in Horizontal Vs Vertical Micellar Foam Films
NASA Astrophysics Data System (ADS)
Wojcik, Ewelina; Yilixiati, Subinuer; Zhang, Yiran; Sharma, Vivek
Understanding and controlling the drainage kinetics of thin films is an important problem that underlies the stability, lifetime and rheology of foams and emulsions. In foam films formed with micellar solutions, the surfactant is present as interfacially-adsorbed layer at both liquid-air interfaces, as well as in bulk as self-assembled supramolecular structures called micelles. Ultrathin micellar films exhibit stratification due to confinement-induced structuring and layering of micelles. Stratification in micellar foam films is manifested as stepwise thinning over time, and it leads to the coexistence of flat domains with discretely different thicknesses. In this contribution we use Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols to visualize and analyze thickness transitions and variations associated with stratification in micellar foam films made with sodium dodecyl sulfate (SDS). We contrast the drainage and stratification dynamics in horizontal and vertical foam films, and investigate the role played by gravitational, viscous, interfacial and surface forces.
Nanoscale charge distribution and energy band modification in defect-patterned graphene.
Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui
2012-04-21
Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.
Can Nomenclature for the Body be Explained by Embodiment Theories?
Majid, Asifa; van Staden, Miriam
2015-10-01
According to widespread opinion, the meaning of body part terms is determined by salient discontinuities in the visual image; such that hands, feet, arms, and legs, are natural parts. If so, one would expect these parts to have distinct names which correspond in meaning across languages. To test this proposal, we compared three unrelated languages-Dutch, Japanese, and Indonesian-and found both naming systems and boundaries of even basic body part terms display variation across languages. Bottom-up cues alone cannot explain natural language semantic systems; there simply is not a one-to-one mapping of the body semantic system to the body structural description. Although body parts are flexibly construed across languages, body parts semantics are, nevertheless, constrained by non-linguistic representations in the body structural description, suggesting these are necessary, although not sufficient, in accounting for aspects of the body lexicon. Copyright © 2015 Cognitive Science Society, Inc.
Intrahepatic Vascular Anatomy in Rats and Mice--Variations and Surgical Implications.
Sänger, Constanze; Schenk, Andrea; Schwen, Lars Ole; Wang, Lei; Gremse, Felix; Zafarnia, Sara; Kiessling, Fabian; Xie, Chichi; Wei, Weiwei; Richter, Beate; Dirsch, Olaf; Dahmen, Uta
2015-01-01
The intra-hepatic vascular anatomy in rodents, its variations and corresponding supplying and draining territories in respect to the lobar structure of the liver have not been described. We performed a detailed anatomical imaging study in rats and mice to allow for further refinement of experimental surgical approaches. LEWIS-Rats and C57Bl/6N-Mice were subjected to ex-vivo imaging using μCT. The image data were used for semi-automated segmentation to extract the hepatic vascular tree as prerequisite for 3D visualization. The underlying vascular anatomy was reconstructed, analysed and used for determining hepatic vascular territories. The four major liver lobes have their own lobar portal supply and hepatic drainage territories. In contrast, the paracaval liver is supplied by various small branches from right and caudate portal veins and drains directly into the vena cava. Variations in hepatic vascular anatomy were observed in terms of branching pattern and distance of branches to each other. The portal vein anatomy is more variable than the hepatic vein anatomy. Surgically relevant variations were primarily observed in portal venous supply. For the first time the key variations of intrahepatic vascular anatomy in mice and rats and their surgical implications were described. We showed that lobar borders of the liver do not always match vascular territorial borders. These findings are of importance for the design of new surgical procedures and for understanding eventual complications following hepatic surgery.
Intrahepatic Vascular Anatomy in Rats and Mice—Variations and Surgical Implications
Sänger, Constanze; Schenk, Andrea; Schwen, Lars Ole; Wang, Lei; Gremse, Felix; Zafarnia, Sara; Kiessling, Fabian; Xie, Chichi; Wei, Weiwei; Richter, Beate; Dirsch, Olaf; Dahmen, Uta
2015-01-01
Introduction The intra-hepatic vascular anatomy in rodents, its variations and corresponding supplying and draining territories in respect to the lobar structure of the liver have not been described. We performed a detailed anatomical imaging study in rats and mice to allow for further refinement of experimental surgical approaches. Methods LEWIS-Rats and C57Bl/6N-Mice were subjected to ex-vivo imaging using μCT. The image data were used for semi-automated segmentation to extract the hepatic vascular tree as prerequisite for 3D visualization. The underlying vascular anatomy was reconstructed, analysed and used for determining hepatic vascular territories. Results The four major liver lobes have their own lobar portal supply and hepatic drainage territories. In contrast, the paracaval liver is supplied by various small branches from right and caudate portal veins and drains directly into the vena cava. Variations in hepatic vascular anatomy were observed in terms of branching pattern and distance of branches to each other. The portal vein anatomy is more variable than the hepatic vein anatomy. Surgically relevant variations were primarily observed in portal venous supply. Conclusions For the first time the key variations of intrahepatic vascular anatomy in mice and rats and their surgical implications were described. We showed that lobar borders of the liver do not always match vascular territorial borders. These findings are of importance for the design of new surgical procedures and for understanding eventual complications following hepatic surgery. PMID:26618494
Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming
Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy
2013-01-01
Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148
NASA Astrophysics Data System (ADS)
Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.
2017-02-01
Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.
Phenomenological study of subsonic turbulent flow over a swept rearward-facing step. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Selby, G. V.
1982-01-01
The phenomenology of turbulent, subsonic flow over a swept, rearward-facing step was studied. Effects of variations in step height, sweep angle, base geometry, and end conditions on the 3-D separated flow were examined. The separated flow was visualized using smoke wire, oil drop, and surface tuft techniques. Measurements include surface pressure, reattachment distance and swirl angle. Results indicate: (1) model/test section coupling affects the structure of the separated flow, but spanwise end conditions do not; (2) the independence principle is evidently valid for sweep angles up to 38 deg; (3) a sweep angle/swirl angle correlation exists; and (4) base modifications can significantly reduce the reattachment distance.
Teaching the Structure of Immunoglobulins by Molecular Visualization and SDS-PAGE Analysis
ERIC Educational Resources Information Center
Rižner, Tea Lanišnik
2014-01-01
This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG…
Gandhi, Varun N; Roberts, Philip J W; Kim, Jae-Hong
2012-12-18
Evaluating the performance of typical water treatment UV reactors is challenging due to the complexity in assessing spatial and temporal variation of UV fluence, resulting from highly unsteady, turbulent nature of flow and variation in UV intensity. In this study, three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. Mapping the spatial and temporal fluence delivery and MS2 inactivation revealed the highest local fluence in the wake zone due to longer residence time and higher UV exposure, while the lowest local fluence occurred in a region near the walls due to short-circuiting flow and lower UV fluence rate. Comparing the tracer based decomposition between hydrodynamics and IT revealed similar coherent structures showing the dependency of fluence delivery on the reactor flow. The location of tracer injection, varying the height and upstream distance from the lamp center, was found to significantly affect the UV fluence received by the tracer. A Lagrangian-based analysis was also employed to predict the fluence along specific paths of travel, which agreed with the experiments. The 3DLIF technique developed in this study provides new insight on dose delivery that fluctuates both spatially and temporally and is expected to aid design and optimization of UV reactors as well as validate computational fluid dynamics models that are widely used to simulate UV reactor performances.
iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization
Vogeti, Sriharsha
2018-01-01
Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/. PMID:29621297
Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins.
Brandon, Christopher S; Greenwold, Matthew J; Dudycha, Jeffry L
2017-01-01
Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
Visualization of 3D CT-based anatomical models
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
Biomedical volumetric data visualization techniques for the exploration purposes are well developed. Most of the known methods are inappropriate for surgery simulation systems due to lack of realism. A segmented data visualization is a well-known approach for the visualization of the structured volumetric data. The research is focused on improvement of the segmented data visualization technique by the aliasing problems resolution and the use of material transparency modeling for better semitransparent structures rendering.
Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff
Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; ...
2015-06-01
The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less
Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea.
Khalil, Maha T; Bouwmeester, Jessica; Berumen, Michael L
2017-01-01
Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3-24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals . All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.
Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea
Bouwmeester, Jessica; Berumen, Michael L.
2017-01-01
Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal. PMID:28603671
Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A
2012-07-01
Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Anderson, L A; Christianson, G B; Linden, J F
2009-02-03
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Cyclic motion encoding for enhanced MR visualization of slip interfaces.
Mariappan, Yogesh K; Glaser, Kevin J; Manduca, Armando; Ehman, Richard L
2009-10-01
To develop and test a magnetic resonance imaging-based method for assessing the mechanical shear connectivity across tissue interfaces with phantom experiments and in vivo feasibility studies. External vibrations were applied to phantoms and tissue and the differential motion on either side of interfaces within the media was mapped onto the phase of the MR images using cyclic motion encoding gradients. The phase variations within the voxels of functional slip interfaces reduced the net magnitude signal in those regions, thus enhancing their visualization. A simple two-compartment model was developed to relate this signal loss to the intravoxel phase variations. In vivo studies of the abdomen and forearm were performed to visualize slip interfaces in healthy volunteers. The phantom experiments demonstrated that the proposed technique can assess the functionality of shear slip interfaces and they provided experimental validation for the theoretical model developed. Studies of the abdomen showed that the slip interface between the small bowel and the peritoneal wall can be visualized. In the forearm, this technique was able to depict the slip interfaces between the functional compartments of the extrinsic forearm muscles. Functional shear slip interfaces can be visualized sensitively using cyclic motion encoding of externally applied tissue vibrations. (c) 2009 Wiley-Liss, Inc.
Visualizing the orientational dependence of an intermolecular potential
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip
2016-02-01
Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.
2013-01-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H
2013-05-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.
The use of experimental structures to model protein dynamics.
Katebi, Ataur R; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L
2015-01-01
The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high-for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods-Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them.
The Use of Experimental Structures to Model Protein Dynamics
Katebi, Ataur R.; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L.
2014-01-01
Summary The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high – for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods – Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them. PMID:25330965
[Macula study in Stargardt's disease].
Maia, Otacílio de Oliveira; Takahashi, Walter Yukihiko; Arantes, Tiago Eugênio Faria e; Barreto, Raquel Barbosa Paes; Andrade Neto, João Lins de
2008-01-01
To evaluate de macular structural damage in Stargardt's disease by optical coherence tomography, correlating with visual acuity and disease duration. Patients with Stargardt's disease were included and submitted to visual acuity (logMAR) measurement and complementary examinations performed were color fundus photographs, fluorescein angiography and optical coherence tomography. All cases were reexamined for diagnostic confirmation and the duration of symptoms was determined. The control group was composed of the same number of subjects, matched by sex and age, without any ophthalmologic alteration. The sample was composed of 22 patients (44 eyes) with Stargardt's disease, 11 (50%) males and 11 (50%) females. The duration of the disease varied from 3 to 21 years (mean of 11.4 +/- 5.3 years). The groups did not show significant differences in age (p= 0.98) and sex. Concerning the macular thickness in optical coherence tomography, the variation in the study group differed significantly from the control group, presenting smaller values of thickness (p<0.001). There was negative and significant correlation between the duration of disease and the macular thickness assessed by optical coherence tomography (r=-0.57 and p=0.005). There was positive correlation between the duration of the disease and the visual acuity (r=0.50 and p=0.0167) and negative correlation between the visual acuity and the macular thickness in optical coherence tomography (r=-0.83 and p=0.0001). It was evidenced that patients with Stargardt's disease have a thinner macular thickness when compared to normal subjects, and this reduction is related to the duration of symptoms of the disease. Additionally, the thickness and also the duration of the disease influence the visual prognosis of the patients.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...
Effects of Scenery, Lighting, Glideslope, and Experience on Timing the Landing Flare
ERIC Educational Resources Information Center
Palmisano, Stephen; Favelle, Simone; Sachtler, W. L.
