Sample records for visualizing cellular delivery

  1. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    NASA Astrophysics Data System (ADS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-09-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5-5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

  2. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  3. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  4. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    PubMed

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    PubMed

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  6. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection[OPEN

    PubMed Central

    Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent

    2017-01-01

    To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390

  7. GFP-complementation assay to detect functional CPP and protein delivery into living cells

    PubMed Central

    Milech, Nadia; Longville, Brooke AC; Cunningham, Paula T; Scobie, Marie N; Bogdawa, Heique M; Winslow, Scott; Anastasas, Mark; Connor, Theresa; Ong, Ferrer; Stone, Shane R; Kerfoot, Maria; Heinrich, Tatjana; Kroeger, Karen M; Tan, Yew-Foon; Hoffmann, Katrin; Thomas, Wayne R; Watt, Paul M; Hopkins, Richard M

    2015-01-01

    Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell’s membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease. PMID:26671759

  8. Optimized Design and Synthesis of Cell Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2013-01-21

    To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less

  9. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2014-10-01

    REFERENCES: 1. M.-R. Choi et al., Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3...subtype”, Ann Oncol, 2010, 21: 942– 948. [2] Mi-Ran Choi, et al., “Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan...horse”, Cancer Nano, 2012; 3: 47- 54. [3] Mi-Ran Choi, et al., “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors

  10. Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles.

    PubMed

    Kumar, Krishan; Vulugundam, Gururaja; Jaiswal, Pradeep Kumar; Shyamlal, Bharti Rajesh Kumar; Chaudhary, Sandeep

    2017-09-15

    This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    PubMed

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level

    PubMed Central

    Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.

    2017-01-01

    A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499

  13. Optoporation of impermeable molecules and genes for visualization and activation of cells

    NASA Astrophysics Data System (ADS)

    Dhakal, Kamal; Batbyal, Subrata; Kim, Young-Tae; Mohanty, Samarendra

    2015-03-01

    Visualization, activation, and detection of the cell(s) and their electrical activity require delivery of exogenous impermeable molecules and targeted expression of genes encoding labeling proteins, ion-channels and voltage indicators. While genes can be delivered by viral vector to cells, delivery of other impermeable molecules into the cytoplasm of targeted cells requires microinjection by mechanical needle or microelectrodes, which pose significant challenge to the viability of the cells. Further, it will be useful to localize the expression of the targeted molecules not only in specific cell types, but to specific cells in restricted spatial regions. Here, we report use of focused near-infrared (NIR) femtosecond laser beam to transiently perforate targeted cell membrane to insert genes encoding blue light activatable channelrhodopsin-2 (ChR2) and red-shifted opsin (ReachR). Optoporation of nanomolar concentrations of rhodamine phalloidin (an impermeable dye molecule for staining filamentous actin) into targeted living mammalian cells (both HEK and primary cortical neurons) is also achieved allowing imaging of dynamics and intact morphology of cellular structures without requiring fixation.

  14. Cellular mechanism of oral absorption of solidified polymer micelles.

    PubMed

    Abramov, Eva; Cassiola, Flavia; Schwob, Ouri; Karsh-Bluman, Adi; Shapero, Mara; Ellis, James; Luyindula, Dema; Adini, Irit; D'Amato, Robert J; Benny, Ofra

    2015-11-01

    Oral delivery of poorly soluble and permeable drugs represents a significant challenge in drug development. The oral delivery of drugs remains to be the ultimate route of any drugs. However, in many cases, drugs are not absorbed well in the gastrointestinal tract, or they lose their activity. Polymer micelles were recognized as an effective carrier system for drug encapsulation, and are now studied as a vehicle for oral delivery of insoluble compounds. We characterized the properties of monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles, and visualized their internalization in mouse small intestine. Using Caco-2 cells as a cellular model, we studied the kinetics of particle uptake, their transport, and the molecular mechanism of their intestinal absorption. Moreover, by inhibiting specific endocytosis pathways, pharmacologically and genetically, we found that mPEG-PLA nanoparticle endocytosis is mediated by clathrin in an energy-dependent manner, and that the low-density lipoprotein receptor is involved. Many current drugs used are non-water soluble and indeed, the ability to deliver these drugs via the gastrointestinal tract remains the holy grail for many researchers. The authors in this paper developed monomethoxy polyethylene glycol-poly lactic acid (mPEG-PLA) micelles as a drug nanocarrier, and studied the mechanism of uptake across intestinal cells. The findings should improve our current understanding and point to the development of more nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Functionalization of Platinum Complexes for Biomedical Applications.

    PubMed

    Wang, Xiaoyong; Wang, Xiaohui; Guo, Zijian

    2015-09-15

    Platinum-based anticancer drugs are the mainstay of chemotherapy regimens in clinic. Nevertheless, the efficacy of platinum drugs is badly affected by serious systemic toxicities and drug resistance, and the pharmacokinetics of most platinum drugs is largely unknown. In recent years, a keen interest in functionalizing platinum complexes with bioactive molecules, targeting groups, photosensitizers, fluorophores, or nanomaterials has been sparked among chemical and biomedical researchers. The motivation for functionalization comes from some of the following demands: to improve the tumor selectivity or minimize the systemic toxicity of the drugs, to enhance the cellular accumulation of the drugs, to overcome the tumor resistance to the drugs, to visualize the drug molecules in vitro or in vivo, to achieve a synergistic anticancer effect between different therapeutic modalities, or to add extra functionality to the drugs. In this Account, we present different strategies being used for functionalizing platinum complexes, including conjugation with bisphosphonates, peptides, receptor-specific ligands, polymers, nanoparticles, magnetic resonance imaging contrast agents, metal chelators, or photosensitizers. Among them, bisphosphonates, peptides, and receptor-specific ligands are used for actively targeted drug delivery, polymers and nanoparticles are for passively targeted drug delivery, magnetic resonance imaging contrast agents are for theranostic purposes, metal chelators are for the treatment or prevention of Alzheimer's disease (AD), and photosensitizers are for photodynamic therapy of cancers. The rationales behind these designs are explained and justified at the molecular or cellular level, associating with the requirements for diagnosis, therapy, and visualization of biological processes. To illustrate the wide range of opportunities and challenges that are emerging in this realm, representative examples of targeted drug delivery systems, anticancer conjugates, anticancer theranostic agents, and anti-AD compounds relevant to functionalized platinum complexes are provided. All the examples exhibit new potential of platinum complexes for future applications in biomedical areas. The emphases of this Account are placed on the functionalization for targeted drug delivery and theranostic agents. In the end, a general assessment of various strategies has been made according to their major shortcomings and defects. The original information in this Account comes entirely from literature appearing since 2010.

  16. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.

  17. Visualization of self-delivering hydrophobically modified siRNA cellular internalization

    PubMed Central

    Ly, Socheata; Navaroli, Deanna M.; Didiot, Marie-Cécile; Cardia, James; Pandarinathan, Lakshmipathi; Alterman, Julia F.; Fogarty, Kevin; Standley, Clive; Lifshitz, Lawrence M.; Bellve, Karl D.; Prot, Matthieu; Echeverria, Dimas; Corvera, Silvia; Khvorova, Anastasia

    2017-01-01

    siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention. PMID:27899655

  18. Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time

    PubMed Central

    Chiu, Hsin-Yi; Deng, Wen; Engelke, Hanna; Helma, Jonas; Leonhardt, Heinrich; Bein, Thomas

    2016-01-01

    Chromobodies have recently drawn great attention as bioimaging nanotools. They offer high antigen binding specificity and affinity comparable to conventional antibodies, but much smaller size and higher stability. Chromobodies can be used in live cell imaging for specific spatio-temporal visualization of cellular processes. To date, functional application of chromobodies requires lengthy genetic manipulation of the target cell. Here, we develop multifunctional large-pore mesoporous silica nanoparticles (MSNs) as nanocarriers to directly transport chromobodies into living cells for antigen-visualization in real time. The multifunctional large-pore MSNs feature high loading capacity for chromobodies, and are efficiently taken up by cells. By functionalizing the internal MSN surface with nitrilotriacetic acid-metal ion complexes, we can control the release of His6-tagged chromobodies from MSNs in acidified endosomes and observe successful chromobody-antigen binding in the cytosol. Hence, by combining the two nanotools, chromobodies and MSNs, we establish a new powerful approach for chromobody applications in living cells. PMID:27173765

  19. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2014-10-01

    Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3, 47–54 (2012). 2. C. Qiao et...nn5002886. 8. H. Gao et al., Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles . Nanotechnology . 23, 435101 (2012...948. [2] Mi-Ran Choi, et al., “Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse”, Cancer Nano, 2012; 3

  20. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    PubMed

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  1. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery

    PubMed Central

    Feng, Shini; Zhi, Chunyi; Gao, Xiao-Dong

    2018-01-01

    Background Anticancer drug-delivery systems (DDSs) capable of responding to the physiological stimuli and efficiently releasing drugs inside tumor cells are highly desirable for effective cancer therapy. Herein, pH-responsive, charge-reversal poly(allylamine hydrochlorid)−citraconic anhydride (PAH-cit) functionalized boron nitride nanospheres (BNNS) were fabricated and used as a carrier for the delivery and controlled release of doxorubicin (DOX) into cancer cells. Methods BNNS was synthesized through a chemical vapor deposition method and then functionalized with synthesized charge-reversal PAH-cit polymer. DOX@PAH-cit–BNNS complexes were prepared via step-by-step electrostatic interactions and were fully characterized. The cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release inside cancer cells were visualized by confocal laser scanning microscopy. The in vitro anticancer activity of DOX@ PAH-cit–BNNS was examined using CCK-8 and live/dead viability/cytotoxicity assay. Results The PAH-cit–BNNS complexes were nontoxic to normal and cancer cells up to a concentration of 100 µg/mL. DOX was loaded on PAH-cit–BNNS complexes with high efficiency. In a neutral environment, the DOX@PAH-cit–BNNS was stable, whereas the loaded DOX was effectively released from these complexes at low pH condition due to amide hydrolysis of PAH-cit. Enhanced cellular uptake of DOX@PAH-cit–BNNS complexes and DOX release in the nucleus of cancer cells were revealed by confocal microscopy. Additionally, the effective delivery and release of DOX into the nucleus of cancer cells led to high therapeutic efficiency. Conclusion Our findings indicated that the newly developed PAH-cit–BNNS complexes are promising as an efficient pH-responsive DDS for cancer therapy. PMID:29440891

  2. Avanti lipid tools: connecting lipids, technology, and cell biology.

    PubMed

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  3. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  5. Nanoparticles engineered to bind cellular motors for efficient delivery.

    PubMed

    Dalmau-Mena, Inmaculada; Del Pino, Pablo; Pelaz, Beatriz; Cuesta-Geijo, Miguel Ángel; Galindo, Inmaculada; Moros, María; de la Fuente, Jesús M; Alonso, Covadonga

    2018-03-30

    Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery.

  6. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    PubMed

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  7. Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs

    PubMed Central

    Xia, Tian; Kovochich, Michael; Liong, Monty; Meng, Huan; Kabehie, Sanaz; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Surface-functionalized mesoporous silica nanoparticles (MSNP) can be used as an efficient and safe carrier for bioactive molecules. In order to make the MSNP a more efficient delivery system, we modified the surface of the particles by a functional group that enhances cellular uptake and allows nucleic acid delivery in addition to traditional drug delivery. Non-covalent attachment of polyethyleneimine (PEI) polymers to the surface not only increases MSNP cellular uptake, but also generates a cationic surface to which DNA and siRNA constructs could be attached. While efficient for intracellular delivery of these nucleic acids, the 25 KD PEI polymer unfortunately changes the safety profile of the MSNP that is otherwise very safe. By experimenting with several different polymer molecular weights, it was possible to retain high cellular uptake and transfection efficiency while reducing or even eliminating cationic MSNP cytotoxicity. The particles coated with the 10 KD PEI polymer was particularly efficient for transducing HEPA-1 cells with a siRNA construct that was capable of knocking down GFP expression. Similarly, transfection of a GFP plasmid induced effective expression of the fluorescent protein in > 70% cells in the population. These outcomes were quantitatively assessed by confocal microscopy and flow cytometry. We also demonstrated that the enhanced cellular uptake of the non-toxic cationic MSNP enhance the delivery of the hydrophobic anticancer drug, paclitaxel, to pancreatic cancer cells. In summary, we demonstrate that by a careful selection of PEI size, it is possible to construct cationic MSNP that are capable of nucleotide and enhanced drug delivery with minimal or no cytotoxicity. This novel use of a cationic MSNP extends its therapeutic use potential. PMID:19739605

  8. Insights on Localized and Systemic Delivery of Redox-Based Therapeutics

    PubMed Central

    Batrakova, Elena V.; Mota, Roberto

    2018-01-01

    Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside. PMID:29636836

  9. [Analysis of the Effect of Non-phacoemulsification Cataract Operation on Corneal Endothelial Cell Nucleus Division].

    PubMed

    Huang, Zufeng; Miao, Xiaoqing

    2015-09-01

    To investigate the effect of non-phacoemulsification cataract operation in two different patterns of nucleus delivery on the quantity and morphology of corneal endothelial cells and postoperative visual acuity. Forty patients diagnosed with cataract underwent cataract surgery and were assigned into the direct nuclear delivery and semi-nuclear delivery groups. Lens density was measured and divided into the hard and soft lenses according to Emery-little lens nucleus grading system. Non-phacoemulsification cataract operation was performed. At 3 d after surgery, the quantity and morphology of corneal endothelium were counted and observed under corneal endothelial microscope. During 3-month postoperative follow-up, the endothelial cell loss rate, morphological changes and visual acuity were compared among four groups. Corneal endothelial cell loss rate in the direct delivery of hard nucleus group significantly differed from those in the other three groups before and 3 months after operation (P < 0.01), whereas no statistical significance was found among the direct delivery of soft nucleus, semi-delivery of hard nucleus and semi-delivery soft nucleus groups (all P > 0.05). Preoperative and postoperative 2-d visual acuity did not differ between the semi-delivery of hard nucleus and direct delivery of soft nucleus groups (P = 0.49), significantly differed from those in the semi-delivery of soft nucleus (P = 0.03) and direct delivery of hard nucleus groups (P = 0.14). Visual acuity at postoperative four months did not differ among four groups (P = 0.067). During non-phacoemulsification cataract surgery, direct delivery of hard nucleus caused severe injury to corneal endothelium and semi-delivery of soft nucleus yielded mild corneal endothelial injury. Slight corneal endothelial injury exerted no apparent effect upon visual acuity and corneal endothelial morphology at three months after surgery.

