Sample records for visualized flow patterns

  1. Three-dimensional vortex patterns in a starting flow

    NASA Astrophysics Data System (ADS)

    Freymuth, P.; Finaish, F.; Bank, W.

    1985-12-01

    Freymuth et al. (1983, 1984, 1985) have conducted investigations involving chordwise vortical-pattern visualizations in a starting flow of constant acceleration around an airfoil. Detailed resolution of vortical shapes in two dimensions could be obtained. No visualization in the third spanwise dimension is needed as long as the flow remains two-dimensional. However, some time after flow startup, chordwise vortical patterns become blurred, indicating the onset of turbulence. The present investigation is concerned with an extension of the flow visualization from a chordwise cross section to the spanwise dimension. The investigation has the objective to look into the two-dimensionality of the initial vortical developments and to resolve three-dimensional effects during the transition to turbulence. Attention is given to the visualization method, the chordwise vs spanwise visualization in the two-dimensional regime, the spanwise visualization of transition, and the visualization of vortical patterns behind the trailing edge.

  2. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  3. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)

    PubMed Central

    Lee, Wah-Keat; Socha, John J

    2009-01-01

    Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159

  4. Flow visualization for investigating stator losses in a multistage axial compressor

    NASA Astrophysics Data System (ADS)

    Smith, Natalie R.; Key, Nicole L.

    2015-05-01

    The methodology and implementation of a powder-paint-based flow visualization technique along with the illuminated flow physics are presented in detail for application in a three-stage axial compressor. While flow visualization often accompanies detailed studies, the turbomachinery literature lacks a comprehensive study which both utilizes flow visualization to interrupt the flow field and explains the intricacies of execution. Lessons learned for obtaining high-quality images of surface flow patterns are discussed in this study. Fluorescent paint is used to provide clear, high-contrast pictures of the recirculation regions on shrouded vane rows. An edge-finding image processing procedure is implemented to provide a quantitative measure of vane-to-vane variability in flow separation, which is approximately 7 % of the suction surface length for Stator 1. Results include images of vane suction side corner separations from all three stages at three loading conditions. Additionally, streakline patterns obtained experimentally are compared with those calculated from computational models. Flow physics associated with vane clocking and increased rotor tip clearance and their implications to stator loss are also investigated with this flow visualization technique. With increased rotor tip clearance, the vane surface flow patterns show a shift to larger separations and more radial flow at the tip. Finally, the effects of instrumentation on the flow field are highlighted.

  5. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  6. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1983-01-01

    Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.

  7. A novel anisotropic fast marching method and its application to blood flow computation in phase-contrast MRI.

    PubMed

    Schwenke, M; Hennemuth, A; Fischer, B; Friman, O

    2012-01-01

    Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.

  8. Flow visualization methods for field test verification of CFD analysis of an open gloveport

    DOE PAGES

    Strons, Philip; Bailey, James L.

    2017-01-01

    Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less

  9. Visualizing Patterns of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the Military Health System

    DTIC Science & Technology

    2013-06-01

    1 Visualizing Patterns of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the...asthmatics within the Military Health System (MHS). Visualizing the patterns of asthma medication use surrounding a LABA prescription is a quick way to...random sample of 100 asthma patients under age 65 with a new LABA prescription from January 1, 2006-March 1, 2010 in MHS healthcare claims. Analysis was

  10. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1984-01-01

    Various flow visualization techniques were used to define the seondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious. Previously announced in STAR as N83-14435

  11. Hierarchical streamline bundles.

    PubMed

    Yu, Hongfeng; Wang, Chaoli; Shene, Ching-Kuang; Chen, Jacqueline H

    2012-08-01

    Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.

  12. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  13. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

  14. Results of oil flow visualization tests of an 0.010-scale model (52-OT) of the space shuttle orbiter-tank mated and orbiter configurations in the AEDC VKF tunnel B (IA17B)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1975-01-01

    An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.

  15. FloVis: Leveraging Visualization to Protect Sensitive Network Infrastructure

    DTIC Science & Technology

    2010-11-01

    words, we are clustering the hourly web surfing patterns of users on a small private network. The data in this case is filtered NetFlow records...Entity-based NetFlow Visualization Utility for Identifying Intrusive Behavior. In Goodall et al. (eds.), Mathematics and Visualization (Proceedings

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strons, Philip; Bailey, James L.

    Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less

  17. Flow visualization in radial flow through stationary and corotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Tanaka, M.; Yang, Wen-Jei

    Paraffin mist is used here as a tracer to observe the patterns in the radial flow through both stationary and corotating parallel disks. The periodic and alternative generation of separation bubbles on both disks and the resulting flow fluctuation and turbulent flow in the radial channel are studied. Stall cells are visualized around the outer rim of the corotating disks.

  18. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  19. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  20. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  1. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  2. Flow visualization of a non-contact transport device by Coanda effect

    NASA Astrophysics Data System (ADS)

    Iki, Norihiko; Abe, Hiroyuki; Okada, Takashi

    2014-08-01

    AIST proposes new technology of non-contact transport device utilizing Coanda effect. A proposed non-contact transport device has a cylindrical body and circular slit for air. The air flow around non-contact device is turbulent and its flow pattern depends on the injection condition. Therefore we tried visualization of the air flow around non -contact device as the first step of PIV measurement. Several tracer particles were tried such as TiO2 particles, water droplets, potatoes starch, rice starch, corn starch. Hot-wire anemometer is employed to velocity measurement. TiO2 particles deposit inside of a slit and clogging of a slit occurs frequently. Potato starch particles do not clog a slit but they are too heavy to trace slow flow area. Water droplets by ultrasonic atomization also deposit inside of slit but they are useful to visualize flow pattern around a non-contact transport device by being supplied from circumference. Coanda effect of proposed non-contact transport device was confirmed and injected air flow pattern switches by a work. Air flow around non-contact trance port device is turbulent and its velocity range is wide. Therefore flow measurement by tracer part icle has traceability issue. Suitable tracer and exposure condition depends on target area.

  3. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  4. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    NASA Astrophysics Data System (ADS)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  5. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  6. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    PubMed

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  7. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  9. Optic flow detection is not influenced by visual-vestibular congruency.

    PubMed

    Holten, Vivian; MacNeilage, Paul R

    2018-01-01

    Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.

  10. A visual study of radial inward choked flow of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.

  11. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    NASA Astrophysics Data System (ADS)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  12. Flow Visualization Techniques in Wind Tunnel Tests of a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Bennett, Mark; Crowder, James P.; Cooper, Don; Olson, Lawrence (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. The purpose of the flow-visualization experiments was to document the forebody and leading edge extension (LEX) vortex interaction along with the wing flow patterns at high angles of attack and low speed high Reynolds number conditions. This investigation used surface pressures in addition to both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, LEXS, and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system for three-dimension vortex tracking. The flow visualization experiments were conducted over an angle of attack range from 20 deg to 45 deg and over a sideslip range from -10 deg to 10 deg. The various visualization techniques as well as the pressure distributions were used to understand the flow field structure. The results show regions of attached and separated flow on the forebody, canopy, and wings as well as the vortical flow over the leading-edge extensions. This paper will also present flow visualization comparisons with the F-18 HARV flight vehicle and small-scale oil flows on the F-18.

  13. Flow visualization of lateral jet injection into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, L.I.; Bui, R.T.; Charette, A.

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects ofmore » the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.« less

  15. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  16. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  17. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  18. Multiphase flow modeling in centrifugal partition chromatography.

    PubMed

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A Visualization Study of Secondary Flows in Cascades

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G; Costello, George R

    1954-01-01

    Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.

  20. Observation of airplane flow fields by natural condensation effects

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.; Rumsey, Christopher L.

    1988-01-01

    In-flight condensation patterns can illustrate a variety of airplane flow fields, such as attached and separated flows, vortex flows, and expansion and shock waves. These patterns are a unique source of flow visualization that has not been utilized previously. Condensation patterns at full-scale Reynolds number can provide useful information for researchers experimenting in subscale tunnels. It is also shown that computed values of relative humidity in the local flow field provide an inexpensive way to analyze the qualitative features of the condensation pattern, although a more complete theoretical modeling is necessary to obtain details of the condensation process. Furthermore, the analysis revealed that relative humidity is more sensitive to changes in local static temperature than to changes in pressure.

  1. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    PubMed

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  2. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  3. Impact of enhanced sensory input on treadmill step frequency: infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D

    2011-01-01

    To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Twenty-seven infants aged 2 to 10 months with MMC lesions at, or caudal to, L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30 seconds long. Enhanced sensory inputs within each set were presented in random order and included baseline, visual flow, unloading, weights, Velcro, and friction. Overall friction and visual flow significantly increased step rate, particularly for the older subjects. Friction and Velcro increased stance-phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. : Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear to be more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC.

  4. Impact of Enhanced Sensory Input on Treadmill Step Frequency: Infants Born With Myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D.

    2012-01-01

    Purpose To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Methods Twenty seven infants aged 2 to 10 months with MMC lesions at or caudal to L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30s long. Enhanced sensory inputs within each set were presented in random order and included: baseline, visual flow, unloading, weights, Velcro and friction. Results Overall friction and visual flow significantly increased step rate, particularly for the older group. Friction and Velcro increased stance phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. Conclusions Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC. PMID:21266940

  5. Water Tunnel Flow Visualization Study Through Poststall of 12 Novel Planform Shapes

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Neuhart, Dan H.

    1996-01-01

    To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.

  6. Enhanced line integral convolution with flow feature detection

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain [Cabral & Leedom '93]. The method produces a flow texture imag...

  7. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance.

    PubMed

    Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis

    2018-02-19

    Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.

  8. Visualizing Human Migration Trhough Space and Time

    NASA Astrophysics Data System (ADS)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  9. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  10. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    PubMed Central

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  11. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating.

    PubMed

    Zhao, Jisong

    2018-05-17

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.

  12. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating

    PubMed Central

    Zhao, Jisong

    2018-01-01

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822

  13. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.

    2007-10-01

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  14. Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134A

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Wen William

    This dissertation is to document experimental, local condensation and single-phase heat transfer and flow data of the minute diameter, microchannel tube and to develop correlation methods for optimizing the design of horizontal-microchannel condensers. It is essential to collect local data as the condensation progresses through several different flow patterns, since as more liquid is formed, the mechanism conducting heat transfer and flow is also changing. Therefore, the identification of the flow pattern is as important as the thermal and dynamic data. The experimental results were compared with correlation and flow regime maps from literature. The experiment using refrigerant HFC-134a in flat, multi-port aluminum tubing with 1.46mm hydraulic diameter was conducted. The characteristic of single-phase friction can be described with the analytical solution of square channel. The Gnielinski correlation provided good prediction of single-phase turbulent flow heat transfer. Higher mass fluxes and qualities resulted in increased condensation heat transfer and were more effective in the shear-dominated annular flow. The effect of temperature gradient from wall to refrigerant attributed profoundly in the gravity-dominated wavy/slug flow. Two correlation based on different flow mechanisms were developed for specified flow regimes. Finally, an asymptotic correlation was successfully proposed to account for the entire data regardless of flow patterns. Data taken from experiment and observations obtained from flow visualization, resulted in a better understanding of the physics in microchannel condensation, optimized designs in the microchannel condensers are now possible.

  15. Orbiter BLT Flight Experiment Wind Tunnel Simulations: Nearfield Flowfield Imaging and Surface Thermography

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.; hide

    2010-01-01

    This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.

  16. A flow visualization study of the NCVC centrifugal blood pump.

    PubMed

    Araki, K; Taenaka, Y; Masuzawa, T; Tatsumi, E; Wakisaka, Y; Watari, M; Nakatani, T; Akagi, H; Baba, Y; Anai, H

    1994-09-01

    A compact centrifugal pump, NCVC-1, has an open-type impeller with 6 curved vanes, and it is characterized by no shaft and no seal. A tunnel is placed in the center of the impeller-rotor assembly to irrigate the back space behind the rotor. To evaluate the flow, we performed 3 visualization methods: tracer, oil film, and injection streak line method. The flow, observed by the tracer method in NCVC-1, indicated little turbulence along vanes. A volute chamber proved effective to reduce vortex formation in the outlet. Oil film pattern revealed no flow separation on vanes at 5 L/min. Washout flow behind the rotor is essential to prevent thrombus formation and was shown as inward spiral flow without any stagnation. These data suggested that a combination of visualization techniques was useful to analyze various flow conditions, and the NCVC-1 has excellent flow characteristics with little turbulence and little flow stagnation, which must be beneficial to low hemolysis and high antithrombogenicity.

  17. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  18. Flow-separation patterns on symmetric forebodies

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1986-01-01

    Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.

  19. Observations of two-phase flow patterns in a horizontal circular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, M.E.; Weinandy, J.J.; Christensen, R.N.

    1999-01-01

    Horizontal two-phase flow patterns were observed in a transparent circular channel (1.90 cm I.D.) using adiabatic mixtures of air and water. Visual identification of the flow regimes was supplemented with photographic data and the results were plotted on the flow regime map which has been proposed by Breber et al. for condensation applications. The results indicate general consistency between the observations and the predictions of the map, and, by providing data for different fluids and conditions from which the map was developed, support its general applicability.

  20. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    PubMed

    Shanthi, C; Pappa, N

    2017-05-01

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Richwine, David M.

    1988-01-01

    A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.

  2. SIMULATION AND VISUALIZATION OF FLOW PATTERN IN MICROARRAYS FOR LIQUID PHASE OLIGONUCLEOTIDE AND PEPTIDE SYNTHESIS

    PubMed Central

    O-Charoen, Sirimon; Srivannavit, Onnop; Gulari, Erdogan

    2008-01-01

    Microfluidic microarrays have been developed for economical and rapid parallel synthesis of oligonucleotide and peptide libraries. For a synthesis system to be reproducible and uniform, it is crucial to have a uniform reagent delivery throughout the system. Computational fluid dynamics (CFD) is used to model and simulate the microfluidic microarrays to study geometrical effects on flow patterns. By proper design geometry, flow uniformity could be obtained in every microreactor in the microarrays. PMID:17480053

  3. Self-synchronizing Schlieren photography and interferometry for the visualization of unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Kadlec, R.

    1979-01-01

    The use of self synchronizing stroboscopic Schlieren and laser interferometer systems to obtain quantitative space time measurements of distinguished flow surfaces, steakline patterns, and the density field of two dimensional flows that exhibit a periodic content was investigated. A large field single path stroboscopic Schlieren system was designed, constructed and successfully applied to visualize four periodic flows: near wake behind an oscillating airfoil; edge tone sound generation; 2-D planar wall jet; and axisymmetric pulsed sonic jet. This visualization technique provides an effective means of studying quasi-periodic flows in real time. The image on the viewing screen is a spatial signal average of the coherent periodic motion rather than a single realization, the high speed motion of a quasi-periodic flow can be reconstructed by recording photographs of the flow at different fixed time delays in one cycle. The preliminary design and construction of a self synchronizing stroboscopic laser interferometer with a modified Mach-Zehnder optical system is also reported.

  4. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  5. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  6. Overland flow dynamics through visual observation using time-lapse photographs

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2016-04-01

    Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber-optic network. Exterior orientation is required to project the observed saturation patterns in the photographs onto orthographic map. This was done by georeferencing the on-field GPS points taken throughout the camera field of view to the orthographic map obtained from an airborne laser scanning (ALS) campaign. Based on the projected saturation patterns, the patterns dynamics were analyzed in relation to soil moisture state and rainfall magnitude for events in autumn and winter 2014. From the observed events during saturated soil condition, tile drain flow reacted within one hour after the rain started, while no sign of saturation pattern evolving into overland flow was observed. Within two hours after the rain started, overland flow was fully formed along the thalweg which flowed to the erosion gully and created signal at the discharge station almost immediately. From the surface roughness aspect, field management is an important factor of overland flow development as surface runoff was formed faster along the tractor tracks. In overall, time-lapse photographs have potentials to qualitatively assess the saturation patterns dynamics during rainfall events with high time resolution and wide area coverage.

  7. Some observations of separated flow on finite wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.

    1982-01-01

    Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.

  8. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D

    2012-12-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.

    2013-01-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017

  10. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  11. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  12. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  13. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  14. The Optimization Design of An AC-Electroosmotic Micro mixer

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo

    2007-11-01

    We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.

  15. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  16. LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.

    PubMed

    Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin

    2014-12-01

    The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.

  17. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  18. Flow Structure and Surface Topology on a UCAV Planform

    NASA Astrophysics Data System (ADS)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  19. Disruption of intracardiac flow patterns in the newborn infant.

    PubMed

    Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David

    2012-04-01

    Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.

  20. Analytical modeling and sensor monitoring for optimal processing of advanced textile structural composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Macrae, John D.; Hammond, Vincent H.; Kranbuehl, David E.; Hart, Sean M.; Hasko, Gregory H.; Markus, Alan M.

    1993-01-01

    A two-dimensional model of the resin transfer molding (RTM) process was developed which can be used to simulate the infiltration of resin into an anisotropic fibrous preform. Frequency dependent electromagnetic sensing (FDEMS) has been developed for in situ monitoring of the RTM process. Flow visualization tests were performed to obtain data which can be used to verify the sensor measurements and the model predictions. Results of the tests showed that FDEMS can accurately detect the position of the resin flow-front during mold filling, and that the model predicted flow-front patterns agreed well with the measured flow-front patterns.

  1. Study of two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Yan, AN; Omrani, Adel

    1990-01-01

    The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.

  2. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  3. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    NASA Astrophysics Data System (ADS)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  4. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  5. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  6. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  7. Multiple Near Wake Patterns Behind Annular Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro

    1996-11-01

    Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.

  8. Altitude control in honeybees: joint vision-based learning and guidance.

    PubMed

    Portelli, Geoffrey; Serres, Julien R; Ruffier, Franck

    2017-08-23

    Studies on insects' visual guidance systems have shed little light on how learning contributes to insects' altitude control system. In this study, honeybees were trained to fly along a double-roofed tunnel after entering it near either the ceiling or the floor of the tunnel. The honeybees trained to hug the ceiling therefore encountered a sudden change in the tunnel configuration midways: i.e. a "dorsal ditch". Thus, the trained honeybees met a sudden increase in the distance to the ceiling, corresponding to a sudden strong change in the visual cues available in their dorsal field of view. Honeybees reacted by rising quickly and hugging the new, higher ceiling, keeping a similar forward speed, distance to the ceiling and dorsal optic flow to those observed during the training step; whereas bees trained to follow the floor kept on following the floor regardless of the change in the ceiling height. When trained honeybees entered the tunnel via the other entry (the lower or upper entry) to that used during the training step, they quickly changed their altitude and hugged the surface they had previously learned to follow. These findings clearly show that trained honeybees control their altitude based on visual cues memorized during training. The memorized visual cues generated by the surfaces followed form a complex optic flow pattern: trained honeybees may attempt to match the visual cues they perceive with this memorized optic flow pattern by controlling their altitude.

  9. Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.

    1985-01-01

    The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.

  10. Wind tunnel investigation of simulated helicopter engine exhaust interacting with windstream

    NASA Technical Reports Server (NTRS)

    Shaw, C. S.; Wilson, J. C.

    1974-01-01

    A wind tunnel investigation of the windstream-engine exhaust flow interaction on a light observation helicopter model has been conducted in the Langley V/STOL tunnel. The investigation utilized flow visualization techniques to determine the cause to determine the cause of exhaust shield overheating during cruise and to find a means of eliminating the problem. Exhaust flow attachment to the exhaust shield during cruise was found to cause the overheating. Several flow-altering devices were evaluated to find a suitable way to correct the problem. A flow deflector located on the model cowling upstream of the exhaust in addition to aerodynamic shield fairings provided the best solution. Also evaluated was heat transfer concept employing pin fins to cool future exhaust hardware. The primary flow visualization technique used in the investigation was a newly developed system employing neutrally buoyant helium-filled bubbles. The resultant flow patterns were recorded on motion picture film and on television magnetic tape.

  11. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  12. Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan's Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization.

    PubMed

    She, Hoi Lam; Roest, Arno A W; Calkoen, Emmeline E; van den Boogaard, Pieter J; van der Geest, Rob J; Hazekamp, Mark G; de Roos, Albert; Westenberg, Jos J M

    2017-01-01

    To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan's operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach. Seven patients with functional univentricular heart after Fontan's operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they were validated with net forward aortic flow. Inflow angles at PIV in the patient group demonstrated wide variation of angles and directions when compared with the control group (P < .01). The use of 4D flow MRI with streamlines visualization in quantification of the transatrioventricular flow had smaller limits of agreement (2.2 ± 4.1 mL; 95% limit of agreement -5.9-10.3 mL) when compared with the static plane assessment from 2DFlow MRI (-2.2 ± 18.5 mL; 95% limit of agreement agreement -38.5-34.1 mL). Stronger correlation was present in the 4D flow between the aortic and trans-atrioventricular flow (R 2 correlation in 4D flow: 0.893; in 2D flow: 0.786). Streamline visualization in 4D flow MRI confirmed variable atrioventricular inflow directions in patients with functional univentricular heart with previous Fontan's procedure. 4D flow aided generation of measurement planes according to the blood flood dynamics and has proven to be more accurate than the fixed plane 2D flow measurements when calculating flow quantifications. © 2016 Wiley Periodicals, Inc.