2008-01-01
This study examined three visual strategies for timing the initiation of the landing flare based on perceptions of either: (a) a critical height above ground level; (b) a critical runway width angle ([psi]); or (c) a critical time-to-contact (TTC) with the runway. Visual displays simulated landing approaches with trial-to-trial variations in…
ERIC Educational Resources Information Center
Kelly, Resa M.; Akaygun, Sevil
2016-01-01
This article summarizes an investigation into how Flash-based cartoon video tutorials featuring molecular visualizations affect students' mental models of acetic acid and hydrochloric acid solutions and how the acids respond when tested for electrical conductance. Variation theory served as the theoretical framework for examining how students…
Appraising the reliability of visual impact assessment methods
Nickolaus R. Feimer; Kenneth H. Craik; Richard C. Smardon; Stephen R.J. Sheppard
1979-01-01
This paper presents the research approach and selected results of an empirical investigation aimed at the evaluation of selected observer-based visual impact assessment (VIA) methods. The VIA methods under examination were chosen to cover a range of VIA methods currently in use in both applied and research settings. Variation in three facets of VIA methods were...
ERIC Educational Resources Information Center
Patron, Emelie; Wikman, Susanne; Edfors, Inger; Johansson-Cederblad, Brita; Linder, Cedric
2017-01-01
Visual representations are essential for communication and meaning-making in chemistry, and thus the representational practices play a vital role in the teaching and learning of chemistry. One powerful contemporary model of classroom learning, the variation theory of learning, posits that the way an object of learning gets handled is another vital…
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
Verbal Recall of Auditory and Visual Signals by Normal and Deficient Reading Children.
ERIC Educational Resources Information Center
Levine, Maureen Julianne
Verbal recall of bisensory memory tasks was compared among 48 9- to 12-year old boys in three groups: normal readers, primary deficit readers, and secondary deficit readers. Auditory and visual stimulus pairs composed of digits, which incorporated variations of intersensory and intrasensory conditions were administered to Ss through a Bell and…
Structures of dynamic particle accumulation in Marangoni convection in half-zone liquid bridge
NASA Astrophysics Data System (ADS)
Tanaka, S.; Ueno, I.; Kawamura, H.
Thermocapillary convection is induced by the temperature difference T between two cylindrical rods sustaining liquid bridge. It is well known that the induced flow exhibits a transition from 2-D steady to 3-D time-dependent oscillatory flows with the increasing T. These convections can be visualized by using fine particles as tracers. In a certain flow condition, the particles were found to get accumulated. This is called PAS, particle accumulation structure, after Schwabe et al. (Microgravity, sci. technol. 1996). The authors group (Ueno et al, Proc. TSFP-2, 2001) categorized the induced flow fields into several regimes by the particle motion, structures and the surface temperature variation. Two sets of pulsating and rotating flows appeared. It was observed clearly that the particle gathered along a closed single path. This kind of structure was named as TL-PAS, Twisted-loop particle accumulation structure, (Tanaka et al, J. Japan Soc. Microgravity Appl, 2000). Special attention was paid for this kind of PAS in this study. The TL-PAS exhibited several types of closed path lines. Its detailed structure changed even in the same regime with a slight change of T and aspect ratio. The experimental setup consisted of the transparent crystal top and aluminum bottom rods. Flow fields were observed from top and side through two CCD cameras. A laser-light-sheet was employed in order to grasp the 3-D structures of TL-PAS. The liquid bridge of Silicone oil of 2 cSt was formed between rods of 5mm in diameter. Several kinds of particles were tested as tracer. The surface temperature variation was measured simultaneously by use of a 25μm thermocouple up to 50Hz, or 2.5μm CCT probe (constant current thermometry) up to 100Hz. By use of this apparatus, 3-D structure of TL-PAS and motions of individual particles were captured.
NASA Astrophysics Data System (ADS)
Baud, Isa; Kuffer, Monika; Pfeffer, Karin; Sliuzas, Richard; Karuppannan, Sadasivam
2010-10-01
Analyzing the heterogeneity in metropolitan areas of India utilizing remote sensing data can help to identify more precise patterns of sub-standard residential areas. Earlier work analyzing inequalities in Indian cities employed a constructed index of multiple deprivations (IMDs) utilizing data from the Census of India 2001 ( http://censusindia.gov.in). While that index, described in an earlier paper, provided a first approach to identify heterogeneity at the citywide scale, it neither provided information on spatial variations within the geographical boundaries of the Census database, nor about physical characteristics, such as green spaces and the variation in housing density and quality. In this article, we analyze whether different types of sub-standard residential areas can be identified through remote sensing data, combined, where relevant, with ground-truthing and local knowledge. The specific questions address: (1) the extent to which types of residential sub-standard areas can be drawn from remote sensing data, based on patterns of green space, structure of layout, density of built-up areas, size of buildings and other site characteristics; (2) the spatial diversity of these residential types for selected electoral wards; and (3) the correlation between different types of sub-standard residential areas and the results of the index of multiple deprivations utilized at electoral ward level found previously. The results of a limited number of test wards in Delhi showed that it was possible to extract different residential types matching existing settlement categories using the physical indicators structure of layout, built-up density, building size and other site characteristics. However, the indicator 'amount of green spaces' was not useful to identify informal areas. The analysis of heterogeneity showed that wards with higher IMD scores displayed more or less the full range of residential types, implying that visual image interpretation is able to zoom in on clusters of deprivation of varying size. Finally, the visual interpretation of the diversity of residential types matched the results of the IMD analysis quite well, although the limited number of test wards would need to be expanded to strengthen this statement. Visual image analysis strengthens the robustness of the IMD, and in addition, gives a better idea of the degree of heterogeneity in deprivations within a ward.
Relationship among visual field, blood flow, and neural structure measurements in glaucoma.
Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David
2012-05-17
To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.
Characterizing Interaction with Visual Mathematical Representations
ERIC Educational Resources Information Center
Sedig, Kamran; Sumner, Mark
2006-01-01
This paper presents a characterization of computer-based interactions by which learners can explore and investigate visual mathematical representations (VMRs). VMRs (e.g., geometric structures, graphs, and diagrams) refer to graphical representations that visually encode properties and relationships of mathematical structures and concepts.…
View-Dependent Streamline Deformation and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Edwards, John; Chen, Chun-Ming
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Packer, Roger J; Avery, Robert A
2015-01-01
To determine the intra- and intervisit reproducibility of circumpapillary retinal nerve fiber layer (RNFL) thickness measures using eye tracking-assisted spectral-domain optical coherence tomography (SD OCT) in children with nonglaucomatous optic neuropathy. Prospective longitudinal study. Circumpapillary RNFL thickness measures were acquired with SD OCT using the eye-tracking feature at 2 separate study visits. Children with normal and abnormal vision (visual acuity ≥ 0.2 logMAR above normal and/or visual field loss) who demonstrated clinical and radiographic stability were enrolled. Intra- and intervisit reproducibility was calculated for the global average and 9 anatomic sectors by calculating the coefficient of variation and intraclass correlation coefficient. Forty-two subjects (median age 8.6 years, range 3.9-18.2 years) met inclusion criteria and contributed 62 study eyes. Both the abnormal and normal vision cohort demonstrated the lowest intravisit coefficient of variation for the global RNFL thickness. Intervisit reproducibility remained good for those with normal and abnormal vision, although small but statistically significant increases in the coefficient of variation were observed for multiple anatomic sectors in both cohorts. The magnitude of visual acuity loss was significantly associated with the global (ß = 0.026, P < .01) and temporal sector coefficient of variation (ß = 0.099, P < .01). SD OCT with eye tracking demonstrates highly reproducible RNFL thickness measures. Subjects with vision loss demonstrate greater intra- and intervisit variability than those with normal vision. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional size of human visual area V1: a neural correlate of top-down attention.
Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R
2014-06-01
Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.
Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan
2009-01-01
We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/. PMID:18984624
Continuous, age-related plumage variation in male Kirtland's Warblers
John R. Probst; Deahn M. Donner; Michael A. Bozek
2007-01-01
The ability to age individual birds visually in the field based on plumage variation could provide important demographic and biogeographical information. We describe an approach to infer ages from a distribution of plumage scores of free-ranging male Kirtland's Warblers (Dendroica kinlandii). We assigned ages to males using a scoring scheme (0-...
Panoptes: web-based exploration of large scale genome variation data.
Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic
2017-10-15
The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
A Decision-Based Modified Total Variation Diffusion Method for Impulse Noise Removal
Zhu, Qingxin; Song, Xiuli; Tao, Jinsong
2017-01-01
Impulsive noise removal usually employs median filtering, switching median filtering, the total variation L1 method, and variants. These approaches however often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A new method to remove noise is proposed in this paper to overcome this limitation, which divides pixels into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the pixels are divided into corrupted and noise-free; if the image is corrupted by random valued impulses, the pixels are divided into corrupted, noise-free, and possibly corrupted. Pixels falling into different categories are processed differently. If a pixel is corrupted, modified total variation diffusion is applied; if the pixel is possibly corrupted, weighted total variation diffusion is applied; otherwise, the pixel is left unchanged. Experimental results show that the proposed method is robust to different noise strengths and suitable for different images, with strong noise removal capability as shown by PSNR/SSIM results as well as the visual quality of restored images. PMID:28536602
Direct Visualization of Conformation and Dense Packing of DNA-Based Soft Colloids
NASA Astrophysics Data System (ADS)
Zhang, Jing; Lettinga, Paul M.; Dhont, Jan K. G.; Stiakakis, Emmanuel
2014-12-01
Soft colloids—such as polymer-coated particles, star polymers, block-copolymer micelles, microgels—constitute a broad class of materials where microscopic properties such as deformability and penetrability of the particle play a key role in tailoring their macroscopic properties which is of interest in many technological areas. The ability to access these microscopic properties is not yet demonstrated despite its great importance. Here we introduce novel DNA-coated colloids with star-shaped architecture that allows accessing the above local structural information by directly visualizing their intramolecular monomer density profile and arm's free-end locations with confocal fluorescent microscopy. Compression experiments on a two-dimensional hexagonal lattice formed by these macromolecular assemblies reveal an exceptional resistance to mutual interpenetration of their charged corona at pressures approaching the MPa range. Furthermore, we find that this lattice, in a close packing configuration, is surprisingly tolerant to particle size variation. We anticipate that these stimuli-responsive materials could aid to get deeper insight in a wide range of problems in soft matter, including the study and design of biomimetic lubricated surfaces.
McCarthy, Davis J; Campbell, Kieran R; Lun, Aaron T L; Wills, Quin F
2017-04-15
Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization. We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development. The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater . davis@ebi.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Architectural Visualization of C/C++ Source Code for Program Comprehension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panas, T; Epperly, T W; Quinlan, D
2006-09-01
Structural and behavioral visualization of large-scale legacy systems to aid program comprehension is still a major challenge. The challenge is even greater when applications are implemented in flexible and expressive languages such as C and C++. In this paper, we consider visualization of static and dynamic aspects of large-scale scientific C/C++ applications. For our investigation, we reuse and integrate specialized analysis and visualization tools. Furthermore, we present a novel layout algorithm that permits a compressive architectural view of a large-scale software system. Our layout is unique in that it allows traditional program visualizations, i.e., graph structures, to be seen inmore » relation to the application's file structure.« less
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
Yang, Tsun-Po; Beazley, Claude; Montgomery, Stephen B.; Dimas, Antigone S.; Gutierrez-Arcelus, Maria; Stranger, Barbara E.; Deloukas, Panos; Dermitzakis, Emmanouil T.