  10. Clinical confocal microlaparoscope for real-time in vivo optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Udovich, Joshua A.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2009-07-01

    Successful treatment of cancer is highly dependent on the stage at which it is diagnosed. Early diagnosis, when the disease is still localized at its origin, results in very high cure rates-even for cancers that typically have poor prognosis. Biopsies are often used for diagnosis of disease. However, because biopsies are destructive, only a limited number can be taken. This leads to reduced sensitivity for detection due to sampling error. A real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. It has a 3-μm lateral resolution and a 25-μm axial resolution. Initial in vivo clinical testing using the device to image human ovaries has been done in 21 patients. Results indicate that the device can successfully image organs in vivo without complications. Results with excised tissue demonstrate that the instrument can resolve sufficient cellular detail to visualize the cellular changes associated with the onset of cancer.

  11. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    PubMed Central

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  12. Effects of X-shaped reduction-sensitive amphiphilic block copolymer on drug delivery.

    PubMed

    Xiao, Haijun; Wang, Lu

    2015-01-01

    To study the effects of X-shaped amphiphilic block copolymers on delivery of docetaxel (DTX) and the reduction-sensitive property on drug release, a novel reduction-sensitive amphiphilic copolymer, (PLGA)2-SS-4-arm-PEG2000 with a Gemini-like X-shape, was successfully synthesized. The formation of nanomicelles was proved with respect to the blue shift of the emission fluorescence as well as the fluorescent intensity increase of coumarin 6-loaded particles. The X-shaped polymers exhibited a smaller critical micelle concentration value and possessed higher micellar stability in comparison with those of linear ones. The size of X-shaped (PLGA)2-SS-4-arm-PEG2000 polymer nanomicelles (XNMs) was much smaller than that of nanomicelles prepared with linear polymers. The reduction sensitivity of polymers was confirmed by the increase of micellar sizes as well as the in vitro drug release profile of DTX-loaded XNMs (DTX/XNMs). Cytotoxicity assays in vitro revealed that the blank XNMs were nontoxic against A2780 cells up to a concentration of 50 µg/mL, displaying good biocompatibility. DTX/XNMs were more toxic against A2780 cells than other formulations in both dose- and time-dependent manners. Cellular uptake assay displayed a higher intracellular drug delivery efficiency of XNMs than that of nanomicelles prepared with linear polymers. Besides, the promotion of tubulin polymerization induced by DTX was visualized by immunofluorescence analysis, and the acceleration of apoptotic process against A2780 cells was also imaged using a fluorescent staining method. Therefore, this X-shaped reduction-sensitive (PLGA)2-SS-4-arm-PEG2000 copolymer could effectively improve the micellar stability and significantly enhance the therapeutic efficacy of DTX by increasing the cellular uptake and selectively accelerating the drug release inside cancer cells.

  13. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery

    PubMed Central

    Dempsey, Christopher; Lee, Isac; Cowan, Katie; Suh, Junghae

    2015-01-01

    Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI) – one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. PMID:23973999

  15. Nanotopographical Cues for Modulating Fibrosis and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Walsh, Laura Aiko Michelle

    Nanotopography in the cellular microenvironment provides biological cues and therefore has potential to be a useful tool for directing cellular behavior. Fibrotic encapsulation of implanted devices and materials can wall off and eventually cause functional failure of the implant. Drug delivery requires penetrating the epithelium, which encapsulates the body and provides a barrier to separate the body from its external environment. Both of these challenges could be elegantly surmounted using nanotopography, which would harness innate cellular responses to topographic cues to elicit desired cellular behavior. To this end, we fabricated high and low aspect ratio nanotopographically patterned thin films. Using scanning electron microscopy, real time polymerase chain reaction, immunofluorescence microscopy, in vitro drug delivery assays, transmission electron microscopy, inhibitor studies, and rabbit and rat in vivo drug delivery studies, we investigated cellular response to our nanotopographic thin films. We determined that high aspect ratio topography altered fibroblast morphology and decreased proliferation, possibly due to decreased protein adsorption. The fibroblasts also down regulated expression of mRNA of key factors associated with fibrosis, such as collagens 1 and 3. Low aspect ratio nanotopography increased drug delivery in vitro across an intestinal epithelial model monolayer by increasing paracellular permeability and remodeling the tight junction. This increase in drug delivery required integrin engagement and MLCK activity, and is consistent with the increased focal adhesion formation. Tight junction remodeling was also observed in a multilayered keratinocyte model, showing this mechanism can be generalized to multiple epithelium types. By facilitating direct contact of nanotopography with the viable epidermis using microneedles to pierce the stratum corneum, we are able to transdermally deliver a 150 kiloDalton, IgG-based therapeutic in vivo..

  16. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    PubMed

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  17. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    PubMed

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  18. Neuronal pathway finding: from neurons to initial neural networks.

    PubMed

    Roscigno, Cecelia I

    2004-10-01

    Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.

  19. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  20. Highlights in Endocytosis of Nanostructured Systems.

    PubMed

    Voltan, Aline R; Alarcon, Kaila M; Fusco-Almeida, Ana M; Soares, Christiane P; Mendes-Giannini, Maria J S; Chorilli, Marlus

    2017-01-01

    The focus of this review is the cellular internalisation mechanism of nanostructured systems (NSs) and their endosomal escape for targeted drug delivery. Endocytosis is a cellular process of internalisation of different molecules and foreign microorganisms. It is currently being studied for drug delivery through nanostructured systems. The most commonly studied routes of cellular uptake are phagocytosis, macro-pinocytosis, clathrinmediated endocytosis, caveolin-mediated endocytosis, and clathrin and caveolinindependent endocytosis. The mechanism utilised by NSs for cellular entry depends on factors such as cell type and its physicochemical properties. Currently, with the development of drugs-loaded onto NSs, it has been possible to increase the therapeutic index against few diseases. The NSs can deliver the active drug at locations that conventional drugs cannot, thereby minimising unwanted side effects. On cellular entry of NSs, there is a possibility of an endosomal escape of the contents into the cytoplasm, a mechanism that can be exploited so that NSs can migrate intra-cellularly and deliver the drug to the target of interest. Designing endolysosomal escape strategy is not an easy task, but it is critical for the optimal pharmacological action on the target tissue. The cellular uptake of drugs is a very important factor in therapy. Although NSs have emerged as effective drug delivery vehicle for treatment of diseases, it is crucial to understand the mechanism of NSs endocytosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  3. Smart Drug Delivery Systems in Cancer Therapy.

    PubMed

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    PubMed

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  5. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts

    PubMed Central

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768

  6. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery.

    PubMed

    Li, Zixian; de Barros, Andre Luis Branco; Soares, Daniel Cristian Ferreira; Moss, Sara Nicole; Alisaraie, Laleh

    2017-05-30

    The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  8. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.

    PubMed

    Hussain, Rehan M; Ciulla, Thomas A

    2017-09-01

    Evolving anti-vascular endothelial growth factor (VEGF) treatments for neovascular age-related macular degeneration (nAMD) include long acting agents, combination strategies involving new pathways, topical agents, sustained-release, and genetic therapy strategies. Areas covered: Brolucizumab and abicipar pegol have smaller molecular size, facilitating higher concentrations and potentially longer duration than current anti-VEGF agents. Agents being combined with anti-VEGFs include OPT-302 (to inhibit VEGF-C and VEGF-D); pegpleranib and rinucumab (to inhibit platelet derived growth factor, PDGF - but both failed to show consistently improved visual outcomes compared to anti-VEGF monotherapy); and RG7716, ARP-1536 and nesvacumab (to activate the Tie-2 tyrosine kinase receptor, which reduces permeability). X-82 is an oral anti-VEGF and anti-PDGF being tested in phase 2 studies. Topical anti-VEGF ± anti-PDGF drugs under study include pazopanib, PAN-90806, squalamine lactate, regorafinib, and LHA510. Sustained-release anti-VEGF delivery treatments, such as the ranibizumab Port Delivery System, GB-102, NT-503, hydrogel depot, Durasert, and ENV1305 aim to reduce the burden of frequent injections. Gene therapies with new viral vectors hold the potential to induce sustained expression of anti-angiogenic proteins via the retina's cellular apparatus, and include AVA-101/201, ADVM-202/302, AAV2-sFLT01, RGX314, and Retinostat. Expert opinion: There are many emerging anti-VEGF treatments that aim to improve visual outcomes and reduce the treatment burden of nAMD.

  9. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Abdelrasoul, Gaser N.; Lin, Donghai; Maadi, Hamid; Tong, Junfeng; Chen, Grace; Wang, Richard; Anwar, Afreen; Shoute, Lian; Fang, Qiang; Wang, Zhixiang; Chen, Jie

    2018-04-01

    Properties of magnetic nanoparticles (MNPs) are of notable interest in many fields of biomedical engineering, especially for gene therapy. In this paper, we report a method for synthesis and delivery of MNPs loaded with DNAs, which overcomes the drawbacks of high cost and cytotoxicity associated with current delivery techniques (chemical- and liposome-based designs). 24-nm MNPs (Fe3O4) were synthesized, functionalized and characterized by analytical techniques to understand the surface properties for DNA binding and cellular uptake. The simple surface functionalization with polyethylenimine (PEI) through glutaraldehyde linker activation gave the complex of PEI-coated MNPs, resulting in high stability with a positive surface charge of about + 31 mV. Under the guidance of an external magnetic field, the functionalized MNPs with a loaded isothiocyanate (FITC) or green fluorescent protein (GFP) will enter the cells, which can be visualized by the fluorescence of FITC or GFP. We also examined the cytotoxicity of our synthesized MNPs by MTT assay. We showed that the IC50s of these MNPs for COS-7 and CHO cells were low and at 0.2 and 0.26 mg/mL, respectively. Moreover, our synthesized MNPs that were loaded with plasmids encoding GFP showed high transfection rate, 38.3% for COS-7cells and 27.6% for CHO cells. In conclusion, we established a promising method with low cost, low toxicity, and high transfection efficiency for siRNA and gene delivery.

  10. pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory Oligonucleotides

    PubMed Central

    Wilson, John T.; Keller, Salka; Manganiello, Matthew J.; Cheng, Connie; Lee, Chen-Chang; Opara, Chinonso; Convertine, Anthony; Stayton, Patrick S.

    2013-01-01

    Protein subunit vaccines offer important potential advantages over live vaccine vectors, but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a re-designed polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8+ T cell response (0.5% IFN-ɣ+ of CD8+) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8+ T cell responses (3.4% IFN-ɣ+ of CD8+) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4+IFN-ɣ+ (Th1) responses, and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ~7% antigen-specific CD8+ T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines. PMID:23590591

  11. Intracellular delivery of nanomaterials for sub-cellular imaging and tracking of biomolecules

    NASA Astrophysics Data System (ADS)

    Medepalli, Krishna Kiran

    Nanomaterials have many intriguing applications in biology and medicine. Unique properties such as enhanced electrical properties, increased chemical reactivity and resistance to degradation, novel optical properties and comparable size to that of biological systems have led to their use in various biomedical applications. The most important applications of nanomaterials for medicine are in drug delivery and imaging. This research focuses on utilizing the biocompatibility of single walled Carbon nanotubes (SWCNTs) and optical properties colloidal quantum dots (QDs) for cellular drug delivery and imaging of biomolecules. The first part of this research deals with single walled carbon nanotubes which are excellent candidates for targeted drug delivery applications due their unique structural and functional properties. However, prior to their use in therapeutics, their biocompatibility needs to be thoroughly investigated. The objectives of this research were to establish the biocompatibility of SWCNTs and demonstrate their use as drug delivery carriers into cells. Blood, a living tissue, is chosen as the biological system as it contains various cells which can potentially interact with SWCNTs during the delivery mechanism. The interactions of these cells in the blood (specifically white blood cells or leukocytes) with the SWCNTs provide vital information regarding the immune response of the host to the nanotubes. This research investigates the immune response of white blood cells due to SWCNTs via (a) direct interaction---presence of nanotubes in the blood and, (b) indirect interaction---presentation of nanotubes by antigen-presenting-cells to white blood cells. These two interactions recreate the innate and adaptive immune responses occurring in the body to any foreign substance. SWCNTs are functionalized with single stranded DNA (ss-DNA), which serves as a dispersant of nanotubes as well as a backbone for further attachment of other biomolecules of interest. Confocal microscopy and flow cytometric studies are performed to characterize the interactions. Results from this acute immune response study demonstrate the biocompatibility of SWCNTs in whole blood and also confirm the cellular delivery of single stranded DNA. The second part of the research is on colloidal quantum dots (QDs): nanometer sized semiconductor crystals typically between 1 nm to 20 nm in diameter. In addition to being size comparable with many biological systems, and having large surface area for multiple biomolecules attachment, they possess high resistance to chemical and photo degradation, tunable emission based on size and composition which makes them excellent candidates for cellular delivery and imaging. The main objectives of this research was to demonstrate the use of QDs for cellular imaging as well as targeted biomolecule delivery by conjugating the QDs with an antibody to a functional protein and delivery into live cells. Conventional techniques deliver QDs as aggregates, however, a major challenge in the use of QDs for cellular imaging and biomolecule delivery is achieving freely dispersed QDs inside the cells. In this research, a new technique to deliver monodispersed QDs inside live cells was developed. The approach combines osmosis driven fluid transport into cells achieved by creating hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. The results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. Confocal microscopy is used to image the QDs inside the cells and flow cytometry is used for quantifying the fluorescence. To demonstrate targeted delivery, QDs are conjugated to the antibody of a protein: the nuclear transcriptional factor, NFkB (Nuclear Factor kappa-light chain-enhancer of activated B cells) using EDC/sulfo NHS chemistry methods. NFkB is a family of proteins with 5 different subunits and is involved in a variety of biological processes such as immune and inflammatory responses and cellular developmental processes. In unstimulated cells, NFkB is inactive in cytoplasm and translocates to the nucleus upon stimulation using bacterial products, viruses, radiation, and the like. QDs fluorescence could be used to monitor NFKB activity over extended periods of time in live cells.