  13. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  14. The Flow Field on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2008-11-01

    The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.

  15. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  16. UPIOM: a new tool of MFA and its application to the flow of iron and steel associated with car production.

    PubMed

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya

    2011-02-01

    Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated.

  17. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  18. An investigation into the flow behavior of a single phase gas system and a two phase gas/liquid system in normal gravity with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Heist, Timothy J.

    1990-01-01

    The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.

  19. Perfusion information extracted from resting state functional magnetic resonance imaging.

    PubMed

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  20. Non-conscious processing of motion coherence can boost conscious access.

    PubMed

    Kaunitz, Lisandro; Fracasso, Alessio; Lingnau, Angelika; Melcher, David

    2013-01-01

    Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.

  1. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2012-12-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.

  2. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.

  3. Comparison of gamma densitometry and electrical capacitance measurements applied to hold-up prediction of oil–water flow patterns in horizontal and slightly inclined pipes

    NASA Astrophysics Data System (ADS)

    Perera, Kshanthi; Kumara, W. A. S.; Hansen, Fredrik; Mylvaganam, Saba; Time, Rune W.

    2018-06-01

    Measurement techniques are vital for the control and operation of multiphase oil–water flow in pipes. The development of such techniques depends on laboratory experiments involving flow visualization, liquid fraction (‘hold-up’), phase slip and pressure drop measurements. They provide valuable information by revealing the physics, spatial and temporal structures of complex multiphase flow phenomena. This paper presents the hold-up measurement of oil–water flow in pipelines using gamma densitometry and electrical capacitance tomography (ECT) sensors. The experiments were carried out with different pipe inclinations from  ‑5° to  +6° for selected mixture velocities (0.2–1.5 m s‑1), and at selected watercuts (0.05–0.95). Mineral oil (Exxsol D60) and water were used as test fluids. Nine flow patterns were identified including a new pattern called stratified wavy and mixed interface flow. As a third direct method, visual observations and high-speed videos were used for the flow regime and interface identification. ECT and gamma densitometry hold-up measurements show similar trends for changes in pipeline inclinations. Changing the pipe inclination affected the flow mostly at lower mixture velocities and caused a change of flow patterns, allowing the highest change of hold-up. ECT hold-up measurements overpredict the gamma densitometry measurements at higher input water cuts and underpredict at intermediate water cuts. Gamma hold-up results showed good agreement with the literature results, having a maximum deviation of 6%, while it was as high as 22% for ECT in comparison to gamma densitometry. Uncertainty analysis of the measurement techniques was carried out with single-phase oil flow. This shows that the measurement error associated with gamma densitometry is approximately 3.2%, which includes 1.3% statistical error and 2.9% error identified as electromagnetically induced noise in electronics. Thus, gamma densitometry can predict hold-up with a higher accuracy in comparison to ECT when applied to oil–water systems at minimized electromagnetic noise.

  4. Visualizing Mobility of Public Transportation System.

    PubMed

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  5. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  6. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  7. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    NASA Astrophysics Data System (ADS)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  8. An electrohydrodynamic flow in ac electrowetting.

    PubMed

    Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung

    2009-12-17

    In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.

  9. Qualitative evaluation of water displacement in simulated analytical breaststroke movements.

    PubMed

    Martens, Jonas; Daly, Daniel

    2012-05-01

    One purpose of evaluating a swimmer is to establish the individualized optimal technique. A swimmer's particular body structure and the resulting movement pattern will cause the surrounding water to react in differing ways. Consequently, an assessment method based on flow visualization was developed complimentary to movement analysis and body structure quantification. A fluorescent dye was used to make the water displaced by the body visible on video. To examine the hypothesis on the propulsive mechanisms applied in breaststroke swimming, we analyzed the movements of the surrounding water during 4 analytical breaststroke movements using the flow visualization technique.

  10. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  11. Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Smith, C. Frederic

    1990-01-01

    Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.

  12. The visual control of stability in children and adults: postural readjustments in a ground optical flow.

    PubMed

    Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo

    2004-11-01

    The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.

  13. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  14. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  15. Gas Dynamics of a Recessed Nozzle in Its Displacement in the Radial Direction

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Denisikhin, S. V.; Emel'yanov, V. N.

    2017-07-01

    Numerical simulation of gasdynamic processes accompanying the operation of the recessed nozzle of a solid-propellant rocket motor in its linear displacement is carried out. Reynolds-averaged Navier-Stokes equations closed using the equations of a k-ɛ turbulence model are used for calculations. The calculations are done for different rates of flow of the gas in the main channel and in the over-nozzle gap, and also for different displacements of the nozzle from an axisymmetric position. The asymmetry of geometry gives rise to a complicated spatial flow pattern characterized by the presence of singular points of spreading and by substantially inhomogeneous velocity and pressure distributions. The vortex flow pattern resulting from the linear displacement of the nozzle from an axisymmetric position is compared with the data of experimental visualization. The change in the vortex pattern of the flow and in the position of the singular points as a function of the flow coefficient and the displacement of the nozzle from the symmetry axis is discussed.

  16. Visualization of Surface Flow on a Prolate Spheroid Model Suspended by Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.

  17. Exploratory flow visualization investigation of mast-mounted sights in presence of a rotor

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Kelley, Henry L.

    1995-01-01

    A flow visualization investigation with a laser light sheet system was conducted on a 27-percent-scale AH-64 attack helicopter model fitted with two mast-mounted sights in the langley 14- by 22-foot subsonic tunnel. The investigation was conducted to identify aerodynamic phenomena that may have contributed to adverse vibration encountered during full-scale flight of the AH-64D apache/longbow helicopter with an asymmetric mast-mounted sight. Symmetric and asymmetric mast-mounted sights oriented at several skew angles were tested at simulated forward and rearward flight speeds of 30 and 45 knots. A laser light sheet system was used to visualize the flow in planes parallel to and perpendicular to the free-stream flow. Analysis of these flow visualization data identified frequencies of flow patterns in the wake shed from the sight, the streamline angle at the sight, and the location where the shed wake crossed the rotor plane. Differences in wake structure were observed between the sight configurations and various skew angles. Analysis of lateral light sheet plane data implied significant vortex structure in the wake of the asymmetric mast-mounted sight in the configuration that produced maximum in-flight vibration. The data showed no significant vortex structure in the wake of the asymmetric and symmetric configurations that produced no increase in in-flight adverse vibration.

  18. Mixed Convection Flow in Horizontal CVD Reactors

    NASA Astrophysics Data System (ADS)

    Chiu, Wilson K. S.; Richards, Cristy J.; Jaluria, Yogesh

    1998-11-01

    Increasing demands for high quality films and production rates are challenging current Chemical Vapor Deposition (CVD) technology. Since film quality and deposition rates are strongly dependent on gas flow and heat transfer (W.K.S. Chiu and Y. Jaluria, ASME HTD-Vol. 347, pp. 293-311, 1997.), process improvement is obtained through the study of mixed convection flow and temperature distribution in a CVD reactor. Experimental results are presented for a CVD chamber with a horizontal or inclined resistance heated susceptor. Vaporized glycol solution illuminated by a light sheet is used for flow visualization. Temperature measurements are obtained by inserting thermocouple probes into the gas stream or embedding probes into the reactor walls. Flow visualization and temperature measurements show predominantly two dimensional flow and temperature distributions along the streamwise direction under forced convection conditions. Natural convection dominates under large heating rates and low flow rates. Over the range of parameters studied, several distinct flow regimes, characterized by instability, separation, and turbulence, are evident. Different flow regimes alter the flow pattern and temperature distribution, and in consequence, significantly modify deposition rates and uniformity.

  19. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  20. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility.

    PubMed

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.

  1. A Fast-Starting Robotic Fish

    NASA Astrophysics Data System (ADS)

    Modarres-Sadeghi, Yahya; Watts, Matthew; Conte, Joe; Hover, Franz; Triantafyllou, Michael

    2009-11-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consisted of a thin metal beam covered by a urethane rubber fish body. The body form of the mechanical fish in this work was modeled from a pike species, which is the most successfully studied fast-start specialist species. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by pneumatic cutting mechanisms. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish, similar to a pike. We measured the resulting velocity and acceleration, as well as the efficiency of propulsion for the mechanical fish model and also ran a series of flow visualization tests to observe the resulting flow pattern. We also studied the influence of stiffness and geometry of the tail on the efficiency of propulsion and flow pattern. The hydrodynamic efficiency of the fish, calculated by the transfer of energy, was around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration is associated with the fast movement of an intense vortex in a near-lateral direction.

  2. Eye-related pain induced by visually demanding computer work.

    PubMed

    Thorud, Hanne-Mari Schiøtz; Helland, Magne; Aarås, Arne; Kvikstad, Tor Martin; Lindberg, Lars Göran; Horgen, Gunnar

    2012-04-01

    Eye strain during visually demanding computer work may include glare and increased squinting. The latter may be related to elevated tension in the orbicularis oculi muscle and development of muscle pain. The aim of the study was to investigate the development of discomfort symptoms in relation to muscle activity and muscle blood flow in the orbicularis oculi muscle during computer work with visual strain. A group of healthy young adults with normal vision was randomly selected. Eye-related symptoms were recorded during a 2-h working session on a laptop. The participants were exposed to visual stressors such as glare and small font. Muscle load and blood flow were measured by electromyography and photoplethysmography, respectively. During 2 h of visually demanding computer work, there was a significant increase in the following symptoms: eye-related pain and tiredness, blurred vision, itchiness, gritty eyes, photophobia, dry eyes, and tearing eyes. Muscle load in orbicularis oculi was significantly increased above baseline and stable at 1 to 1.5% maximal voluntary contraction during the working sessions. Orbicularis oculi muscle blood flow increased significantly during the first part of the working sessions before returning to baseline. There were significant positive correlations between eye-related tiredness and orbicularis oculi muscle load and eye-related pain and muscle blood flow. Subjects who developed eye-related pain showed elevated orbicularis oculi muscle blood flow during computer work, but no differences in muscle load, compared with subjects with minimal pain symptoms. Eyestrain during visually demanding computer work is related to the orbicularis oculi muscle. Muscle pain development during demanding, low-force exercise is associated with increased muscle blood flow, possible secondary to different muscle activity pattern, and/or increased mental stress level in subjects experiencing pain compared with subjects with minimal pain.

  3. MBSE-Driven Visualization of Requirements Allocation and Traceability

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Wilkerson, Marcus

    2016-01-01

    In a Model Based Systems Engineering (MBSE) infusion effort, there is a usually a concerted effort to define the information architecture, ontologies, and patterns that drive the construction and architecture of MBSE models, but less attention is given to the logical follow-on of that effort: how to practically leverage the resulting semantic richness of a well-formed populated model to enable systems engineers to work more effectively, as MBSE promises. While ontologies and patterns are absolutely necessary, an MBSE effort must also design and provide practical demonstration of value (through human-understandable representations of model data that address stakeholder concerns) or it will not succeed. This paper will discuss opportunities that exist for visualization in making the richness of a well-formed model accessible to stakeholders, specifically stakeholders who rely on the model for their day-to-day work. This paper will discuss the value added by MBSE-driven visualizations in the context of a small case study of interactive visualizations created and used on NASA's proposed Europa Mission. The case study visualizations were created for the purpose of understanding and exploring targeted aspects of requirements flow, allocation, and comparing the structure of that flow-down to a conceptual project decomposition. The work presented in this paper is an example of a product that leverages the richness and formalisms of our knowledge representation while also responding to the quality attributes SEs care about.

  4. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  5. Multisensory control of a straight locomotor trajectory.

    PubMed

    Hanna, Maxim; Fung, Joyce; Lamontagne, Anouk

    2017-01-01

    Locomotor steering is contingent upon orienting oneself spatially in the environment. When the head is turned while walking, the optic flow projected onto the retina is a complex pattern comprising of a translational and a rotational component. We have created a unique paradigm to simulate different optic flows in a virtual environment. We hypothesized that non-visual (vestibular and somatosensory) cues are required for proper control of a straight trajectory while walking. This research study included 9 healthy young subjects walking in a large physical space (40×25m2) while the virtual environment is viewed in a helmet-mounted display. They were instructed to walk straight in the physical world while being exposed to three conditions: (1) self-initiated active head turns (AHT: 40° right, left, or none); (2) visually simulated head turns (SHT); and (3) visually simulated head turns with no target element (SHT_NT). Conditions 1 and 2 involved an eye-level target which subjects were instructed to fixate, whereas condition 3 was similar to condition 2 but with no target. Identical retinal flow patterns were present in the AHT and SHT conditions whereas non-visual cues differed in that a head rotation was sensed only in AHT but not in SHT. Body motions were captured by a 12-camera Vicon system. Horizontal orientations of the head and body segments, as well as the trajectory of the body's centre of mass were analyzed. SHT and SNT_NT yielded similar results. Heading and body segment orientations changed in the direction opposite to the head turns in SHT conditions. Heading remained unchanged across head turn directions in AHT. Results suggest that non-visual information is used in the control of heading while being exposed to changing rotational optic flows. The small magnitude of the changes in SHT conditions suggests that the CNS can re-weight relevant sources of information to minimize heading errors in the presence of sensory conflicts.

  6. Estimated Water Flows in 2005: United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states inmore » addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.« less

  7. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  8. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  9. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  10. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    PubMed

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  11. Low gravity quenching of hot tubes with cryogens

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, M.

    1992-01-01

    An experimental proceedure for examining flow boiling in low gravity environment is presented. The proceedure involves both ground based and KC-135 flight experiments. Two experimental apparati were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while freon 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  12. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  13. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  14. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  15. An experimental study of separated flow on a finite wing

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1981-01-01

    The flow field associated with the formation of a mushroom shaped trailing edge stall cell on a low-aspect-ratio (AR = 4.0) wing was investigated in a series of low speed wind tunnel tests (Reynolds number based on 15.2 cm chord = 480,000). Flow field surveys of the separation bubble and wake of a partially stalled and fully stalled wing were completed using a hot-wire probe, a split-film probe, and a directional sensitive pressure probe. A new color video display technique was developed to display the flow field survey data. Photographs were obtained of surface oil flow patterns and smoke flow visualization

  16. Using virtual environment for autonomous vehicle algorithm validation

    NASA Astrophysics Data System (ADS)

    Levinskis, Aleksandrs

    2018-04-01

    This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.

  17. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  18. Pulsating flow past a tube bundle

    NASA Astrophysics Data System (ADS)

    Molochnikov, V. M.; Mikheev, N. I.; Vazeev, T. A.; Paereliy, A. A.

    2017-11-01

    Visualization of the pulsating cross-flow past the in-line and staggered tube bundles has been performed. The frequency and amplitude of forced flow pulsations and the tube pitch in the bundle varied in the experiments. The main attention was focused on the flow pattern in the near wake of the third-row tube. The most indicative regimes of flow past a tube in a bundle have been revealed depending on forced flow unsteadiness parameters. The obtained data have been generalized in the flow maps in the space of dimensionless frequency (Strouhal number, St) and relative pulsation amplitude, β, individually for the in-line and staggered tube arrangement. Three most indicative regimes of pulsating flow past the tubes in a bundle have been singled out in each flow map.

  19. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.

    2018-01-01

    We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533

  20. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  1. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  2. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less

  3. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less

  4. Secondary Flows and Boundary-Layer Accumulations in Turbine Nozzles

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E; Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z

    1954-01-01

    An investigation of secondary-flow loss patterns originating in three sets of turbine nozzle blade passages was conducted by means of flow-visualization studies and detailed flow measurements. For all cases, high loss values were measured in the fluid downstream of the corners formed by the suction surfaces of the blades and the shrouds, and these losses were accompanied by discharge-angle deviations from design values. Despite the size of the loss regions and angle gradients, over-all mass-average blade efficiencies were of the order of 0.99 and 0.98 and, therefore, are not a good index of blade performance.

  5. Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation.

    PubMed

    Yiu, Billy Y S; Yu, Alfred C H

    2017-12-01

    As new ultrasound flow imaging methods are being developed, there is a growing need to devise appropriate flow phantoms that can holistically assess the accuracy of the derived flow estimates. In this paper, we present a novel spiral flow phantom design whose Archimedean spiral lumen naturally gives rise to multi-directional flow over all possible angles (i.e., from 0° to 360°). Developed using lost-core casting principles, the phantom geometry comprised a three-loop spiral (4-mm diameter and 5-mm pitch), and it was set to operate in steady flow mode (3 mL/s flow rate). After characterizing the flow pattern within the spiral vessel using computational fluid dynamics (CFD) simulations, the phantom was applied to evaluate the performance of color flow imaging (CFI) and high-frame-rate vector flow imaging. Significant spurious coloring artifacts were found when using CFI to visualize flow in the spiral phantom. In contrast, using vector flow imaging (least-squares multi-angle Doppler based on a three-transmit and three-receive configuration), we observed consistent depiction of flow velocity magnitude and direction within the spiral vessel lumen. The spiral flow phantom was also found to be a useful tool in facilitating demonstration of dynamic flow visualization based on vector projectile imaging. Overall, these results demonstrate the spiral flow phantom's practical value in analyzing the efficacy of ultrasound flow estimation methods.

  6. Separated flows receptivity for external disturbances

    NASA Astrophysics Data System (ADS)

    Zanin, B. Yu.

    2017-10-01

    Results of experimental investigations of the flow over a straight-wing model in a low-turbulence wind tunnel are reported. The influence of a turbulent wake due to a thin filament on the structure of boundary layer on the model surface was examined. Also the fishing line was installed in the test section of the wind tunnel and the effect of line on the boundary-layer flow structure is considered. Flow visualization in boundary layer and hot-wire measurements were performed. The wake and the grid substantially modified the boundary layer flow pattern: the separation disappeared from the wing surface, and the formation of longitudinal structures was observed.

  7. Application of holography to flow visualization within rotating compressor blade row. [to determine three dimensional shock patterns

    NASA Technical Reports Server (NTRS)

    Wuerker, R. F.; Kobayashi, R. J.; Heflinger, L. O.; Ware, T. C.

    1974-01-01

    Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique.

  8. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system.

    PubMed

    Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F

    2009-04-01

    Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.

  9. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  10. Vortex shedding in bileaflet heart valve prostheses.

    PubMed

    Gross, J M; Shermer, C D; Hwang, N H

    1988-01-01

    A dynamic study of two geometrically similar bileaflet heart valve prostheses (HVP) was performed using a physiologic mock circulatory flow loop. The HVPs studied were the 25 mm St. Jude Medical (SJM) and the 25 mm Carbomedics (CMI) in the aortic position and the 27 mm SJM and 27 mm CMI in the mitral position. All data were collected at a heart rate of 70 beats/min and a cardiac output of 5.0 L/min. Flow visualization was conducted in the transparent flow chambers of the pulsatile mock circulatory flow loop using a 15 mW He-Ne laser light source. A cylindrical lens and optics system converted the incident laser beam into a thin parallel light plane, and 420 microns tracer particles were suspended in the testing fluid to illuminate the flow field at selected planes. Frame-by-frame analysis of the 16 mm high-speed cine provides detailed phasic flow patterns in the vicinity of the HVP. A series of still photographs of flow patterns, taken at approximately 22.5 degrees phase intervals, are sequentially presented for each HVP. In the aortic position, a Karman-like vortex pattern appears downstream of the SJM at the end of the ejection phase. The CMI exhibits a rather symmetrical ejection flow pattern that turns into random motion immediately after the onset of ejection. In the mitral position, the SJM again exhibits a strong core flow during ventricular filling, whereas the CMI produces a more diffuse pattern during the same period. A pair of vortices shed from both the SJM and CMI are clearly visible toward the end of the ventricular filling phase. The vortex mechanisms are discussed in light of leaflet boundary layer formation.

  11. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.

    2009-08-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.

  12. Injection flow during steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Yu, Mengmeng; Cheng, Ping; Wu, Xinyu

    2007-08-01

    An experimental investigation with the combined use of visualization and measurement techniques was performed on flow pattern transitions and wall temperature distributions in the condensation of steam in silicon microchannels. Three sets of trapezoidal silicon microchannels, having hydraulic diameters of 53.0 µm, 77.5 µm and 128.5 µm, respectively, were tested under different flow and cooling conditions. It was found that during the transitions from the annular flow to the slug/bubbly flow, a peculiar flow pattern injection flow appeared in silicon microchannels. The location at which the injection flow occurred was dependent on the Reynolds number, condensation number and hydraulic diameter. With increase in the Reynolds number, or decrease in the condensation number and hydraulic diameter, the injection flow moved towards the channel outlet. Based on the experimental results, a dimensionless correlation for the location of injection flow in functions of the Reynolds number, condensation number and hydraulic diameter was proposed for the first time. This correlation can be used to determine the annular flow zone and the slug/bubbly flow zone, and further to determine the dominating condensation flow pattern in silicon microchannels. Wall temperature distributions were also explored in this paper. It was found that near the injection flow, wall temperatures have a rapid decrease in the flow direction, while upstream and downstream far away from the injection flow, wall temperatures decreased mildly. Thus, the location of injection flow can also be determined based on the wall temperature distributions. The results presented in this paper help us to better understand the condensation flow and heat transfer in silicon microchannels.