2010-01-01
Summary: Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. Availability: http://www.sanger.ac.uk/resources/software/genevar Contact: emmanouil.dermitzakis@unige.ch PMID:20702402
Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno
2014-01-01
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432
Wade, M; Tucker, I; Cunningham, P; Skinner, R; Bell, F; Lyons, T; Patten, K; Gonzalez, L; Wess, T
2013-10-01
Human hair is a major determinant of visual ethnic differentiation. Although hair types are celebrated as part of our ethnic diversity, the approach to hair care has made the assumption that hair types are structurally and chemically similar. Although this is clearly not the case at the macroscopic level, the intervention of many hair treatments is at the nanoscopic and molecular levels. The purpose of the work presented here is to identify the main nanoscopic and molecular hierarchical differences across five different ethnic hair types from hair fibres taken exclusively from the scalp. These are Afro (subdivided into elastic 'rubber' and softer non-elastic 'soft'), Chinese, European and Mullato (mixed race). Small angle X-Ray scattering (SAXS) is a technique capable of resolving nanostructural variations in complex materials. Individual hair fibres from different ethnic hair types were used to investigate structural features found in common and also specific to each type. Simultaneous wide angle X-Ray scattering (WAXS) was used to analyse the submolecular level structure of the fibrous keratin present. The data sets from both techniques were analysed with principal component analysis (PCA) to identify underlying variables. Principal component analysis of both SAXS and WAXS data was shown to discriminate the scattering signal between different hair types. The X-ray scattering results show a common underlying keratin intermediate filament (KIF) structure. However, distinct differences were observed in the preferential orientation and intensity signal from the lipid component of the hair. In addition, differences were observed in the intensity distribution of the very low-angle sample-dependent diffuse scatter surrounding the 'beamstop.' The results indicate that the fibrous keratin scaffold remains consistent between ethnic hair types. The hierarchies made by these may be modulated by variation in the content of keratin-associated proteins (KAPs) and lipids that alter the interfacial structures and lead to macroscopic differences in hair morphology. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.
Fischer-Baum, Simon; Englebretson, Robert
2016-08-01
Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI
Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897
Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.
Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis
2016-01-01
Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.
NGL Viewer: a web application for molecular visualization
Rose, Alexander S.; Hildebrand, Peter W.
2015-01-01
The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. ‘cartoon, spacefill, licorice’). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations. PMID:25925569
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence
1989-01-01
A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.
Decomposing an urban soundscape to reveal patterns and drivers of variation in anthropogenic noise.
Gill, Sharon A; Grabarczyk, Erin E; Baker, Kathleen M; Naghshineh, Koorosh; Vonhof, Maarten J
2017-12-01
Continuous and intermittent noise may have different effects on humans and wildlife, therefore distinguishing temporal patterns of noise and their drivers is important for policy regarding both public health and wildlife management. We visualized patterns and explored land-use drivers of continuous and high-amplitude intermittent sound pressure levels (SPLs) on an urban campus in Michigan, U.S.A. To visualize patterns of SPLs, we introduce decibel duration curves (DDCs), which show the cumulative frequency distribution of SPLs and aid in the interpretation of statistical SPLs (L n values) that reflect continuous versus intermittent sounds. DDCs and L n values reveal that our 24 recording locations varied in the intensity of both continuous and intermittent noise, with intermittent high-amplitude sound events in particular contributing to variability in SPLs over the study site. Time of day influenced both continuous and intermittent SPLs, as locations relatively close to manmade structures (buildings, roads and parking lots) experienced higher SPLs as the day progressed. Continuous SPLs increased with decreasing distance to manmade structures, whereas intermittent SPLs increased with decreasing distance to roads and increasing distance to buildings. Thus, different land-use factors influenced patterns of continuous and intermittent noise, which suggests that different policy and strategies may be needed to ameliorate their effects on the public and wildlife. Copyright © 2017 Elsevier B.V. All rights reserved.
A Spatial Framework for Understanding Population Structure and Admixture.
Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.
A Spatial Framework for Understanding Population Structure and Admixture
Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Perception and control of rotorcraft flight
NASA Technical Reports Server (NTRS)
Owen, Dean H.
1991-01-01
Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.
King, Andy J
2016-07-01
The present article reports an experiment investigating untested propositions of exemplification theory in the context of messages promoting early melanoma detection. The study tested visual exemplar presentation types, incorporating visual persuasion principles into the study of exemplification theory and strategic message design. Compared to a control condition, representative visual exemplification was more effective at increasing message effectiveness by eliciting a surprise response, which is consistent with predictions of exemplification theory. Furthermore, participant perception of congruency between the images and text interacted with the type of visual exemplification to explain variation in message effectiveness. Different messaging strategies influenced decision making as well, with the presentation of visual exemplars resulting in people judging the atypicality of moles more conservatively. Overall, results suggest that certain visual messaging strategies may result in unintended effects of presenting people information about skin cancer. Implications for practice are discussed.
Determinants of structural choice in visually situated sentence production.
Myachykov, Andriy; Garrod, Simon; Scheepers, Christoph
2012-11-01
Three experiments investigated how perceptual, structural, and lexical cues affect structural choices during English transitive sentence production. Participants described transitive events under combinations of visual cueing of attention (toward either agent or patient) and structural priming with and without semantic match between the notional verb in the prime and the target event. Speakers had a stronger preference for passive-voice sentences (1) when their attention was directed to the patient, (2) upon reading a passive-voice prime, and (3) when the verb in the prime matched the target event. The verb-match effect was the by-product of an interaction between visual cueing and verb match: the increase in the proportion of passive-voice responses with matching verbs was limited to the agent-cued condition. Persistence of visual cueing effects in the presence of both structural and lexical cues suggests a strong coupling between referent-directed visual attention and Subject assignment in a spoken sentence. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
Integrating mechanisms of visual guidance in naturalistic language production.
Coco, Moreno I; Keller, Frank
2015-05-01
Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.
The seam visual tracking method for large structures
NASA Astrophysics Data System (ADS)
Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong
2017-10-01
In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.
Willink, Beatriz; Brenes-Mora, Esteban; Bolaños, Federico; Pröhl, Heike
2013-10-01
Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters
Zhang, Sirou; Qiao, Xiaoya
2017-01-01
In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311
Structural and functional changes across the visual cortex of a patient with visual form agnosia.
Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J
2013-07-31
Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Collinearity Impairs Local Element Visual Search
ERIC Educational Resources Information Center
Jingling, Li; Tseng, Chia-Huei
2013-01-01
In visual searches, stimuli following the law of good continuity attract attention to the global structure and receive attentional priority. Also, targets that have unique features are of high feature contrast and capture attention in visual search. We report on a salient global structure combined with a high orientation contrast to the…
Analysis of Publically Available Skin Sensitization Data from REACH Registrations 2008–2014
Luechtefeld, Thomas; Maertens, Alexandra; Russo, Daniel P.; Rovida, Costanza; Zhu, Hao; Hartung, Thomas
2017-01-01
Summary The public data on skin sensitization from REACH registrations already included 19,111 studies on skin sensitization in December 2014, making it the largest repository of such data so far (1,470 substances with mouse LLNA, 2,787 with GPMT, 762 with both in vivo and in vitro and 139 with only in vitro data). 21% were classified as sensitizers. The extracted skin sensitization data was analyzed to identify relationships in skin sensitization guidelines, visualize structural relationships of sensitizers, and build models to predict sensitization. A chemical with molecular weight > 500 Da is generally considered non-sensitizing owing to low bioavailability, but 49 sensitizing chemicals with a molecular weight > 500 Da were found. A chemical similarity map was produced using PubChem’s 2D Tanimoto similarity metric and Gephi force layout visualization. Nine clusters of chemicals were identified by Blondel’s module recognition algorithm revealing wide module-dependent variation. Approximately 31% of mapped chemicals are Michael’s acceptors but alone this does not imply skin sensitization. A simple sensitization model using molecular weight and five ToxTree structural alerts showed a balanced accuracy of 65.8% (specificity 80.4%, sensitivity 51.4%), demonstrating that structural alerts have information value. A simple variant of k-nearest neighbors outperformed the ToxTree approach even at 75% similarity threshold (82% balanced accuracy at 0.95 threshold). At higher thresholds, the balanced accuracy increased. Lower similarity thresholds decrease sensitivity faster than specificity. This analysis scopes the landscape of chemical skin sensitization, demonstrating the value of large public datasets for health hazard prediction. PMID:26863411
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin
2018-01-01
We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.
Kaurijoki, Salla; Kuikka, Jyrki T; Niskanen, Eini; Carlson, Synnöve; Pietiläinen, Kirsi H; Pesonen, Ullamari; Kaprio, Jaakko M; Rissanen, Aila; Tiihonen, Jari; Karhunen, Leila
2008-07-01
Recent functional magnetic resonance imaging (fMRI) studies have revealed links between genetic polymorphisms and cognitive and behavioural processes. Serotonin is a classical neurotransmitter of central nervous system, and it is connected to the control of appetite and satiety. In this study, the relationship between the functional variation in the serotonin transporter gene and the activity in the left posterior cingulate cortex (PCC), a brain area activated by visual food stimuli was explored. Thirty subjects underwent serial fMRI studies and provided DNA for genetic analyses. Subjects homozygous for the long allele exhibited greater left PCC activity in the comparison food > non-food compared with individuals heterozygous or homozygous for the short allele. The association between genotype and activation was linear, the subjects with two copies of the long allele variant having the strongest activation. These results demonstrate the possible genetically driven variation in the response of the left PCC to visual presentation of food in humans.
Papageorgiou, Kostas A; Farroni, Teresa; Johnson, Mark H; Smith, Tim J; Ronald, Angelica
2015-06-25
Recently it was shown that individual differences in attention style in infants are associated with childhood effortful control, surgency, and hyperactivity-inattention. Here we investigated whether effortful control, surgency and behavioral problems in childhood can be predicted even earlier, from individual differences in newborns' average duration of gaze to stimuli. Eighty newborns participated in visual preference and habituation studies. Parents completed questionnaires at follow up (mean age = 7.5 years, SD = 1.0 year). Newborns' average dwell time was negatively associated with childhood surgency (β = -.25, R(2) = .04, p = .02) and total behavioral difficulties (β = -.28, R(2) = .05, p = .04) but not with effortful control (β = .03, R(2) = .001, p = .76). Individual differences in newborn visual attention significantly associated with individual variation in childhood surgency and behavioral problems, showing that some of the factors responsible for this variation are present at birth.
Papageorgiou, Kostas A.; Farroni, Teresa; Johnson, Mark H.; Smith, Tim J.; Ronald, Angelica
2015-01-01
Recently it was shown that individual differences in attention style in infants are associated with childhood effortful control, surgency, and hyperactivity-inattention. Here we investigated whether effortful control, surgency and behavioral problems in childhood can be predicted even earlier, from individual differences in newborns’ average duration of gaze to stimuli. Eighty newborns participated in visual preference and habituation studies. Parents completed questionnaires at follow up (mean age = 7.5 years, SD = 1.0 year). Newborns’ average dwell time was negatively associated with childhood surgency (β = −.25, R2 = .04, p = .02) and total behavioral difficulties (β = −.28, R2 = .05, p = .04) but not with effortful control (β = .03, R2 = .001, p = .76). Individual differences in newborn visual attention significantly associated with individual variation in childhood surgency and behavioral problems, showing that some of the factors responsible for this variation are present at birth. PMID:26110979
Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy
Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi
2017-01-01
Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field. PMID:28210001
Parametric estimation for reinforced concrete relief shelter for Aceh cases
NASA Astrophysics Data System (ADS)
Atthaillah; Saputra, Eri; Iqbal, Muhammad
2018-05-01
This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.
Spectral analysis method and sample generation for real time visualization of speech
NASA Astrophysics Data System (ADS)
Hobohm, Klaus
A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.