  12. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    PubMed

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    PubMed

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Patel, Siddharth; Athirasala, Avathamsa; Menezes, Paula P; Ashwanikumar, N; Zou, Ting; Sahay, Gaurav; Bertassoni, Luiz E

    2018-06-07

    The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.

  15. A Method for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and Living Cells

    PubMed Central

    Komatsu, Tetsuro; Dacheux, Denis; Kreppel, Florian; Nagata, Kyosuke; Wodrich, Harald

    2015-01-01

    Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes. PMID:26332038

  16. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  17. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    ERIC Educational Resources Information Center

    McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…

  18. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    PubMed

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

    PubMed

    Nag, Okhil K; Naciri, Jawad; Oh, Eunkeu; Spillmann, Christopher M; Delehanty, James B

    2016-04-20

    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

  20. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    PubMed

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  1. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    NASA Astrophysics Data System (ADS)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  2. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Kuppast, Bhimanna; Bakkari, Mohammed Ali; Tummala, Hemachand

    2017-09-10

    New and improved vaccines are needed against challenging diseases such as malaria, tuberculosis, Ebola, influenza, AIDS, and cancer. The majority of existing vaccine adjuvants lack the ability to significantly stimulate the cellular immune response, which is required to prevent the aforementioned diseases. This study designed a novel particulate based pathogen-mimicking vaccine delivery system (PMVDS) to target antigen-presenting-cells (APCs) such as dendritic cells. The uniqueness of PMVDS is that the polymer used to prepare the delivery system, Inulin Acetate (InAc), activates the innate immune system. InAc was synthesized from the plant polysaccharide, inulin. PMVDS provided improved and persistent antigen delivery to APCs as an efficient vaccine delivery system, and simultaneously, activated Toll-Like Receptor-4 (TLR-4) on APCs to release chemokine's/cytokines as an immune-adjuvant. Through this dual mechanism, PMVDS robustly stimulated both the humoral (>32 times of IgG1 levels vs alum) and the cell-mediated immune responses against the encapsulated antigen (ovalbumin) in mice. More importantly, PMVDS stimulated both cytotoxic T cells and natural killer cells of cell-mediated immunity to provide tumor (B16-ova-Melanoma) protection in around 40% of vaccinated mice and significantly delayed tumor progression in rest of the mice. PMVDS is a unique bio-active vaccine delivery technology with broader applications for vaccines against cancer and several intracellular pathogens, where both humoral and cellular immune responses are desired. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: An in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity.

    PubMed

    Teymouri, Manouchehr; Badiee, Ali; Golmohammadzadeh, Shiva; Sadri, Kayvan; Akhtari, Javad; Mellat, Mostafa; Nikpoor, Amin Reza; Jaafari, Mahmoud Reza

    2016-09-10

    We have investigated the co-addition of hexadecylphosphocholine (HePC) and a Tat derived peptide (Tat), coupled to Maleimide-PEG2000-DSPE pegylated liposomal doxorubicin (PLD) in many respects, including drug and liposome cellular delivery, drug release, biodistribution, in vivo cell delivery and antitumor activity. The liposomes were HePC-free and -containing liposomes, from which liposomes with 25, 50, 100 and 200 numbers of Tat/liposome were prepared. Similarly, DiI-C18 (3)-model liposomes (DiI-L and DiI-HePC-L) were prepared. HePC and Tat increased cellular delivery of Dox and cytotoxicity in B16F0 melanoma and C26 colon carcinoma cells. Tat enhanced liposome-cell interaction and caused Dox burst release. HePC and Tat reduced the serum retention time of liposomal Dox, slightly and dramatically, respectively. In comparison, Tat-liposomes enhanced Dox delivery to liver and spleen cells 3h post-injection. Likewise, Dox content of these tissues and tumor was lower at 24h. The naïve liposomes retarded tumor growth more effectively and their related median survival time of the treated C26 bearing BALB/c mice was longer than those of Tat-liposomes (MST>45days versus MST<38days). Overall liposomes exhibiting sustained drug release and negligible cell interaction were more suitable delivery systems in targeting cancerous tumors and suppressing their growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. On Guanidinium and Cellular Uptake

    PubMed Central

    2015-01-01

    Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established. PMID:25019333

  5. DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen

    2017-08-01

    As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.

  6. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    PubMed

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  7. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides.

    PubMed

    Meade, Bryan R; Dowdy, Steven F

    2008-03-01

    The major limitation in utilizing information rich macromolecules for basic science and therapeutic applications is the inability of these large molecules to readily diffuse across the cellular membrane. While this restriction represents an efficient defense system against cellular penetration of unwanted foreign molecules and thus a crucial component of cell survival, overcoming this cellular characteristic for the intracellular delivery of macromolecules has been the focus of a large number of research groups worldwide. Recently, with the discovery of RNA interference, many of these groups have redirected their attention and have applied previously characterized cell delivery methodologies to synthetic short interfering RNA duplexes (siRNA). Protein transduction domain and cell penetrating peptides have been shown to enhance the delivery of multiple types of macromolecular cargo including peptides, proteins and antisense oligonucleotides and are now being utilized to enhance the cellular uptake of siRNA molecules. The dense cationic charge of these peptides that is critical for interaction with cell membrane components prior to internalization has also been shown to readily package siRNA molecules into stable nanoparticles that are capable of traversing the cell membrane. This review discusses the recent advances in noncovalent packaging of siRNA molecules with cationic peptides and the potential for the resulting complexes to successfully induce RNA interference within both in vitro and in vivo settings.

  8. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.

    PubMed

    Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta

    2018-01-01

    Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.

  9. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  10. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    PubMed

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  11. Applications of biological pores in nanomedicine, sensing, and nanoelectronics

    PubMed Central

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2011-01-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. PMID:20561776

  12. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve therapeutic effect in living animals.

  13. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    NASA Astrophysics Data System (ADS)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  14. Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung

    2011-07-01

    Highlights: {yields} We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. {yields} The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. {yields} HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. {yields} Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including humanmore » specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 {sup o}C was greater than in 4 {sup o}C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-{alpha}-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.« less

  15. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    PubMed

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells

    PubMed Central

    Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan

    2013-01-01

    Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures. PMID:24209868

  17. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  18. Pericyte-targeting drug delivery and tissue engineering.

    PubMed

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.

  19. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  20. Cellular and laminar expression of Dab-1 during the postnatal critical period in cat visual cortex and the effects of dark rearing.

    PubMed

    Kiser, Paul J; Liu, Zijing; Wilt, Steven D; Mower, George D

    2011-04-06

    This study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI. This dramatic change in laminar and cellular labeling is independent of visual input, since immunostaining is similar in 5-week DR cats. By 10weeks, the mature laminar and cellular staining pattern is established and the major subsequent change is a further reduction in the density of cellular staining in all cortical layers. Neuropil staining is pronounced and uniform across cortical layers. These developmental changes are altered by DR. Quantification by cell counts indicated that age and DR interact such that differences in cellular expression are opposite in direction between 5- and 20-week-old cats. This bidirectional regulation of cellular expression is the same in all cortical laminae. The bidirectional regulation of cellular expression matches the effects of age and DR on physiological plasticity during the critical period as assessed by ocular dominance shifts in response to monocular deprivation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  2. Cellular membrane trafficking of mesoporous silica nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, I-Ju

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulfmore » some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.« less

  3. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    PubMed

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  4. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    PubMed

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  5. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  6. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy.

    PubMed

    Walsh, M; Tangney, M; O'Neill, M J; Larkin, J O; Soden, D M; McKenna, S L; Darcy, R; O'Sullivan, G C; O'Driscoll, C M

    2006-01-01

    Recent success in phase I/II clinical trials (Konstan, M. W.; Davis, P. B.; Wagener, J. S.; Hilliard, K. A.; Stern, R. C.; Milgram, L. J.; Kowalczyk, T. H.; Hyatt, S. L.; Fink, T. L.; Gedeon, C. R.; Oette, S. M.; Payne, J. M.; Muhammad, O.; Ziady, A. G.; Moen, R. C.; Cooper, M. J. Hum. Gene Ther. 2004, 15 (12), 1255-69) has highlighted pegylated poly-L-lysine (C1K30-PEG) as a nonviral gene delivery agent capable of achieving clinically significant gene transfer levels in vivo. This study investigates the potential of a C1K30-PEG gene delivery system for cancer gene therapy and evaluates its mode of cellular entry with the purpose of developing an optimally formulated prototype for tumor cell transfection. C1K30-PEG complexes have a neutral charge and form rod-like and toroid-like nanoparticles. Comparison of the transfection efficiency achieved by C1K30-PEG with other cationic lipid and polymeric vectors demonstrates that C1K30-PEG transfects cells more efficiently than unpegylated poly-L-lysine and compares well to commercially available vectors. In vivo gene delivery by C1K30-PEG nanoparticles to a growing subcutaneous murine tumor was also demonstrated. To determine potential barriers to C1K30-PEG gene delivery, the entry mechanism and intracellular fate of rhodamine labeled complexes were investigated. Using cellular markers to delineate the pathway taken by the complexes upon cellular entry, only minor colocalization was observed with EEA-1, a marker of early endosomes. No colocalization was observed between the complexes and the transferrin receptor, which is a marker for clathrin-coated pits. In addition, complexes were not observed to enter late endosomes/lysosomes. Cellular entry of the complexes was completely inhibited by the macropinocytosis inhibitor, amiloride, indicating that the complexes enter cells via macropinosomes. Such mechanistic studies are an essential step to support future rational design of pegylated poly-L-lysine vectors to improve the efficiency of gene delivery.

  7. Microenvironmental Regulation of Biomacromolecular Therapies

    DTIC Science & Technology

    2007-06-01

    of novel drug delivery systems. NATURE REVIEWS | DRUG DISCOVERY VOLUME 6 | JUNE 2007 | 455 REVIEWS © 2007 Nature Publishing Group Report...direct manner to provide cell responsiveness to protein drugs . Combined delivery of survival cytokines, including stem-cell fac- tor (SCF; also known...Figure 3 | Potential strategies to engineer cell micro environments in vivo to modulate the cellular response to protein drugs . a | Delivery of anti

  8. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution.

    PubMed

    Zhong, Qian; Merkel, Olivia M; Reineke, Joshua J; da Rocha, Sandro R P

    2016-06-06

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer chemistry combined can be used to passively target tissues and cell populations of great interest, and can thus be used as guiding principles in the development of dendrimer-based drug delivery strategies in the treatment of medically relevant diseases including lung ailments as well as systemic disorders.

  9. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution

    PubMed Central

    Zhong, Qian; Merkel, Olivia M.; Reineke, Joshua J.; da Rocha, Sandro R. P.

    2017-01-01

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs −3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer chemistry combined can be used to passively target tissues and cell populations of great interest, and can thus be used as guiding principles in the development of dendrimer-based drug delivery strategies in the treatment of medically relevant diseases including lung ailments as well as systemic disorders. PMID:27148629

  10. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Light-Triggered Release of DNA from Plasmon-Resonant Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huschka, Ryan

    Plasmon-resonant nanoparticle complexes show promising potential for lighttriggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) . using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein . is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles. First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illumination from two types of nanoparticle substrates: gold (Au) nanoshells and Au nanorods. Both light-triggered and thermally induced releases are distinctly observable from nanoshell-based complexes. Surprisingly, no analogous measurable light-triggered release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in light-triggered DNA release. Second, we demonstrate the in vitro light-triggered release of molecules noncovalently attached within dsDNA bound to the Au nanoshell surface. DAPI (4',6- diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination through the cell membrane of the nanoshell-dsDNA-DAPI complexes dehybridizes the DNA and releases the DAPI molecules within living cells. The DAPI molecules diffuse to the nucleus and associate with the cell's endogenous DNA. This work could have future applications towards drug delivery of molecules that associate with dsDNA. Finally, we demonstrate an engineered Au nanoshell (AuNS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer coated onto the AuNS surface (AuNS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotide, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and GFP gene silencing mediated by AuNS-PLL delivery vector. The light-triggered release of oligonucleotides could have broad applications in the study of cellular processes and in the development of intracellular targeted therapies.

  12. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  13. Fundamentals of pulmonary drug delivery.

    PubMed

    Groneberg, D A; Witt, C; Wagner, U; Chung, K F; Fischer, A

    2003-04-01

    Aerosol administration of peptide-based drugs plays an important role in the treatment of pulmonary and systemic diseases and the unique cellular properties of airway epithelium offers a great potential to deliver new compounds. As the relative contributions from the large airways to the alveolar space are important to the local and systemic availability, the sites and mechanism of uptake and transport of different target compounds have to be characterized. Among the different respiratory cells, the ciliated epithelial cells of the larger and smaller airways and the type I and type II pneumocytes are the key players in pulmonary drug transport. With their diverse cellular characteristics, each of these cell types displays a unique uptake possibility. Next to the knowledge of these cellular aspects, the nature of aerosolized drugs, characteristics of delivery systems and the depositional and pulmonary clearance mechanisms display major targets to optimize pulmonary drug delivery. Based on the growing knowledge on pulmonary cell biology and pathophysiology due to modern methods of molecular biology, the future characterization of pulmonary drug transport pathways can lead to new strategies in aerosol drug therapy.