  13. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  14. An experimental study of mushroom shaped stall cells. [on finite wings with separated flow

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1982-01-01

    Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.

  15. Low gravity transfer line chilldown

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, Masahiro

    1992-01-01

    The progress to date is presented in providing predictive capabilities for the transfer line chilldown problem in low gravity environment. A low gravity experimental set up was designed and flown onboard the NASA/KC-135 airplane. Some results of this experimental effort are presented. The cooling liquid for these experiments was liquid nitrogen. The boiling phenomenon was investigated in this case using flow visualization techniques as well as recording wall temperatures. The flow field was established by injecting cold liquid in a heated tube whose temperature was set above saturation values. The tubes were vertically supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  16. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.

    PubMed

    Kucinschi, Bogdan R; Scherer, Ronald C; DeWitt, Kenneth J; Ng, Terry T M

    2006-06-01

    Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.

  17. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  18. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  19. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  20. Control of Wind Tunnel Operations Using Neural Net Interpretation of Flow Visualization Records

    NASA Technical Reports Server (NTRS)

    Buggele, Alvin E.; Decker, Arthur J.

    1994-01-01

    Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Research Center is discussed. The tunnel and the layout for neural net control or control by other parallel processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumentation and components, as well as parallel processing and control strategies. Neural nets have already been tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic cascade mode of operation. That mode was operated for performing wake surveys in connection with NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was presented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve settings or tunnel state identifiers for selected tunnel operating points, conditions, or states. The neural nets were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough so that ten or more can be combined per control operation to interpret flow visualization data, point sensor data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind tunnel operations at Mach 2.0 based on shock wave patterns.

  1. Study on tip leakage vortex cavitating flows using a visualization method

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu

    2018-01-01

    Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.

  2. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  3. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  4. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  5. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  6. The effects of leading edge modifications on the post-stall characteristics of wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.

    1980-01-01

    An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.

  7. Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago

    PubMed Central

    Zhou, Xiaolu

    2015-01-01

    The growing number of bike sharing systems (BSS) in many cities largely facilitates biking for transportation and recreation. Most recent bike sharing systems produce time and location specific data, which enables the study of travel behavior and mobility of each individual. However, despite a rapid growth of interest, studies on massive bike sharing data and the underneath travel pattern are still limited. Few studies have explored and visualized spatiotemporal patterns of bike sharing behavior using flow clustering, nor examined the station functional profiles based on over-demand patterns. This study investigated the spatiotemporal biking pattern in Chicago by analyzing massive BSS data from July to December in 2013 and 2014. The BSS in Chicago gained more popularity. About 15.9% more people subscribed to this service. Specifically, we constructed bike flow similarity graph and used fastgreedy algorithm to detect spatial communities of biking flows. By using the proposed methods, we discovered unique travel patterns on weekdays and weekends as well as different travel trends for customers and subscribers from the noisy massive amount data. In addition, we also examined the temporal demands for bikes and docks using hierarchical clustering method. Results demonstrated the modeled over-demand patterns in Chicago. This study contributes to offer better knowledge of biking flow patterns, which was difficult to obtain using traditional methods. Given the trend of increasing popularity of the BSS and data openness in different cities, methods used in this study can extend to examine the biking patterns and BSS functionality in different cities. PMID:26445357

  8. Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago.

    PubMed

    Zhou, Xiaolu

    2015-01-01

    The growing number of bike sharing systems (BSS) in many cities largely facilitates biking for transportation and recreation. Most recent bike sharing systems produce time and location specific data, which enables the study of travel behavior and mobility of each individual. However, despite a rapid growth of interest, studies on massive bike sharing data and the underneath travel pattern are still limited. Few studies have explored and visualized spatiotemporal patterns of bike sharing behavior using flow clustering, nor examined the station functional profiles based on over-demand patterns. This study investigated the spatiotemporal biking pattern in Chicago by analyzing massive BSS data from July to December in 2013 and 2014. The BSS in Chicago gained more popularity. About 15.9% more people subscribed to this service. Specifically, we constructed bike flow similarity graph and used fastgreedy algorithm to detect spatial communities of biking flows. By using the proposed methods, we discovered unique travel patterns on weekdays and weekends as well as different travel trends for customers and subscribers from the noisy massive amount data. In addition, we also examined the temporal demands for bikes and docks using hierarchical clustering method. Results demonstrated the modeled over-demand patterns in Chicago. This study contributes to offer better knowledge of biking flow patterns, which was difficult to obtain using traditional methods. Given the trend of increasing popularity of the BSS and data openness in different cities, methods used in this study can extend to examine the biking patterns and BSS functionality in different cities.

  9. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  10. A pulse-forming network for particle path visualization. [at Ames Aeromechanics Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.

    1981-01-01

    A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.

  11. Nanofluid transport in a living soft microtube

    NASA Astrophysics Data System (ADS)

    Sung, Baeckkyoung; Kim, Se Hoon; Lee, Sungwoo; Lim, Jaekwan; Lee, Jin-Kyu; Soh, Kwang-Sup

    2015-09-01

    The mechanism of hydrodynamic transport of nanoparticles in living tissues by intrinsic lymphatic pumping remains one of the fundamental questions in the field of nanomedicine. However, despite its importance, direct visualization of the nanofluid transport mechanism has not been achieved. In this article, we report a novel in situ fluorescence bioimaging method for observing real-time microflow patterns of nanofluids confined in a contracting and expanding soft microtube. This method allows for physiological monitoring of spatiotemporally resolved microfluidic behaviour and channel undulation during the peristaltic transport of fluorescent nanoparticle suspensions by lymph vessels embedded in bulky tissues at the location of the hindlimb. The fluorescent nanofluid conferred a high optical contrast for the visualization of the lymphatic microtube, with which the concentration and viscosity of the nanofluid could be determined. The nanofluid and microtube mechanics of the hindlimb lymph vessels exhibited similar behaviours as the previously described base fluid flow of peristaltic mesenteric lymph vessels. Specifically, the microtube contraction and expansion induced increased forward flows, and a reverse flow developed at the maximum contraction, all of which corresponded to Poiseuille flow and implied that higher tube wall shear stress was related to increased axial flow velocity. On the other hand, our study identified a highly heterogeneous flow pattern that could appear during the microtube expansion phase, whose axial velocity profile remarkably deviated from the Hagen-Poiseuille equation. In addition, the peristaltic pumping power was estimated to be on the nanowatt order of magnitude. Finally, we discuss the possible applications of this nanofluidic model system in the context of nanobiotechnology.

  12. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  13. Evaluation of lumbar transforaminal epidural injections with needle placement and contrast flow patterns: a prospective, descriptive report.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Pampati, Vidyasagar; Damron, Kim S; McManus, Carla D

    2004-04-01

    Transforaminal epidural steroid injection is one of the commonly employed modalities of treatment in managing nerve root pain. However, there have been no controlled prospective evaluations of epidural and nerve root contrast distribution patterns and other aspects of fluoroscopically directed lumbosacral transforaminal epidural steroid injections. To evaluate contrast flow patterns and intravascular needle placement of fluoroscopically guided lumbosacral transforaminal epidural injections. A prospective, observational study. A total of 100 consecutive patients undergoing fluoroscopically guided transforaminal epidural steroid injections were evaluated. The contrast flow patterns, ventral or dorsal epidural filling, nerve root filling, C-arm time, and intravascular needle placement were evaluated. Ventral epidural filling was seen in 88% of the procedures, in contrast to dorsal filling noted in 9% of the procedures. Nerve root filling was seen in 97% of the procedures. Total intravenous placement of the needle was noted in 22% of the procedures, whereas negative flashback and aspiration was noted in 5% of the procedures. Lumbosacral transforaminal epidural injections, performed under fluoroscopic visualization, provide excellent nerve root filling and ventral epidural filling patterns. However, unrecognized intravascular needle placement with negative flashback or aspiration was noted in 5% of the procedures.

  14. Erasure of memory in paste by irradiation of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Nakahara, Akio; Yoneyama, Ryota; Ito, Maruto; Matsuo, Yousuke; Kitsunezaki, So

    2017-06-01

    Densely packed colloidal suspension, called paste, remembers the direction of applied forces, such as vibration and flow, and these memories kept in paste can be visualized as morphology of desiccation crack patterns. For example, when the paste remembers the direction of vibration, all primary cracks propagate in the direction perpendicular to the direction of initial vibration. On the other hand, when the paste remembers the direction of flow, all primary cracks propagate along the direction of initial flow. These results indicate that external forces imprint easy-breakable direction into paste as memories. Therefore, by controlling memories in paste, we can tune to produce various types of crack patterns, such as cellular, radial, lamellar, ring, spiral and lattice structures. Recently we have found that memories in paste can be erased by the irradiation of ultrasonic waves to paste as we obtain only isotropic and cellular crack patterns without any anisotropy related to memory effect. This method can be applied to increase the breaking strength of dried paste by homogenizing microstructure in paste.

  15. Experimental studies of laminar-turbulent transition on a body of revolution

    NASA Astrophysics Data System (ADS)

    Dovgal, A. V.; Zanin, B. Yu; Sorokin, A. M.

    2017-10-01

    The focus of the present paper is hydrodynamic stability and transition to turbulence on an axisymmetric body. The objective is to trace the evolution of perturbed flow close to the surface of experimental model with increase of the angle of attack starting with zero incidence. In what follows, we briefly summarize our wind-tunnel data on this topic which were obtained at low subsonic velocities through hot-wire measurements and flow visualization. As is found, in conditions of laminar boundary-layer separation and flow instability, even small variations of the body incidence may have a profound effect on the flow pattern.

  16. Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mohrmann, Jacob Steven

    2007-10-01

    Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest a physical link between the sites, which are close (2.5 km). The time pattern could be a result of a shared hydrothermal aquifer, convectively heating and discharging at both streams. However, the common time pattern could also be the result of independent factors, which coincidentally caused a similar time pattern.

  17. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  18. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  19. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  20. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  1. The design and fabrication of two portal vein flow phantoms by different methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less

  2. Spatial pattern of severe acute respiratory syndrome in-out flow in 2003 in Mainland China.

    PubMed

    Xu, Chengdong; Wang, Jinfeng; Wang, Li; Cao, Chunxiang

    2014-12-31

    Severe acute respiratory syndrome (SARS) spread to 32 countries and regions within a few months in 2003. There were 5327 SARS cases from November 2002 to May 2003 in Mainland China, which involved 29 provinces, resulted in 349 deaths, and directly caused economic losses of $18.3 billion. This study used an in-out flow model and flow mapping to visualize and explore the spatial pattern of SARS transmission in different regions. In-out flow is measured by the in-out degree and clustering coefficient of SARS. Flow mapping is an exploratory method of spatial visualization for interaction data. The findings were as follows. (1) SARS in-out flow had a clear hierarchy. It formed two main centers, Guangdong in South China and Beijing in North China, and two secondary centers, Shanxi and Inner Mongolia, both connected to Beijing. (2) "Spring Festival travel" strengthened external flow, but "SARS panic effect" played a more significant role and pushed the external flow to the peak. (3) External flow and its three typical kinds showed obvious spatial heterogeneity, such as self-spreading flow (spatial displacement of SARS cases only within the province or municipality of onset and medical locations); hospitalized flow (spatial displacement of SARS cases that had been seen by a hospital doctor); and migrant flow (spatial displacement of SARS cases among migrant workers). (4) Internal and external flow tended to occur in younger groups, and occupational differentiation was particularly evident. Low-income groups of male migrants aged 19-35 years were the main routes of external flow. During 2002-2003, SARS in-out flow played an important role in countrywide transmission of the disease in Mainland China. The flow had obvious spatial heterogeneity, which was influenced by migrants' behavior characteristics. In addition, the Chinese holiday effect led to irregular spread of SARS, but the panic effect was more apparent in the middle and late stages of the epidemic. These findings constitute valuable input to prevent and control future serious infectious diseases like SARS.

  3. Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas

    PubMed Central

    Liu, Daoming; Kenjeres, Sasa

    2017-01-01

    In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078

  4. High quality optical microangiography of ocular microcirculation and measurement of total retinal blood flow in mouse eye

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.

    2013-03-01

    Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.

  5. Nocturnal insects use optic flow for flight control

    PubMed Central

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047

  6. Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing

    NASA Astrophysics Data System (ADS)

    Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin

    2014-11-01

    Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).

  7. Water-tunnel study results of a TF/A-18 and F/A-18 canopy flow visualization

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.; Fisher, David F.

    1990-01-01

    A water tunnel study examining the influence of canopy shape on canopy and leading edge extension flow patterns was initiated. The F/A-18 single-place canopy model and the TF/A-18 two place canopy model were the study subjects. Plan view and side view photographs showing the flow patterns created by injected colored dye are presented for 0 deg and 5 deg sideslip angles. Photographs taken at angle of attack and sideslip conditions correspond to test departure points found in flight test. Flight experience has shown that the TF/A-18 airplane departs in regions where the F/A-18 airplane is departure-resistant. The study results provide insight into the differences in flow patterns which may influence the resulting aerodynamics of the TF/A-18 and F/A-18 aircraft. It was found that at 0 deg sideslip, the TF/A-18 model has more downward flow on the sides of the canopy than the F/A-18 model. This could be indicative of flow from the leading edge extension (LEX) vortexes impinging on the sides of the wider TF/A-18 canopy. In addition, the TF/A-18 model has larger areas of asymmetric separated and unsteady flow on the LEXs and fuselage, possibly indicating a lateral and directional destabilizing effect at the conditions studied.

  8. Jet Evolution Visualized and Quantified Using Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Reeder, Mark F.

    1996-01-01

    Filtered Rayleigh scattering was utilized as a flow diagnostic in an investigation of a method for enhancing mixing in supersonic jets. The primary objectives of the study were to visualize the effect of vortex generating tabs on supersonic jets, to exact quantitative data from these planar visualizations, and to detect the presence of secondary flows (i.e., streamwise vorticity) generated by the tabs. An injection seeded frequency-doubled Nd:YAG was the light source and a 14 bit Princeton Instruments iodine charge coupled display (ICCD) camera recorded the image through an iodine cell. The incident wave length of the laser was held constant for each flow case so that the filter absorbed unwanted background light, but permitted part of the thermally broadened Rayleigh scattering light to pas through. The visualizations were performed for axisymmetric jets (D=1.9 cm) operated at perfectly expanded conditions for Mach 1.0, 1.5, and 2.0. All data were recorded for the jet cross section at x/D=3. One hundred instantaneous images were recorded and averaged for each case, with a threshold set to eliminate unavoidable particulate scattering. A key factor in these experiments was that the stagnation air was heated such that the expansion of the flow in the nozzle resulted in the static temperature in the jet being equal to the ambient temperature, assuming isentropic flow. Since the thermodynamic conditions of the flow were approximately the same for each case, increases in the intensity recorded by the ICCD camera could be directly attributed to the Doppler shift, and hence velocity. Visualizations were performed for Mach 1.5 and Mach 2.0 jets with tabs inserted at the nozzle exit. The distortion of the jet was readily apparent and was consistent with Mie scattering-based visualizations. Asymmetry in the intensities of the images indicate the presence of secondary flow patterns which are consistent with the streamwise vortices measured using more traditional diagnostics in subsonic jets with the same tab configurations. Because each tab causes shocks to form, the assumption of isentropic flow is not valid for these cases. However, within a reasonable first-order estimation,the intensity across the illuminated plane for these cases can be related to a value combining density and velocity.

  9. Visualizing human communication in business process simulations

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Jalkanen, Janne; Haho, Paeivi; Nieminen, Marko; Smeds, Riitta

    1999-03-01

    In this paper a description of business process simulation is given. Crucial part in the simulation of business processes is the analysis of social contacts between the participants. We will introduce a tool to collect log data and how this log data can be effectively analyzed using two different kind of methods: discussion flow charts and self-organizing maps. Discussion flow charts revealed the communication patterns and self-organizing maps are a very effective way of clustering the participants into development groups.

  10. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    PubMed

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  11. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map.

    PubMed

    Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F

    2015-09-01

    Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.

  12. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  13. Differential responses in dorsal visual cortex to motion and disparity depth cues

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.

    2013-01-01

    We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808

  14. The neural response in short-term visual recognition memory for perceptual conjunctions.

    PubMed

    Elliott, R; Dolan, R J

    1998-01-01

    Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.

  15. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in Java, a language that is portable among platforms, because it can run on different operating systems such as Windows and Unix without having to be rewritten. I had no prior experience of programming in Java at the start of my internship; I am continuously learning as I create the program. I have written the part of the program that enables a user to draw several zones, edit them, and store their locations. The next phase of my project is to allow the user to click on the side of a zone and create a boundary condition for it. A previous intern wrote a program that allows the user to input boundary conditions. I can integrate the two programs to create a larger, more usable program. After that, I will develop a way for the user to save the graph for future reference. Another eventual goal is to make the GUI capable of creating three-dimensional zones as well. Researchers such as my mentor, Dr. David Ashpis, need a quick, user-friendly

  16. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2007-08-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  17. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2009-07-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  18. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    NASA Technical Reports Server (NTRS)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  19. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  20. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  1. Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2017-06-06

    There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less

  2. Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube

    NASA Astrophysics Data System (ADS)

    Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira

    As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.

  3. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  4. Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions.

    PubMed

    Wiegner, T N; Edens, C J; Abaya, L M; Carlson, K M; Lyon-Colbert, A; Molloy, S L

    2017-01-30

    Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method.

    PubMed

    Kundoor, Vipra; Dalby, Richard N

    2010-01-01

    To develop a simple and inexpensive method to visualize and quantify droplet deposition patterns. Deposition pattern was determined by uniformly coating the nose model with Sar-Gel (a paste that changes from white to purple on contact with water) and subsequently discharging sprays into the nose model. The color change was captured using a digital camera and analyzed using Adobe Photoshop. Several tests were conducted to validate the method. Deposition patterns of different nasal sprays (Ayr, Afrin, and Zicam) and different nasal drug delivery devices (Afrin nasal spray and PARI Sinustar nasal nebulizer) were compared. We also used the method to evaluate the effect of inhaled flow rate on nasal spray deposition. There was a significant difference in the deposition area for Ayr, Afrin, and Zicam. The deposition areas of Afrin nasal spray and PARI Sinustar nasal nebulizer (2 min and 5 min) were significantly different. Inhaled flow rate did not have a significant effect on the deposition pattern. Lower viscosity formulations (Ayr, Afrin) provided greater coverage than the higher viscosity formulation (Zicam). The nebulizer covered a greater surface area than the spray pump we evaluated. Aerosol deposition in the nose model was not affected by air flow conditions.

  6. Schlieren optical visualization for transient EHD induced flow in a stratified dielectric liquid under gas-phase ac corona discharges

    NASA Astrophysics Data System (ADS)

    Ohyama, R.; Inoue, K.; Chang, J. S.

    2007-01-01

    A flow pattern characterization of electrohydrodynamically (EHD) induced flow phenomena of a stratified dielectric fluid situated in an ac corona discharge field is conducted by a Schlieren optical system. A high voltage application to a needle-plate electrode arrangement in gas-phase normally initiates a conductive type EHD gas flow. Although the EHD gas flow motion initiated from the corona discharge electrode has been well known as corona wind, no comprehensive study has been conducted for an EHD fluid flow motion of the stratified dielectric liquid that is exposed to the gas-phase ac corona discharge. The experimentally observed result clearly presents the liquid-phase EHD flow phenomenon induced from the gas-phase EHD flow via an interfacial momentum transfer. The flow phenomenon is also discussed in terms of the gas-phase EHD number under the reduced gas pressure (reduced interfacial momentum transfer) conditions.

  7. Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow

    DOE PAGES

    Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...

    2014-09-10

    Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less

  8. Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Inoue, T.

    1990-03-01

    An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.

  9. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  10. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  11. Spatial identification of tributary impacts in river networks

    Treesearch

    Christian E. Torgersen; Robert E. Gresswell; Douglas S. Bateman; Kelly M. Burnett

    2008-01-01

    The ability to assess spatial patterns of ecological conditions in river networks has been confounded by difficulties of measuring and perceiving features that are essentially invisible to observers on land and to aircraft and satellites from above. The nature of flowing water, which is opaque or at best semi-transparent, makes it difficult to visualize fine-scale...

  12. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  13. Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces

    PubMed Central

    Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles

    2009-01-01

    We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918

  14. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward

    There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less

  16. Nocturnal insects use optic flow for flight control.

    PubMed

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  17. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations

    NASA Astrophysics Data System (ADS)

    Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.