Evaluating the Efficacy of Wavelet Configurations on Turbulent-Flow Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaomeng; Gruchalla, Kenny; Potter, Kristin
2015-10-25
I/O is increasingly becoming a significant constraint for simulation codes and visualization tools on modern supercomputers. Data compression is an attractive workaround, and, in particular, wavelets provide a promising solution. However, wavelets can be applied in multiple configurations, and the variations in configuration impact accuracy, storage cost, and execution time. While the variation in these factors over wavelet configurations have been explored in image processing, they are not well understood for visualization and analysis of scientific data. To illuminate this issue, we evaluate multiple wavelet configurations on turbulent-flow data. Our approach is to repeat established analysis routines on uncompressed andmore » lossy-compressed versions of a data set, and then quantitatively compare their outcomes. Our findings show that accuracy varies greatly based on wavelet configuration, while storage cost and execution time vary less. Overall, our study provides new insights for simulation analysts and visualization experts, who need to make tradeoffs between accuracy, storage cost, and execution time.« less
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less
Essink-Bot, Marie-Louise; Pereira, Joaquin; Packer, Claire; Schwarzinger, Michael; Burstrom, Kristina
2002-01-01
OBJECTIVE: To investigate the sources of cross-national variation in disability-adjusted life-years (DALYs) in the European Disability Weights Project. METHODS: Disability weights for 15 disease stages were derived empirically in five countries by means of a standardized procedure and the cross-national differences in visual analogue scale (VAS) scores were analysed. For each country the burden of dementia in women, used as an illustrative example, was estimated in DALYs. An analysis was performed of the relative effects of cross-national variations in demography, epidemiology and disability weights on DALY estimates. FINDINGS: Cross-national comparison of VAS scores showed almost identical ranking orders. After standardization for population size and age structure of the populations, the DALY rates per 100000 women ranged from 1050 in France to 1404 in the Netherlands. Because of uncertainties in the epidemiological data, the extent to which these differences reflected true variation between countries was difficult to estimate. The use of European rather than country-specific disability weights did not lead to a significant change in the burden of disease estimates for dementia. CONCLUSIONS: Sound epidemiological data are the first requirement for burden of disease estimation and relevant between-countries comparisons. DALY estimates for dementia were relatively insensitive to differences in disability weights between European countries. PMID:12219156
Promoting Increased Pitch Variation in Oral Presentations with Transient Visual Feedback
ERIC Educational Resources Information Center
Hincks, Rebecca; Edlund, Jens
2009-01-01
This paper investigates learner response to a novel kind of intonation feedback generated from speech analysis. Instead of displays of pitch curves, our feedback is flashing lights that show how much pitch variation the speaker has produced. The variable used to generate the feedback is the standard deviation of fundamental frequency as measured…
Structure-based Insights into the Catalytic Power and Conformational Dexterity of Peroxiredoxins
Hall, Andrea; Nelson, Kimberly; Poole, Leslie B.
2011-01-01
Abstract Peroxiredoxins (Prxs), some of nature's dominant peroxidases, use a conserved Cys residue to reduce peroxides. They are highly expressed in organisms from all kingdoms, and in eukaryotes they participate in hydrogen peroxide signaling. Seventy-two Prx structures have been determined that cover much of the diversity of the family. We review here the current knowledge and show that Prxs can be effectively classified by a structural/evolutionary organization into six subfamilies followed by specification of a 1-Cys or 2-Cys mechanism, and for 2-Cys Prxs, the structural location of the resolving Cys. We visualize the varied catalytic structural transitions and highlight how they differ depending on the location of the resolving Cys. We also review new insights into the question of how Prxs are such effective catalysts: the enzyme activates not only the conserved Cys thiolate but also the peroxide substrate. Moreover, the hydrogen-bonding network created by the four residues conserved in all Prx active sites stabilizes the transition state of the peroxidatic SN2 displacement reaction. Strict conservation of the peroxidatic active site along with the variation in structural transitions provides a fascinating picture of how the diverse Prxs function to break down peroxide substrates rapidly. Antioxid. Redox Signal. 15, 795–815. PMID:20969484
Designing multifocal corneal models to correct presbyopia by laser ablation
NASA Astrophysics Data System (ADS)
Alarcón, Aixa; Anera, Rosario G.; Del Barco, Luis Jiménez; Jiménez, José R.
2012-01-01
Two multifocal corneal models and an aspheric model designed to correct presbyopia by corneal photoablation were evaluated. The design of each model was optimized to achieve the best visual quality possible for both near and distance vision. In addition, we evaluated the effect of myosis and pupil decentration on visual quality. The corrected model with the central zone for near vision provides better results since it requires less ablated corneal surface area, permits higher addition values, presents stabler visual quality with pupil-size variations and lower high-order aberrations.
Amézquita, Adolfo; Ramos, Óscar; González, Mabel Cristina; Rodríguez, Camilo; Medina, Iliana; Simões, Pedro Ivo; Lima, Albertina Pimentel
2017-04-01
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between-species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic-model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Introductory tail-flick of the Jacky dragon visual display: signal efficacy depends upon duration.
Peters, Richard A; Evans, Christopher S
2003-12-01
Many animal signals have introductory components that alert receivers. Examples from the acoustic and visual domains show that this effect is often achieved with high intensity, a simple structure and a short duration. Quantitative analyses of the Jacky dragon Amphibolurus muricatus visual display reveal a different design: the introductory tail-flick has a lower velocity than subsequent components of the signal, but a longer duration. Here, using a series of video playback experiments with a digitally animated tail, we identify the properties responsible for signal efficacy. We began by validating the use of the computer-generated tail, comparing the responses to digital video footage of a lizard tail-flick with those to a precisely matched 3-D animation (Experiment 1). We then examined the effects of variation in stimulus speed, acceleration, duration and period by expanding and compressing the time scale of the sequence (Experiment 2). The results identified several variables that might mediate recognition. Two follow-up studies assessed the importance of tail-flick amplitude (Experiment 3), movement speed and signal duration (Experiment 4). Lizard responses to this array of stimuli reveal that duration is the most important characteristic of the tail-flick, and that intermittent signalling has the same effect as continuous movement. We suggest that signal design may reflect a trade-off between efficacy and cost.
Visual acuity and magnification devices in dentistry.
Perrin, Philippe; Eichenberger, Martina; Neuhaus, Klaus W; Lussi, Adrian
2016-01-01
This review discusses visual acuity in dentistry and the influence of optical aids. Studies based on objective visual tests at a dental working distance were included. These studies show dramatic individual variation independent of the dentists age. The limitations due to presbyopia begin at an age of 40 years. Dental professionals should have their near vision tested regularly. Visual deficiencies can be compensated with magnification aids. It is important to differentiate between Galilean and Keplerian loupes. The lightweight Galilean loupes allow an almost straight posture and offer improved ergonomics. Younger dentists profit more from the ergonomic aspects, while dentists over the age of 40 can compensate their age-related visual deficiencies when using this type of loupe. Keplerian loupes, with their superior optical construction, improve the visual performance for dentists of all age groups. The optical advantages come at the cost of ergonomic constraints due to the weight of these loupes. The microscope is highly superior visually and ergonomically, and it is indispensable for the visual control of endodontic treatments.
View-Dependent Streamline Deformation and Exploration
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung
2016-01-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061
View-Dependent Streamline Deformation and Exploration.
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung
2016-07-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay
2014-01-01
Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266
On the Magnetism and Dynamics of Prominence Legs Hosting Tornadoes
NASA Astrophysics Data System (ADS)
Martínez González, M. J.; Asensio Ramos, A.; Arregui, I.; Collados, M.; Beck, C.; de la Cruz Rodríguez, J.
2016-07-01
Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).
ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.
2016-07-10
Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show thatmore » the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).« less
Evaluation of Software for Introducing Protein Structure: Visualization and Simulation
ERIC Educational Resources Information Center
White, Brian; Kahriman, Azmin; Luberice, Lois; Idleh, Farhia
2010-01-01
Communicating an understanding of the forces and factors that determine a protein's structure is an important goal of many biology and biochemistry courses at a variety of levels. Many educators use computer software that allows visualization of these complex molecules for this purpose. Although visualization is in wide use and has been associated…
The Role of Visual Representations for Structuring Classroom Mathematical Activity
ERIC Educational Resources Information Center
David, Maria Manuela; Tomaz, Vanessa Sena
2012-01-01
It is our presupposition that there is still a need for more research about how classroom practices can exploit the use and power of visualization in mathematics education. The aim of this article is to contribute in this direction, investigating how visual representations can structure geometry activity in the classroom and discussing teaching…
ERIC Educational Resources Information Center
Stelmack, Joan A.; Rinne, Stephen; Mancil, Rickilyn M.; Dean, Deborah; Moran, D'Anna; Tang, X. Charlene; Cummings, Roger; Massof, Robert W.
2008-01-01
A low vision rehabilitation program with a structured curriculum was evaluated in a randomized controlled trial. The treatment group demonstrated large improvements in self-reported visual function (reading, mobility, visual information processing, visual motor skills, and overall). The team approach and the protocols of the treatment program are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-12-31
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, M.E.; Wilson, M.L.; Wightman, J.
1996-01-01
The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less
Fjalldal, S; Follin, C; Svärd, D; Rylander, L; Gabery, S; Petersén, Å; van Westen, D; Sundgren, P C; Björkman-Burtscher, I M; Lätt, J; Ekman, B; Johanson, A; Erfurth, E M
2018-06-01
Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. A cross-sectional study with a median follow-up time of 22 (6-49) years after operation. The South Medical Region of Sweden (2.5 million inhabitants). Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958-2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal volumetry. Right uncinate fasciculus was significantly altered ( P ≤ 0.01). Microstructural WM alterations in left ventral cingulum were significantly associated with worse performance in visual episodic memory, explaining approximately 50% of the variation. Alterations in dorsal cingulum were associated with worse performance in immediate, delayed recall and recognition, explaining 26-38% of the variation, and with visuospatial ability and executive function, explaining 19-29%. Patients who had smaller hippocampal volume had worse general knowledge ( P = 0.028), and microstructural WM alterations in hippocampus were associated with a decline in general knowledge and episodic visual memory. A structure to function relationship is suggested between microstructural WM alterations in cingulum and in hippocampus with cognitive deficits in CP. © 2018 The authors.
Raykin, Julia; Forte, Taylor E; Wang, Roy; Feola, Andrew; Samuels, Brian C; Myers, Jerry G; Mulugeta, Lealem; Nelson, Emily S; Gleason, Rudy L; Ethier, C Ross
2017-02-01
Visual impairment and intracranial pressure (VIIP) syndrome is characterized by a number of permanent ophthalmic changes, including loss of visual function. It occurs in some astronauts during long-duration spaceflight missions. Thus, understanding the pathophysiology of VIIP is currently a major priority in space medicine research. It is hypothesized that maladaptive remodeling of the optic nerve sheath (ONS), in response to microgravity-induced elevations in intracranial pressure (ICP), contributes to VIIP. However, little is known about ONS biomechanics. In this study, we developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the porcine ONS during inflation and axial loading. Data were fit to a four-fiber family constitutive equation to extract material and structural parameters. Inflation testing showed a characteristic "cross-over point" in the pressure-diameter curves under different axial loads in all samples that were tested; the cross-over pressure was [Formula: see text] mmHg ([Formula: see text]). Large sample-to-sample variations were observed in the circumferential strain, while only modest variations were observed in the circumferential stress. Multiphoton microscopy revealed that the collagen fibers of the ONS were primarily oriented axially when the tissue was loaded. The existence of this cross-over behavior is expected to be neuroprotective, as it would avoid optic nerve compression during routine changes in gaze angle, so long as ICP was within the normal range. Including these observations into computational models of VIIP will help provide insight into the pathophysiology of VIIP and could help identify risk factors and potential interventions.
Precision Spectral Variability of L Dwarfs from the Ground
NASA Astrophysics Data System (ADS)
Burgasser, Adam J.; Schlawin, Everett; Teske, Johanna K.; Karalidi, Theodora; Gizis, John
2017-01-01
L dwarf photospheres (1500 K < T < 2500 K) contain mineral and metal condensates, which appear to organize into cloud structures as inferred from observed periodic photometric variations with amplitudes of <1%-30%. Studying the vertical structure, composition, and long-term evolution of these clouds necessitates precision spectroscopic monitoring, until recently limited to space-based facilities. Building on techniques developed for ground-based exoplanet transit spectroscopy, we present a method for precision spectral monitoring of L dwarfs with nearby visual companions. Using IRTF/SpeX, we demonstrate <0.5% spectral variability precision across the 0.9-2.4 micron band, and present results for two known L5 dwarf variables, J0835-0819 and J1821+1414, both of which show evidence of 3D cloud structure similar to that seen in space-based observations. We describe a survey of 30 systems which would sample the full L dwarf sequence and allow characterization of temperature, surface gravity, metallicity, rotation period and orientation effects on cloud structure, composition and evolution.This research is supported by funding from the National Science Foundation under award No. AST-1517177, and the National Aeronautics and Space Administration under Grant No. NNX15AI75G.