  14. Magnetically enhanced adeno-associated viral vector delivery for human neural stem cell infection.

    PubMed

    Kim, Eunmi; Oh, Ji-Seon; Ahn, Ik-Sung; Park, Kook In; Jang, Jae-Hyung

    2011-11-01

    Gene therapy technology is a powerful tool to elucidate the molecular cues that precisely regulate stem cell fates, but developing safe vehicles or mechanisms that are capable of delivering genes to stem cells with high efficiency remains a challenge. In this study, we developed a magnetically guided adeno-associated virus (AAV) delivery system for gene delivery to human neural stem cells (hNSCs). Magnetically guided AAV delivery resulted in rapid accumulation of vectors on target cells followed by forced penetration of the vectors across the plasma membrane, ultimately leading to fast and efficient cellular transduction. To combine AAV vectors with the magnetically guided delivery, AAV was genetically modified to display hexa-histidine (6xHis) on the physically exposed loop of the AAV2 capsid (6xHis AAV), which interacted with nickel ions chelated on NTA-biotin conjugated to streptavidin-coated superparamagnetic iron oxide nanoparticles (NiStNPs). NiStNP-mediated 6xHis AAV delivery under magnetic fields led to significantly enhanced cellular transduction in a non-permissive cell type (i.e., hNSCs). In addition, this delivery method reduced the viral exposure times required to induce a high level of transduction by as much as to 2-10 min of hNSC infection, thus demonstrating the great potential of magnetically guided AAV delivery for numerous gene therapy and stem cell applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    NASA Astrophysics Data System (ADS)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  16. Applications of biological pores in nanomedicine, sensing, and nanoelectronics.

    PubMed

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2010-08-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine.

    PubMed

    Nasrolahi Shirazi, Amir; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous

    2013-05-06

    Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F'-GpYLPQTV, F'-NEpYTARQ, F'-AEEEIYGEFEAKKKK, F'-PEpYLGLD, F'-pYVNVQN-NH2, and F'-GpYEEI (F' = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F'-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F'-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F'-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides.

  18. Accuracy of Blood Loss Measurement during Cesarean Delivery.

    PubMed

    Doctorvaladan, Sahar V; Jelks, Andrea T; Hsieh, Eric W; Thurer, Robert L; Zakowski, Mark I; Lagrew, David C

    2017-04-01

    Objective  This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design  In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland-Altman method. Results  Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R 2  = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R 2  = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R 2  = 0.304). Conclusion  During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes.

  19. Accuracy of Blood Loss Measurement during Cesarean Delivery

    PubMed Central

    Doctorvaladan, Sahar V.; Jelks, Andrea T.; Hsieh, Eric W.; Thurer, Robert L.; Zakowski, Mark I.; Lagrew, David C.

    2017-01-01

    Objective This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland–Altman method. Results Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R2 = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R2 = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R2 = 0.304). Conclusion During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes. PMID:28497007

  20. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe

    PubMed Central

    Yang, Xiaojie; Lorenser, Dirk; McLaughlin, Robert A.; Kirk, Rodney W.; Edmond, Matthew; Simpson, M. Cather; Grounds, Miranda D.; Sampson, David D.

    2013-01-01

    We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ. PMID:24466482

  1. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.

    PubMed

    Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D

    2011-01-01

    Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.

  2. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    PubMed

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  3. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan

    2005-09-13

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.

  4. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy.

    PubMed

    Johnson, Alexander; Vert, Grégory

    2017-01-01

    Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.

  5. High vascular delivery of EGF, but low receptor binding rate is observed in AsPC-1 tumors as compared to normal pancreas.

    PubMed

    Samkoe, Kimberley S; Sexton, Kristian; Tichauer, Kenneth M; Hextrum, Shannon K; Pardesi, Omar; Davis, Scott C; O'Hara, Julia A; Hoopes, P Jack; Hasan, Tayyaba; Pogue, Brian W

    2012-08-01

    Cellular receptor targeted imaging agents present the potential to target extracellular molecular expression in cancerous lesions; however, the image contrast in vivo does not reflect the magnitude of overexpression expected from in vitro data. Here, the in vivo delivery and binding kinetics of epidermal growth factor receptor (EGFR) was determined for normal pancreas and AsPC-1 orthotopic pancreatic tumors known to overexpress EGFR. EGFR in orthotopic xenograft AsPC-1 tumors was targeted with epidermal growth factor (EGF) conjugated with IRDye800CW. The transfer rate constants (k(e), K₁₂, k₂₁, k₂₃, and k₃₂) associated with a three-compartment model describing the vascular delivery, leakage rate and binding of targeted agents were determined experimentally. The plasma excretion rate, k (e), was determined from extracted blood plasma samples. K₁₂, k₂₁, and k₃₂ were determined from ex vivo tissue washing studies at time points ≥ 24 h. The measured in vivo uptake of IRDye800CW-EGF and a non-targeted tracer dye, IRDye700DX-carboxylate, injected simultaneously was used to determined k₂₃. The vascular exchange of IRDye800CW-EGF in the orthotopic tumor (K₁₂ and k₂₁) was higher than in the AsPC-1 tumor as compared to normal pancreas, suggesting that more targeted agent can be taken up in tumor tissue. However, the cellular associated (binding) rate constant (k₂₃) was slightly lower for AsPC-1 pancreatic tumor (4.1 × 10(-4) s(-1)) than the normal pancreas (5.5 × 10(-4) s(-1)), implying that less binding is occurring. Higher vascular delivery but low cellular association in the AsPC-1 tumor compared to the normal pancreas may be indicative of low receptor density due to low cellular content. This attribute of the AsPC-1 tumor may indicate one contributing cause of the difficulty in treating pancreatic tumors with cellular targeted agents.

  6. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis.

    PubMed

    Zhou, Binwei; Huang, Yanyu; Yang, Fang; Zheng, Wenjie; Chen, Tianfeng

    2016-04-05

    Construction of bioresponsive drug-delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer-targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf-NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor-mediated endocytosis and triggered pH-dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf-NGO@HPIP effectively induced cancer-cell apoptosis through activation of superoxide-mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug-delivery nanosystems and their use as efficient anticancer drug carriers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis.

    PubMed

    Nakase, Ikuhiko; Noguchi, Kosuke; Fujii, Ikuo; Futaki, Shiroh

    2016-10-17

    Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.

  8. Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle

    PubMed Central

    Wang, Junping; Örnek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles. PMID:23293518

  9. Biomedical Applications Of Aromatic Azo Compounds: From Chromophore To Pharmacophore.

    PubMed

    Ali, Yousaf; Hamid, Shafida Abd; Rashid, Umer

    2018-05-23

    Azo dyes are widely used in textile, fiber, cosmetic, leather, paint and printing industries. Besides their characteristic coloring function, biological properties of certain azo compounds including antibacterial, antiviral, antifungal and cytotoxic are also reported. Azo compounds can be used as drug carriers, either by acting as a 'cargo' that entrap therapeutic agents or by prodrug approach. The drug is released by internal or external stimuli in the region of interest, as observed in colon-targeted drug delivery. Besides drug-like and drug carrier properties, a number of azo dyes are used in cellular staining to visualize cellular components and metabolic processes. However, the biological significance of azo compounds, especially in cancer chemotherapy, is still in its infancy. This may be linked to early findings that declared azo compounds as one of the possible causes of cancer and mutagenesis. Currently, researchers are screening the aromatic azo compounds for their potential biomedical use, including cancer diagnosis and therapy. The medical applications of azo compounds, particularly in cancer research are discussed. The biomedical significance of cis-trans interchange and negative implications of azo compounds are also highlighted in brief. This review may provide the researchers a platform in the quest of more potent therapeutic agents of this class. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.

    PubMed

    Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles

    2011-01-01

    The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.

  12. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.

  13. Analysis of Human Mobility Based on Cellular Data

    NASA Astrophysics Data System (ADS)

    Arifiansyah, F.; Saptawati, G. A. P.

    2017-01-01

    Nowadays not only adult but even teenager and children have then own mobile phones. This phenomena indicates that the mobile phone becomes an important part of everyday’s life. Based on these indication, the amount of cellular data also increased rapidly. Cellular data defined as the data that records communication among mobile phone users. Cellular data is easy to obtain because the telecommunications company had made a record of the data for the billing system of the company. Billing data keeps a log of the users cellular data usage each time. We can obtained information from the data about communication between users. Through data visualization process, an interesting pattern can be seen in the raw cellular data, so that users can obtain prior knowledge to perform data analysis. Cellular data processing can be done using data mining to find out human mobility patterns and on the existing data. In this paper, we use frequent pattern mining and finding association rules to observe the relation between attributes in cellular data and then visualize them. We used weka tools for finding the rules in stage of data mining. Generally, the utilization of cellular data can provide supporting information for the decision making process and become a data support to provide solutions and information needed by the decision makers.

  14. Intraperitoneal (188)Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice.

    PubMed

    Shen, Yao An; Lan, Keng Li; Chang, Chih Hsien; Lin, Liang Ting; He, Chun Lin; Chen, Po Hung; Lee, Te Wei; Lee, Yi Jang; Chuang, Chi Mu

    2016-05-01

    Cancer stem cells exhibit distinctive cellular metabolism compared with the more differentiated counterparts or normal cells. We aimed to investigate the impact of a novel radionuclide anti-cancer agent (188)Re-Liposome on stemness markers' expression and cellular metabolism in an ovarian cancer model. A 2×2 factorial experiment was designed in which factor 1 represented the drug treatment comparing (188)Re-BMEDA, a free form of (188)Re, with (188)Re-Liposome, a nanoparticle-encapsulated form of (188)Re. Factor 2 represented the delivery route, comparing intravenous with intraperitoneal delivery. Intraperitoneal delivery of (188)Re-Liposome predominantly killed the CSCs-like cells in tumours and switched metabolism from glycolysis to oxidative phosphorylation. Further, intraperitoneal delivery of (188)Re-Liposome treatment was able to block epithelial-to-mesenchymal transition (EMT) and reactivate p53 function. Collectively, these molecular changes led to a striking tumour-killing effect. Radionuclides encapsulated in liposomes may represent a novel treatment for ovarian cancer when delivered intraperitoneally (a type of loco-regional delivery). In the future, this concept may be further extended for the treatment of several relevant cancers that have been proved to be suitable for loco-regional delivery of therapeutic agents, such as colon cancer, gastric cancer, and pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  16. Canonical and non-canonical barriers facing antimiR cancer therapeutics.

    PubMed

    Cheng, Christopher J; Saltzman, W Mark; Slack, Frank J

    2013-01-01

    Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.

  17. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns.

    PubMed

    Singh, Deependra; Singh, Satpal; Sahu, Jageshwari; Srivastava, Shikha; Singh, Manju Rawat

    2016-01-01

    Over the past few years, nanoparticles and their role in drug delivery have been the centre of attraction as new drug delivery systems. Various forms of nanosystems have been designed, such as nanoclays, scaffolds and nanotubes, having numerous applications in areas such as drug loading, target cell uptake, bioassay and imaging. The present study discusses various types of nanoparticles, with special emphasis on ceramic nanocarriers. Ceramic materials have high mechanical strength, good body response and low or non-existing biodegradability. In this article, the various aspects concerning ceramic nanoparticles, such as their advantages over other systems, their cellular uptake and toxicity concerns are discussed in detail.

  18. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery.

    PubMed

    Markov, Dmitry A; Lu, Jenny Q; Samson, Philip C; Wikswo, John P; McCawley, Lisa J

    2012-11-07

    We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow "mammospheres" if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our "drug" delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells.

  19. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system.

    PubMed

    Han, Seunggu J; Bankiewicz, Krystof; Butowski, Nicholas A; Larson, Paul S; Aghi, Manish K

    2016-06-01

    Local delivery of therapeutic agents into the brain has many advantages; however, the inability to predict, visualize and confirm the infusion into the intended target has been a major hurdle in its clinical development. Here, we describe the current workflow and application of the interventional MRI (iMRI) system for catheter placement and real time visualization of infusion. We have applied real time convection-enhanced delivery (CED) of therapeutic agents with iMRI across a number of different clinical trials settings in neuro-oncology and movement disorders. Ongoing developments and accumulating experience with the technique and technology of drug formulations, CED platforms, and iMRI systems will continue to make local therapeutic delivery into the brain more accurate, efficient, effective and safer.

  20. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  1. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Surface chemistry governs cellular tropism of nanoparticles in the brain

    NASA Astrophysics Data System (ADS)

    Song, Eric; Gaudin, Alice; King, Amanda R.; Seo, Young-Eun; Suh, Hee-Won; Deng, Yang; Cui, Jiajia; Tietjen, Gregory T.; Huttner, Anita; Saltzman, W. Mark

    2017-05-01

    Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with `stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.

  3. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E.

    PubMed

    Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A

    2015-05-04

    Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.

  4. Viral delivery of genome-modifying proteins for cellular reprogramming.

    PubMed

    Mikkelsen, Jacob Giehm

    2018-06-18

    Following the successful development of virus-based gene vehicles for genetic therapies, exploitation of viruses as carriers of genetic tools for cellular reprogramming and genome editing should be right up the street. However, whereas persistent, potentially life-long gene expression is the main goal of conventional genetic therapies, tools and bits for genome engineering should ideally be short-lived and active only for a limited time. Although viral vector systems have already been adapted for potent genome editing both in vitro and in vivo, regulatable gene expression systems or self-limiting expression circuits need to be implemented limiting exposure of chromatin to genome-modifying enzymes. As an alternative approach, emerging virus-based protein delivery technologies support direct protein delivery, providing a short, robust boost of enzymatic activity in transduced cells. Is this potentially the perfect way of shipping loads of cargo to many recipients and still maintain short-term activity? Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway.

    PubMed

    Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen

    2016-05-01

    DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Correlation of Emulsion Structure with Cellular Uptake Behavior of Encapsulated Bioactive Nutrients: Influence of Droplet Size and Interfacial Structure.

    PubMed

    Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song

    2016-11-16

    In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p < 0.01). The results suggested that delivery in an emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.