    2016-08-01

    In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.

  18. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  19. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    PubMed Central

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps. PMID:19936926

  20. Measurements and computational analysis of heat transfer and flow in a simulated turbine blade internal cooling passage

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Thurman, Douglas R.; Simonyi, Patricia S.; Hippensteele, Steven A.; Poinsatte, Philip E.

    1993-01-01

    Visual and quantitative information was obtained on heat transfer and flow in a branched-duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used to validate computer codes for internal cooling systems. Surface heat transfer coefficients and entrance flow conditions were measured at entrance Reynolds numbers of 45,000, 335,000, and 726,000. The heat transfer data were obtained using an Inconel heater sheet attached to the surface and coated with liquid crystals. Visual and quantitative flow field results using particle image velocimetry were also obtained for a plane at mid channel height for a Reynolds number of 45,000. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Computational results were determined for the same configurations and at matching Reynolds numbers; these surface heat transfer coefficients and flow velocities were computed with a commercially available code. The experimental and computational results were compared. Although some general trends did agree, there were inconsistencies in the temperature patterns as well as in the numerical results. These inconsistencies strongly suggest the need for further computational studies on complicated geometries such as the one studied.

  1. A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe

    NASA Astrophysics Data System (ADS)

    Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah

    2018-03-01

    We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.

  2. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.

  3. A Spatial Framework for Understanding Population Structure and Admixture.

    PubMed

    Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.

  4. A Spatial Framework for Understanding Population Structure and Admixture

    PubMed Central

    Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578

  5. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  6. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  7. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    NASA Astrophysics Data System (ADS)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  8. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lane, David A.

    1996-01-01

    Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

  9. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression.

    PubMed

    Spaide, Richard F

    2016-10-01

    To investigate flow characteristics of the choriocapillaris using optical coherence tomography angiography. Retrospective observational case series. Visualization of flow in individual choriocapillary vessels is below the current resolution limit of optical coherence tomography angiography instruments, but areas of absent flow signal, called flow voids, are resolvable. The central macula was imaged with the Optovue RTVue XR Avanti using a 10-μm slab thickness in 104 eyes of 80 patients who ranged in age from 24 to 99 years of age. Automatic local thresholding of the resultant raw data with the Phansalkar method was analyzed with generalized estimating equations. The distribution of flow voids vs size of the voids was highly skewed. The data showed a linear log-log plot and goodness-of-fit methods showed the data followed a power law distribution over the relevant range. A slope intercept relationship was also evaluated for the log transform and significant predictors for variables included age, hypertension, pseudodrusen, and the presence of late age-related macular degeneration (AMD) in the fellow eye. The pattern of flow voids forms a scale invariant pattern in the choriocapillaris starting at a size much smaller than a choroidal lobule. Age and hypertension affect the choriocapillaris, a flat layer of capillaries that may serve as an observable surrogate for the neural or systemic microvasculature. Significant alterations detectable in the flow pattern in eyes with pseudodrusen and in eyes with late AMD in the fellow eye offer diagnostic possibilities and impact theories of disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Investigation of environmental change pattern in Japan

    NASA Technical Reports Server (NTRS)

    Maruyasu, T.; Ochiai, H.; Sugimori, Y.; Shoji, D.; Takeda, K.; Tsuchiya, K.; Nakajima, I.; Nakano, T.; Hayashi, S.; Horikawa, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A detailed land use classification for a large urban area of Tokyo was made using MSS digital data. It was found that residential, commercial, industrial, and wooded areas and grasslands can be successfully classified. A mesoscale vortex associated with large ocean current, Kuroshio, which is a rare phenomenon, was recognized visually through the analysis of MSS data. It was found that this vortex affects the effluent patterns of rivers. Lava flowing from Sakurajima Volcano was clearly classified for three major erruptions (1779, 1914, and 1946) using MSS data.

  11. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, David S.

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in thismore » domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.« less

  13. Experimental study of the flow pattern around a bubble confined in a microfluidic Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Tsoumpas, Yannis; Fajolles, Christophe; Malloggi, Florent

    2017-11-01

    The flow field around a bubble moving with respect to a surrounding liquid in a Hele-Shaw cell can usually be characterized by a recirculating flow, which is typically attributed to a Marangoni effect due to surface tension gradients generated by a non-uniform distribution of surfactants (or temperature) along the liquid-gas interface. In the present study, we try to visualize such a flow employing 3D micro-particle tracking velocimetry. We perform experiments on an immobile flattened air bubble that is surrounded by a flow of aqueous solution of surfactant (SDS), in a microfluidic chamber described in the work of Sungyon Lee et al.. The suspending fluid is seeded with spherical micro-particles, with those captured by the recirculating flow orbiting in a three-dimensional trajectory in the vicinity of the liquid-air interface. We address the effect of velocity of the surrounding fluid, surfactant concentration and bubble radius on the recirculating flow pattern. The case of a liquid-liquid interface, with a hexadecane drop as the dispersed phase, is also discussed. The authors would like to acknowledge the financial support of Enhanced Eurotalents program (an FP7 Marie Skłodowska-Curie COFUND program) & ANR (ANR-13-BS09-0011).

  14. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  15. Off-surface infrared flow visualization

    NASA Technical Reports Server (NTRS)

    Manuel, Gregory S. (Inventor); Obara, Clifford J. (Inventor); Daryabeigi, Kamran (Inventor); Alderfer, David W. (Inventor)

    1993-01-01

    A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization.

  16. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    NASA Astrophysics Data System (ADS)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  17. Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow.

    PubMed

    Nalbach, H O

    1992-01-01

    Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.

  18. Estimating perceived phonatory pressedness in singing from flow glottograms.

    PubMed

    Sundberg, Johan; Thalén, Margareta; Alku, Paavo; Vilkman, Erkki

    2004-03-01

    The normalized amplitude quotient (NAQ), defined as the ratio between the peak-to-peak amplitude of the flow pulse and the negative peak amplitude of the differentiated flow glottogram and normalized with respect to period time, has been shown to be related to glottal adduction. Glottal adduction, in turn, affects mode of phonation and hence perceived phonatory pressedness. The relationship between NAQ and perceived phonatory pressedness was analyzed in a material collected from a professional female singer and singing teacher who sang a triad pattern in breathy, flow, neutral, and pressed phonation in three different loudness conditions (soft, middle, loud). In addition, she also sang the same triad pattern in four different styles of singing, classical, pop, jazz, and blues, in the same three loudness conditions. A panel of experts rated the degree of perceived phonatory press along visual analogue scales. Comparing the obtained mean rated pressedness ratings with the mean NAQ values for the various triads showed that about 73% of the variation in perceived pressedness could be accounted for by variations of NAQ.

  19. Some comments on particle image displacement velocimetry

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M.

    1988-01-01

    Laser speckle velocimetry (LSV) or particle image displacement velocimetry, is introduced. This technique provides the simultaneous visualization of the two-dimensional streamline pattern in unsteady flows as well as the quantification of the velocity field over an entire plane. The advantage of this technique is that the velocity field can be measured over an entire plane of the flow field simultaneously, with accuracy and spatial resolution. From this the instantaneous vorticity field can be easily obtained. This constitutes a great asset for the study of a variety of flows that evolve stochastically in both space and time. The basic concept of LSV; methods of data acquisition and reduction, examples of its use, and parameters that affect its utilization are described.

  20. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    PubMed

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  1. Visual control of flight speed in Drosophila melanogaster.

    PubMed

    Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H

    2009-04-01

    Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.

  2. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; MacMinn, Christopher; Juanes, Ruben

    2015-11-01

    Two-phase flow in porous media is important in many natural and industrial processes. While it is well known the wetting properties of porous media can vary drastically depending on the media and the pore fluids, their effect continues to challenge our microscopic and macroscopic descriptions. We conduct experiments via radial displacement of silicone oil by water in microfluidic devices patterned with vertical posts. These devices allow for flow visualization in a complex but well-defined microstructure. Additionally, the surface energy of the devices can be tuned over a wide range of contact angles. We perform injection experiments with highly unfavorable mobility contrast at rates over four orders of magnitude. We focus on three wetting conditions: drainage θ = 120°, weak imbibition θ = 60°, and strong imbibition θ = 7°. In drainage, we see a transition from viscous fingering at high capillary numbers to a morphology that differs from capillary fingering. In weak imbibition, we observe stabilization of flow due to cooperative invasion at the pore scale. In strong imbibition, we find the flow is heavily influenced by a precursor front that emanates from the main imbibition front. Our work shows the important, yet intricate, impact of wettability on immiscible flow in porous media.

  3. A collection of flow visualization techniques used in the Aerodynamic Research Branch

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.

  4. Visualization of drifting buoy deployments on upper Detroit River within the Great Lakes Waterway from August 28-30, 2001

    USGS Publications Warehouse

    Holtschlag, David J.; Aichele, Steve A.

    2002-01-01

    Detroit River is a connecting channel on the Great Lakes waterway that joins Lake St. Clair with Lake Erie. The river forms part of the international boundary between the United States and Canada in southeastern Michigan and southern Ontario. Drifting buoys were deployed on Detroit River to help investigate flow characteristics of four selected reaches as part of a source water assessment study of public water intakes. The drifting buoys contained global positioning system (GPS) receivers to help track their movements following their deployment. In some deployments, buoys were released across a transect at approximately uniform intervals to better understand flow patterns. In other deployments, buoys were released in clusters to investigate turbulent dispersion characteristics. Computer animations of buoy movements, which can be viewed through the Internet, are developed to help visualize the results of the buoy deployments.

  5. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  6. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    NASA Astrophysics Data System (ADS)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  7. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy.

    PubMed

    Rougier, M-B; Delyfer, M-N; Korobelnik, J-F

    2017-02-01

    To describe changes of the retinal peripapillary microvasculature on optical coherence tomography angiography (OCT-A) in non-arteritic anterior ischemic optic (NAION) neuropathy. Observational study of 10 patients at the acute phase of NAION. OCT-A was performed using a 3mm×3mm square centered on the optic disc (Cirrus HD-OCT with Angioplex, Carl Zeiss Meditec, Dublin, CA). A qualitative comparison was made with the healthy fellow eye of each patient. All patients had a fluorescein angiography (HRA2, Heidelberg, Germany) and a visual field examination (Octopus 101 ® , Haag-Streit, USA). In the affected eyes, OCT-A showed clear modifications in the radial peripapillary network. In all these eyes, a focal disappearance of the superficial capillary radial pattern was present, twisted and irregular. In 8 eyes, there was also a lack of vascularization in some focal areas, appearing as dark areas. No correlation was found between the topography of the vascular alteration shown on OCT-A and visual field pattern defects. OCT-A is a new imaging technology able to demonstrate easily and safely the changes in the peripapillary capillary network during the acute phase of NAION. These changes are likely related to a decrease of the prelaminar optic nerve blood flow during the acute phase of NAION. Visual field defects are not correlated with OCT-A images, suggesting that they may be due mainly to disturbances in posterior ciliary artery blood flow. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.

  9. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  10. Structural evolution of a granular medium during simultaneous penetration

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, Jorge; Carreón, Yojana J. P.; Moctezuma, R. E.

    2018-01-01

    Typically, fluidized beds are granular systems composed of solid particles through which a fluid flows. They are relevant to a wide variety of disciplines such as physics, chemistry, engineering, among others. Generally, the fluidized beds are characterized by different flow regimes such as particulate, bubbling, slugging, turbulent, fast fluidization, and pneumatic conveying. Here, we report the experimental study of the structural evolution of a granular system due to simultaneous penetration of intruders in the presence of an upward airflow. We found that the granular medium evolves from the static state to the turbulent regime showing the coexistence of three regions in different flow regimes. Interestingly, the cooperative dynamic of intruders correlate with the formation of such regions. As a non-invasive method, we use lacunarity and fractal dimension to quantitatively describe the patterns arising within the system during the different stages of the penetration process. Finally, we found that our results would allow us to relate the evolution of the visual patterns appearing in the process with different physical properties of the system.

  11. Ghost Particle Velocimetry: Accurate 3D Flow Visualization Using Standard Lab Equipment

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-07-01

    We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this “ghost particle velocimetry” technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.

  12. An experimental study of the aerodynamic characteristics of planar and non-planar outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1987-01-01

    A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.

  13. Software Aids Visualization of Computed Unsteady Flow

    NASA Technical Reports Server (NTRS)

    Kao, David; Kenwright, David

    2003-01-01

    Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.

  14. An experimental study of oscillatory thermocapillary convection in cylindrical containers

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Lee, J. H.; Ostrach, S.; Pline, A.

    1992-01-01

    An experimental study of oscillatory thermocapillary in small cylindrical containers with a heating wire placed along the center axis is performed by investigating the flow structures and temperature distributions under various conditions. To supplement the flow visualization the surface is scanned using an infrared imager. Here, 2 cS viscosity (Pr = 27) silicone oil is used as the test fluid. It is observed that beyond a certain temperature difference between the container wall and the heating wire, a distinctive unsteady flow pattern appears. This unsteady phenomenon is identified as oscillatory thermocapillary. After the onset of oscillations the flow structure becomes nonaxisymmetric and wave motion is observed at the free surface. It is shown that the critical temperature difference is independent of container dimensions if the aspect ratio is fixed.

  15. Parametric Study of Sealant Nozzle

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  16. Representational dynamics of object recognition: Feedforward and feedback information flows.

    PubMed

    Goddard, Erin; Carlson, Thomas A; Dermody, Nadene; Woolgar, Alexandra

    2016-03-01

    Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding object identity may be processed over different timescales. Here we used the high temporal resolution of magnetoencephalography (MEG) combined with multivariate pattern analysis to measure information specifically related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from ~80ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity from a later time (~265ms post stimulus onset). Low spatial frequency information related to object identity was present in the MEG signal at an earlier time than high spatial frequency information for peri-occipital cortex, but not for peri-frontal cortex. We additionally used Granger causality analysis to compare feedforward and feedback influences on representational content, and found evidence of both an early feedfoward flow and later feedback flow of information related to object identity. We discuss our findings in relation to existing theories of object processing and propose how the methods we use here could be used to address further questions of the neural substrates underlying object perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The development of laser speckle velocimetry for the measurement of vortical flow fields

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1986-01-01

    A new velocity measurement technique is described that provides the simultaneous visualization of a two-dimensional streamline pattern and the quantification of the velocity field. The main advantage of this technique is that the velocity field can be measured with sufficient accuracy and spatial resolution so that the vorticity field can be readily obtained. This technique is ideally suited for the study of unsteady vortical flows, which occur in rotorcraft and in high-angle-of-attack aerodynamics. The technique, some of the important parameters that affect its use, and some recent examples are described.

  18. Experimental and numerical studies on three dimensional GTA weld pool convection: Non-axisymmetric effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Y.; Dutta, P.; Schupp, P.E.

    1995-12-31

    Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.

  19. Wind-tunnel measurements in the wakes of structures

    NASA Technical Reports Server (NTRS)

    Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.

    1977-01-01

    Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.

  20. High-efficient Extraction of Drainage Networks from Digital Elevation Model Data Constrained by Enhanced Flow Enforcement from Known River Map

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, T.; Li, J.; Wang, G.

    2017-12-01

    Improved drainage network extraction can be achieved by flow enforcement whereby information of known river maps is imposed to the flow-path modeling process. However, the common elevation-based stream burning method can sometimes cause unintended topological errors and misinterpret the overall drainage pattern. We presented an enhanced flow enforcement method to facilitate accurate and efficient process of drainage network extraction. Both the topology of the mapped hydrography and the initial landscape of the DEM are well preserved and fully utilized in the proposed method. An improved stream rasterization is achieved here, yielding continuous, unambiguous and stream-collision-free raster equivalent of stream vectors for flow enforcement. By imposing priority-based enforcement with a complementary flow direction enhancement procedure, the drainage patterns of the mapped hydrography are fully represented in the derived results. The proposed method was tested over the Rogue River Basin, using DEMs with various resolutions. As indicated by the visual and statistical analyses, the proposed method has three major advantages: (1) it significantly reduces the occurrences of topological errors, yielding very accurate watershed partition and channel delineation, (2) it ensures scale-consistent performance at DEMs of various resolutions, and (3) the entire extraction process is well-designed to achieve great computational efficiency.

  1. Using mobile devices for inpatient rounding and handoffs: an innovative application developed and rapidly adopted by clinicians in a pediatric hospital.

    PubMed

    Motulsky, Aude; Wong, Jenna; Cordeau, Jean-Pierre; Pomalaza, Jorge; Barkun, Jeffrey; Tamblyn, Robyn

    2017-04-01

    To describe the usage of a novel application (The FLOW) that allows mobile devices to be used for rounding and handoffs. The FLOW provides a view of patient data and the capacity to enter short notes via personal mobile devices. It was deployed using a "bring-your-own-device" model in 4 pilot units. Social network analysis (SNA) was applied to audit trails in order to visualize usage patterns. A questionnaire was used to describe user experience. Overall, 253 health professionals used The FLOW with their personal mobile devices from October 2013 to March 2015. In pediatric and neonatal intensive care units (ICUs), a median of 26-26.5 notes were entered per user per day. Visual network representation of app entries showed that usage patterns were different between the ICUs. In 127 questionnaires (50%), respondents reported using The FLOW most often to enter notes and for handoffs. The FLOW was perceived as having improved patient care by 57% of respondents, compared to usual care. Most respondents (86%) wished to continue using The FLOW. This study shows how a handoff and rounding tool was quickly adopted in pediatric and neonatal ICUs in a hospital setting where patient charts were still paper-based. Originally developed as a tool to support informal documentation using smartphones, it was adapted to local practices and expanded to print sign-out documents and import notes within the medicolegal record with desktop computers. Interestingly, even if not supported by the nursing administrative authorities, the level of use for data entry among nurses and doctors was similar in all units, indicating close collaboration in documentation practices in these ICUs. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  3. Curvilinear approach to an intersection and visual detection of a collision.

    PubMed

    Berthelon, C; Mestre, D

    1993-09-01

    Visual motion perception plays a fundamental role in vehicle control. Recent studies have shown that the pattern of optical flow resulting from the observer's self-motion through a stable environment is used by the observer to accurately control his or her movements. However, little is known about the perception of another vehicle during self-motion--for instance, when a car driver approaches an intersection with traffic. In a series of experiments using visual simulations of car driving, we show that observers are able to detect the presence of a moving object during self-motion. However, the perception of the other car's trajectory appears to be strongly dependent on environmental factors, such as the presence of a road sign near the intersection or the shape of the road. These results suggest that local and global visual factors determine the perception of a car's trajectory during self-motion.

  4. VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.

    PubMed

    Yu, Bowen; Silva, Claudio T

    2017-01-01

    Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.

  5. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  6. Experimental Investigation of the Flow Structure over a Delta Wing Via Flow Visualization Methods.

    PubMed

    Shen, Lu; Chen, Zong-Nan; Wen, Chihyung

    2018-04-23

    It is well known that the flow field over a delta wing is dominated by a pair of counter rotating leading edge vortices (LEV). However, their mechanism is not well understood. The flow visualization technique is a promising non-intrusive method to illustrate the complex flow field spatially and temporally. A basic flow visualization setup consists of a high-powered laser and optic lenses to generate the laser sheet, a camera, a tracer particle generator, and a data processor. The wind tunnel setup, the specifications of devices involved, and the corresponding parameter settings are dependent on the flow features to be obtained. Normal smoke wire flow visualization uses a smoke wire to demonstrate the flow streaklines. However, the performance of this method is limited by poor spatial resolution when it is conducted in a complex flow field. Therefore, an improved smoke flow visualization technique has been developed. This technique illustrates the large-scale global LEV flow field and the small-scale shear layer flow structure at the same time, providing a valuable reference for later detailed particle image velocimetry (PIV) measurement. In this paper, the application of the improved smoke flow visualization and PIV measurement to study the unsteady flow phenomena over a delta wing is demonstrated. The procedure and cautions for conducting the experiment are listed, including wind tunnel setup, data acquisition, and data processing. The representative results show that these two flow visualization methods are effective techniques for investigating the three-dimensional flow field qualitatively and quantitatively.

  7. Beyond magic traits: Multimodal mating cues in Heliconius butterflies.

    PubMed

    Mérot, Claire; Frérot, Brigitte; Leppik, Ene; Joron, Mathieu

    2015-11-01

    Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called "magic traits" for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short-distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR

    NASA Astrophysics Data System (ADS)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2006-04-01

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering or as reactors. We report a model study on silica aerogel using a time-of-flight magnetic resonance imaging technique to characterize the flow field and explain the effects of heterogeneities in the pore structure on gas flow and dispersion with 129Xe as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides insights into the dynamics of flow in porous media where several phases or chemical species may be present.

  9. Harbor seals (Phoca vitulina) can perceive optic flow under water.

    PubMed

    Gläser, Nele; Mauck, Björn; Kandil, Farid I; Lappe, Markus; Dehnhardt, Guido; Hanke, Frederike D

    2014-01-01

    Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal's accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.