Corrosion process monitoring by AFM higher harmonic imaging
NASA Astrophysics Data System (ADS)
Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.
2017-11-01
The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.
ERIC Educational Resources Information Center
Shepherd, Terry R.
The author, a university professor, describes his experiences in teaching language to his autistic-like son who also has visual impairments. "Experience Language," an adaptation of Language Experience Approach (LEA) is described, and its contributions to the child's reading, writing, and talking are noted. Suggestions are made on the importance of…
Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties
Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan
2016-01-01
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties. PMID:27699100
Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties.
Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan
2016-09-01
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.
Gigwa-Genotype investigator for genome-wide analyses.
Sempéré, Guilhem; Philippe, Florian; Dereeper, Alexis; Ruiz, Manuel; Sarah, Gautier; Larmande, Pierre
2016-06-06
Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.
Drawing the line between constituent structure and coherence relations in visual narratives
Cohn, Neil; Bender, Patrick
2016-01-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that hierarchic “grammatical” structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a “segmentation task” where participants drew lines between images in order to divide them into sub-episodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants’ divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. PMID:27709982
Drawing the line between constituent structure and coherence relations in visual narratives.
Cohn, Neil; Bender, Patrick
2017-02-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a "segmentation task" where participants drew lines between images in order to divide them into subepisodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants' divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2016-07-01
Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Ito, K
Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratorymore » indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management, although all techniques could reduce respiratory irregularities.« less
Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.
Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B
2016-01-01
Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.
Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity
Martín, Maria B. C.; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M.; Merabet, Lotfi B.
2016-01-01
Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment. PMID:28082927
Top-down influences on visual attention during listening are modulated by observer sex.
Shen, John; Itti, Laurent
2012-07-15
In conversation, women have a small advantage in decoding non-verbal communication compared to men. In light of these findings, we sought to determine whether sex differences also existed in visual attention during a related listening task, and if so, if the differences existed among attention to high-level aspects of the scene or to conspicuous visual features. Using eye-tracking and computational techniques, we present direct evidence that men and women orient attention differently during conversational listening. We tracked the eyes of 15 men and 19 women who watched and listened to 84 clips featuring 12 different speakers in various outdoor settings. At the fixation following each saccadic eye movement, we analyzed the type of object that was fixated. Men gazed more often at the mouth and women at the eyes of the speaker. Women more often exhibited "distracted" saccades directed away from the speaker and towards a background scene element. Examining the multi-scale center-surround variation in low-level visual features (static: color, intensity, orientation, and dynamic: motion energy), we found that men consistently selected regions which expressed more variation in dynamic features, which can be attributed to a male preference for motion and a female preference for areas that may contain nonverbal information about the speaker. In sum, significant differences were observed, which we speculate arise from different integration strategies of visual cues in selecting the final target of attention. Our findings have implications for studies of sex in nonverbal communication, as well as for more predictive models of visual attention. Published by Elsevier Ltd.
Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu
2018-04-10
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
NGL Viewer: a web application for molecular visualization.
Rose, Alexander S; Hildebrand, Peter W
2015-07-01
The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. 'cartoon, spacefill, licorice'). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Shourie, Nasrin; Firoozabadi, Mohammad; Badie, Kambiz
2014-01-01
In this paper, differences between multichannel EEG signals of artists and nonartists were analyzed during visual perception and mental imagery of some paintings and at resting condition using approximate entropy (ApEn). It was found that ApEn is significantly higher for artists during the visual perception and the mental imagery in the frontal lobe, suggesting that artists process more information during these conditions. It was also observed that ApEn decreases for the two groups during the visual perception due to increasing mental load; however, their variation patterns are different. This difference may be used for measuring progress in novice artists. In addition, it was found that ApEn is significantly lower during the visual perception than the mental imagery in some of the channels, suggesting that visual perception task requires more cerebral efforts.
Vivaldi: visualization and validation of biomacromolecular NMR structures from the PDB.
Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J
2013-04-01
We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. Copyright © 2013 Wiley Periodicals, Inc.
Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G
2018-01-01
Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.
Basic visual function and cortical thickness patterns in posterior cortical atrophy.
Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J
2011-09-01
Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.
ERIC Educational Resources Information Center
Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria
2013-01-01
A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…
Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak
2007-01-01
Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...
The Effect of Scene Variation on the Redundant Use of Color in Definite Reference
ERIC Educational Resources Information Center
Koolen, Ruud; Goudbeek, Martijn; Krahmer, Emiel
2013-01-01
This study investigates to what extent the amount of variation in a visual scene causes speakers to mention the attribute color in their definite target descriptions, focusing on scenes in which this attribute is not needed for identification of the target. The results of our three experiments show that speakers are more likely to redundantly…
Cohn, Neil; Jackendoff, Ray; Holcomb, Phillip J; Kuperberg, Gina R
2014-11-01
Constituent structure has long been established as a central feature of human language. Analogous to how syntax organizes words in sentences, a narrative grammar organizes sequential images into hierarchic constituents. Here we show that the brain draws upon this constituent structure to comprehend wordless visual narratives. We recorded neural responses as participants viewed sequences of visual images (comics strips) in which blank images either disrupted individual narrative constituents or fell at natural constituent boundaries. A disruption of either the first or the second narrative constituent produced a left-lateralized anterior negativity effect between 500 and 700ms. Disruption of the second constituent also elicited a posteriorly-distributed positivity (P600) effect. These neural responses are similar to those associated with structural violations in language and music. These findings provide evidence that comprehenders use a narrative structure to comprehend visual sequences and that the brain engages similar neurocognitive mechanisms to build structure across multiple domains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cohn, Neil; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.
2014-01-01
Constituent structure has long been established as a central feature of human language. Analogous to how syntax organizes words in sentences, a narrative grammar organizes sequential images into hierarchic constituents. Here we show that the brain draws upon this constituent structure to comprehend wordless visual narratives. We recorded neural responses as participants viewed sequences of visual images (comics strips) in which blank images either disrupted individual narrative constituents or fell at natural constituent boundaries. A disruption of either the first or the second narrative constituent produced a left-lateralized anterior negativity effect between 500-700ms. Disruption of the second constituent also elicited a posteriorly-distributed positivity (P600) effect. These neural responses are similar to those associated with structural violations in language and music. These findings provide evidence that comprehenders use a narrative structure to comprehend visual sequences and that the brain engages similar neurocognitive mechanisms to build structure across multiple domains. PMID:25241329
Image fusion for visualization of hepatic vasculature and tumors
NASA Astrophysics Data System (ADS)
Chou, Jin-Shin; Chen, Shiuh-Yung J.; Sudakoff, Gary S.; Hoffmann, Kenneth R.; Chen, Chin-Tu; Dachman, Abraham H.
1995-05-01
We have developed segmentation and simultaneous display techniques to facilitate the visualization of the three-dimensional spatial relationships between organ structures and organ vasculature. We concentrate on the visualization of the liver based on spiral computed tomography images. Surface-based 3-D rendering and maximal intensity projection algorithms are used for data visualization. To extract the liver in the serial of images accurately and efficiently, we have developed a user-friendly interactive program with a deformable-model segmentation. Surface rendering techniques are used to visualize the extracted structures, adjacent contours are aligned and fitted with a Bezier surface to yield a smooth surface. Visualization of the vascular structures, portal and hepatic veins, is achieved by applying a MIP technique to the extracted liver volume. To integrate the extracted structures they are surface-rendered and their MIP images are aligned and a color table is designed for simultaneous display of the combined liver/tumor and vasculature images. By combining the 3-D surface rendering and MIP techniques, portal veins, hepatic veins, and hepatic tumor can be inspected simultaneously and their spatial relationships can be more easily perceived. The proposed technique will be useful for visualization of both hepatic neoplasm and vasculature in surgical planning for tumor resection or living-donor liver transplantation.
Nielsen, Simon; Wilms, L Inge
2014-01-01
We examined the effects of normal aging on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive aging affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modeling (SEM; Model 2), informed by functional structures that were modeled with path analyses in SEM (Model 1). The results show that aging effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM) capacity (Model 2). These results are consistent with some studies reporting selective aging effects on processing speed, and inconsistent with other studies reporting aging effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive aging effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less
NASA Astrophysics Data System (ADS)
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
SMALL COLOUR VISION VARIATIONS AND THEIR EFFECT IN VISUAL COLORIMETRY,
COLOR VISION, PERFORMANCE(HUMAN), TEST EQUIPMENT, PERFORMANCE(HUMAN), CORRELATION TECHNIQUES, STATISTICAL PROCESSES, COLORS, ANALYSIS OF VARIANCE, AGING(MATERIALS), COLORIMETRY , BRIGHTNESS, ANOMALIES, PLASTICS, UNITED KINGDOM.
Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.
Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L
2010-01-01
The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.
Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.
Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H
2014-12-01
Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Sibeck, David Gary; Hesse, Michael; Berrios, David; Rastaetter, Lutz; Toth, Gabor; Gombosi, Tamas I.
2011-01-01
Flux transfer events (FTEs) were originally identified by transient bipolar variations of the magnetic field component normal to the nominal magnetopause centered on enhancements in the total magnetic field strength. Recent Cluster and THEMIS multi-point measurements provided a wide range of signatures that are interpreted as evidence for FTE passage (e.g., crater FTE's, traveling magnetic erosion regions). We use the global magnetohydrodynamic (MHD) code BATS-R-US developed at the University of Michigan to model the global three-dimensional structure and temporal evolution of FTEs during multi-spacecraft magnetopause crossing events. Comparison of observed and simulated signatures and sensitivity analysis of the results to the probe location will be presented. We will demonstrate a variety of observable signatures in magnetic field profile that depend on space probe location with respect to the FTE passage. The global structure of FTEs will be illustrated using advanced visualization tools developed at the Community Coordinated Modeling Center
Domain and nanoridge growth kinetics in stratifying foam films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
Ultrathin films exhibit stratification due to confinement-induced structuring and layering of small molecules in simple fluids, and of supramolecular structures like micelles, lipid layers and nanoparticles in complex fluids. Stratification proceeds by the formation and growth of thinner domains at the expense of surrounding thicker film, and results in formation of nanoscopic terraces and mesas within a film. The detailed mechanisms underlying stratification are still under debate, and are resolved in this contribution by addressing long-standing experimental and theoretical challenges. Thickness variations in stratifying films are visualized and analyzed using interferometry, digital imaging and optical microscopy (IDIOM) protocols, with unprecedented high spatial (thickness <100 nm, lateral 500 nm) and temporal resolution (<1 ms). Using IDIOM protocols we developed recently, we characterize the shape and the growth dynamics of nanoridges that flank the expanding domains in micellar thin films. We show that topographical changes including nanoridge growth, and the overall stratification dynamics, can be described quantitatively by nonlinear thin film equation, amended with supramolecular oscillatory surface forces.
The temporal structures and functional significance of scale-free brain activity
He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.
2010-01-01
SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349
HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.
Tiwari, Abhishek; Tiwari, Vivek
2007-07-09
HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.
Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.
2013-01-01
The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.
Detection Progress of Selected Drugs in TLC
Pyka, Alina
2014-01-01
This entry describes applications of known indicators and dyes as new visualizing reagents and various visualizing systems as well as photocatalytic reactions and bioautography method for the detection of bioactive compounds including drugs and compounds isolated from herbal extracts. Broadening index, detection index, characteristics of densitometric band, modified contrast index, limit of detection, densitometric visualizing index, and linearity range of detected compounds were used for the evaluation of visualizing effects of applied visualizing reagents. It was shown that visualizing effect depends on the chemical structure of the visualizing reagent, the structure of the substance detected, and the chromatographic adsorbent applied. The usefulness of densitometry to direct detection of some drugs was also shown. Quoted papers indicate the detection progress of selected drugs investigated by thin-layer chromatography (TLC). PMID:24551853
Recent impact on (4709) Ennomos?