  7. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  8. A palladium label to monitor nanoparticle-assisted drug delivery of a photosensitizer into tumor spheroids by elemental bioimaging.

    PubMed

    Niehoff, Ann-Christin; Moosmann, Aline; Söbbing, Judith; Wiehe, Arno; Mulac, Dennis; Wehe, Christoph A; Reifschneider, Olga; Blaske, Franziska; Wagner, Sylvia; Sperling, Michael; von Briesen, Hagen; Langer, Klaus; Karst, Uwe

    2014-01-01

    In this study, the cellular uptake of the second generation photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) was investigated using laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) at a spatial resolution of 10 μm. To achieve high sensitivity, the photosensitizer was tagged with palladium. As a tumor model system, a 3D cell culture of the TKF-1 cell line was used. These tumor spheroids were incubated with the Pd-tagged photosensitizer embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to investigate the efficiency of nanoparticle based drug delivery. An accumulation of the drug in the first cell layers of the tumor spheroid was observed. In the case of nanoparticle based drug delivery, a significantly more homogeneous distribution of the photosensitizer was achieved, compared to tumor spheroids incubated with the dissolved photosensitizer without the nanoparticular drug delivery system. The infiltration depth of the Pd-tagged photosensitizer could not be increased with rising incubation time, which can be attributed to the adsorption of the photosensitizer onto cellular components.

  9. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  10. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    PubMed

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  12. Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake.

    PubMed

    Barnard, Anna; Posocco, Paola; Pricl, Sabrina; Calderon, Marcelo; Haag, Rainer; Hwang, Mark E; Shum, Victor W T; Pack, Daniel W; Smith, David K

    2011-12-21

    This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron self-assembly significantly enhances DNA binding as monitored by a range of experimental methods and confirmed by multiscale modeling. Cellular uptake studies indicate that some of these dendrons are highly effective at transporting DNA into cells (ca. 10 times better than poly(ethyleneimine), PEI). However, levels of transgene expression are relatively low (ca. 10% of PEI). This indicates that these dendrons cannot navigate all of the intracellular barriers to gene delivery. The addition of chloroquine indicates that endosomal escape is not the limiting factor in this case, and it is shown, both experimentally and theoretically, that gene delivery can be correlated with the ability of the dendron assemblies to release DNA. Mass spectrometric assays demonstrate that the dendrons, as intended, do degrade under biologically relevant conditions over a period of hours. Multiscale modeling of degraded dendron structures suggests that complete dendron degradation would be required for DNA release. Importantly, in the presence of the lower pH associated with endosomes, or when bound to DNA, complete degradation of these dendrons becomes ineffective on the transfection time scale-we propose this explains the poor transfection performance of these dendrons. As such, this paper demonstrates that taking this kind of multidisciplinary approach can yield a fundamental insight into the way in which dendrons can navigate barriers to cellular uptake. Lessons learned from this work will inform future dendron design for enhanced gene delivery. © 2011 American Chemical Society

  13. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the interactions with cells in vivo .

  14. Vascularization and Cellular Isolation Potential of a Novel Electrospun Cell Delivery Vehicle

    PubMed Central

    Krishnan, Laxminarayanan; Touroo, Jeremy; Reed, Robert; Boland, Eugene; Hoying, James B.; Williams, Stuart K.

    2014-01-01

    A clinical need exists for a cell delivery device that supports long term cell viability, cell retention within the device and retrieval of delivered cells if necessary. Previously, cell isolation devices have been based on hollow fiber membranes, porous polymer scaffolds, alginate systems, or micro-machined membranes. We present the development and characterization of a novel dual porosity electrospun membrane based device, which supports cellular infiltration and vascularization of its outer porous layer and maintains cellular isolation within a lumen bounded by an inner low porosity layer. Electrospinning conditions were initially established to support electrospun fiber deposition onto nonconductive silicone surfaces. With these parameters established, devices for in vivo evaluations were produced using nylon as a nonconductive scaffold for deposition of dual porosity electrospun fibers. The outer porous layer supported the development of a penetrating microcirculation and the membrane supported the transfer of insulin from encapsulated sustained release pellets for four weeks. Viable cells implanted within the device could be identified after two weeks of implantation. Through the successful demonstration of survival and cellular isolation of human epithelial cells within the implanted devices and the ability to use the device to deliver insulin, we have established the utility of this device toward localized cell transplantation. The Cell Delivery Device establishes a platform to test the feasibility of approaches to cell dose control and cell localization at the site of implantation in the clinical use of modified autologous or allogeneic cells. PMID:23913805

  15. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    PubMed Central

    Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2012-01-01

    Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492

  16. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui

    2014-08-01

    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery. Electronic supplementary information (ESI) available: Experimental section and additional supporting results as noted in the text. See DOI: 10.1039/c4nr02732a

  17. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    PubMed Central

    Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2011-01-01

    Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166

  18. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer.

    PubMed

    Ou, Yu-Chuan; Webb, Joseph A; Faley, Shannon; Shae, Daniel; Talbert, Eric M; Lin, Sharon; Cutright, Camden C; Wilson, John T; Bellan, Leon M; Bardhan, Rizia

    2016-08-31

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

  19. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer

    PubMed Central

    2016-01-01

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity. PMID:27656689

  20. Cholesteryl oleate-loaded cationic solid lipid nanoparticles as carriers for efficient gene-silencing therapy

    PubMed Central

    Suñé-Pou, Marc; Prieto-Sánchez, Silvia; El Yousfi, Younes; Boyero-Corral, Sofía; Nardi-Ricart, Anna; Nofrerias-Roig, Isaac; Pérez-Lozano, Pilar; García-Montoya, Encarna; Miñarro-Carmona, Montserrat; Ticó, Josep Ramón; Suñé-Negre, Josep Mª; Hernández-Munain, Cristina; Suñé, Carlos

    2018-01-01

    Background Cationic solid lipid nanoparticles (SLNs) have been given considerable attention for therapeutic nucleic acid delivery owing to their advantages over viral and other nanoparticle delivery systems. However, poor delivery efficiency and complex formulations hinder the clinical translation of SLNs. Aim The aim of this study was to formulate and characterize SLNs incorporating the cholesterol derivative cholesteryl oleate to produce SLN–nucleic acid complexes with reduced cytotoxicity and more efficient cellular uptake. Methods Five cholesteryl oleate-containing formulations were prepared. Laser diffraction and laser Doppler microelectrophoresis were used to evaluate particle size and zeta potential, respectively. Nanoparticle morphology was analyzed using electron microscopy. Cytotoxicity and cellular uptake of lipoplexes were evaluated using flow cytometry and fluorescence microscopy. The gene inhibition capacity of the lipoplexes was assessed using siRNAs to block constitutive luciferase expression. Results We obtained nanoparticles with a mean diameter of approximately 150–200 nm in size and zeta potential values of 25–40 mV. SLN formulations with intermediate concentrations of cholesteryl oleate exhibited good stability and spherical structures with no aggregation. No cell toxicity of any reference SLN was observed. Finally, cellular uptake experiments with DNA-and RNA-SLNs were performed to select one reference with superior transient transfection efficiency that significantly decreased gene activity upon siRNA complexation. Conclusion The results indicate that cholesteryl oleate-loaded SLNs are a safe and effective platform for nonviral nucleic acid delivery. PMID:29881274

  1. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity.

    PubMed

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.

  2. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

    PubMed Central

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity. PMID:28638469

  3. The Scientist as Illustrator.

    PubMed

    Iwasa, Janet H

    2016-04-01

    Proficiency in art and illustration was once considered an essential skill for biologists, because text alone often could not suffice to describe observations of biological systems. With modern imaging technology, it is no longer necessary to illustrate what we can see by eye. However, in molecular and cellular biology, our understanding of biological processes is dependent on our ability to synthesize diverse data to generate a hypothesis. Creating visual models of these hypotheses is important for generating new ideas and for communicating to our peers and to the public. Here, I discuss the benefits of creating visual models in molecular and cellular biology and consider steps to enable researchers to become more effective visual communicators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    PubMed

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Gold nanoparticles delivery in mammalian live cells: a critical review

    PubMed Central

    Lévy, Raphaël; Shaheen, Umbreen; Cesbron, Yann; Sée, Violaine

    2010-01-01

    Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping. PMID:22110850

  6. Tumor Heterogenity Research Interactive Visualization Environment (THRIVE) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    A platform for quantitative evaluation of intratumoral spatial heterogeneity in multiplexed immunofluorescence images, via characterization of the spatial interactions between different cellular phenotypes and non-cellular constituents in the tumor microenvironment.

  7. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines.

    PubMed

    Démoulins, Thomas; Milona, Panagiota; Englezou, Pavlos C; Ebensen, Thomas; Schulze, Kai; Suter, Rolf; Pichon, Chantal; Midoux, Patrick; Guzmán, Carlos A; Ruggli, Nicolas; McCullough, Kenneth C

    2016-04-01

    Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses.

    PubMed

    Ebrahimian, Mahboubeh; Hashemi, Maryam; Maleki, Mohsen; Hashemitabar, Gholamreza; Abnous, Khalil; Ramezani, Mohammad; Haghparast, Alireza

    2017-01-01

    Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.

  9. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    PubMed

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. VISIBIOweb: visualization and layout services for BioPAX pathway models

    PubMed Central

    Dilek, Alptug; Belviranli, Mehmet E.; Dogrusoz, Ugur

    2010-01-01

    With recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within one's web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. PMID:20460470

  12. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.

    PubMed

    Yang, Hongrong; Chen, Zhong; Zhang, Lei; Yung, Wing-Yin; Leung, Ken Cham-Fai; Chan, Ho Yin Edwin; Choi, Chung Hang Jonathan

    2016-10-01

    Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Using the Biodatamation(TM) strategy to learn introductory college biology: Value-added effects on selected students' conceptual understanding and conceptual integration of the processes of photosynthesis and cellular respiration

    NASA Astrophysics Data System (ADS)

    Reuter, Jewel Jurovich

    The purpose of this exploratory research was to study how students learn photosynthesis and cellular respiration and to determine the value added to the student's learning by each of the three technology-scaffolded learning strategy components (animated concept presentations and WebQuest-style activities, data collection, and student-constructed animations) of the BioDatamation(TM) (BDM) Program. BDM learning strategies utilized the Theory of Interacting Visual Fields(TM) (TIVF) (Reuter & Wandersee, 2002a, 2002b; 2003a, 2003b) which holds that meaningful knowledge is hierarchically constructed using the past, present, and future visual fields, with visual metacognitive components that are derived from the principles of Visual Behavior (Jones, 1995), Human Constructivist Theory (Mintzes & Wandersee, 1998a), and Visual Information Design Theory (Tufte, 1990, 1997, 2001). Student alternative conceptions of photosynthesis and cellular respiration were determined by the item analysis of 263,267 Biology Advanced Placement Examinations and were used to develop the BDM instructional strategy and interview questions. The subjects were 24 undergraduate students of high and low biology prior knowledge enrolled in an introductory-level General Biology course at a major research university in the Deep South. Fifteen participants received BDM instruction which included original and innovative learning materials and laboratories in 6 phases; 8 of the 15 participants were the subject of in depth, extended individual analysis. The other 9 participants received traditional, non-BDM instruction. Interviews which included participants' creation of concept maps and visual field diagrams were conducted after each phase. Various content analyses, including Chi's Verbal Analysis and quantitizing/qualitizing were used for data analysis. The total value added to integrative knowledge during BDM instruction with the three visual fields was an average increase of 56% for cellular respiration and 62% increase for photosynthesis knowledge, improved long-term memory of concepts, and enhanced biological literacy to the multidimensional level, as determined by the BSCS literacy model. WebQuest-style activities and data collection provided for animated prior knowledge in the past visual field, and detailed content knowledge construction in the present visual field. During student construction of animated presentations, layering required participants to think by rearranging words and images for improved hierarchical organization of knowledge with real-life applications.

  14. Electroinduced Delivery of Hydrogel Nanoparticles in Colon 26 Cells, Visualized by Confocal Fluorescence System.

    PubMed

    Atanasova, Severina; Nikolova, Biliana; Murayama, Shuhei; Stoyanova, Elena; Tsoneva, Iana; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana

    2016-09-01

    Nano-scale drug delivery systems (nano-DDS) are under intense investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs)] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltage-dependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. ACTIVE DELIVERY CABLE TUNED TO DEVICE DEPLOYMENT STATE: ENHANCED VISIBILITY OF NITINOL OCCLUDERS DURING PRE-CLINICAL INTERVENTIONAL MRI

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur

    2012-01-01

    Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441

  16. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan.

    PubMed

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-06-01

    Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency. Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery. Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies. Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.

  17. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05173h

  18. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  19. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  20. Carbon nanotubes: a potential concept for drug delivery applications.

    PubMed

    Kumar, Rakesh; Dhanawat, Meenakshi; Kumar, Sudhir; Singh, Brahma N; Pandit, Jayant K; Sinha, Vivek R

    2014-04-01

    The unique properties of carbon nanotubes (CNTs) make them a highly interesting and demandable nanocarrier in the field of nanoscience. CNTs facilitate efficient delivery of therapeutics like drugs, proteins, genes, nucleic acids, vitamins and lot more. Even though highly beneficial, the biocompatibility of CNTs is a major issue in their questioning their potential application in targeting drug delivery. Studies confirmed subdued toxicity of CNTs following slight modifications like functionalization, controlled dimensions, purification etc. A well-established mechanism for cellular internalization is an insistent need to attain a more efficient and targeted delivery. Recent patents have been thoroughly discussed in the text below.