  10. Harbor Seals (Phoca vitulina) Can Perceive Optic Flow under Water

    PubMed Central

    Gläser, Nele; Mauck, Björn; Kandil, Farid I.; Lappe, Markus; Dehnhardt, Guido; Hanke, Frederike D.

    2014-01-01

    Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal's accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes. PMID:25058490

  11. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  12. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition aremore » not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.« less

  13. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  14. Aerodynamics and performance verifications of test methods for laboratory fume cupboards.

    PubMed

    Tseng, Li-Ching; Huang, Rong Fung; Chen, Chih-Chieh; Chang, Cheng-Ping

    2007-03-01

    The laser-light-sheet-assisted smoke flow visualization technique is performed on a full-size, transparent, commercial grade chemical fume cupboard to diagnose the flow characteristics and to verify the validity of several current containment test methods. The visualized flow patterns identify the recirculation areas that would inevitably exist in the conventional fume cupboards because of the fundamental configurations and structures. The large-scale vortex structures exist around the side walls, the doorsill of the cupboard and in the vicinity of the near-wake region of the manikin. The identified recirculation areas are taken as the 'dangerous' regions where the risk of turbulent dispersion of contaminants may be high. Several existing tracer gas containment test methods (BS 7258:1994, prEN 14175-3:2003 and ANSI/ASHRAE 110:1995) are conducted to verify the effectiveness of these methods in detecting the contaminant leakage. By comparing the results of the flow visualization and the tracer gas tests, it is found that the local recirculation regions are more prone to contaminant leakage because of the complex interaction between the shear layers and the smoke movement through the mechanism of turbulent dispersion. From the point of view of aerodynamics, the present study verifies that the methodology of the prEN 14175-3:2003 protocol can produce more reliable and consistent results because it is based on the region-by-region measurement and encompasses the most area of the entire recirculation zone of the cupboard. A modified test method combined with the region-by-region approach at the presence of the manikin shows substantially different results of the containment. A better performance test method which can describe an operator's exposure and the correlation between flow characteristics and the contaminant leakage properties is therefore suggested.

  15. In-Flight Flow Visualization Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shiu, H. J.; Banks D. W.

    1997-01-01

    The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.

  16. Videodermoscopy and doppler-ultrasound in spider naevi: towards a new classification?

    PubMed

    Alegre-Sánchez, A; Bernárdez, C; Fonda-Pascual, P; Moreno-Arrones, O M; López-Gutiérrez, J C; Jaén-Olasolo, P; Boixeda, P

    2018-01-01

    Spider naevi (SN) are considered a subtype of telangiectasias, currently classified as low-flow vascular malformations. To describe the videodermoscopy and Doppler-ultrasound (US) features of a large group of SN. A retrospective study of cases of SN collected at our Dermatology department during the period between June 2015 and June 2017 was performed. Clinical images, dermoscopic, videodermoscopic and Doppler-US files were reviewed. For each case, the age of the patient, time since onset, size and dermoscopic pattern of the lesions were recorded. The presence of pulsatility was also evaluated visually on the videodermoscopy. Two hundred and thirty-three SN in 189 patients were included. The mean age was 39.5 years (range: 10-76 years). Mean size of the lesions was 4.1 ± 2.0 mm. We described three dermoscopic patterns: network, star and looping. Older age, longer time since onset and larger size were found associated with higher frequency of the looping and star patterns compared to that of network pattern (P < 0.01). Pulsatility during videodermoscopy was found in 88 patients (37%). This pulsatility phenomenon was more commonly associated with the looping pattern (64.7%) than star- (40.3%) or network-like patterns (29.9%) (P < 0.001). In Doppler-US studies, a high-flow with arterial biphasic waveform was found. In the light of the results, we support that SN could be reconsidered in upcoming classifications as lesions closer to the group of high-flow arteriovenous malformations. © 2017 European Academy of Dermatology and Venereology.

  17. Heterogeneous surface charge enhanced micromixing for electrokinetic flows.

    PubMed

    Biddiss, Elaine; Erickson, David; Li, Dongqing

    2004-06-01

    Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.

  18. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets.

  19. Developments in flow visualization methods for flight research

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.; Manuel, Gregory S.; Lee, Cynthia C.

    1990-01-01

    With the introduction of modern airplanes utilizing laminar flow, flow visualization has become an important diagnostic tool in determining aerodynamic characteristics such as surface flow direction and boundary-layer state. A refinement of the sublimating chemical technique has been developed to define both the boundary-layer transition location and the transition mode. In response to the need for flow visualization at subsonic and transonic speeds and altitudes above 20,000 feet, the liquid crystal technique has been developed. A third flow visualization technique that has been used is infrared imaging, which offers non-intrusive testing over a wide range of test conditions. A review of these flow visualization methods and recent flight results is presented for a variety of modern aircraft and flight conditions.

  20. Flow visualization techniques for flight research

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Meyer, Robert R., Jr.

    1989-01-01

    In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids were obtained. Off-surface flow visualization of vortical flow was obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.

  1. Flow Visualization Techniques for Flight Research

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Meyer, Robert R., Jr.

    1988-01-01

    In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.

  2. A Motion-Based Feature for Event-Based Pattern Recognition

    PubMed Central

    Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.

    2017-01-01

    This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001

  3. Personal computer (PC) based image processing applied to fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.

  4. Personal Computer (PC) based image processing applied to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  5. Mathematical modeling of the burden distribution in the blast furnace shaft

    NASA Astrophysics Data System (ADS)

    Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan

    2011-06-01

    Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.

  6. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    PubMed

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  7. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    PubMed

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  8. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble

    PubMed Central

    Shin, Dong Hwan; Allen, Jeffrey S.; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-01-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation. PMID:27615999

  9. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-09-12

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation.

  10. Wind Tunnel Visualization of the Flow Over a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Crowder, James P.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. This investigation used both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, leading edge extensions (LEXs), and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system. The flow visualization experiments were conducted over an angle of attack range from 20deg to 45deg and over a sideslip range from -10deg to 10deg. The results show regions of attached and separated flow on the forebody, canopy, and wings. Additionally, the vortical flow is clearly visible over the leading-edge extensions, canopy, and wings.

  11. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  12. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  13. Effects of pulsed, high-velocity water flow on larval robust redhorse and V-lip redhorse

    USGS Publications Warehouse

    Weyers, R.S.; Jennings, C.A.; Freeman, Mary C.

    2003-01-01

    The pulsed, high-velocity water flow characteristic of water-flow patterns downstream from hydropower-generating dams has been implicated in the declining abundance of both aquatic insects and fishes in dam-regulated rivers. This study examined the effects of 0, 4, and 12 h per day of pulsed, high-velocity water flow on the egg mortality, hatch length, final length, and survival of larval robust redhorse Moxostoma robusturn, a presumedly extinct species that was rediscovered in the 1990s, and V-lip redhorse M. collapsum (previously synonomized with the silver redhorse M. anisurum) over a 3-5 week period in three separate experiments. Twelve 38.0-L aquaria (four per treatment) were modified to simulate pulsed, high-velocity water flow (>35 cm/s) and stable, low-velocity water flow (<10 cm/s). Temperature, dissolved oxygen, zooplankton density, and water quality variables were kept the same across treatments. Fertilized eggs were placed in gravel nests in each aquarium. Hatch success was estimated visually at greater than 90%, and the mean larval length at 24 h posthatch was similar in each experiment. After emergence from the gravel nest, larvae exposed to 4 and 12 h of pulsed, high-velocity water flow grew significantly more slowly and had lower survival than those in the 0-h treatment. These results demonstrate that the altered water-flow patterns that typically occur when water is released during hydropower generation can have negative effects on the growth and survival of larval catostomid suckers.

  14. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  15. METC CFD simulations of hot gas filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of themore » vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.« less

  16. Visual Pattern Analysis in Histopathology Images Using Bag of Features

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.

    This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.

  17. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  18. Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow

    NASA Astrophysics Data System (ADS)

    Ramskill, Nicholas P.; Wang, Mi

    2011-10-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.

  19. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  20. Training to Facilitate Adaptation to Novel Sensory Environments

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  1. A study of the laminar separation bubble on an airfoil at low Reynolds numbers using flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Schmidt, Gordon S.; Mueller, Thomas J.

    1987-01-01

    The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.

  2. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  3. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oilmore » (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.« less

  4. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  5. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  6. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  7. Remote Infrared Thermography for In-Flight Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    Shiu, H. J.; vanDam, C. P.

    1999-01-01

    The feasibility of remote in-flight boundary layer visualization via infrared in incompressible flow was established in earlier flight experiments. The past year's efforts focused on refining and determining the extent and accuracy of this technique of remote in-flight flow visualization via infrared. Investigations were made into flow separation visualization, visualization at transonic conditions, shock visualization, post-processing to mitigate banding noise in the NITE Hawk's thermograms, and a numeric model to predict surface temperature distributions. Although further flight tests are recommended, this technique continues to be promising.

  8. fMRI and EEG responses to periodic visual stimulation.

    PubMed

    Guy, C N; ffytche, D H; Brovelli, A; Chumillas, J

    1999-08-01

    EEG/VEP and fMRI responses to periodic visual stimulation are reported. The purpose of these experiments was to look for similar patterns in the time series produced by each method to help understand the relationship between the two. The stimulation protocol was the same for both sets of experiments and consisted of five complete cycles of checkerboard pattern reversal at 1.87 Hz for 30 s followed by 30 s of a stationary checkerboard. The fMRI data was analyzed using standard methods, while the EEG was analyzed with a new measurement of activation-the VEPEG. Both VEPEG and fMRI time series contain the fundamental frequency of the stimulus and quasi harmonic components-an unexplained double frequency commonly found in fMRI data. These results have prompted a reappraisal of the methods for analyzing fMRI data and have suggested a connection between our findings and much older published invasive electrophysiological measurements of blood flow and the partial pressures of oxygen and carbon dioxide. Overall our new analysis suggests that fMRI signals are strongly dependant on hydraulic blood flow effects. We distinguish three categories of fMRI signal corresponding to: focal activated regions of brain tissue; diffuse nonspecific regions of steal; and major cerebral vessels of arterial supply or venous drainage. Each category of signal has its own finger print in frequency, amplitude, and phase. Finally, we put forward the hypothesis that modulations in blood flow are not only the consequence but are also the cause of modulations in functional activity. Copyright 1999 Academic Press.

  9. Experimental Study of Flow in a Bifurcation

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2003-11-01

    An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.

  10. Recent Work on Flow Boiling and Condensation in a Single Microchannel

    NASA Astrophysics Data System (ADS)

    Quan, Xiaojun; Wang, Guodong; Cheng, Ping; Wu, Huiying

    2007-06-01

    Recent visualization and measurements results on flow boiling of water and condensation of steam in a single microchannel, carried out at Shanghai Jiaotong University, is summarized in this paper. For flow boiling of water, experiments were conducted in a single microchannel with a trapezoidal cross-section having a hydraulic diameter of 186 μm and a length of 30 mm. A boiling flow pattern map in terms of heat flux versus mass flux, showing the unstable and stable boiling flow regimes in the microchannel, is obtained. For the investigation of condensation, experiments were carried out for steam condensing inside a single microchannel with a length of 60mm having a hydraulic diameter of 87 μm and 120μm respectively. The location of transition from annular flow to plug/slug flow in a microchannel is found to be dependent on both the dimensionless condensation heat transfer rate as well as the Reynolds number of the steam. The frequency for the occurrence of the injection flow is found to increase with the increasing mass flux.

  11. Using color intensity projections to visualize air flow in operating theaters with the goal of reducing infections

    NASA Astrophysics Data System (ADS)

    Cover, Keith S.; van Asperen, Niek; de Jong, Joost; Verdaasdonk, Rudolf M.

    2013-03-01

    Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down over the operating table from a large area fan in the ceiling, many obstacles might introduce turbulence into the laminar flow including lights, equipment and personal. Schlieren imaging - which is sensitive to small disturbances in the laminar flow such as breathing and turbulence caused by air warmed by a hand at body temperature - was used to image the air flow due to activities in an operating theatre. Color intensity projections (CIPs) were employed to reduce the workload of analyzing the large amount of video data. CIPs - which has been applied to images in angiography, 4D CT, nuclear medicine and astronomy - summarizes the changes over many gray scale images in a single color image in a way which most interpreters find intuitive. CIPs uses the hue, saturation and brightness of the color image to encode the summary. Imaging in an operating theatre showed substantial disruptions to the airflow due to equipment such as the lighting. When these disruptions are combined with such minor factors as heat from the hand, reversal of the preferred airflow patterns can occur. These reversals of preferred airflow patterns have the potential to transport contaminates into the open wound. Further study is required to understand both the frequency of the reversed airflow patterns and the impact they may have on infection rates.

  12. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  13. Relating interesting quantitative time series patterns with text events and text features

    NASA Astrophysics Data System (ADS)

    Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.

    2013-12-01

    In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other application domains such as data analysis of smart grids, cyber physical systems or the security of critical infrastructure, where the data consists of a combination of quantitative and textual time series data.

  14. Investigation of wing upper surface flow-field disturbance due to NASA DC-8-72 in-flight inboard thrust-reverser deployment

    NASA Technical Reports Server (NTRS)

    Hamid, Hedayat U.; Margason, Richard J.; Hardy, Gordon

    1995-01-01

    An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information.

  15. Evaluation of lymph flow patterns in splenic flexural colon cancers using laparoscopic real-time indocyanine green fluorescence imaging.

    PubMed

    Watanabe, Jun; Ota, Mitsuyoshi; Suwa, Yusuke; Ishibe, Atsushi; Masui, Hidenobu; Nagahori, Kaoru

    2017-02-01

    The treatment of splenic flexural colon cancer is not standardized because the lymphatic drainage is variable. The aim of this study is to evaluate the lymph flow at the splenic flexure. From July 2013 to January 2016, consecutive patients of the splenic flexural colon cancer with a preoperative diagnosis of N0 who underwent laparoscopic surgery were enrolled. Primary outcome is frequency of the direction of lymph flow from splenic flexure. We injected indocyanine green (2.5 mg) into the submucosal layer around the tumor and observed lymph flow using the laparoscopic near-infrared camera system in 30 min after injection. Thirty-one patients were enrolled in this study. The lymph flow was visualized in 31 patients (100 %) without any complications. No case exhibited lymph flow in both the left colic artery (LCA) and left branch of the middle colic artery (lt-MCA) areas. There were 19 cases (61.3 %) with lymph flow directed to the area of the root of the inferior mesenteric vein (IMV), regardless of the presence of the left accessory aberrant colic artery. Lymph node metastases were observed in six cases (19.4 %), and all of the involved lymph nodes existed in lymph flow areas determined by real-time indocyanine green fluorescence imaging. The findings of the lymph flow pattern of splenic flexure suggest that lymph node dissection at the root of the IMV area is important, and it may be not necessary to ligate both the lt-MCA and LCA, at least in cases without widespread lymph node metastases.

  16. Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model

    NASA Astrophysics Data System (ADS)

    Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal

    2018-03-01

    The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.

  17. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  18. Holographic aids for internal combustion engine flow studies

    NASA Technical Reports Server (NTRS)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  19. High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry.

    PubMed

    Buckman, Clayton; George, Thaddeus C; Friend, Sherree; Sutovsky, Miriam; Miranda-Vizuete, Antonio; Ozanon, Christophe; Morrissey, Phil; Sutovsky, Peter

    2009-12-01

    Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.

  20. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  1. Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2

    NASA Astrophysics Data System (ADS)

    Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.

    2007-08-01

    Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

  2. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  3. Characterization of flow in a scroll duct

    NASA Technical Reports Server (NTRS)

    Begg, E. K.; Bennett, J. C.

    1985-01-01

    A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.

  4. NASA Dryden flow visualization facility

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  5. Improving flow patterns and spillage characteristics of a box-type commercial kitchen hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Han, Meng-Ji; Priyambodo, Yusuf

    2014-01-01

    A conventional box-type commercial kitchen hood and its improved version (termed the "IQV commercial kitchen hood") were studied using the laser-assisted smoke flow visualization technique and tracer-gas (sulfur hexafluoride) detection methods. The laser-assisted smoke flow visualization technique qualitatively revealed the flow field of the hood and the areas apt for leakages of hood containment. The tracer-gas concentration detection method measured the quantitative leakage levels of the hood containment. The oil mists that were generated in the conventional box-type commercial kitchen hood leaked significantly into the environment from the areas near the front edges of ceiling and side walls. Around these areas, the boundary-layer separation occurred, inducing highly unsteady and turbulent recirculating flow, and leading to spillages of hood containment due to inappropriate aerodynamic design at the front edges of the ceiling and side walls. The tracer-gas concentration measurements on the conventional box-type commercial kitchen hood showed that the sulfur hexafluoride concentrations detected at the hood face attained very large values on an order of magnitude about 10(3)-10(4) ppb. By combining the backward-offset narrow suction slot, deflection plates, and quarter-circular arcs at the hood entrance, the IQV commercial kitchen hood presented a flow field containing four backward-inclined cyclone flow structures. The oil mists generated by cooking were coherently confined in these upward-rising cyclone flow structures and finally exhausted through the narrow suction slot. The tracer-gas concentration measurements on the IQV commercial kitchen hood showed that the order of magnitude of the sulfur hexafluoride concentrations detected at the hood face is negligibly small--only about 10(0) ppb across the whole hood face.

  6. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  7. Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, G. L.

    1982-01-01

    A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.

  8. Underwater Flow Visualization Methods in the Upper Layer of the Ocean.

    DTIC Science & Technology

    1981-05-22

    AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the

  9. In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.

    1990-01-01

    In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.

  10. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  11. Visualizing spatial population structure with estimated effective migration surfaces

    PubMed Central

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2015-01-01

    Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242

  12. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  13. Visual flow scene effects on the somatogravic illusion in non-pilots.

    PubMed

    Eriksson, Lars; von Hofsten, Claes; Tribukait, Arne; Eiken, Ola; Andersson, Peter; Hedström, Johan

    2008-09-01

    The somatogravic illusion (SGI) is easily broken when the pilot looks out the aircraft window during daylight flight, but it has proven difficult to break or even reduce the SGI in non-pilots in simulators using synthetic visual scenes. Could visual-flow scenes that accommodate compensatory head movement reduce the SGI in naive subjects? We investigated the effects of visual cues on the SGI induced by a human centrifuge. The subject was equipped with a head-tracked, head-mounted display (HMD) and was seated in a fixed gondola facing the center of rotation. The angular velocity of the centrifuge increased from near zero until a 0.57-G centripetal acceleration was attained, resulting in a tilt of the gravitoinertial force vector, corresponding to a pitch-up of 30 degrees. The subject indicated perceived horizontal continuously by means of a manual adjustable-plate system. We performed two experiments with within-subjects designs. In Experiment 1, the subjects (N = 13) viewed a darkened HMD and a presentation of simple visual flow beneath a horizon. In Experiment 2, the subjects (N = 12) viewed a darkened HMD, a scene including symbology superimposed on simple visual flow and horizon, and this scene without visual flow (static). In Experiment 1, visual flow reduced the SGI from 12.4 +/- 1.4 degrees (mean +/- SE) to 8.7 +/- 1.5 degrees. In Experiment 2, the SGI was smaller in the visual flow condition (9.3 +/- 1.8 degrees) than with the static scene (13.3 +/- 1.7 degrees) and without HMD presentation (14.5 +/- 2.3 degrees), respectively. It is possible to reduce the SGI in non-pilots by means of a synthetic horizon and simple visual flow conveyed by a head-tracked HMD. This may reflect the power of a more intuitive display for reducing the SGI.

  14. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  15. Flow visualization V; Proceedings of the 5th International Symposium, Prague, Czechoslovakia, Aug. 21-25, 1989

    NASA Astrophysics Data System (ADS)

    Reznicek, R.

    The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.

  16. Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis

    PubMed Central

    Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O

    2016-01-01

    A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177

  17. Analysis for Distinctive Activation Patterns of Pain and Itchy in the Human Brain Cortex Measured Using Near Infrared Spectroscopy (NIRS)

    PubMed Central

    Kataoka, Aiko; Kudo, Ayako; Fujino, Fukue; Chen, Yu-Wen; Mitsuyama, Yuki; Nomura, Shinobu; Yoshioka, Tohru

    2013-01-01

    Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS), which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area) were found to be clearly different between pain (τ = +18.7 sec) and itch (τ = +0.63 sec) stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing. PMID:24098378

  18. Visualization study of flow in axial flow inducer.

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  19. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  20. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  1. Peripheral Processing Facilitates Optic Flow-Based Depth Perception

    PubMed Central

    Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin

    2016-01-01

    Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631

  2. EDITORIAL: The 14th International Symposium on Flow Visualization, ISFV14 The 14th International Symposium on Flow Visualization, ISFV14

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Chun; Lee, Sang Joon

    2011-06-01

    The 14th International Symposium on Flow Visualization (ISFV14) was held in Daegu, Korea, on 21-24 June 2010. There were 304 participants from 17 countries. The state of the art in many aspects of flow visualization was presented and discussed, and a total of 243 papers from 19 countries were presented. Two special lectures and four invited lectures, 48 paper sessions and one poster session were held in five session rooms and in a lobby over four days. Among the paper sessions, those on 'biological flows', 'micro/nano fluidics', 'PIV/PTV' and 'compressible and sonic flows' received great attention from the participants of ISFV14. Special events included presentations of 'The Asanuma Award' and 'The Leonardo Da Vinci Award' to prominent contributors. Awards for photos and movies were given to three scientists for their excellence in flow visualizations. Sixteen papers were selected by the Scientific Committee of ISFV14. After the standard peer review process of this journal, six papers were finally accepted for publication. We wish to thank the editors of MST for making it possible to publish this special feature from ISFV14. We also thank the authors for their careful and insightful work and cooperation in the preparation of revised papers. It will be our pleasure if readers appreciate the hot topics in flow visualization research as a result of this special feature. We also hope that the progress in flow visualization will create new research fields. The 15th International Symposium on Flow Visualization will be held in Minsk, Belarus in 2012. We would like to express sincere thanks to the staff at IOP Publishing for their kind support.