NASA Astrophysics Data System (ADS)
Rozehnal, Jakub; Broz, Miroslav
2017-10-01
In this work, we try to associate the albedo variations of the Trojan L5 asteroid (4709) Ennomos (Emery et al., 2016) with a relatively recent impact structure on its surface. Although the mean visual albedo of Trojans is generally very low (pV~0.07, Grav et al., 2012), especially for asteroids with diameter D > 50 km, Fernández et al. (2003) reported unusually high albedo of (4709) Ennomos (pV~0.12 to 0.18), which diameter is D ~ 80 km. However, the albedo of (4709) Ennomos determined from the WISE data by Grav et al. (2012) is only pV ~ 0.09 and the same albedo derived from AKARI is about pV ~ 0.08 (Usui et al., 2011). One possible explanation for these discrepancies is that the albedo of (4709) Ennomos is strongly dependent on its rotational phase. Emery et al. (2016) reported a clear evidence of spectral slope variations of (4709) Ennomos with its rotation, what may also suggest an existence of a bright spot on its surface, caused e.g. by impact. As we reported the asteroid family associated with (4709) Ennomos in our previous works (eg. Broz and Rozehnal, 2011, Rozehnal et al., 2016), we try to simulate the family origin by SPH simulations (Benz and Aspaugh, 1994).Because the albedo variations could be in principle used to estimate an approximate size of the impact structure (in the case of cratering event, what means MLR/MPB > 0.5) on the family parent body an hence an approximate size of the impactor, this is a uniqe chance to compare it with the results of the SPH simulations. In our work we also try to determine the age of the Ennomos family by simulating the dynamical evolution of our synthetic families in different impact geometries (with different f and ω).
Gai, Xiaowu; Perin, Juan C; Murphy, Kevin; O'Hara, Ryan; D'arcy, Monica; Wenocur, Adam; Xie, Hongbo M; Rappaport, Eric F; Shaikh, Tamim H; White, Peter S
2010-02-04
Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated projects. Available on the web at: http://sourceforge.net/projects/cnv.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
NASA Astrophysics Data System (ADS)
Kwon, O.; Kim, W.; Kim, J.
2017-12-01
Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)
Yu, Yadong; Kuang, Yu-Lin; Lei, Dongsheng; ...
2016-08-18
Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed anmore » unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis.« less
Advanced optical measuring systems for measuring the properties of fluids and structures
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.
Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A
2012-03-14
Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures.
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.
RiboSketch: Versatile Visualization of Multi-stranded RNA and DNA Secondary Structure.
Lu, Jacob S; Bindewald, Eckart; Kasprzak, Wojciech; Shapiro, Bruce A
2018-06-15
Creating clear, visually pleasing 2D depictions of RNA and DNA strands and their interactions is important to facilitate and communicate insights related to nucleic acid structure. Here we present RiboSketch, a secondary structure image production application that enables the visualization of multistranded structures via layout algorithms, comprehensive editing capabilities, and a multitude of simulation modes. These interactive features allow RiboSketch to create publication quality diagrams for structures with a wide range of composition, size, and complexity. The program may be run in any web browser without the need for installation, or as a standalone Java application. https://binkley2.ncifcrf.gov/users/bindewae/ribosketch_web.
Spurious One-Month and One-Year Periods in Visual Observations of Variable Stars
NASA Astrophysics Data System (ADS)
Percy, J. R.
2015-12-01
Visual observations of variable stars, when time-series analyzed with some algorithms such as DC-DFT in vstar, show spurious periods at or close to one synodic month (29.5306 days), and also at about a year, with an amplitude of typically a few hundredths of a magnitude. The one-year periods have been attributed to the Ceraski effect, which was believed to be a physiological effect of the visual observing process. This paper reports on time-series analysis, using DC-DFT in vstar, of visual observations (and in some cases, V observations) of a large number of stars in the AAVSO International Database, initially to investigate the one-month periods. The results suggest that both the one-month and one-year periods are actually due to aliasing of the stars' very low-frequency variations, though they do not rule out very low-amplitude signals (typically 0.01 to 0.02 magnitude) which may be due to a different process, such as a physiological one. Most or all of these aliasing effects may be avoided by using a different algorithm, which takes explicit account of the window function of the data, and/or by being fully aware of the possible presence of and aliasing by very low-frequency variations.
Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica
2015-01-01
Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411
ERIC Educational Resources Information Center
Akaygun, Sevil
2016-01-01
Visualizing the chemical structure and dynamics of particles has been challenging for many students; therefore, various visualizations and tools have been used in chemistry education. For science educators, it has been important to understand how students visualize and represent particular phenomena--i.e., their mental models-- to design more…
ERIC Educational Resources Information Center
Morello, John T.
1988-01-01
Analyzes the visual and verbal content of the 1984 televised debates between Walter Mondale and Ronald Reagan. Asserts that the televised depiction of the debates visually structured portions of them in a manner inconsistent with their verbal content. Focuses on clash, when candidates engaged in arguments of attack or defense. (MS)
Getting signals into the brain: visual prosthetics through thalamic microstimulation.
Pezaris, John S; Eskandar, Emad N
2009-07-01
Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
Remembering from any angle: The flexibility of visual perspective during retrieval
Rice, Heather J.; Rubin, David C.
2010-01-01
When recalling autobiographical memories, individuals often experience visual images associated with the event. These images can be constructed from two different perspectives: first person, in which the event is visualized from the viewpoint experienced at encoding, or third person, in which the event is visualized from an external vantage point. Using a novel technique to measure visual perspective, we examined where the external vantage point is situated in third-person images. Individuals in two studies were asked to recall either 10 or 15 events from their lives and describe the perspectives they experienced. Wide variation in spatial locations was observed within third-person perspectives, with the location of these perspectives depending on the event being recalled. Results suggest remembering from an external viewpoint may be more common than previous studies have demonstrated. PMID:21109466
Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R
2015-01-01
Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.
Letters, S; Smith, A J; McHugh, S; Bagg, J
2005-10-22
This study examined methods used for reprocessing endodontic instruments in general dental practice and determined the degree of residual visual contamination and blood contamination on 250 reprocessed files collected from 25 general dental practices. A questionnaire was administered to 25 general dental practitioners to obtain information on the re-processing of used endodontic files. Ten files which had been used and reprocessed were also collected from each practice. These were examined visually under a dissecting light microscope for residual contamination and then tested for blood deposits using the Kastle-Meyer test. Nineteen of the 25 practices used stainless steel hand files. No practitioners used endodontic files as single use devices. Ninety-two per cent of the practitioners discarded and replaced files when they were bent or damaged. Several decontamination methods were reported. The two combinations employed most frequently were manual cleaning and autoclaving or manual cleaning, followed by ultrasonic cleaning and autoclaving. Of the 250 files, 75% showed some degree of visual contamination and seven percent tested positive for residual blood. Blood contaminated files were significantly more heavily contaminated when examined visually. Large variations were found in residual contamination of files collected from practices using the same methods of decontamination. While all practitioners re-used endodontic files, the variations in decontamination methods reported indicate a lack of clarity on best practice. This study demonstrates that endodontic files are not reliably decontaminated by methods currently employed in dental practice.
Structured Natural-Language Descriptions for Semantic Content Retrieval of Visual Materials.
ERIC Educational Resources Information Center
Tam, A. M.; Leung, C. H. C.
2001-01-01
Proposes a structure for natural language descriptions of the semantic content of visual materials that requires descriptions to be (modified) keywords, phrases, or simple sentences, with components that are grammatical relations common to many languages. This structure makes it easy to implement a collection's descriptions as a relational…
Ryu, Won Hyung A; Starreveld, Yves; Burton, Jodie M; Liu, Junjie; Costello, Fiona
2017-09-01
Pituitary tumors are one of the most common types of intracranial neoplasms, and can cause progressive visual loss. An ongoing challenge in the management of patients with pituitary tumors is the cost, availability, and reliability of current magnetic resonance imaging (MRI) techniques to capture clinically significant incremental tumor growth. The purpose of this study was to evaluate the various MRI-based structural analyses and to explore the relationship between measures of structure and function in the afferent visual pathway of patients with pituitary tumors. We performed a critical review of literature on MRI-based structural analyses of pituitary adenomas using PubMed, Embase, Cochrane Library, and Google Scholar. In addition, preoperative structural characteristics of the optic apparatus, optic nerve compression, and optic chiasm elevation identified as important in the literature review, were examined in 18 of our patients from October 2010 to January 2014. In our review of literature, a total of 443 citations were obtained from our search strategy and review of bibliographies. Eight of these studies met inclusion/exclusion criteria and were retrieved for critical review. Of the 8 included studies, only 2 studies examined the relationship between MRI-based structural measurements and postoperative visual recovery. In our small case-series, MRI analysis of chiasm elevation, severity of optic nerve compression, chiasm position, height of chiasm, tumor height, and tumor volume failed to differentiate patients with postoperative visual dysfunction vs those with visual recovery (P > 0.05). Although MRI-based structural analysis is an important and useful tool for managing patients with pituitary tumors, there are limited objective measures shown to be predictive of postoperative visual recovery.
The effects of variation of an irrelevant dimension on same-different visual judgments.
Ballesteros, S; Manga, D
1996-06-01
In a series of experiments observers judged whether two visual tachistoscopically presented shapes were the same or different in a relevant dimension, and had to ignore the graded variation on an irrelevant dimension that appeared concurrently with the relevant dimension. Experimental results from judgments in orientation, size and brightness failed to support the normalization hypothesis. The hypothesis predicts a monotonous increase in RTs with the increasing degree of disparity in the irrelevant dimension in same as well as in different comparisons. The results were interpreted in terms of the type of dimensions used to construct the shapes. It was suggested that with separable stimulus dimensions normalization would not be necessary. However, interference might appear when the stimuli to be compared were generated from a combination of more integral dimensions.
Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.
Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai
2014-12-01
In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.
Vernier But Not Grating Acuity Contributes to an Early Stage of Visual Word Processing.
Tan, Yufei; Tong, Xiuhong; Chen, Wei; Weng, Xuchu; He, Sheng; Zhao, Jing
2018-03-28
The process of reading words depends heavily on efficient visual skills, including analyzing and decomposing basic visual features. Surprisingly, previous reading-related studies have almost exclusively focused on gross aspects of visual skills, while only very few have investigated the role of finer skills. The present study filled this gap and examined the relations of two finer visual skills measured by grating acuity (the ability to resolve periodic luminance variations across space) and Vernier acuity (the ability to detect/discriminate relative locations of features) to Chinese character-processing as measured by character form-matching and lexical decision tasks in skilled adult readers. The results showed that Vernier acuity was significantly correlated with performance in character form-matching but not visual symbol form-matching, while no correlation was found between grating acuity and character processing. Interestingly, we found no correlation of the two visual skills with lexical decision performance. These findings provide for the first time empirical evidence that the finer visual skills, particularly as reflected in Vernier acuity, may directly contribute to an early stage of hierarchical word processing.
Inertial constraints on limb proprioception are independent of visual calibration.
Riley, M A; Turvey, M T
2001-04-01
When the coincidence of a limb's spatial axes and inertial eigenvectors is broken, haptic proprioception of the limb's position conforms to the eigenvectors. Additionally, when prisms break the coincidence between an arm's visual and actual positions, haptic proprioception is shifted toward the visual-spatial direction. In 3 experiments, variation of the arm's mass distribution was combined with prism adaptation to investigate the hypothesis that the proprioceptive effects of inertial and visual manipulations are additive. This hypothesis was supported across manipulations of plane of motion, body posture, proprioceptive target, and proprioceptive experience during prism adaptation. Haptic proprioception seems to depend on local, physical reference frames that are relative to the physical reference frames for the body's environmental position and orientation.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Visualization of evolving laser-generated structures by frequency domain tomography
NASA Astrophysics Data System (ADS)
Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael
2011-10-01
We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.
[The gastroduodenal artery and its variations. Study of 100 arteriographies].
Milon, J; Milon, D; Boullier, G; Le Guerrier, A; Lanchou, G
1978-12-01
The gastro-duodenal artery, whose study has been based on a series of one hundred digestive arteriographies, is visualized in all cases. Its variations of origine are directly connected to the different possible dispositions of the hepatic arterial supply. The analysis of the results confirms the literary data: each time there is a middle hepatic artery, it gives the gastro-duodenal artery.