  1. Digital image analysis agrees with visual estimates of adult bone marrow trephine biopsy cellularity.

    PubMed

    Hagiya, A S; Etman, A; Siddiqi, I N; Cen, S; Matcuk, G R; Brynes, R K; Salama, M E

    2018-04-01

    Evaluation of cellularity is an essential component of bone marrow trephine biopsy examination. The standard practice is to report the results as visual estimates (VE). Digital image analysis (DIA) offers the promise of more objective measurements of cellularity. Adult bone marrow trephine biopsy sections were assessed for cellularity by VE. Sections were scanned using an Aperio AT2 Scanscope and analyzed using a Cytonuclear (version 1.4) algorithm on halo software. Intraclass correlation (ICC) was used to assess relatedness between VE and DIA, and between MRI and DIA for a separate subset of patients. Trephine biopsy sections from a subset of patients with bone marrow biopsies uninvolved by malignancy were assessed for age-related changes. Interobserver VE agreement was good to excellent. The ICC value was 0.81 for VE and DIA, and 0.50 for MRI and DIA. Linearity studies showed no statistically significant trend for age-related changes in cellularity in our cohort (r = -.29, P = .06). Agreement was good between VE and DIA. It may be possible to use DIA or VE to measure cellularity in the appropriate clinical scenario. The limited sample size precludes similar determinations for MRI calculations. Further studies examining healthy donors are necessary before making definitive conclusions regarding age and cellularity. © 2017 John Wiley & Sons Ltd.

  2. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.

    PubMed

    Chen, Wei-Liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-Zhao; Yuan, Zhi-Qiang; Liu, Yang; Zhou, Xiao-Feng; Liu, Chun; Zhang, Xue-Nong

    2017-01-01

    Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.

  3. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin

    PubMed Central

    Chen, Wei-liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-zhao; Yuan, Zhi-qiang; Liu, Yang; Zhou, Xiao-feng; Liu, Chun; Zhang, Xue-nong

    2017-01-01

    Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents. PMID:28652730

  4. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  5. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Weigel, Aubrey V.; Higgins, Jenny L.; Akin, Elizabeth J.; Kennedy, Matthew J.; Krapf, Diego; Tamkun, Michael M.

    2013-01-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking. PMID:23864710

  6. Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice

    PubMed Central

    van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun

    2013-01-01

    Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179

  7. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest that huiPSCs exosomes could be used as a natural gene delivery vector to transport therapeutic siRNAs for alleviating inflammatory responses in recipient cells.

  8. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.

  9. Membrane oxidation in cell delivery and cell killing applications

    PubMed Central

    Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe

    2018-01-01

    Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059

  10. Tools for visually exploring biological networks.

    PubMed

    Suderman, Matthew; Hallett, Michael

    2007-10-15

    Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.

  11. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    PubMed

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined.

  12. Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin–GnRH-III conjugates developed for targeted drug delivery

    PubMed Central

    Schuster, Sabine; Biri-Kovács, Beáta; Szeder, Bálint; Farkas, Viktor; Buday, László; Szabó, Zsuzsanna; Halmos, Gábor

    2018-01-01

    Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates. PMID:29719573

  13. Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

    PubMed

    Li, Haihong; Wei, Ruoyan; Yan, Gui-Hua; Sun, Ji; Li, Chunju; Wang, Haifang; Shi, Liyi; Capobianco, John A; Sun, Lining

    2018-02-07

    Exploring novel drug delivery systems with good stability and new structure to integrate pillararene and upconversion nanoparticles (UCNPs) into one system continues to be an important challenge. Herein, we report a novel preparation of a supramolecular upconversion nanosystem via the host-guest complexation based on carboxylate-based pillar[5]arene (WP5) and 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide (1)-functionalized UCNPs to produce WP5⊃1-UCNPs that can be loaded with the chemotherapeutic drug doxorubicin (DOX). Importantly, the WP5 on the surface of the drug-loaded nanosystem can be efficiently protonated under acidic conditions, resulting in the collapse of the nanosystem and drug release. Moreover, cellular uptake confirms that the nanosystem can enter human cervical cancer (HeLa) cells, resulting in drug accumulation in the cells. More importantly, cytotoxicity experiments demonstrated the excellent biocompatibility of WP5⊃1-UCNPs without loading DOX and that the nanosystem DOX-WP5⊃1-UCNPs exhibited an ability of killing HeLa cells effectively. We also investigated magnetic resonance imaging and upconversion luminescence imaging, which may be employed as visual imaging agents in cancer diagnosis and treatment. Thus, in the present work, we show a simple yet powerful strategy to combine UCNPs and pillar[5]arene to produce a unified nanosystem for dual-mode bioimaging-guided therapeutic applications.

  14. Gene delivery for periodontal tissue engineering: current knowledge - future possibilities.

    PubMed

    Chen, Fa-Ming; Ma, Zhi-Wei; Wang, Qin-Tao; Wu, Zhi-Fen

    2009-08-01

    The cellular and molecular events of periodontal healing are coordinated and regulated by an elaborate system of signaling molecules, pointing to a primary strategy for functional periodontal compartment regeneration to replicate components of the natural cellular microenvironment by providing an artificial extracellular matrix (ECM) and by delivering growth factors. However, even with optimal carriers, the localized delivery of growth factors often requires a large amount of protein to stimulate significant effects in vivo, which increases the risk and unwanted side effects. A simple and relatively new approach to bypassing this dilemma involves converting cells into protein producing factories. This is done by a so-called gene delivery method, where therapeutic agents to be delivered are DNA plasmids that include the gene encoding desired growth factors instead of recombinant proteins. As localized depots of genes, novel gene delivery systems have the potential to release their cargo in a sustained and controlled manner and finally provide time- and space- dependent levels of encoded proteins during all stages of tissue regrowth, offering great versatility in their application and prompting new tissue engineering strategy in periodontal regenerative medicine. However, gene therapy in Periodontology is clearly in its infancy. Significant efforts still need to be made in developing safe and effective delivery platforms and clarifying how gene delivery, in combination with tissue engineering, may mimic the critical aspects of natural biological processes occurring in periodontal development and repair. The aim of this review is to trace an outline of the state-of-the-art in the application of gene delivery and tissue engineering strategies for periodontal healing and regeneration.

  15. Elastin-like polypeptide matrices for enhancing adeno-associated virus-mediated gene delivery to human neural stem cells.

    PubMed

    Kim, J-S; Chu, H S; Park, K I; Won, J-I; Jang, J-H

    2012-03-01

    The successful development of efficient and safe gene delivery vectors continues to be a major obstacle to gene delivery in stem cells. In this study, we have developed an elastin-like polypeptide (ELP)-mediated adeno-associated virus (AAV) delivery system for transducing fibroblasts and human neural stem cells (hNSCs). AAVs have significant promise as therapeutic vectors because of their safety and potential for use in gene targeting in stem cell research. ELP has been recently employed as a biologically inspired 'smart' biomaterial that exhibits an inverse temperature phase transition, thereby demonstrating promise as a novel drug carrier. The ELP that was investigated in this study was composed of a repetitive penta-peptide with [Val-Pro-Gly-Val-Gly]. A novel AAV variant, AAV r3.45, which was previously engineered by directed evolution to enhance transduction in rat NSCs, was nonspecifically immobilized onto ELPs that were adsorbed beforehand on a tissue culture polystyrene surface (TCPS). The presence of different ELP quantities on the TCPS led to variations in surface morphology, roughness and wettability, which were ultimately key factors in the modulation of cellular transduction. Importantly, with substantially reduced viral quantities compared with bolus delivery, ELP-mediated AAV delivery significantly enhanced delivery efficiency in fibroblasts and hNSCs, which have great potential for use in tissue engineering applications and neurodegenerative disorder treatments, respectively. The enhancement of cellular transduction in stem cells, as well as the feasibility of ELPs for utilization in three-dimensional scaffolds, will contribute to the advancement of gene therapy for stem cell research and tissue regenerative medicine.

  16. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    PubMed Central

    Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang

    2012-01-01

    Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230

  17. In Vitro Cellular Gene Delivery Employing a Novel Composite Material of Single-Walled Carbon Nanotubes Associated With Designed Peptides With Pegylation.

    PubMed

    Ohta, Takahisa; Hashida, Yasuhiko; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2017-03-01

    Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-) 7 -OH [(KWKG) 7 ] peptides having pegylation. SWCNTs wrapped with (KWKG) 7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG) 7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG) 7 -(PEG) 12 ] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG) 7 -(PEG) 12 /pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG) 7 -(PEG) 12 /pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG) 7 with pegylation as a carrier for gene delivery was demonstrated. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  19. Cellular therapies for heart disease: unveiling the ethical and public policy challenges.

    PubMed

    Raval, Amish N; Kamp, Timothy J; Hogle, Linda F

    2008-10-01

    Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.

  20. Regulation of ROS Production and Vascular Function by Carbon Monoxide

    PubMed Central

    Choi, Yoon Kyung; Por, Elaine D.; Kwon, Young-Guen; Kim, Young-Myeong

    2012-01-01

    Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). CO interacts with reduced iron of heme-containing proteins, leading to its involvement in various cellular events via its production of mitochondrial reactive oxygen species (ROS). CO-mediated ROS production initiates intracellular signal events, which regulate the expression of adaptive genes implicated in oxidative stress and functions as signaling molecule for promoting vascular functions, including angiogenesis and mitochondrial biogenesis. Therefore, CO generated either by exogenous delivery or by HO activity can be fundamentally involved in regulating mitochondria-mediated redox cascades for adaptive gene expression and improving blood circulation (i.e., O2 delivery) via neovascularization, leading to the regulation of mitochondrial energy metabolism. This paper will highlight the biological effects of CO on ROS generation and cellular redox changes involved in mitochondrial metabolism and angiogenesis. Moreover, cellular mechanisms by which CO is exploited for disease prevention and therapeutic applications will also be discussed. PMID:22928087

  1. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    PubMed

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  2. Non-viral gene delivery regulated by stiffness of cell adhesion substrates.

    PubMed

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  3. Development of a Sono-Assembled, Bifunctional Soy Peptide Nanoparticle for Cellular Delivery of Hydrophobic Active Cargoes.

    PubMed

    Zhang, Yuanhong; Zhao, Mouming; Ning, Zhengxiang; Yu, Shujuan; Tang, Ning; Zhou, Feibai

    2018-04-25

    Soy proteins are prone to aggregate upon proteolysis, hindering their sustainable development in food processing. Here, a continuous work on the large insoluble peptide aggregates was carried out, aiming to develop a new type of soy peptide-based nanoparticle (SPN) for active cargo delivery. Sono-assembled SPN in spherical appearance and core-shell structure maintained by noncovalent interactions was successfully fabricated, exhibiting small particle size (103.95 nm) in a homogeneous distribution state (PDI = 0.18). Curcumin as a model cargo was efficiently encapsulated into SPN upon sonication, showing high water dispersity (129.6 mg/L, 10 4 higher than its water solubility) and storage stability. Additionally, the pepsin-resistant SPN contributed to the controlled release of curcumin at the intestinal phase and thus significantly improved the bioaccessibility. Encapsulated curcumin was effective in protecting glutamate-induced toxicity in PC12 cells, where the matrix SPN can simultaneously reduce lipid peroxidation and elevate antioxidant enzymes levels, innovatively demonstrating its bifunctionality during cellular delivery.

  4. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  5. DNA Dendrimer: An Efficient Nanocarrier of Functional Nucleic Acids for Intracellular Molecular Sensing

    PubMed Central

    2015-01-01

    Functional nucleic acid (FNA)-based sensing systems have been developed for efficient detection of a wide range of biorelated analytes by employing DNAzymes or aptamers as recognition units. However, their intracellular delivery has always been a concern, mainly in delivery efficiency, kinetics, and the amount of delivered FNAs. Here we report a DNA dendrimer scaffold as an efficient nanocarrier to deliver FNAs and to conduct in situ monitoring of biological molecules in living cells. A histidine-dependent DNAzyme and an anti-ATP aptamer were chosen separately as the model FNAs to make the FNA dendrimer. The FNA-embedded DNA dendrimers maintained the catalytic activity of the DNAzyme or the aptamer recognition function toward ATP in the cellular environment, with no change in sensitivity or specificity. Moreover, these DNA dendrimeric nanocarriers show excellent biocompatibility, high intracellular delivery efficiency, and sufficient stability in a cellular environment. This FNA dendrimeric nanocarrier may find a broad spectrum of applications in biomedical diagnosis and therapy. PMID:24806614

  6. Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.

    PubMed

    Zhan, Xi; Tran, Kenny K; Wang, Liguo; Shen, Hong

    2015-07-01

    A key step of delivering extracellular agents to its intracellular target is to escape from endosomal/lysosomal compartments, while minimizing the release of digestive enzymes that may compromise cellular functions. In this study, we examined the intracellular distribution of both fluorecent cargoes and enzymes by a particle delivery platform made from the controlled blending of poly(lactic-co-glycolic acid) (PLGA) and a random pH-sensitive copolymer. We utilized both microscopic and biochemical methods to semi-quantitatively assess how the composition of blend particles affects the level of endosomal escape of cargos of various sizes and enzymes into the cytosolic space. We demonstrated that these polymeric particles enabled the controlled delivery of cargos into the cytosolic space that was more dependent on the cargo size and less on the composition of blend particles. Blend particles did not induce the rupture of endosomal/lysosomal compartments and released less than 20% of endosomal/lysosomal enzymes. This study provides insight into understanding the efficacy and safety of a delivery system for intracellular delivery of biologics and drugs. Blend particles offer a potential platform to target intracellular compartments while potentially minimizing cellular toxicity.