  3. Inspiratory flow pattern in humans.

    PubMed

    Lafortuna, C L; Minetti, A E; Mognoni, P

    1984-10-01

    The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.

  4. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization.

    PubMed

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri

    2015-02-19

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.

  5. The stability of a thin water layer over a rotating disk revisited

    NASA Astrophysics Data System (ADS)

    Poncet, Sébastien

    2014-08-01

    The flow driven by a rotating disk of a thin fluid layer in a fixed cylindrical casing is studied by direct numerical simulation and experimental flow visualizations. The characteristics of the flow are first briefly discussed but the focus of this work is to understand the transition to the primary instability. The primary bifurcation is 3D and appears as spectacular sharp-cornered polygonal patterns located along the shroud. The stability diagram is established experimentally in a ( Re, G plane, where G is the aspect ratio of the cavity and Re the rotational Reynolds number and confirmed numerically. The number of vortices scales well with the Ekman number based on the water depth, which confirms the existence of a Stewartson layer along the external cylinder. The critical mixed Reynolds number is found to be constant as in other rotating flows involving a shear-layer instability. Hysteresis cycles are observed highlighting the importance of the spin-up and spin-down processes. In some particular cases, a crossflow instability appears under the form of high azimuthal wave number spiral patterns, similar to those observed in a rotor-stator cavity with throughflow and coexists with the polygons. The DNS calculations confirm the experimental results under the flat free surface hypothesis.

  6. Connectomics-based analysis of information flow in the Drosophila brain.

    PubMed

    Shih, Chi-Tin; Sporns, Olaf; Yuan, Shou-Li; Su, Ta-Shun; Lin, Yen-Jen; Chuang, Chao-Chun; Wang, Ting-Yuan; Lo, Chung-Chuang; Greenspan, Ralph J; Chiang, Ann-Shyn

    2015-05-18

    Understanding the overall patterns of information flow within the brain has become a major goal of neuroscience. In the current study, we produced a first draft of the Drosophila connectome at the mesoscopic scale, reconstructed from 12,995 images of neuron projections collected in FlyCircuit (version 1.1). Neuron polarities were predicted according to morphological criteria, with nodes of the network corresponding to brain regions designated as local processing units (LPUs). The weight of each directed edge linking a pair of LPUs was determined by the number of neuron terminals that connected one LPU to the other. The resulting network showed hierarchical structure and small-world characteristics and consisted of five functional modules that corresponded to sensory modalities (olfactory, mechanoauditory, and two visual) and the pre-motor center. Rich-club organization was present in this network and involved LPUs in all sensory centers, and rich-club members formed a putative motor center of the brain. Major intra- and inter-modular loops were also identified that could play important roles for recurrent and reverberant information flow. The present analysis revealed whole-brain patterns of network structure and information flow. Additionally, we propose that the overall organizational scheme showed fundamental similarities to the network structure of the mammalian brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform

    PubMed Central

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B.

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks. PMID:26909015

  8. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    PubMed

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.

  9. Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1982-01-01

    The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.

  10. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.

    PubMed

    Linander, Nellie; Dacke, Marie; Baird, Emily

    2015-04-01

    When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.

  11. Patterned light flash evoked short latency activity in the visual system of visually normal and in amblyopic subjects.

    PubMed

    Sjöström, A; Abrahamsson, M

    1994-04-01

    In a previous experimental study on anaesthetized cat it was shown that a short latency (35-40 ms) cortical potential changed polarity due to the presence or absence of a pattern in the flash stimulus. The results suggested one pathway of neuronal activation in the cortex to a pattern that was within the level of resolution and another to patterns that were not. It was implied that a similar difference in impulse transmission to pattern and non-pattern stimuli may be recorded in humans. The present paper describes recordings of the short-latency visual evoked response to varying light flash checkerboard pattern stimuli of high intensity in visually normal and amblyopic children and adults. When stimulating the normal eye a visual evoked response potential with a peak latency between 35 to 40 ms showed a polarity change to patterned compared to non-patterned stimulation. The visual evoked response resolution limit could be correlated to a visual acuity of 0.5 and below. In amblyopic eyes the shift in polarity was recorded at the acuity limit level. The latency of the pattern depending potential was increased in patients with amblyopia compared to normal, but not directly related to amblyopic degree. It is concluded that the short latency, visual evoked response that mainly represents the retino-geniculo-cortical activation may be used to estimate visual resolution below 0.5 in acuity level.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Parallel Computation and Visualization of Three-dimensional, Time-dependent, Thermal Convective Flows

    NASA Technical Reports Server (NTRS)

    Wang, P.; Li, P.

    1998-01-01

    A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.

  13. Development of image processing techniques for applications in flow visualization and analysis

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman

    1991-01-01

    A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.

  14. Revisiting flow maps: a classification and a 3D alternative to visual clutter

    NASA Astrophysics Data System (ADS)

    Gu, Yuhang; Kraak, Menno-Jan; Engelhardt, Yuri

    2018-05-01

    Flow maps have long been servicing people in exploring movement by representing origin-destination data (OD data). Due to recent developments in data collecting techniques the amount of movement data is increasing dramatically. With such huge amounts of data, visual clutter in flow maps is becoming a challenge. This paper revisits flow maps, provides an overview of the characteristics of OD data and proposes a classification system for flow maps. For dealing with problems of visual clutter, 3D flow maps are proposed as potential alternative to 2D flow maps.

  15. The virtual windtunnel: Visualizing modern CFD datasets with a virtual environment

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    1993-01-01

    This paper describes work in progress on a virtual environment designed for the visualization of pre-computed fluid flows. The overall problems involved in the visualization of fluid flow are summarized, including computational, data management, and interface issues. Requirements for a flow visualization are summarized. Many aspects of the implementation of the virtual windtunnel were uniquely determined by these requirements. The user interface is described in detail.

  16. The Physics of Turbulence in the Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kline, Stephen; Cantwell, Brian

    1995-01-01

    The geometry of the velocity field in a numerically simulated incompressible turbulent boundary layer over a flat plate at Re theta=670 has been studied using the invariants of the velocity gradient tensor. These invariants are computed at every grid point in the flow and used to form the discriminant. Of primary interest are those regions in the flow where the discriminant is positive; regions where, according to the characteristic equation, the eigenvalues of the velocity gradient tensor are complex. An observer moving with a frame of reference which is attached to a fluid particle lying within such a region would see a local flow pattern of the type stable-focus-stretching or unstable-focus-compressing. When the flow is visualized this way, continuous, connected, large-scale structures are revealed that extend from the point just below the buffer layer out to the beginning of the wake region. These structures are aligned with the mean shear close to the wall and arch in the cross-stream direction away from the wall. In some cases the structures observed are very similar to to the hairpin eddy vision of boundary layer structure proposed by Theodorsen. That the structure of the flow is revealed more effectively by the discriminant rather than by the vorticity is important and adds support to recent observations of the discriminant in a channel flow simulation. Of particular importance is the fact that the procedure does not require the use of an arbitrary threshold in the discriminant. Further analysis using computer flow visualization shows a high degree of spatial correlation between regions of positive discriminant, extreme negative pressure fluctuations and large instantaneous values of Reynolds shear stress.

  17. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  18. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  19. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan; Peles, Yoav

    2005-11-01

    Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.

  1. Controlling the Flow of Visual Information through the Lateral Geniculate Nucleus: From Single Cells to Neural Networks.

    DTIC Science & Technology

    1991-10-31

    in my laboratory, Drs. Dan Kammen, Ernst Niebur and Florentin Worg6tter, as well as with three outside collaborators, Prof. John Kulli from the...also for experimentally observed cortical column structures ( Niebur and Worg6tter, 1990a,b). Temporal Dynamics of Interacting Neuronal Populations We...Connection Machine to simulate a 128 by 128 grid of 16,384 cells under a variety of stimulation patterns ( Niebur , Kammen & Koch, 1991). To explore

  2. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  3. Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Esker, Barbara S.; Debonis, James R.

    1991-01-01

    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns.

  4. Real-time blood flow visualization using the graphics processing unit

    NASA Astrophysics Data System (ADS)

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.

  5. Real-time blood flow visualization using the graphics processing unit

    PubMed Central

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915

  6. Determination of Hydrodynamic Parameters on Two--Phase Flow Gas - Liquid in Pipes with Different Inclination Angles Using Image Processing Algorithm

    NASA Astrophysics Data System (ADS)

    Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda

    2009-11-01

    In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.

  7. A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level.

    PubMed

    Li, Fenfang; Yuan, Fang; Sankin, Georgy; Yang, Chen; Zhong, Pei

    2017-01-10

    In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate, that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles.

  8. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  9. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-09-18

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.

  10. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    PubMed Central

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  11. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  12. A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish.

    PubMed

    Chiao, Chuan-Chin; Chubb, Charles; Hanlon, Roger T

    2015-09-01

    We review recent research on the visual mechanisms of rapid adaptive camouflage in cuttlefish. These neurophysiologically complex marine invertebrates can camouflage themselves against almost any background, yet their ability to quickly (0.5-2 s) alter their body patterns on different visual backgrounds poses a vexing challenge: how to pick the correct body pattern amongst their repertoire. The ability of cuttlefish to change appropriately requires a visual system that can rapidly assess complex visual scenes and produce the motor responses-the neurally controlled body patterns-that achieve camouflage. Using specifically designed visual backgrounds and assessing the corresponding body patterns quantitatively, we and others have uncovered several aspects of scene variation that are important in regulating cuttlefish patterning responses. These include spatial scale of background pattern, background intensity, background contrast, object edge properties, object contrast polarity, object depth, and the presence of 3D objects. Moreover, arm postures and skin papillae are also regulated visually for additional aspects of concealment. By integrating these visual cues, cuttlefish are able to rapidly select appropriate body patterns for concealment throughout diverse natural environments. This sensorimotor approach of studying cuttlefish camouflage thus provides unique insights into the mechanisms of visual perception in an invertebrate image-forming eye.

  13. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  14. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  15. Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Choudhury, S.; Haglin, David J.

    2013-06-19

    We describe the significance and prominence of network traffic analysis (TA) as a graph- and network-theoretical domain for advancing research in graph database systems. TA involves observing and analyzing the connections between clients, servers, hosts, and actors within IP networks, both at particular times and as extended over times. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. IPFLOW databases are routinely interrogated statistically and visualized for suspicious patterns. But the ability to cast IPFLOW data as a massive graph and query itmore » interactively, in order to e.g.\\ identify connectivity patterns, is less well advanced, due to a number of factors including scaling, and their hybrid nature combining graph connectivity and quantitative attributes. In this paper, we outline requirements and opportunities for graph-structured IPFLOW analytics based on our experience with real IPFLOW databases. Specifically, we describe real use cases from the security domain, cast them as graph patterns, show how to express them in two graph-oriented query languages SPARQL and Datalog, and use these examples to motivate a new class of "hybrid" graph-relational systems.« less

  16. A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chang; Yang, Ruey-Jen

    2006-08-01

    This paper presents a numerical simulation investigation into electroosmotic flow mixing in three-dimensional microchannels with patterned non-uniform surface zeta potentials. Three types of micromixers are investigated, namely a straight diagonal strip mixer (i.e. the non-uniform surface zeta potential is applied along straight, diagonal strips on the lower wall of the mixing channel), a staggered asymmetric herringbone strip mixer and a straight diagonal/symmetric herringbone strip mixer. A particle tracing algorithm is used to visualize and evaluate the mixing performance of the various mixers. The particle trajectories and Poincaré maps of the various mixers are calculated from the three-dimensional flow fields. The surface charge patterns on the lower walls of the microchannels induce electroosmotic chaotic advection in the low Reynolds number flow regime, and hence enhance the passive mixing effect in the microfluidic devices. A quantitative measure of the mixing performance based on Shannon entropy is employed to quantify the mixing of two miscible fluids. The results show that the mixing efficiency increases as the magnitude of the heterogeneous zeta potential ratio (|ζR|) is increased, but decreases as the aspect ratio (H/W) is increased. The mixing efficiency of the straight diagonal strip mixer with a length ratio of l/W = 0.5 is slightly higher than that obtained from the same mixer with l/W = 1.0. Finally, the staggered asymmetric herringbone strip mixer with θ = 45°, ζR = -1, l/W = 0.5 and H/W = 0.2 provides the optimal mixing performance of all the mixers presented in this study.

  17. Convection patterns in a liquid metal under an imposed horizontal magnetic field.

    PubMed

    Yanagisawa, Takatoshi; Hamano, Yozo; Miyagoshi, Takehiro; Yamagishi, Yasuko; Tasaka, Yuji; Takeda, Yasushi

    2013-12-01

    We performed laboratory experiments of Rayleigh-Bénard convection with liquid gallium under various intensities of a uniform imposed horizontal magnetic field. An ultrasonic velocity profiling method was used to visualize the spatiotemporal structure of the flows with simultaneous monitoring of the temperature fluctuations in the liquid gallium layer. The explored Rayleigh numbers Ra range from the critical value for onset of convection to 10(5); the Chandrasekhar number Q covers values up to 1100. A regime diagram of the convection patterns was established in relation to the Ra and Q values for a square vessel with aspect ratio 5. We identified five flow regimes: (I) a fluctuating large-scale pattern without rolls, (II) weakly constrained rolls with fluctuations, (III) a continuous oscillation of rolls, (IV) repeated roll number transitions with random reversals of the flow direction, and (V) steady two-dimensional (2D) rolls. These flow regimes are classified by the Ra/Q values, the ratio of the buoyancy to the Lorentz force. Power spectra from the temperature time series indicate that regimes I and II have the features of developed turbulence, while the other regimes do not. The region of steady 2D rolls (Busse balloon) extends to high Ra values in the present setting by a horizontal magnetic field and regime V is located inside the Busse balloon. Concerning the instabilities of the steady 2D rolls, regime III is the traveling wave convection developed from the oscillatory instability. Regime IV can be regarded as a state of phase turbulence, which is induced by intermittent occurrences of the skewed-varicose instability.

  18. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.

    PubMed

    Castro, M A; Putman, C M; Cebral, J R

    2006-09-01

    The purpose of this study is to show the influence of the upstream parent artery geometry on intraaneurysmal hemodynamics of cerebral aneurysms. Patient-specific models of 4 cerebral aneurysms (1 posterior communicating artery [PcomA], 2 middle cerebral artery [MCA], and 1 anterior communicating artery [AcomA]) were constructed from 3D rotational angiography images. Two geometric models were constructed for each aneurysm. One model had the native parent vessel geometry; the second model was truncated approximately 1 cm upstream from the aneurysm, and the parent artery replaced with a straight cylinder. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. The intra-aneurysmal flow patterns and wall shear stress (WSS) distributions were visualized and compared. Models using the truncated parent vessel underestimated the WSS in the aneurysms in all cases and shifted the impaction zone to the neck compared with the native geometry. These effects were more pronounced in the PcomA and AcomA aneurysms where upstream curvature was substantial. The MCA aneurysm with a long M1 segment was the least effected. The more laminar flow pattern within the parent vessel in truncated models resulted in a less complex intra-aneurysmal flow patterns with fewer vortices and less velocity at the dome. Failure to properly model the inflow stream contributed by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included to accurately represent the intra-aneurysmal hemodynamics.

  19. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool. Currently STRING can generate animations of single 2D cuts, either planar or curved surfaces, through 3D simulation domains. To provide a general tool for experts enabling also direct exploration and analysis of large 3D flow fields the software needs to be extended to intuitive as well as interactive visualizations of entire 3D flow domains. The current research concerning this project, which is funded by the Federal Ministry for Economic Affairs and Energy (Germany), is presented.

  20. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  1. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.; Stone, L. S.

    1998-01-01

    We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.

  2. Flow, affect and visual creativity.

    PubMed

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  3. Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaolei; Hong, Jiarong; Barone, Matthew

    Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less

  4. Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines

    DOE PAGES

    Yang, Xiaolei; Hong, Jiarong; Barone, Matthew; ...

    2016-09-08

    Here, recent field experiments conducted in the near wake (up to 0.5 rotor diameters downwind of the rotor) of a Clipper Liberty C96 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetry (SLPIV) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. We show that the LES, with inflow conditions representing as closely as possible the statemore » of the flow approaching the turbine when the SLPIV experiments were carried out, reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. The computed results show that the visualized vortex patterns are formed by the tip vortices and a second set of counter-rotating spiral vortices intertwined with the tip vortices. To probe the dependence of these newly uncovered coherent flow structures on turbine design, size and approach flow conditions, we carry out LES for three additional turbines: (i) the Scaled Wind Farm Technology (SWiFT) turbine developed by Sandia National Laboratories in Lubbock, TX, USA; (ii) the wind turbine developed for the European collaborative MEXICO (Model Experiments in Controlled Conditions) project; and (iii) the model turbine, and the Clipper turbine under varying inflow turbulence conditions. We show that similar counter-rotating vortex structures as those observed for the Clipper turbine are also observed for the SWiFT, MEXICO and model wind turbines. However, the strength of the counter-rotating vortices relative to that of the tip vortices from the model turbine is significantly weaker. We also show that incoming flows with low level turbulence attenuate the elongation of the tip and counter-rotating vortices. Sufficiently high turbulence levels in the incoming flow, on the other hand, tend to break up the coherence of spiral vortices in the near wake. To elucidate the physical mechanism that gives rise to such rich coherent dynamics we examine the stability of the turbine tip shear layer using the theory. We show that for all simulated cases the theory consistently indicates the flow to be unstable exactly in the region where counter-rotating spirals emerge. We thus postulate that centrifugal instability of the rotating turbine tip shear layer is a possible mechanism for explaining the phenomena we have uncovered herein.« less

  5. Precision Cut Mouse Lung Slices to Visualize Live Pulmonary Dendritic Cells

    PubMed Central

    Lyons-Cohen, Miranda R.; Thomas, Seddon Y.; Cook, Donald N.; Nakano, Hideki

    2017-01-01

    SHORT ABSTRACT We describe a method for generating precision-cut lung slices (PCLS) and immunostaining them to visualize the localization of various immune cell types in the lung. Our protocol can be extended to visualize the location and function of many different cell types under a variety of conditions. LONG ABSTRACT Inhalation of allergens and pathogens elicits multiple changes in a variety of immune cell types in the lung. Flow cytometry is a powerful technique for quantitative analysis of cell surface proteins on immune cells, but it provides no information on the localization and migration patterns of these cells within the lung. Similarly, in vitro chemotaxis assays can be performed to study the potential of cells to respond to chemotactic factors in vitro, but these assays do not reproduce the complex environment of the intact lung. In contrast to these aforementioned techniques, the location of individual cell types within the lung can be readily visualized by generating precision-cut lung slices (PCLS), staining them with commercially available, fluorescently tagged antibodies, and visualizing the sections by confocal microscopy. PCLS can be used for both live and fixed lung tissue, and the slices can encompass areas as large as a cross section of an entire lobe. We have used this protocol to successfully visualize the location of a wide variety of cell types in the lung, including distinct types of dendritic cells, macrophages, neutrophils, T cells and B cells, as well as structural cells such as lymphatic, endothelial, and epithelial cells. The ability to visualize cellular interactions, such as those between dendritic cells and T cells, in live, three-dimensional lung tissue, can reveal how cells move within the lung and interact with one another at steady state and during inflammation. Thus, when used in combination with other procedures, such as flow cytometry and quantitative PCR, PCLS can contribute to a comprehensive understanding of cellular events that underlie allergic and inflammatory diseases of the lung. PMID:28448013

  6. A Comparison of the Visual Attention Patterns of People with Aphasia and Adults without Neurological Conditions for Camera-Engaged and Task-Engaged Visual Scenes

    ERIC Educational Resources Information Center

    Thiessen, Amber; Beukelman, David; Hux, Karen; Longenecker, Maria

    2016-01-01

    Purpose: The purpose of the study was to compare the visual attention patterns of adults with aphasia and adults without neurological conditions when viewing visual scenes with 2 types of engagement. Method: Eye-tracking technology was used to measure the visual attention patterns of 10 adults with aphasia and 10 adults without neurological…

  7. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    PubMed

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  8. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  9. Coherent substructure of turbulence near the stagnation zone of a bluff body

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.