Time Course of Visual Extrapolation Accuracy
1995-09-01
The pond and duckweed problem: Three experiments on the misperception of exponential growth . Acta Psychologica 43, 239-251. Wiener, E.L., 1962...random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well, except in a condition where response asymmetries...systematic velocity error in tracking, only random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well
Political attitudes vary with physiological traits.
Oxley, Douglas R; Smith, Kevin B; Alford, John R; Hibbing, Matthew V; Miller, Jennifer L; Scalora, Mario; Hatemi, Peter K; Hibbing, John R
2008-09-19
Although political views have been thought to arise largely from individuals' experiences, recent research suggests that they may have a biological basis. We present evidence that variations in political attitudes correlate with physiological traits. In a group of 46 adult participants with strong political beliefs, individuals with measurably lower physical sensitivities to sudden noises and threatening visual images were more likely to support foreign aid, liberal immigration policies, pacifism, and gun control, whereas individuals displaying measurably higher physiological reactions to those same stimuli were more likely to favor defense spending, capital punishment, patriotism, and the Iraq War. Thus, the degree to which individuals are physiologically responsive to threat appears to indicate the degree to which they advocate policies that protect the existing social structure from both external (outgroup) and internal (norm-violator) threats.
Visualization of terahertz surface waves propagation on metal foils
Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan
2016-01-01
Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652
LookSeq: a browser-based viewer for deep sequencing data.
Manske, Heinrich Magnus; Kwiatkowski, Dominic P
2009-11-01
Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.
Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud
2017-01-01
In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.
Segmentation of mosaicism in cervicographic images using support vector machines
NASA Astrophysics Data System (ADS)
Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.
2009-02-01
The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.
Investigating the Cosmic Web with Topological Data Analysis
NASA Astrophysics Data System (ADS)
Cisewski-Kehe, Jessi; Wu, Mike; Fasy, Brittany; Hellwing, Wojciech; Lovell, Mark; Rinaldo, Alessandro; Wasserman, Larry
2018-01-01
Data exhibiting complicated spatial structures are common in many areas of science (e.g. cosmology, biology), but can be difficult to analyze. Persistent homology is a popular approach within the area of Topological Data Analysis that offers a new way to represent, visualize, and interpret complex data by extracting topological features, which can be used to infer properties of the underlying structures. In particular, TDA may be useful for analyzing the large-scale structure (LSS) of the Universe, which is an intricate and spatially complex web of matter. In order to understand the physics of the Universe, theoretical and computational cosmologists develop large-scale simulations that allow for visualizing and analyzing the LSS under varying physical assumptions. Each point in the 3D data set represents a galaxy or a cluster of galaxies, and topological summaries ("persistent diagrams") can be obtained summarizing the different ordered holes in the data (e.g. connected components, loops, voids).The topological summaries are interesting and informative descriptors of the Universe on their own, but hypothesis tests using the topological summaries would provide a way to make more rigorous comparisons of LSS under different theoretical models. For example, the received cosmological model has cold dark matter (CDM); however, while the case is strong for CDM, there are some observational inconsistencies with this theory. Another possibility is warm dark matter (WDM). It is of interest to see if a CDM Universe and WDM Universe produce LSS that is topologically distinct.We present several possible test statistics for two-sample hypothesis tests using the topological summaries, carryout a simulation study to investigate the suitableness of the proposed test statistics using simulated data from a variation of the Voronoi foam model, and finally we apply the proposed inference framework to WDM vs. CDM cosmological simulation data.
The effect of virtual reality on gait variability.
Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas
2010-07-01
Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.
Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.
Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane
2010-12-01
Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.
A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation
NASA Astrophysics Data System (ADS)
Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.
2014-11-01
In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).
Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J
2008-07-01
Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.
NASA Astrophysics Data System (ADS)
Reddemann, Manuel A.; Mathieu, Florian; Kneer, Reinhold
2013-11-01
Aiming at a maximum spatial resolution and a minimum motion blur, a new simple double-imaging transmitted light microscopy technique is developed in this work enabling a fundamental investigation of primary breakup of a microscale liquid jet. Contrary to conventional far-field visualization techniques, the working distance is minimized to increase the numerical aperture. The resulting images provide information about shapes, length scales and velocities of primary liquid structures. The method is applied to an optically dense spray leaving a 109-μm diesel nozzle at various injection pressures under atmospheric conditions. A phenomenological study on the temporal spray evolution is done with focus on droplet and ligament formation. Different breakup processes are identified and described. It is found that the jet is characterized by long ligaments parallel or angular to the inner jet region. These ligaments result from collapsing films developing at the spray edge. A significant influence of outlet velocity variation on shape and velocity of these ligaments is observed. The experimental results prove that a transmitted light microscopy technique with reduced working distance is an appropriate tool for a better understanding of primary breakup for small-scaled diesel nozzles and a valuable complement to highly complex measurement techniques.
Beta receptor-mediated modulation of the late positive potential in humans.
de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander
2012-02-01
Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.
Automated hierarchical time gain compensation for in-vivo ultrasound imaging
NASA Astrophysics Data System (ADS)
Moshavegh, Ramin; Hemmsen, Martin C.; Martins, Bo; Brandt, Andreas H.; Hansen, Kristoffer L.; Nielsen, Michael B.; Jensen, Jørgen A.
2015-03-01
Time gain compensation (TGC) is essential to ensure the optimal image quality of the clinical ultrasound scans. When large fluid collections are present within the scan plane, the attenuation distribution is changed drastically and TGC compensation becomes challenging. This paper presents an automated hierarchical TGC (AHTGC) algorithm that accurately adapts to the large attenuation variation between different types of tissues and structures. The algorithm relies on estimates of tissue attenuation, scattering strength, and noise level to gain a more quantitative understanding of the underlying tissue and the ultrasound signal strength. The proposed algorithm was applied to a set of 44 in vivo abdominal movie sequences each containing 15 frames. Matching pairs of in vivo sequences, unprocessed and processed with the proposed AHTGC were visualized side by side and evaluated by two radiologists in terms of image quality. Wilcoxon signed-rank test was used to evaluate whether radiologists preferred the processed sequences or the unprocessed data. The results indicate that the average visual analogue scale (VAS) is positive ( p-value: 2.34 × 10-13) and estimated to be 1.01 (95% CI: 0.85; 1.16) favoring the processed data with the proposed AHTGC algorithm.
Burriss, Robert P.; Troscianko, Jolyon; Lovell, P. George; Fulford, Anthony J. C.; Stevens, Martin; Quigley, Rachael; Payne, Jenny; Saxton, Tamsin K.; Rowland, Hannah M.
2015-01-01
Human ovulation is not advertised, as it is in several primate species, by conspicuous sexual swellings. However, there is increasing evidence that the attractiveness of women’s body odor, voice, and facial appearance peak during the fertile phase of their ovulatory cycle. Cycle effects on facial attractiveness may be underpinned by changes in facial skin color, but it is not clear if skin color varies cyclically in humans or if any changes are detectable. To test these questions we photographed women daily for at least one cycle. Changes in facial skin redness and luminance were then quantified by mapping the digital images to human long, medium, and shortwave visual receptors. We find cyclic variation in skin redness, but not luminance. Redness decreases rapidly after menstrual onset, increases in the days before ovulation, and remains high through the luteal phase. However, we also show that this variation is unlikely to be detectable by the human visual system. We conclude that changes in skin color are not responsible for the effects of the ovulatory cycle on women’s attractiveness. PMID:26134671
Burriss, Robert P; Troscianko, Jolyon; Lovell, P George; Fulford, Anthony J C; Stevens, Martin; Quigley, Rachael; Payne, Jenny; Saxton, Tamsin K; Rowland, Hannah M
2015-01-01
Human ovulation is not advertised, as it is in several primate species, by conspicuous sexual swellings. However, there is increasing evidence that the attractiveness of women's body odor, voice, and facial appearance peak during the fertile phase of their ovulatory cycle. Cycle effects on facial attractiveness may be underpinned by changes in facial skin color, but it is not clear if skin color varies cyclically in humans or if any changes are detectable. To test these questions we photographed women daily for at least one cycle. Changes in facial skin redness and luminance were then quantified by mapping the digital images to human long, medium, and shortwave visual receptors. We find cyclic variation in skin redness, but not luminance. Redness decreases rapidly after menstrual onset, increases in the days before ovulation, and remains high through the luteal phase. However, we also show that this variation is unlikely to be detectable by the human visual system. We conclude that changes in skin color are not responsible for the effects of the ovulatory cycle on women's attractiveness.
Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoa T. Nguyen; Stone, Daithi; E. Wes Bethel
2016-01-01
An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different casemore » studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.« less
Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.
Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R
2013-01-04
The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.
Integrative interactive visualization of crystal structure, band structure, and Brillouin zone
NASA Astrophysics Data System (ADS)
Hanson, Robert; Hinke, Ben; van Koevering, Matthew; Oses, Corey; Toher, Cormac; Hicks, David; Gossett, Eric; Plata Ramos, Jose; Curtarolo, Stefano; Aflow Collaboration
The AFLOW library is an open-access database for high throughput ab-initio calculations that serves as a resource for the dissemination of computational results in the area of materials science. Our project aims to create an interactive web-based visualization of any structure in the AFLOW database that has associate band structure data in a way that allows novel simultaneous exploration of the crystal structure, band structure, and Brillouin zone. Interactivity is obtained using two synchronized JSmol implementations, one for the crystal structure and one for the Brillouin zone, along with a D3-based band-structure diagram produced on the fly from data obtained from the AFLOW database. The current website portal (http://aflowlib.mems.duke.edu/users/jmolers/matt/website) allows interactive access and visualization of crystal structure, Brillouin zone and band structure for more than 55,000 inorganic crystal structures. This work was supported by the US Navy Office of Naval Research through a Broad Area Announcement administered by Duke University.
Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes.
Torres-Dowdall, Julián; Pierotti, Michele E R; Härer, Andreas; Karagic, Nidal; Woltering, Joost M; Henning, Frederico; Elmer, Kathryn R; Meyer, Axel
2017-10-01
Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted toward shorter wavelengths compared with the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kemper, Alex R.; Gurney, James G.; Eibschitz-Tsimhoni, Maya; DelMonte, Monte A.
2007-01-01
Purpose To evaluate demographic variations in the use of corrective lenses among adolescent children. Methods Cross-sectional analysis of 3,916 children 12-18 years who participated in the 1999-2002 National Health and Nutrition Examination Survey (NHANES) vision examination component, which included: questions regarding use of corrective lenses; distance visual acuity, with corrective lenses if available; and non-cycloplegic autorefraction. Results reflect population-level estimates. Results Overall, 32.2% (95% confidence interval [CI]: 29.5%-35.0%) reported wearing corrective lenses. Girls and those with any private insurance had greater adjusted odds of reporting wearing corrective lenses. In contrast, children aged 15 through 18 years versus those 12 through 14 years, and white children compared to Black or Hispanic children had greater adjusted odds of actually having them available at the time of NHANES participation. Although 12.6% (95% CI: 8.8%-16.3%) of those who did not have their previously prescribed corrective lenses available had 20/25 or better distance visual acuity in both eyes without correction, 26.9% (95% CI:21.6%-32.1%) with their corrective lenses had distance visual acuity of 20/40 or worse in at least one eye when using their corrective lenses. Limitations Near visual acuity was not measured and children with corrective lenses available only had their corrected distance visual acuity measured. No data regarding the accuracy of the NHANES assessment of distance visual acuity are available. Autorefraction was performed without cycloplegia. Conclusions Many adolescent children report wearing corrective lenses. Variations across demographic characteristics appear to be due to a combination of undertreatment, overtreatment, and compliance with previously recommended corrective lenses. PMID:18062494
NASA Technical Reports Server (NTRS)
Taylor, J. H.
1973-01-01
Some data on human vision, important in present and projected space activities, are presented. Visual environment and performance and structure of the visual system are also considered. Visual perception during stress is included.