  7. Controlled endolysosomal release of agents by pH-responsive polymer blend particles

    PubMed Central

    Zhan, Xi; Tran, Kenny K.; Wang, Liguo; Shen, Hong

    2015-01-01

    Purpose A key step of delivering extracellular agents to its intracellular target is to escape from endosomal/lysosomal compartments, while minimizing the release of digestive enzymes that may compromise cellular functions. In this study, we examined the intracellular distribution of both fluorecent cargoes and enzymes by a particle delivery platform made from the controlled blending of poly (lactic-co-glycolic acid) (PLGA) and a random pH-sensitive copolymer. Methods We utilized both microscopic and biochemical methods to semi-quantitatively assess how the composition of blend particles affects the level of endosomal escape of cargos of various sizes and enzymes into the cytosolic space. Results We demonstrated that these polymeric particles enabled the controlled delivery of cargos into the cytosolic space that was more dependent on the cargo size and less on the composition of blend particles. Blend particles did not induce the rupture of endosomal/lysosomal compartments and released less than 20% of endosomal/lysosomal enzymes. Conclusions This study provides insight into understanding the efficacy and safety of a delivery system for intracellular delivery of biologics and drugs. Blend particles offer a potential platform to target intracellular compartments while potentially minimizing cellular toxicity. PMID:25592550

  8. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited

    PubMed Central

    Xu, Peisheng; Gullotti, Emily; Tong, Ling; Highley, Christopher B.; Errabelli, Divya R.; Hasan, Tayyaba; Cheng, Ji-Xin; Kohane, Daniel S.; Yeo, Yoon

    2008-01-01

    We reexamined the cellular drug delivery mechanism by poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to determine their utility and limitations as an intracellular drug delivery system. First, we prepared PLGA NPs which physically encapsulated Nile red (a hydrophobic fluorescent dye), in accordance with the usual procedure for labeling PLGA NPs, incubated them with mesothelial cells, and observed an increase in the intracellular fluorescence. We then prepared NPs from PLGA chemically conjugated to a fluorescent dye and observed their uptake by the mesothelial cells using confocal microscopy. We also used Coherent Anti-Stokes Raman Scattering (CARS) microscopy to image cellular uptake of unlabeled PLGA NPs. Results of this study coherently suggest that PLGA NPs (i) are not readily taken up by cells, but (ii) deliver the payload to cells by extracellular drug release and/or direct drug transfer to contacting cells, which are contrasted with the prevalent view. From this alternative standpoint, we analyzed cytotoxicities of doxorubicin and paclitaxel delivered by PLGA NPs and compared with those of free drugs. Finally, we revisit previous findings in the literature and discuss potential strategies to achieve efficient drug delivery to the target tissues using PLGA NPs. PMID:19035785

  9. AODA Training Experiences of Blindness and Visual Impairment Professionals

    ERIC Educational Resources Information Center

    Davis, S. J.; Koch, D. Shane; McKee, Marissa F.; Nelipovich, Michael

    2009-01-01

    Co-existing alcohol and other drug abuse (AODA) and blindness or visually impairment may complicate the delivery of rehabilitation services. Professionals working with individuals who are blind or visually impaired need to be aware of unique issues facing those with co-existing disabilities. This study sought to examine the AODA training needs,…

  10. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  11. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.

    PubMed

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells.

  12. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  13. Nuclear targeting of viral and non-viral DNA.

    PubMed

    Chowdhury, E H

    2009-07-01

    The nuclear envelope presents a major barrier to transgene delivery and expression using a non-viral vector. Virus is capable of overcoming the barrier to deliver their genetic materials efficiently into the nucleus by virtue of the specialized protein components with the unique amino acid sequences recognizing cellular nuclear transport machinery. However, considering the safety issues in the clinical gene therapy for treating critical human diseases, non-viral systems are highly promising compared with their viral counterparts. This review summarizes the progress on exploring the nuclear traffic mechanisms for the prominent viral vectors and the technological innovations for the nuclear delivery of non-viral DNA by mimicking those natural processes evolved for the viruses as well as for many cellular proteins.

  14. Interaction of human low density lipoprotein and apolipoprotein B with ternary lipid microemulsion. Physical and functional properties.

    PubMed

    Chun, P W; Brumbaugh, E E; Shiremann, R B

    1986-12-31

    Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.

  15. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy.

    PubMed

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  16. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  17. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    PubMed

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  18. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  19. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  1. A novel platform for minimally invasive delivery of cellular therapy as a thin layer across the subretina for treatment of retinal degeneration

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Kalish, Sapir E.; Belkin, Michael; Meir, Amilia; Treves, Avraham J.; Nagler, Arnon; Sher, Ifat

    2015-03-01

    Incurable retinal degenerations affect millions worldwide. Stem cell transplantation rescued visual functions in animal models of retinal degeneration. In those studies cells were transplanted in subretinal "blebs", limited number of cells could be injected and photoreceptor rescue was restricted to areas in proximity to the injection sites. We developed a minimally-invasive surgical platform for drug and cell delivery in a thin layer across the subretina and extravascular spaces of the choroid. The novel system is comprised of a syringe with a blunt-tipped needle and an adjustable separator. Human bone marrow mesenchymal stem cells (hBM-MSCs) were transplanted in eyes of RCS rats and NZW rabbits through a longitudinal triangular scleral incision. No immunosuppressants were used. Retinal function was determined by electroretinogram analysis and retinal structure was determined by histological analysis and OCT. Transplanted cells were identified as a thin layer across the subretina and extravascular spaces of the choroid. In RCS rats, cell transplantation delayed photoreceptor degeneration across the entire retina and significantly enhanced retinal functions. No retinal detachment or choroidal hemorrhages were observed in rabbits following transplantation. This novel platform opens a new avenue for drug and cell delivery, placing the transplanted cells in close proximity to the damaged RPE and retina as a thin layer, across the subretina and thereby slowing down cell death and photoreceptor degeneration, without retinal detachment or choroidal hemorrhage. This new transplantation system may increase the therapeutic effect of other cell-based therapies and therapeutic agents. This study is expected to directly lead to phase I/II clinical trials for autologous hBM-MSCs transplantation in retinal degeneration patients.

  2. rhPDGF-BB promotes early healing in a rat rotator cuff repair model.

    PubMed

    Kovacevic, David; Gulotta, Lawrence V; Ying, Liang; Ehteshami, John R; Deng, Xiang-Hua; Rodeo, Scott A

    2015-05-01

    Tendon-bone healing after rotator cuff repair occurs by fibrovascular scar tissue formation, which is weaker than a normal tendon-bone insertion site. Growth factors play a role in tissue formation and have the potential to augment soft tissue healing in the perioperative period. Our study aim was to determine if rhPDGF-BB delivery on a collagen scaffold can improve tendon-to-bone healing after supraspinatus tendon repair compared with no growth factor in rats as measured by (1) gross observations; (2) histologic analysis; and (3) biomechanical testing. Ninety-five male Sprague-Dawley rats underwent acute repair of the supraspinatus tendon. Rats were randomized into one of five groups: control (ie, repair only), scaffold only, and three different platelet-derived growth factor (PDGF) doses on the collagen scaffold. Animals were euthanized 5 days after surgery to assess cellular proliferation and angiogenesis. The remaining animals were analyzed at 4 weeks to assess repair site integrity by gross visualization, fibrocartilage formation with safranin-O staining, and collagen fiber organization with picrosirius red staining, and to determine the biomechanical properties (ie, load-to-failure testing) of the supraspinatus tendon-bone construct. The repaired supraspinatus tendon was in continuity with the bone in all animals. At 5 days, rhPDGF-BB delivery on a scaffold demonstrated a dose-dependent response in cellular proliferation and angiogenesis compared with the control and scaffold groups. At 28 days, with the numbers available, rhPDGF-BB had no effect on increasing fibrocartilage formation or improving collagen fiber maturity at the tendon-bone insertion site compared with controls. The control group had higher tensile loads to failure and stiffness (35.5 ± 8.8 N and 20.3 ± 4.5 N/mm) than all the groups receiving the scaffold, including the PDGF groups (scaffold: 27 ± 6.4 N, p = 0.021 and 13 ± 5.7 N/mm, p = 0.01; 30 µg/mL PDGF: 26.5 ± 7.5 N, p = 0.014 and 13.3 ± 3.2 N/mm, p = 0.01; 100 µg/mL PDGF: 25.7 ± 6.1 N, p = 0.005 and 11.6 ± 3.3 N/mm, p = 0.01; 300 µg/mL PDGF: 27 ± 6.9 N, p = 0.014 and 12.7 ± 4.1 N/mm, p = 0.01). rhPDGF-BB delivery on a collagen scaffold enhanced cellular proliferation and angiogenesis during the early phase of healing, but this did not result in either a more structurally organized or stronger attachment site at later stages of healing. The collagen scaffold had a detrimental effect on healing strength at 28 days, and its relatively larger size compared with the rat tendon may have caused mechanical impingement and extrinsic compression of the healing tendon. Future studies should be performed in larger animal models where healing occurs more slowly. Augmenting the healing environment to improve the structural integrity and to reduce the retear rate after rotator cuff repair may be realized with continued understanding and optimization of growth factor delivery systems.

  3. Pelvic floor dysfunction in the immediate puerperium, and 1 month and 3 months after vaginal or cesarean delivery.

    PubMed

    Colla, Cássia; L Paiva, Luciana; Ferla, Lia; B Trento, Maria J; M P de Vargas, Isadora; A Dos Santos, Bianca; Ferreira, Charles F; L Ramos, José G

    2018-06-07

    To identify and assess postpartum pelvic floor dysfunction (PFD) between vaginal delivery, elective cesarean delivery (ECD), and intrapartum cesarean delivery (ICD). The present prospective observational study included women aged at least 18 years with no history of pelvic surgery or lower urinary tract malformation, and who had not undergone pelvic floor muscle (PFM) training in the preceding 12 months, who underwent delivery at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil between August 1, 2016, and May 31, 2017. Participants were assessed at 48 hours (phase 1), 1 month (phase 2), and 3 months (phase 3) after delivery. Assessments included the International Consultation on Incontinence Questionnaire, Short Form (ICIQ-SF); the Jorge-Wexner anal incontinence scale; a self-rated visual analog scale for pelvic pain; the pelvic organ prolapse quantification (POP-Q) system; and a PFM perineometer. A total of 227 women were assessed in phase 1 (141 vaginal deliveries; 28 ICDs; and 58 ECDs), 79 in phase 2, and 41 in phase 3. The ICIQ-SF, Jorge-Wexner scale, visual analog scale, and perineometer measurements did not identify significant differences in relation to the type of delivery (P>0.05). The type of delivery was not associated with differences in the short-term development of postpartum PFD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection.

    PubMed

    Dimier-Poisson, Isabelle; Carpentier, Rodolphe; N'Guyen, Thi Thanh Loi; Dahmani, Fatima; Ducournau, Céline; Betbeder, Didier

    2015-05-01

    Development of sub-unit mucosal vaccines requires the use of specific delivery systems or immune-modulators such as adjuvants to improve antigen immunogenicity. Nasal route for vaccine delivery by nanoparticles has attracted much interest but mechanisms triggering effective mucosal and systemic immune response are still poorly understood. Here we study the loading of porous nanoparticles (DGNP) with a total extract of Toxoplasma gondii antigens (TE), the delivery of TE by DGNP into airway epithelial, macrophage and dendritic cells, and the subsequent cellular activation. In vitro, DGNP are able to load complex antigens in a stable and quantitative manner. The outstanding amount of antigen association by DGNP is used to deliver TE in airway mucosa cells to induce a cellular maturation with an increased secretion of pro-inflammatory cytokines. Evaluation of nasal vaccine efficiency is performed in vivo on acute and chronic toxoplasmosis mouse models. A specific Th1/Th17 response is observed in vivo after vaccination with DGNP/TE. This is associated with high protection against toxoplasmosis regarding survival and parasite burden, correlated with an increased delivery of antigens by DGNP in airway mucosa cells. This study provides evidence of the potential of DGNP for the development of new vaccines against a range of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. MULTI-STAGE DELIVERY NANO-PARTICLE SYSTEMS FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Serda, Rita E.; Godin, Biana; Blanco, Elvin; Chiappini, Ciro; Ferrari, Mauro

    2010-01-01

    Background The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site. Scope of Review This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics. Major Conclusions Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. PMID:20493927

  6. Controlling subcellular delivery to optimize therapeutic effect

    PubMed Central

    Mossalam, Mohanad; Dixon, Andrew S; Lim, Carol S

    2010-01-01

    This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy. PMID:21113240

  7. Nanoparticle mediated non-covalent drug delivery☆

    PubMed Central

    Doane, Tennyson; Burda, Clemens

    2013-01-01

    The use of nanoparticles (NPs) for enhanced drug delivery has been heavily explored during the last decade. Within the field, it is has become increasingly apparent that the physical properties of the particles themselves dictate their efficacy, and the relevant non-covalent chemistry at the NP interface also influences how drugs are immobilized and delivered. In this review, we reflect on the physical chemistry of NP mediated drug delivery (and more specifically, non-covalent drug delivery) at the three main experimental stages of drug loading, NP–drug conjugate transport, and the resulting cellular drug delivery. Through a critical evaluation of advances in drug delivery within the last decade, an outlook for biomedical applications of nanoscale transport vectors will be presented. PMID:22664231

  8. Visual Biofeedback using trans-perineal ultrasound during the second stage of labor.

    PubMed

    Gilboa, Yinon; Frenkel, Tahl I; Schlesinger, Yael; Rousseau, Sofie; Hamiel, Daniel; Achiron, Reuven; Perlman, Sharon

    2017-11-20

    to assess the obstetrical and psychological effect of visual biofeedback using trans-perineal ultrasound (TPU) during the second stage of labor. Visual biofeedback using TPU was performed prospectively during the second stage of labor in twenty-six low risk nulliparous women. Pushing efficacy was assessed by the angle of progression at rest and during pushing efforts before and after observing the ultrasound screen. Obstetrical outcomes included level of perineal tearing, mode of delivery and length of the second stage. Psychological outcomes were assessed via self-report measures during the postnatal hospital stay. These included measures of perceived control and maternal satisfaction with childbirth as well as level of maternal feelings of connectedness toward her newborn. Obstetrical and psychological results were compared to a control group (n=69) who received standard obstetrical coaching by midwifes. Pushing efficacy significantly increased following visual biofeedback by TPU (p = 0.01). A significant association was found between the visual biofeedback and an intact perineum following delivery (p = 0.03). No significant differences were found in regard to mode of delivery or the length of the second stage. Feelings of maternal connectedness towards the newborn were significantly higher in the visual biofeedback group relative to non-biofeedback controls (p = 0.003). The results of this pilot study implicate that TPU may serve as a complementary tool to coached maternal pushing during the second stage of labor with obstetrical as well as psychological benefits. Further studies are required to confirm our findings and define the exact timing for optimal results. This article is protected by copyright. All rights reserved.