    1980-01-01

    The evolution of freestream turbulence in crossflow about a circular cylinder was studied in order to identify the existence of a coherent substructure which is the outcome of the amplification of freesteam turbulence by the stretching mechanism in diverging flow about a bluff body. Visualization of the flow events revealed the selective stretching of cross-vortex tubes and the emergence of an organized turbulent flow pattern near the cylinder stagnation zone. Significant amplification of the total turbulent energy of the streamwise fluctuating velocity was consistently monitored. Realization of selective amplification at scales larger than the neutral scale of the stagnation flow was indicated by the variation of the discrete streamwise turbulent energy. A most amplified scale, characteristic of the energy containing eddies within the coherent substructure and commensurate with the boundary-layer thickness, was detected. Penetration of the amplified turbulence into the cylinder boundary layer led to the retardation of separation and to a concurrent decrease in the drag coefficient at subcritical cylinder-diameter Reynolds numbers.

  10. Vapor-screen flow-visualization experiments in the NASA Langley 0.3-m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Selby, G. V.

    1986-01-01

    The vortical flow on the leeward side of a delta-wing model has been visualized at several different tunnel conditions in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel using a vapor-screen flow-visualization technique. Vapor-screen photographs of the subject flow field are presented and interpreted relative to phenomenological implications. Results indicate that the use of nitrogen fog in conjunction with the vapor-screen technique is feasibile.

  11. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  12. The development of laser speckle or particle image displacement velocimetry. Part 1: The role of photographic parameters

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M. M.; Krothapalli, A.

    1987-01-01

    One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.

  13. An exploratory study of apex fence flaps on a 74 deg delta wing

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.; Vess, R. J.

    1985-01-01

    An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.

  14. Peripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement

    PubMed Central

    Rogers, Cassandra; Warren, Paul A.

    2017-01-01

    Safe movement through the environment requires us to monitor our surroundings for moving objects or people. However, identification of moving objects in the scene is complicated by self-movement, which adds motion across the retina. To identify world-relative object movement, the brain thus has to ‘compensate for’ or ‘parse out’ the components of retinal motion that are due to self-movement. We have previously demonstrated that retinal cues arising from central vision contribute to solving this problem. Here, we investigate the contribution of peripheral vision, commonly thought to provide strong cues to self-movement. Stationary participants viewed a large field of view display, with radial flow patterns presented in the periphery, and judged the trajectory of a centrally presented probe. Across two experiments, we demonstrate and quantify the contribution of peripheral optic flow to flow parsing during forward and backward movement. PMID:29201335

  15. Vortex breakdown in closed containers with polygonal cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, I. V., E-mail: naumov@itp.nsc.ru; Dvoynishnikov, S. V.; Kabardin, I. K.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position onmore » the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.« less

  16. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  17. Investigation of Flow Separation in a Transonic-fan Linear Cascade Using Visualization Methods

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Chima, Rodrick V.; Jett, Thomas A.; Bencic, Timothy J.; Weiland, Kenneth E.

    2000-01-01

    An extensive study into the nature of the separated flows on the suction side of modem transonic fan airfoils at high incidence is described in the paper. Suction surface.flow separation is an important flow characteristic that may significantly contribute to stall flutter in transonic fans. Flutter in axial turbomachines is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high cycle fatigue blade failure. The study basically focused on two visualization techniques: surface flow visualization using dye oils, and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction side of the blade is separated over a large portion of the blade, and the separated area increases with increasing inlet Mach number. For the supersonic inlet flow condition, the flow is attached from the leading edge up to the point where a bow shock from the upper neighboring blade hits the blade surface. Low cascade solidity, for the subsonic inlet flow, results in an increased area of separated flow. For supersonic flow conditions, a low solidity results in an improvement in flow over the suction surface. Finally, computational results modeling the transonic cascade flowfield illustrate our ability to simulate these flows numerically.

  18. Observations of Gas-Liquid Flows Through Contractions in Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1996-01-01

    Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.

  19. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    NASA Astrophysics Data System (ADS)

    Nobis, M.; Stücke, P.; Schmidt, M.; Riedel, M.

    2013-04-01

    The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV). The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  20. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    PubMed Central

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  1. Learning to Recognize Patterns: Changes in the Visual Field with Familiarity

    NASA Astrophysics Data System (ADS)

    Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo

    1995-01-01

    Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].

  2. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents--a phantom study.

    PubMed

    Bunck, Alexander C; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R; Heindel, Walter; Maintz, David

    2012-09-01

    4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n=14) than by 2D phase contrast flow imaging (n=10). 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. An Experimental Visualization and Image Analysis of Electrohydrodynamically Induced Vapor-Phase Silicon Oil Flow under DC Corona Discharge

    NASA Astrophysics Data System (ADS)

    Ohyama, Ryu-Ichiro; Fukumoto, Masaru

    A DC corona discharge induced electrohydrodynamic (EHD) flow phenomenon for a multi-phase fluid containing a vapor-phase dielectric liquid in the fresh air was investigated. The experimental electrode system was a simple arrangement of needle-plate electrodes for the corona discharges and high-resistivity silicon oil was used as the vapor-phase liquid enclosure. The qualitative observation of EHD flow patterns was conducted by an optical processing on computer tomography and the time-series of discharge current pulse generations at corona discharge electrode were measured simultaneously. These experimental results were analyzed in relationship between the EHD flow motions and the current pulse generations in synchronization. The current pulses and the EHD flow motions from the corona discharge electrode presented a continuous mode similar to the ionic wind in the fresh air and an intermittent mode. In the intermittent mode, the observed EHD flow motion was synchronized with the separated discharge pulse generations. From these experimental results, it was expected that the existence of silicon oil vapor trapped charges gave an occasion to the intermittent generations of the discharge pulses and the secondary EHD flow.

  4. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    NASA Astrophysics Data System (ADS)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  5. Motion perception: behavior and neural substrate.

    PubMed

    Mather, George

    2011-05-01

    Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma.

    PubMed

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha

    2014-01-01

    To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  7. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    PubMed

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  8. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  9. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  10. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  11. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  12. Visualization of Flow Separation Around an Atmospheric Entry Capsule at Low-Subsonic Mach Number Using Background-Oriented Schlieren (BOS)

    NASA Technical Reports Server (NTRS)

    Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.

    2014-01-01

    This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).

  13. Visualization studies of turbulent transition flows in a porous medium

    NASA Technical Reports Server (NTRS)

    Bilardo, V. J.

    1983-01-01

    Results are reported for flow-visualization studies of the flow regimes of water passing through a porous medium consisting of cylindrical glass and plexiglas rods arranged in a complex and fixed three-dimensional geometry. The Reynolds number (Re) varied from 50 to 700; the flow was visualized by injecting a 5% potassium permanganate dye solution into the pores and photographing the resulting dye streaklines with both a still camera and a movie camera. The results indicate that four distinct flow regimes exist in the porous medium: (1) Darcy or creeping flow up to Re = 3; (2) steady inertia-dominated laminar flow for Re = 3-150; (3) unsteady transitional laminar flow for Re = 150-250; and (4) fully turbulent flow for Re greater than 250. It is concluded that a laminar wake instability mechanism typical of the external flow about bluff bodies may be responsible for the overall transition from laminar to turbulent flow in porous media.

  14. Scalar transport in inline mixers with spatially periodic flows

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2017-01-01

    Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.

  15. Natural course of visual field loss in patients with Type 2 Usher syndrome.

    PubMed

    Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William

    2007-06-01

    To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.

  16. Visual field progression in glaucoma: total versus pattern deviation analyses.

    PubMed

    Artes, Paul H; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C

    2005-12-01

    To compare visual field progression with total and pattern deviation analyses in a prospective longitudinal study of patients with glaucoma and healthy control subjects. A group of 101 patients with glaucoma (168 eyes) with early to moderately advanced visual field loss at baseline (average mean deviation [MD], -3.9 dB) and no clinical evidence of media opacity were selected from a prospective longitudinal study on visual field progression in glaucoma. Patients were examined with static automated perimetry at 6-month intervals for a median follow-up of 9 years. At each test location, change was established with event and trend analyses of total and pattern deviation. The event analyses compared each follow-up test to a baseline obtained from averaging the first two tests, and visual field progression was defined as deterioration beyond the 5th percentile of test-retest variability at three test locations, observed on three consecutive tests. The trend analyses were based on point-wise linear regression, and visual field progression was defined as statistically significant deterioration (P < 5%) worse than -1 dB/year at three locations, confirmed by independently omitting the last and the penultimate observation. The incidence and the time-to-progression were compared between total and pattern deviation analyses. To estimate the specificity of the progression analyses, identical criteria were applied to visual fields obtained in 102 healthy control subjects, and the rate of visual field improvement was established in the patients with glaucoma and the healthy control subjects. With both event and trend methods, pattern deviation analyses classified approximately 15% fewer eyes as having progressed than did the total deviation analyses. In eyes classified as progressing by both the total and pattern deviation methods, total deviation analyses tended to detect progression earlier than the pattern deviation analyses. A comparison of the changes observed in MD and the visual fields' general height (estimated by the 85th percentile of the total deviation values) confirmed that change in the glaucomatous eyes almost always comprised a diffuse component. Pattern deviation analyses of progression may therefore underestimate the true amount of glaucomatous visual field progression. Pattern deviation analyses of visual field progression may underestimate visual field progression in glaucoma, particularly when there is no clinical evidence of increasing media opacity. Clinicians should have access to both total and pattern deviation analyses to make informed decisions on visual field progression in glaucoma.

  17. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  18. Visualization of various working fluids flow regimes in gravity heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  19. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  20. Seminar in Flow Visualization at Lafayette College: Variations on the Hertzberg Effect

    NASA Astrophysics Data System (ADS)

    Rossmann, Jenn Stroud

    2013-11-01

    Flow visualization reveals an invisible world of fluid dynamics, blending scientific investigation and artistic exploration. The resulting images have inspired, and in some cases themselves become appreciated as, art. At Lafayette College, a sophomore-level seminar in The Art and Science of Flow Visualization exposes students to these techniques and the science of fluid mechanics, and to the photographic methods needed to create effective images that are successful both scientifically and artistically. Unlike other courses in flow visualization, this course assumes no a priori familiarity with fluid flow or with photography. The fundamentals of both are taught and practiced in a studio setting. Students are engaged in an interdisciplinary discourse about fluids and physics, photography, scientific ethics, and historical societal responses to science and art. Relevant texts from several disciplines are read, discussed, and responded to in student writing. This seminar approach makes flow visualization and fluid dynamics a natural part of a liberal education. The development, implementation, and assessment of this team-taught course at Lafayette College will be discussed. Support provided by National Science Foundation.

  1. Teaching Tectonics to Undergraduates with Web GIS

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  2. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Kim, D; Kang, S

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unitmore » and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation therapy. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less

  3. Beyond sensory images: Object-based representation in the human ventral pathway

    PubMed Central

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396

  4. Flow visualization and modeling for education and outreach in low-income countries

    NASA Astrophysics Data System (ADS)

    Motanated, K.

    2016-12-01

    Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.

  5. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  6. Coherent Doppler lidar for measurements of wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hardesty, R. Michael

    1989-01-01

    The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.

  7. Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns.

    PubMed

    Lawson, David A; Chittka, Lars; Whitney, Heather M; Rands, Sean A

    2018-06-13

    Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee. © 2018 The Authors.

  8. Centrifuge in space fluid flow visualization experiment

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  9. Water tunnel flow visualization using a laser

    NASA Technical Reports Server (NTRS)

    Beckner, C.; Curry, R. E.

    1985-01-01

    Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.

  10. Tears of Wine

    NASA Astrophysics Data System (ADS)

    Rathore, Prerana; Sharma, Vivek

    `Tears of wine' refer to the rows of wine-drops that spontaneously emerge within a glass of strong wine. Evaporation-driven Marangoni flows near the meniscus of water-alcohol mixtures drive liquid upward forming a thin liquid film, and a rim or ridge forms near the moving contact line. Eventually the rim undergoes an instability forming drops, that roll back into bulk reservoir forming so called tears or legs of wine. Most studies in literature argue the evaporation of more volatile, lower surface tension component (alcohol) results in a concentration-dependent surface tension gradient that drives the climbing flow within the thin film. Though it is well-known that evaporative cooling can create temperature gradients that could provide additional contribution to the climbing flows, the role of thermocapillary flows is less well-understood. Furthermore, the patterns, flows and instabilities that occur near the rim, and determine the size and periodicity of tears, are not well-studied. Using experiments and theory, we visualize and analyze the formation and growth of tears of wine. The sliding drops, released from the rim towards the bulk reservoir, show oscillations and a cascade of fascinating flows that are analyzed for the first time.

  11. Numerical investigation of cylinder wake flow with a rear stagnation jet

    NASA Astrophysics Data System (ADS)

    Mo, J. D.; Duke, M. R., Jr.

    1994-05-01

    Upon visualization of the flow past a cylinder with a rear stagnation jet (RSJ), the flow appears fully attached as conventional inviscid flow does. Therefore, at first glance, it would be suspected that the form drag on the cylinder has been reduced to zero as predicted by inviscid flow theory. However, a detailed numerical simulation reveals that the form drag coefficient increases as the jet velocity increases. The mechanics of the increasing form drag are addressed. The following conclusions were drawn: (1) flow behind a cylinder can be effectively influenced by a RSJ; (2) the unsymmetric wake flow becomes symmetric when the RSI is in operation with a velocity ratio as low as 1; the size of the symmetric recirculation region becomes smaller as the jet speed increases; (3) a RSJ forces a symmetrical wake flow pattern, thus eliminating the lateral force; (4) the pressure on the cylinder surface decreases over the entire surface, but significantly more on the downstream side of the cylinder, as the jet velocity increases, causing an increase in form drag as jet velocity ratio increases; and (5) the RSJ to significantly increase form drag on a bluff body has direct applications in aerodynamic controls of reentry or fligths at high angles of attack.

  12. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  13. A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-Cell Level

    PubMed Central

    Li, Fenfang; Yuan, Fang; Sankin, Georgy; Yang, Chen; Zhong, Pei

    2017-01-01

    In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly-localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles. PMID:28117807

  14. Float-zone processing in a weightless environment

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.

    1976-01-01

    The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.

  15. Visualizing a possible atmospheric teleconnection associated with UK floods in autumn 2000

    NASA Astrophysics Data System (ADS)

    Pall, P.; Bensema, K.; Stone, D.; Wehner, M. F.; Bethel, W.; Joy, K.

    2012-12-01

    Severe floods occurred across England and Wales during the record-wet autumn of the year 2000. Recently Pall et al. (2011) demonstrated that the risk of such floods occurring at that time substantially increased as a result of anthropogenic greenhouse gas emissions, and that the synoptic weather system associated with the floods was a common but anomalously strong 'Scandinavia' atmospheric circulation pattern (a Rossby-wave-like train of tropospheric anomalies in geopotential height, extending from the subtropical Atlantic across Eurasia, with a cyclone over the UK and a strong anticyclone over Scandinavia). Blackburn and Hoskins (2001) suggest that this pattern was itself catalyzed by an anomalous upper-tropospheric flow of air: originating with an ascent of air due to convection over warm sea surface temperatures in the western Tropical Pacific, and ending in a descent of air over the Amazon in the proposed source region of the Scandinavia pattern. However, evidence for this so-called 'teleconnection' is not entirely clear in the idealised climate models they used. Here we use visualization techniques to search for this teleconnection in the simulations generated with the more comprehensive seasonal-forecast-resolution climate model of Pall et al. (2011) -- by identifying anomalous streamflow patterns and using the UV-CDAT software developed at Berkeley Lab to do so. Furthermore, since several thousand simulations were generated (in order to capture the rare flood event), totaling hundreds of GB in size, we use paralleisation techniques to perform this search efficiently.

  16. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. A cross-modal investigation of the neural substrates for ongoing cognition

    PubMed Central

    Wang, Megan; He, Biyu J.

    2014-01-01

    What neural mechanisms underlie the seamless flow of our waking consciousness? A necessary albeit insufficient condition for such neural mechanisms is that they should be consistently modulated across time were a segment of the conscious stream to be repeated twice. In this study, we experimentally manipulated the content of a story followed by subjects during functional magnetic resonance imaging (fMRI) independently from the modality of sensory input (as visual text or auditory speech) as well as attentional focus. We then extracted brain activity patterns consistently modulated across subjects by the evolving content of the story regardless of whether it was presented visually or auditorily. Specifically, in one experiment we presented the same story to different subjects via either auditory or visual modality. In a second experiment, we presented two different stories simultaneously, one auditorily, one visually, and manipulated the subjects' attentional focus. This experimental design allowed us to dissociate brain activities underlying modality-specific sensory processing from modality-independent story processing. We uncovered a network of brain regions consistently modulated by the evolving content of a story regardless of the sensory modality used for stimulus input, including the superior temporal sulcus/gyrus (STS/STG), the inferior frontal gyrus (IFG), the posterior cingulate cortex (PCC), the medial frontal cortex (MFC), the temporal pole (TP), and the temporoparietal junction (TPJ). Many of these regions have previously been implicated in semantic processing. Interestingly, different stories elicited similar brain activity patterns, but with subtle differences potentially attributable to varying degrees of emotional valence and self-relevance. PMID:25206347

  18. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  19. Normalization regulates competition for visual awareness

    PubMed Central

    Ling, Sam; Blake, Randolph

    2012-01-01

    Summary Signals in our brain are in a constant state of competition, including those that vie for motor control, sensory dominance and awareness. To shed light on the mechanisms underlying neural competition, we exploit binocular rivalry, a phenomenon that allows us to probe the competitive process that ordinarily transpires outside of our awareness. By measuring psychometric functions under different states of rivalry, we discovered a pattern of gain changes that are consistent with a model of competition in which attention interacts with normalization processes, thereby driving the ebb and flow between states of awareness. Moreover, we reveal that attention plays a crucial role in modulating competition; without attention, rivalry suppression for high-contrast stimuli is negligible. We propose a framework whereby our visual awareness of competing sensory representations is governed by a common neural computation: normalization. PMID:22884335

  20. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  1. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children.

    PubMed

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.

  2. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  3. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  4. Mechanisms of Sediment Entrainment and Transport in Rotorcraft Brownout

    DTIC Science & Technology

    2009-01-01

    understanding of the temporal evolution of the rotor wake in ground effect simultaneously with the processes of sediment entrainment and transport by the rotor ...14 1.8 Schematic and smoke flow visualization of a rotor flow during out-of- ground- effect ...operations. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 Schematic and smoke flow visualization of a rotor flow during in-ground- effect

  5. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  6. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  7. An experimental facility for the visual study of turbulent flows.

    NASA Technical Reports Server (NTRS)

    Brodkey, R. S.; Hershey, H. C.; Corino, E. R.

    1971-01-01

    An experimental technique which allows visual observations of the wall area in turbulent pipe flow is described in detail. It requires neither the introduction of any injection or measuring device into the flow nor the presence of a two-phase flow or of a non-Newtonian fluid. The technique involves suspending solid MgO particles of colloidal size in trichloroethylene and photographing their motions near the wall with a high speed movie camera moving with the flow. Trichloroethylene was chosen in order to eliminate the index of refraction problem in a curved wall. Evaluation of the technique including a discussion of limitations is included. Also the technique is compared with previous methods of visual observations of turbulent flow.

  8. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  9. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; MacMinn, C. W.; Juanes, R.

    2015-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we conduct two-phase flow experiments via radial displacement of viscous silicone oil by water, in planar microfluidic devices patterned with vertical posts. These devices allow for visualization of flow through a complex but well-defined microstructure. In addition, the surface energy of the devices can be tuned over a wide range of contact angles, allowing us to access different wettability conditions. We use a fluorescent dye to measure the in-plane water saturation. We perform constant-rate injection experiments with highly unfavorable mobility contrast (viscosity of injected water is 350 times less than the displaced silicone oil) at injection rates over four orders of magnitude. We focus on three particular wetting conditions: drainage (θ=120°), weak imbibition (θ=60°), and strong imbibition (θ=7°). In drainage, we observe a transition from viscous fingering at high capillary numbers to a morphology that, in contrast with conventional knowledge, is different from capillary fingering. In weak imbibition, we observe an apparent stabilization of flow instabilities, as a result of cooperative invasion at the pore scale. In strong imbibition, we find that the flow behavior is heavily influenced by a precursor front that emanates from the main imbibition front. The nature of the precursor front depends on the capillary number. At intermediate capillary numbers, the precursor front consists primarily of corner flow that connects the surface of neighboring posts, forming ramified fingers. The progress of corner flow is overtaken by the spreading of precursor film (~1 um thick) at lower capillary numbers. The ensuing main imbibition front preferentially invades areas already coated by the precursor film, forming a more compact invasion pattern. Our work demonstrates the important, yet intricate, impact of wettability on the morphology of fluid-fluid displacement in porous media.