Cha, Jaepyeong; Broch, Aline; Mudge, Scott; Kim, Kihoon; Namgoong, Jung-Man; Oh, Eugene; Kim, Peter
2018-01-01
Accurate, real-time identification and display of critical anatomic structures, such as the nerve and vasculature structures, are critical for reducing complications and improving surgical outcomes. Human vision is frequently limited in clearly distinguishing and contrasting these structures. We present a novel imaging system, which enables noninvasive visualization of critical anatomic structures during surgical dissection. Peripheral nerves are visualized by a snapshot polarimetry that calculates the anisotropic optical properties. Vascular structures, both venous and arterial, are identified and monitored in real-time using a near-infrared laser-speckle-contrast imaging. We evaluate the system by performing in vivo animal studies with qualitative comparison by contrast-agent-aided fluorescence imaging. PMID:29541506
Influence of rotating shift work on visual reaction time and visual evoked potential.
R V, Hemamalini; N, Krishnamurthy; A, Saravanan
2014-10-01
The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential. To compare the visual reaction time, visual evoked potential (VEP) in rotating night shift workers & day workers and also to correlate the changes in visual reaction time with visual evoked potential. Forty healthy male security guards & staff (25 - 35 y) who did rotating night shifts at least for six months & 40 d workers (25 - 35 y) who did not do night shift in last two years were involved in the study. Visual reaction time and the latency & amplitude of VEP were recorded. Kolmogorov- Smirnov test for normalcy showed the latencies & amplitude of VEP to be normally distributed. Student's unpaired t test showed significant difference (p<0.05) in the visual time and in the latencies of VEP between night shift & day workers. There was no significant difference in the amplitude of VEP. Night shift workers who are prone to circadian rhythm alteration will have prolonged visual reaction time & visual evoked potential abnormalities. Implementation of Bright Light Therapy would be beneficial to the night shift worker.
ERIC Educational Resources Information Center
Becker, D. Vaughn; Anderson, Uriah S.; Mortensen, Chad R.; Neufeld, Samantha L.; Neel, Rebecca
2011-01-01
Is it easier to detect angry or happy facial expressions in crowds of faces? The present studies used several variations of the visual search task to assess whether people selectively attend to expressive faces. Contrary to widely cited studies (e.g., Ohman, Lundqvist, & Esteves, 2001) that suggest angry faces "pop out" of crowds, our review of…
Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks
Claes, Julien M.; Partridge, Julian C.; Hart, Nathan S.; Garza-Gisholt, Eduardo; Ho, Hsuan-Ching; Mallefet, Jérôme; Collin, Shaun P.
2014-01-01
The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484–491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions. PMID:25099504
Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.
Claes, Julien M; Partridge, Julian C; Hart, Nathan S; Garza-Gisholt, Eduardo; Ho, Hsuan-Ching; Mallefet, Jérôme; Collin, Shaun P
2014-01-01
The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.
W-tree indexing for fast visual word generation.
Shi, Miaojing; Xu, Ruixin; Tao, Dacheng; Xu, Chao
2013-03-01
The bag-of-visual-words representation has been widely used in image retrieval and visual recognition. The most time-consuming step in obtaining this representation is the visual word generation, i.e., assigning visual words to the corresponding local features in a high-dimensional space. Recently, structures based on multibranch trees and forests have been adopted to reduce the time cost. However, these approaches cannot perform well without a large number of backtrackings. In this paper, by considering the spatial correlation of local features, we can significantly speed up the time consuming visual word generation process while maintaining accuracy. In particular, visual words associated with certain structures frequently co-occur; hence, we can build a co-occurrence table for each visual word for a large-scale data set. By associating each visual word with a probability according to the corresponding co-occurrence table, we can assign a probabilistic weight to each node of a certain index structure (e.g., a KD-tree and a K-means tree), in order to re-direct the searching path to be close to its global optimum within a small number of backtrackings. We carefully study the proposed scheme by comparing it with the fast library for approximate nearest neighbors and the random KD-trees on the Oxford data set. Thorough experimental results suggest the efficiency and effectiveness of the new scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, David S.
Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in thismore » domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.« less
Bai, Donglin
2016-02-01
A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Song, Homin; Sohn, Hoon
2014-09-01
This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.
Siatkowski, R Michael; Good, William V; Summers, C Gail; Quinn, Graham E; Tung, Betty
2013-04-01
To describe visual function and associated characteristics at the 6-year examination in children enrolled in the Early Treatment for Retinopathy of Prematurity Study who had unfavorable visual outcomes despite favorable structural outcomes in one or both eyes. The clinical examination records of children completing the 6-year follow-up examination were retrospectively reviewed. Eligible subjects were those with visual acuity of ≤20/200 in each eye (where recordable) and a normal fundus or straightening of the temporal retinal vessels with or without macular ectopia in at least one eye. Data regarding visual function, retinal structure, presence of nystagmus, optic atrophy, optic disk cupping, seizures/shunts, and Functional Independence Measure for Children (ie, WeeFIM: pediatric functional independence measure) developmental test scores were reviewed. Of 342 participants who completed the 6-year examination, 39 (11%) met inclusion criteria. Of these, 29 (74%) had normal retinal structure, 18 (46%) had optic atrophy, and 3 (8%) had increased cupping of the optic disk in at least one eye. Latent and/or manifest nystagmus occurred in 30 children (77%). The presence of nystagmus was not related to the presence of optic atrophy. Of the 39 children, 28 (72%) had a below-normal WeeFIM score. In 25 participants (7%) completing the 6-year examination, cortical visual impairment was considered the primary cause of visual loss. The remainder likely had components of both anterior and posterior visual pathway disease. Clinical synthesis of ocular anatomy and visual and neurologic function is required to determine the etiology of poor vision in these children. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
Chan, Kevin C; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X
2014-12-09
Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Chan, Kevin C.; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X.
2015-01-01
Purpose. Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Methods. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Results. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. Conclusions. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. PMID:25491295
A conceptual framework of computations in mid-level vision
Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P.
2014-01-01
If a picture is worth a thousand words, as an English idiom goes, what should those words—or, rather, descriptors—capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations. PMID:25566044
A conceptual framework of computations in mid-level vision.
Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P
2014-01-01
If a picture is worth a thousand words, as an English idiom goes, what should those words-or, rather, descriptors-capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations.
Visualization of JPEG Metadata
NASA Astrophysics Data System (ADS)
Malik Mohamad, Kamaruddin; Deris, Mustafa Mat
There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.
NASA Astrophysics Data System (ADS)
Yahyanejad, Saeed; Rinner, Bernhard
2015-06-01
The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.
Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W
2013-12-01
Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.
NASA Astrophysics Data System (ADS)
Wan, Qianwen; Panetta, Karen; Agaian, Sos
2017-05-01
Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.
Pacing Visual Attention: Temporal Structure Effects
1993-06-01
of perception and motor action: Ideomotor compatibility and interference in divided attention . Journal of Motor Behavior, 2, (3), 155-162. Kwak, H...1993 Dissertation, Jun 89 - Jun 93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Pacing Visual Attention : Temporal Structure Effects PE - 62202F 6. AUTHOR(S...that persisting temporal relationships may be an important factor in the external (exogenous) control of visual attention , at least to some extent, was
NASA Astrophysics Data System (ADS)
Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto
2009-02-01
Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.
Madden, David J.
2007-01-01
Older adults are often slower and less accurate than are younger adults in performing visual-search tasks, suggesting an age-related decline in attentional functioning. Age-related decline in attention, however, is not entirely pervasive. Visual search that is based on the observer’s expectations (i.e., top-down attention) is relatively preserved as a function of adult age. Neuroimaging research suggests that age-related decline occurs in the structure and function of brain regions mediating the visual sensory input, whereas activation of regions in the frontal and parietal lobes is often greater for older adults than for younger adults. This increased activation may represent an age-related increase in the role of top-down attention during visual tasks. To obtain a more complete account of age-related decline and preservation of visual attention, current research is beginning to explore the relation of neuroimaging measures of brain structure and function to behavioral measures of visual attention. PMID:18080001
Visual processing speed in old age.
Habekost, Thomas; Vogel, Asmus; Rostrup, Egill; Bundesen, Claus; Kyllingsbaek, Søren; Garde, Ellen; Ryberg, Charlotte; Waldemar, Gunhild
2013-04-01
Mental speed is a common concept in theories of cognitive aging, but it is difficult to get measures of the speed of a particular psychological process that are not confounded by the speed of other processes. We used Bundesen's (1990) Theory of Visual Attention (TVA) to obtain specific estimates of processing speed in the visual system controlled for the influence of response latency and individual variations of the perception threshold. A total of 33 non-demented old people (69-87 years) were tested for the ability to recognize briefly presented letters. Performance was analyzed by the TVA model. Visual processing speed decreased approximately linearly with age and was on average halved from 70 to 85 years. Less dramatic aging effects were found for the perception threshold and the visual apprehension span. In the visual domain, cognitive aging seems to be most clearly related to reductions in processing speed. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
Reinforcing Visual Grouping Cues to Communicate Complex Informational Structure.
Bae, Juhee; Watson, Benjamin
2014-12-01
In his book Multimedia Learning [7], Richard Mayer asserts that viewers learn best from imagery that provides them with cues to help them organize new information into the correct knowledge structures. Designers have long been exploiting the Gestalt laws of visual grouping to deliver viewers those cues using visual hierarchy, often communicating structures much more complex than the simple organizations studied in psychological research. Unfortunately, designers are largely practical in their work, and have not paused to build a complex theory of structural communication. If we are to build a tool to help novices create effective and well structured visuals, we need a better understanding of how to create them. Our work takes a first step toward addressing this lack, studying how five of the many grouping cues (proximity, color similarity, common region, connectivity, and alignment) can be effectively combined to communicate structured text and imagery from real world examples. To measure the effectiveness of this structural communication, we applied a digital version of card sorting, a method widely used in anthropology and cognitive science to extract cognitive structures. We then used tree edit distance to measure the difference between perceived and communicated structures. Our most significant findings are: 1) with careful design, complex structure can be communicated clearly; 2) communicating complex structure is best done with multiple reinforcing grouping cues; 3) common region (use of containers such as boxes) is particularly effective at communicating structure; and 4) alignment is a weak structural communicator.
Observation of pressure variation in the cavitation region of submerged journal bearings
NASA Technical Reports Server (NTRS)
Etsion, I.; Ludwig, L. P.
1980-01-01
Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations inside the cavitation zone, contrary to common assumptions of constant cavitation pressure.
Colour in digital pathology: a review.
Clarke, Emily L; Treanor, Darren
2017-01-01
Colour is central to the practice of pathology because of the use of coloured histochemical and immunohistochemical stains to visualize tissue features. Our reliance upon histochemical stains and light microscopy has evolved alongside a wide variation in slide colour, with little investigation into the implications of colour variation. However, the introduction of the digital microscope and whole-slide imaging has highlighted the need for further understanding and control of colour. This is because the digitization process itself introduces further colour variation which may affect diagnosis, and image analysis algorithms often use colour or intensity measures to detect or measure tissue features. The US Food and Drug Administration have released recent guidance stating the need to develop a method of controlling colour reproduction throughout the digitization process in whole-slide imaging for primary diagnostic use. This comprehensive review introduces applied basic colour physics and colour interpretation by the human visual system, before discussing the importance of colour in pathology. The process of colour calibration and its application to pathology are also included, as well as a summary of the current guidelines and recommendations regarding colour in digital pathology. © 2016 John Wiley & Sons Ltd.
MAJIQ-SPEL: Web-tool to interrogate classical and complex splicing variations from RNA-Seq data.
Green, Christopher J; Gazzara, Matthew R; Barash, Yoseph
2017-09-11
Analysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret, and experimentally validate. To address these challenges we developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex, non-binary, splicing variations. Using a matching primer design algorithm it also suggests users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis. Program and code will be available at http://majiq.biociphers.org/majiq-spel. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Yang, Xiaojie; Lorenser, Dirk; McLaughlin, Robert A.; Kirk, Rodney W.; Edmond, Matthew; Simpson, M. Cather; Grounds, Miranda D.; Sampson, David D.
2013-01-01
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ. PMID:24466482