  10. The effect of virtual reality on gait variability.

    PubMed

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  11. Flow-visualization study of the X-29A aircraft at high angles of attack using a 1/48-scale model

    NASA Technical Reports Server (NTRS)

    Cotton, Stacey J.; Bjarke, Lisa J.

    1994-01-01

    A water-tunnel study on a 1/48-scale model of the X-29A aircraft was performed at the NASA Dryden Flow Visualization Facility. The water-tunnel test enhanced the results of the X-29A flight tests by providing flow-visualization data for comparison and insights into the aerodynamic characteristics of the aircraft. The model was placed in the water tunnel at angles of attack of 20 to 55 deg. and with angles of sideslip from 0 to 5 deg. In general, flow-visualization techniques provided useful information on vortex formation, separation, and breakdown and their role in yaw asymmetries and tail buffeting. Asymmetric forebody vortices were observed at angles of attack greater than 30 deg. with 0 deg. sideslip and greater than 20 deg. with 5 deg. sideslip. While the asymmetric flows observed in the water tunnel did not agree fully with the flight data, they did show some of the same trends. In addition, the flow visualization indicated that the interaction of forebody vortices and the wing wake at angles of attack between 20 and 35 deg. may cause vertical-tail buffeting observed in flight.

  12. Holographic flow visualization in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Reeves, M.

    1990-11-01

    Holographic flow visualization has found many applications in rotating turbomachinery. Applications in the design of aeroengine fans, automotive turbochargers, turbines, helicopter rotors, and advanced propfans are discussed. Work in ducted rotating flows and rotating free aerofoils is brought together and new developments in each field are revealed.

  13. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662

  14. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.

  15. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.

  16. Visualization and analysis of flow structures in an open cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  17. In-flight flow visualization characteristics of the NASA F-18 high alpha research vehicle at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Delfrate, John H.; Richwine, David M.

    1991-01-01

    Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.

  18. Recurrence Quantification of Fractal Structures

    PubMed Central

    Webber, Charles L.

    2012-01-01

    By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808

  19. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.

    PubMed

    Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung

    2017-05-17

    In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.

  20. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  1. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    NASA Astrophysics Data System (ADS)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow condition are expected to improve our predictive ability to capture the dynamics of streambed characteristics, which has implications to sediment transport, biogeochemical processes and hyporheic ecology.

  2. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  3. The influence of device position on the flow within the Penn State 12 cc pediatric ventricular assist device.

    PubMed

    Schönberger, Markus; Deutsch, Steven; Manning, Keefe B

    2012-01-01

    Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tools. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device (PVAD), the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5-15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient's behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mm Hg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition, high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood.

  4. Large Eddy Simulation of Supercritical CO2 Through Bend Pipes

    NASA Astrophysics Data System (ADS)

    He, Xiaoliang; Apte, Sourabh; Dogan, Omer

    2017-11-01

    Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.

  5. Behavior of CO2/water flow in porous media for CO2 geological storage.

    PubMed

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Humans do not have direct access to retinal flow during walking

    PubMed Central

    Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.

    2013-01-01

    Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509

  7. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    NASA Astrophysics Data System (ADS)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  8. How Temporal and Spatial Aspects of Presenting Visualizations Affect Learning about Locomotion Patterns

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter

    2012-01-01

    Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…

  9. The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds.

    PubMed

    Hubel, Tatjana Y; Tropea, Cameron

    2010-06-01

    Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in small vertebrates such as swifts, small bats and hummingbirds been confirmed. To study the relevance of unsteady effects at the scale of large birds [reduced frequency k between 0.05 and 0.3, k=(pifc)/U(infinity); f is wingbeat frequency, U(infinity) is free-stream velocity, and c is the average wing chord], and the consequences of the lack of kinematic and morphological refinements, we have designed a simplified goose-sized flapping model for wind tunnel testing. The 2-D flow patterns along the wing span were quantitatively visualized using particle image velocimetry (PIV), and a three-component balance was used to measure the forces generated by the wings. The flow visualization on the wing showed the appearance of LEVs, which is typically associated with a delayed stall effect, and the transition into flow separation. Also, the influence of the delayed stall and flow separation was clearly visible in measurements of instantaneous net force over the wingbeat cycle. Here, we show that, even at reduced frequencies as low as those of large bird flight, unsteady effects are present and non-negligible and have to be addressed by kinematic and morphological adaptations.

  10. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  11. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  12. Evolution and dynamics of shear-layer structures in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. H.; Kim, John

    1991-01-01

    Near-wall flow structures in turbulent shear flows are analyzed, with particular emphasis on the study of their space-time evolution and connection to turbulence production. The results are obtained from investigation of a database generated from direct numerical simulation of turbulent channel flow at a Reynolds number of 180 based on half-channel width and friction velocity. New light is shed on problems associated with conditional sampling techniques, together with methods to improve these techniques, for use both in physical and numerical experiments. The results clearly indicate that earlier conceptual models of the processes associated with near-wall turbulence production, based on flow visualization and probe measurements need to be modified. For instance, the development of asymmetry in the spanwise direction seems to be an important element in the evolution of near-wall structures in general, and for shear layers in particular. The inhibition of spanwise motion of the near-wall streaky pattern may be the primary reason for the ability of small longitudinal riblets to reduce turbulent skin friction below the value for a flat surface.

  13. A Laboratory model for the flow in urban street canyons induced by bottom heating

    NASA Astrophysics Data System (ADS)

    Liu, Huizhi; Liang, Bin; Zhu, Fengrong; Zhang, Boyin; Sang, Jianguo

    2003-07-01

    Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind, the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.

  14. Finite element analysis and computer graphics visualization of flow around pitching and plunging airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1973-01-01

    A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.

  15. Understanding Adherence and Prescription Patterns Using Large-Scale Claims Data.

    PubMed

    Bjarnadóttir, Margrét V; Malik, Sana; Onukwugha, Eberechukwu; Gooden, Tanisha; Plaisant, Catherine

    2016-02-01

    Advanced computing capabilities and novel visual analytics tools now allow us to move beyond the traditional cross-sectional summaries to analyze longitudinal prescription patterns and the impact of study design decisions. For example, design decisions regarding gaps and overlaps in prescription fill data are necessary for measuring adherence using prescription claims data. However, little is known regarding the impact of these decisions on measures of medication possession (e.g., medication possession ratio). The goal of the study was to demonstrate the use of visualization tools for pattern discovery, hypothesis generation, and study design. We utilized EventFlow, a novel discrete event sequence visualization software, to investigate patterns of prescription fills, including gaps and overlaps, utilizing large-scale healthcare claims data. The study analyzes data of individuals who had at least two prescriptions for one of five hypertension medication classes: ACE inhibitors, angiotensin II receptor blockers, beta blockers, calcium channel blockers, and diuretics. We focused on those members initiating therapy with diuretics (19.2%) who may have concurrently or subsequently take drugs in other classes as well. We identified longitudinal patterns in prescription fills for antihypertensive medications, investigated the implications of decisions regarding gap length and overlaps, and examined the impact on the average cost and adherence of the initial treatment episode. A total of 790,609 individuals are included in the study sample, 19.2% (N = 151,566) of whom started on diuretics first during the study period. The average age was 52.4 years and 53.1% of the population was female. When the allowable gap was zero, 34% of the population had continuous coverage and the average length of continuous coverage was 2 months. In contrast, when the allowable gap was 30 days, 69% of the population showed a single continuous prescription period with an average length of 5 months. The average prescription cost of the period of continuous coverage ranged from US$3.44 (when the maximum gap was 0 day) to US$9.08 (when the maximum gap was 30 days). Results were less impactful when considering overlaps. This proof-of-concept study illustrates the use of visual analytics tools in characterizing longitudinal medication possession. We find that prescription patterns and associated prescription costs are more influenced by allowable gap lengths than by definitions and treatment of overlap. Research using medication gaps and overlaps to define medication possession in prescription claims data should pay particular attention to the definition and use of gap lengths.

  16. Regional cerebral blood flow measurement with intravenous ( sup 15 O)water bolus and ( sup 18 F)fluoromethane inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herholz, K.; Pietrzyk, U.; Wienhard, K.

    1989-09-01

    In 20 patients with ischemic cerebrovascular disease, classic migraine, or angiomas, we compared paired dynamic positron emission tomographic measurements of regional cerebral blood flow using both ({sup 15}O)water and ({sup 18}F)fluoromethane as tracers. Cerebral blood flow was also determined according to the autoradiographic technique with a bolus injection of ({sup 15}O)water. There were reasonable overall correlations between dynamic ({sup 15}O)water and ({sup 18}F)fluoromethane values for cerebral blood flow (r = 0.82) and between dynamic and autoradiographic ({sup 15}O)water values for cerebral blood flow (r = 0.83). We found a close correspondence between abnormal pathologic findings and visually evaluated cerebral bloodmore » flow tomograms obtained with the two tracers. On average, dynamic ({sup 15}O)water cerebral blood flow was 6% lower than that measured with ({sup 18}F)fluoromethane. There also was a general trend toward a greater underestimation with ({sup 15}O)water in high-flow areas, particularly in hyperemic areas, probably due to incomplete first-pass extraction of ({sup 15}O)water. Underestimation was not detected in low-flow areas or in the cerebellum. Absolute cerebral blood flow values were less closely correlated between tracers and techniques than cerebral blood flow patterns. The variability of the relation between absolute flow values was probably caused by confounding effects of the variation in the circulatory delay time. The autoradiographic technique was most sensitive to this type error.« less

  17. Visualization of lunar excavation test in NASA Glenn's GRUVE Lab

    NASA Image and Video Library

    1969-12-31

    Calvin Robinson of NASA Glenn's GVIS Team demonstrates a visualization of an excavation test conducted at NASA Glenn Research Center's SLOPE Lab ( https://rt.grc.nasa.gov/main/rlc/simu... ) . The visualization shows the flow of a lunar soil simulant as it flows in and past a proposed excavation bucket.

  18. Visualization of boundary-layer development on turbomachine blades with liquid crystals

    NASA Technical Reports Server (NTRS)

    Vanzante, Dale E.; Okiishi, Theodore H.

    1991-01-01

    This report documents a study of the use of liquid crystals to visualize boundary layer development on a turbomachine blade. A turbine blade model in a linear cascade of blades was used for the tests involved. Details of the boundary layer development on the suction surface of the turbine blade model were known from previous research. Temperature sensitive and shear sensitive liquid crystals were tried as visual agents. The temperature sensitive crystals were very effective in their ability to display the location of boundary layer flow separation and reattachment. Visualization of natural transition from laminar to turbulent boundary layer flow with the temperature sensitive crystals was possible but subtle. The visualization of separated flow reattachment with the shear sensitive crystals was easily accomplished when the crystals were allowed to make a transition from the focal-conic to a Grandjean texture. Visualization of flow reattachment based on the selective reflection properties of shear sensitive crystals was achieved only marginally because of the larger surface shear stress and shear stress gradient levels required for more dramatic color differences.

  19. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  20. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  1. Local statistics of retinal optic flow for self-motion through natural sceneries.

    PubMed

    Calow, Dirk; Lappe, Markus

    2007-12-01

    Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.

  2. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  3. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    ERIC Educational Resources Information Center

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  4. Effectiveness of Myocardial Contrast Echocardiography Quantitative Analysis during Adenosine Stress versus Visual Analysis before Percutaneous Therapy in Acute Coronary Pain: A Coronary Artery TIMI Grading Comparing Study

    PubMed Central

    Yang, Lixia; Mu, Yuming; Quaglia, Luiz Augusto; Tang, Qi; Guan, Lina; Wang, Chunmei; Shih, Ming Chi

    2012-01-01

    The study aim was to compare two different stress echocardiography interpretation techniques based on the correlation with thrombosis in myocardial infarction (TIMI ) flow grading from acute coronary syndrome (ACS) patients. Forty-one patients with suspected ACS were studied before diagnostic coronary angiography with myocardial contrast echocardiography (MCE) at rest and at stress. The correlation of visual interpretation of MCE and TIMI flow grade was significant. The quantitative analysis (myocardial perfusion parameters: A, β, and A × β) and TIMI flow grade were significant. MCE visual interpretation and TIMI flow grade had a high degree of agreement, on diagnosing myocardial perfusion abnormality. If one considers TIMI flow grade <3 as abnormal, MCE visual interpretation at rest had 73.1% accuracy with 58.2% sensitivity and 84.2% specificity and at stress had 80.4% accuracy with 76.6% sensitivity and 83.3% specificity. The MCE quantitative analysis has better accuracy with 100% of agreement with different level of TIMI flow grading. MCE quantitative analysis at stress has showed a direct correlation with TIMI flow grade, more significant than the visual interpretation technique. Further studies could measure the clinical relevance of this more objective approach to managing acute coronary syndrome patient before percutaneous coronary intervention (PCI). PMID:22778555

  5. Surface-Streamline Flow Visualization

    NASA Technical Reports Server (NTRS)

    Langston, L.; Boyle, M.

    1985-01-01

    Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.

  6. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory

    PubMed Central

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374

  7. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  8. Do Pattern-Focused Visuals Improve Skin Self-Examination Performance? Explicating the Visual Skill Acquisition Model

    PubMed Central

    JOHN, KEVIN K.; JENSEN, JAKOB D.; KING, ANDY J.; RATCLIFF, CHELSEA L.; GROSSMAN, DOUGLAS

    2017-01-01

    Skin self-examination (SSE) consists of routinely checking the body for atypical moles that might be cancerous. Identifying atypical moles is a visual task; thus, SSE training materials utilize pattern-focused visuals to cultivate this skill. Despite widespread use, researchers have yet to explicate how pattern-focused visuals cultivate visual skill. Using eye tracking to capture the visual scanpaths of a sample of laypersons (N = 92), the current study employed a 2 (pattern: ABCDE vs. ugly duckling sign [UDS]) × 2 (presentation: photorealistic images vs. illustrations) factorial design to assess whether and how pattern-focused visuals can increase layperson accuracy in identifying atypical moles. Overall, illustrations resulted in greater sensitivity, while photos resulted in greater specificity. The UDS × photorealistic condition showed greatest specificity. For those in the photo condition with high self-efficacy, UDS increased specificity directly. For those in the photo condition with self-efficacy levels at the mean or lower, there was a conditional indirect effect such that these individuals spent a larger amount of their viewing time observing the atypical moles, and time on target was positively related to specificity. Illustrations provided significant gains in specificity for those with low-to-moderate self-efficacy by increasing total fixation time on the atypical moles. Findings suggest that maximizing visual processing efficiency could enhance existing SSE training techniques. PMID:28759333

  9. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.

  10. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    NASA Technical Reports Server (NTRS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  11. A Basic Experiment on the Aerodynamics of Sniffing

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; Kester, Douglas A.

    1999-11-01

    Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)

  12. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  13. How visual search relates to visual diagnostic performance: a narrative systematic review of eye-tracking research in radiology.

    PubMed

    van der Gijp, A; Ravesloot, C J; Jarodzka, H; van der Schaaf, M F; van der Schaaf, I C; van Schaik, J P J; Ten Cate, Th J

    2017-08-01

    Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology domain aims to identify visual search patterns associated with high perceptual performance. Databases PubMed, EMBASE, ERIC, PsycINFO, Scopus and Web of Science were searched using 'visual perception' OR 'eye tracking' AND 'radiology' and synonyms. Two authors independently screened search results and included eye tracking studies concerning visual skills in radiology published between January 1, 1994 and July 31, 2015. Two authors independently assessed study quality with the Medical Education Research Study Quality Instrument, and extracted study data with respect to design, participant and task characteristics, and variables. A thematic analysis was conducted to extract and arrange study results, and a textual narrative synthesis was applied for data integration and interpretation. The search resulted in 22 relevant full-text articles. Thematic analysis resulted in six themes that informed the relation between visual search and level of expertise: (1) time on task, (2) eye movement characteristics of experts, (3) differences in visual attention, (4) visual search patterns, (5) search patterns in cross sectional stack imaging, and (6) teaching visual search strategies. Expert search was found to be characterized by a global-focal search pattern, which represents an initial global impression, followed by a detailed, focal search-to-find mode. Specific task-related search patterns, like drilling through CT scans and systematic search in chest X-rays, were found to be related to high expert levels. One study investigated teaching of visual search strategies, and did not find a significant effect on perceptual performance. Eye tracking literature in radiology indicates several search patterns are related to high levels of expertise, but teaching novices to search as an expert may not be effective. Experimental research is needed to find out which search strategies can improve image perception in learners.

  14. Acetazolamide-induced vasodilation does not inhibit the visually evoked flow response

    PubMed Central

    Yonai, Yaniv; Boms, Neta; Molnar, Sandor; Rosengarten, Bernhard; Bornstein, Natan M; Csiba, Laszlo; Olah, Laszlo

    2010-01-01

    Different methods are used to assess the vasodilator ability of cerebral blood vessels; however, the exact mechanism of cerebral vasodilation, induced by different stimuli, is not entirely known. Our aim was to investigate whether the potent vasodilator agent, acetazolamide (AZ), inhibits the neurovascular coupling, which also requires vasodilation. Therefore, visually evoked flow parameters were examined by transcranial Doppler in ten healthy subjects before and after AZ administration. Pulsatility index and peak systolic flow velocity changes, evoked by visual stimulus, were recorded in the posterior cerebral arteries before and after intravenous administration of 15 mg/kg AZ. Repeated-measures ANOVA did not show significant group main effect between the visually evoked relative flow velocity time courses before and after AZ provocation (P=0.43). Visual stimulation induced significant increase of relative flow velocity and decrease of pulsatility index not only before but also at the maximal effect of AZ. These results suggest that maximal cerebral vasodilation cannot be determined by the clinically accepted dose of AZ (15 mg/kg) and prove that neurovascular coupling remains preserved despite AZ-induced vasodilation. Our observation indicates independent regulation of vasodilation during neurovascular coupling, allowing the adaptation of cerebral blood flow according to neuronal activity even if other processes require significant vasodilation. PMID:19809468

  15. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  16. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.

    PubMed

    Andrews, T J; Coppola, D M

    1999-08-01

    Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.

  17. Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai'i

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Frey, Frederick A.; Garcia, Michael O.; Huang, Shichun; McWilliams, Michael; Beeson, Melvin H.

    2016-07-01

    The Sugarloaf flow is a melilite nephelinite erupted from the Tantalus rift during rejuvenated-stage volcanism on O'ahu, the Honolulu Volcanics. The flow ponded in Mānoa Valley forming a ∼15 m thick flow which was cored and sampled in a quarry. Nepheline from a pegmatoid segregation in the flow yielded a 40Ar-39Ar age of 76 ka. This age, combined with others, indicates that the Tantalus rift eruptions are some of the youngest on O'ahu. Honolulu Volcanics erupt on average about every 35-40 ka indicating that future eruptions are possible. We evaluated the compositional variability of 19 samples from the flow, including 14 from the core. Twelve samples are representative of the bulk flow, four are dark- or light-colored variants, one is a heavy rare earth element (REE)-enriched pegmatoid, and two visually resemble the bulk flow, but have chemical characteristics of the dark and light variants. Our objective was to determine intraflow heterogeneity in mineralogy and composition. Variable abundances of Na2O, K2O, Sr, Ba, Rb, Pb and U in the flow were caused by post-eruptive mobility in a vapor phase, most likely during or soon after flow emplacement, and heterogeneous deposition of secondary calcite and zeolites. Relative to fine-grained samples, a pegmatoid vein that crosscuts the flow is enriched in incompatible trace elements except Sr and TiO2. Element mobility after eruption introduced scatter in trace element ratios including light-REE/heavy-REE, and all ratios involving mobile elements K, Rb, Ba, Sr, Pb, and U. Lavas from some of the 37 Honolulu Volcanics vents have crosscutting REE patterns in a primitive mantle-normalized plot. Such patterns have been interpreted to reflect variable amounts of residual garnet during partial melting. Previous studies of lavas from different vents concluded that garnet, phlogopite, amphibole, and Fe-Ti oxides were residual phases of the partial melting processes that created the Honolulu Volcanics (Clague and Frey, 1982; Yang et al., 2003). However post-eruptive processes in the Sugarloaf flow also produced crossing REE patterns. Eruptions on the Tantalus rift, including the Sugarloaf flow, produced volatile- and crystal-rich ash with interstitial glass and melt inclusions in olivine containing 4.2-6.4 wt% MgO compared to the flow average of 11.8 wt%. This flow erupted as a partially crystallized viscous magma at least 100 °C below its liquidus. The slow advance and cooling of the 15-m thick 'a' ā low promoted the segregation of pegmatoids, formation of light and dark bands with differing proportions of melilite and clinopyroxene, and induced volatile-enhanced mobility of incompatible elements.

  18. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  19. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  20. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

Top