  9. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    PubMed Central

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  10. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  11. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    PubMed Central

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  12. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    PubMed

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  13. Teaching the iPhone with Voiceover Accessibility to People with Visual Impairments

    ERIC Educational Resources Information Center

    Celusnak, Brian M.

    2016-01-01

    Moving from a conventional telephone keypad to a cellular telephone with a touchscreen can seem quite challenging for some people. When one is visually impaired, there is always the option of using VoiceOver, the iPhone's built-in access technology that is designed to allow individuals with visual impairments the ability to access the visual…

  14. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  15. Polymeric biomaterials for nerve regeneration applications: From promoting cellular organization to the delivery of bioactive molecules

    NASA Astrophysics Data System (ADS)

    Delgado-Rivera, Roberto L.

    Thousands of new cases of injury to the central nervous system (CNS) occur each year in the USA and all over the world. However, despite recent advances, at present there is no cure for the resulting paraplegia or quadriplegia. This research is directed towards engineering biomaterial platforms to promote cellular organization at the surface of polymer scaffolds that will be conducive to proper regeneration of injured CNS. In addition, the formulation of a delivery system for neuroactive molecules using polymer-based materials will be evaluated to establish its potential to treat CNS disorders. Initial studies involved the chemical modification of an electrospun nonwoven matrix of nanofibers with fibroblast growth factor 2 (FGF-2). Nanofibers alone up-regulated FGF-2, albeit to a lesser extent than nanofibers covalently modified with FGF-2. These results underscore the importance of both surface topography and growth factor presentation on cellular function. Moreover, that FGF-2 modified nanofibrillar scaffolds may demonstrate utility in tissue engineering applications for replacement and regeneration of damaged tissue following CNS injury or disease. Subsequent research efforts focused on a novel micropatterning technique called microscale plasma-initiated patterning (microPIP). This patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. FGF-2 and laminin-1 were applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. In this work it, was possible to demonstrate that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization. Finally, a microsphere system capable of encapsulating proteins while minimizing the mechanisms of protein degradation and providing a controlled release was investigated. Microspheres were comprised of a salicylic-acid based poly(anhydride-ester) (PAE), a biodegradable polymer that incorporates salicylic acid into the polymer backbone (PolyAspirin). The use of microspheres formulated from PolyAspirin as a delivery vehicle can be advantageous due its ability of performing a dual delivery; biomolecule (protein) and drug. By combining these two properties, it will be possible to release neurotrophic factors to induce a biological response while mitigating inflammatory pathways due to the localized delivery of salicylic acid.

  16. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    PubMed

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  17. Estimation of the number of biophotons involved in the visual perception of a single-object image: biophoton intensity can be considerably higher inside cells than outside.

    PubMed

    Bókkon, I; Salari, V; Tuszynski, J A; Antal, I

    2010-09-02

    Recently, we have proposed a redox molecular hypothesis about the natural biophysical substrate of visual perception and imagery [1,6]. Namely, the retina transforms external photon signals into electrical signals that are carried to the V1 (striatecortex). Then, V1 retinotopic electrical signals (spike-related electrical signals along classical axonal-dendritic pathways) can be converted into regulated ultraweak bioluminescent photons (biophotons) through redox processes within retinotopic visual neurons that make it possible to create intrinsic biophysical pictures during visual perception and imagery. However, the consensus opinion is to consider biophotons as by-products of cellular metabolism. This paper argues that biophotons are not by-products, other than originating from regulated cellular radical/redox processes. It also shows that the biophoton intensity can be considerably higher inside cells than outside. Our simple calculations, within a level of accuracy, suggest that the real biophoton intensity in retinotopic neurons may be sufficient for creating intrinsic biophysical picture representation of a single-object image during visual perception. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. The effect of colour and design in labour and delivery: A scientific approach

    NASA Astrophysics Data System (ADS)

    Duncan, Jane

    2011-03-01

    This study was part of a broader three year research project at London's Chelsea and Westminster Hospital, "A Study of the Effect of the Visual and Performing Arts in Healthcare", exploring whether visual and performing arts have any measurable effect on physiological, psychological and biological outcomes of clinical significance on patient recovery, and providing a potential cost saving benefit to the NHS. In this specific study of women in labour, two measurements were identified as having clinical significance for achieving optimal outcomes during labour and delivery: length of labour and frequency of requirement for analgesia. A screen was designed to hide emergency equipment with the joint aim of reducing women's anxieties and (through visual art) acting as a focal point of attention and distraction during labour, thus diminishing requirements for analgesia. Results demonstrated, in the presence of the screen, a statistically significant shortening of the duration of labour by 2.1h with frequency of requests for epidural analgesia 7% lower in the study group than in the control group. The significant clinical outcomes of this research provide the evidence of the value of integrating visual art into the environment of a labour and delivery room, improving the quality of the maternity service and potentially delivering real cost savings benefits to Hospitals.

  19. FUNCTIONAL NANOPARTICLES FOR MOLECULAR IMAGING GUIDED GENE DELIVERY

    PubMed Central

    Liu, Gang; Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Gene therapy has great potential to bring tremendous changes in treatment of various diseases and disorders. However, one of the impediments to successful gene therapy is the inefficient delivery of genes to target tissues and the inability to monitor delivery of genes and therapeutic responses at the targeted site. The emergence of molecular imaging strategies has been pivotal in optimizing gene therapy; since it can allow us to evaluate the effectiveness of gene delivery noninvasively and spatiotemporally. Due to the unique physiochemical properties of nanomaterials, numerous functional nanoparticles show promise in accomplishing gene delivery with the necessary feature of visualizing the delivery. In this review, recent developments of nanoparticles for molecular imaging guided gene delivery are summarized. PMID:22473061

  20. In vitro evaluation of lysophosphatidic acid delivery via reverse perfluorocarbon emulsions to enhance alveolar epithelial repair.

    PubMed

    Nelson, Diane L; Zhao, Yutong; Fabiilli, Mario L; Cook, Keith E

    2018-05-17

    Alveolar drug delivery is needed to enhance alveolar repair during acute respiratory distress syndrome. However, delivery of inhaled drugs is poor in this setting. Drug delivery via liquid perfluorocarbon emulsions could address this problem through better alveolar penetration and improved spatial distribution. Therefore, this study investigated the efficacy of the delivery of lysophosphatidic acid (LPA) growth factor to cultured alveolar epithelial cells via a perfluorocarbon emulsion. Murine alveolar epithelial cells were treated for 2 h with varying concentrations (0-10 μM) of LPA delivered via aqueous solution or PFC emulsion. Cell migration was evaluated 18 h post-treatment using a scratch assay. Barrier function was evaluated 1 h post-treatment using a permeability assay. Proliferation was evaluated 72 h post-treatment using a viability assay. Partially due to emulsion creaming and stability, the effects of LPA were either diminished or completely hindered when delivered via emulsion versus aqueous. Migration increased significantly following treatment with the 10 μM emulsion (p < 10 -3 ), but required twice the concentration to achieve an increase similar to aqueous LPA. Both barrier function and proliferation increased following aqueous treatment, but neither were significantly affected by the emulsion. The availability and thus the biological effect of LPA is significantly blunted during emulsified delivery in vitro, and this attenuation depends on the specific cellular function examined. Thus, the cellular level effects of drug delivery to the lungs via PFC emulsion are likely to vary based on the drug and the effect it is intended to create. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    PubMed

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  2. Optimization of a Biomimetic Apatite Nanoparticle Delivery System for Non-viral Gene Transfection---a Simulated Body Fluid Approach

    NASA Astrophysics Data System (ADS)

    Das, Debobrato

    Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.

  3. [Multifunctional nano-vector for gene delivery into human adipose derived mesenchymal stem cells and in vitro cellular magnetic resonance imaging].

    PubMed

    Pang, Pengfei; Li, Bing; Hu, Xiaojun; Kang, Zhuang; Guan, Shouhai; Gong, Faming; Meng, Xiaochun; Li, Dan; Huang, Mingsheng; Shan, Hong

    2014-04-08

    To examine the feasibility and efficacy of using superparamagnetic iron oxide nanoparticles coated with polyethylene glycol-grafted polyethylenimine (PEG-g-PEI-SPION) as a carrier for gene delivery into human adipose derived mesenchymal stem cells (hADMSCs) and in vitro cellular magnetic resonance imaging (MRI). PEG-g-PEI-SPION was synthesized as previously reported. Gel electrophoresis was performed to assess the pDNA condensation capacity of PEG-g-PEI-SPION. The particle size and zeta potential of PEG-g-PEI-SPION/pDNA complexes were determined by dynamic light scattering. Cytotoxicity of PEG-g-PEI-SPION was evaluated by CCK-8 assay with hADMSCs. Gene transfection efficiency of PEG-g-PEI-SPION in hADMSCs was quantified by flow cytometry. The cellular internalization of PEG-g-PEI-SPION/pDNA nanocomplexes was studied by confocal laser scanning microscopy and Prussian blue staining. MRI function of PEG-g-PEI-SPION was studied by in vitro cellular MRI scanning. PEG-g-PEI-SPION condensed pDNA to form stable complexes of 80-100 nm in diameter and showed low cytotoxicity in hADMSCs. At the optimal N/P ratio of 20, PEG-g-PEI-SPION/pDNA obtained the highest transfection efficiency of 22.8% ± 3.6% in hADMSCs. And it was higher than that obtained with lipofectamine 11.2% ± 2.6% (P < 0.05). Furthermore, hADMSCs labeled with PEG-g-PEI-SPION showed sensitive low signal intensity on MRI T2-weighted images in vitro. PEG-g-PEI-SPION is an efficient and MRI-visible nano-vector for gene delivery into hADMSCs.

  4. Experimental demonstration of bindingless signal delivery in human cells via microfluidics

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Te; Chuang, Fang-Tzu; Wu, Pei-Yi; Lin, Yueh-Chien; Liu, Hao-Kai; Huang, Guan-Syuan; Tsai, Tzu-Ching; Chi, Cheng-Yu; Wo, Andrew M.; Lee, Hsinyu; Lee, Si-Chen

    2014-07-01

    The cellular signal transduction is commonly believed to rely on the direct "contact" or "binding" of the participating molecule reaction that depends positively on the corresponding molecule concentrations. In living systems, however, it is somewhat difficult to precisely match the corresponding rapid "binding," depending on the probability of molecular collision, existing in the cellular receptor-ligand interactions. Thus, a question arises that if there is another mechanism (i.e., bindingless) that could promote this signal communication. According to this hypothesis, we report a cellular model based on the examination of intracellular calcium concentration to explore whether the unidentified signal delivery in cells exists, via a microfluidic device. This device was designed to isolate the cells from directly contacting with the corresponding ligands/molecules by the particular polydimethylsiloxane (PDMS) membranes with different thicknesses. Results show a significant increment of calcium mobilization in human prostate cancer PC-3 cells by the stimulation of endothelin-1, even up to a separated distance of 95 μm. In addition, these stimulated signals exhibited a bump-shaped characteristics depending on the membrane thickness. When the PDMS membrane is capped by SiO2, a particular trait that resembles the ballistic signal conduction was observed. A theoretical model was developed to describe the signal transport process across the PDMS membrane. Taken together, these results indicate that the unidentified signal (ligand structural information) delivery could occur in cells and be examined by the proposed approach, exhibiting a bindingless communication manner. Moreover, this approach and our finding may offer new opportunities to establish a robust and cost-effective platform for the study of cellular biology and new drug development.

  5. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.

    PubMed

    Tortorella, Stephanie; Karagiannis, Tom C

    2014-01-01

    Anticancer therapeutic research aims to improve clinical management of the disease through the development of strategies that involve currently-relevant treatment options and targeted delivery. Tumour-specific and -targeted delivery of compounds to the site of malignancy allows for enhanced cellular uptake, increased therapeutic benefit with high intratumoural drug concentrations, and decreased systemic exposure. Due to the upregulation of transferrin receptor expression in a wide variety of cancers, its function and its highly efficient recycling pathway, strategies involving the selective targeting of the receptor are well documented. Direct conjugation and immunotoxin studies using the transferrin peptide or anti-transferrin receptor antibodies as the targeting moiety have established the capacity to enhance cellular uptake, cross the blood brain barrier, limit systemic toxicity and reverse multi-drug resistance. Limitations in direct conjugation, including the difficulty in linking an adequate amount of therapeutic compound to the ligand or antibody have identified the requirement to develop novel delivery methods. The application of nanoparticulate theory in the development of functional drug delivery systems has proven to be most promising, with the ability to selectively modify size-dependent properties and surface chemistry. The transferrin modification on a range of nanoparticle formulations enhances selective cellular uptake through transferrin-mediated processes, and increases therapeutic benefit through the ability to encapsulate high concentrations of relevant drug to the tumour site. Although ineffective in crossing the blood brain barrier in its free form, chemotherapeutic compounds including doxorubicin, may be loaded into transferrin-conjugated nanocarriers and impart cytotoxic effects in glioma cells in vitro and in vivo. Additionally, transferrin-targeted nanoparticles may be used in selective diagnostic applications with enhanced selectivity and sensitivity. Four transferrin-modified nano-based drug delivery systems are currently in early phases of human clinical trials. Despite the collective promise, inconsistencies in some studies have exposed some limitations in current formulations and the difficulty in translating preliminary studies into clinically-relevant therapeutic options. The main objective of this review is to investigate the development of transferrin targeted nano-based drug delivery systems in order to establish the use of transferrin as a cancer-targeted moiety, and to ultimately evaluate the progression of cancer therapeutic strategies for future research.

  6. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity.

    PubMed

    Popat, Amirali; Karmakar, Surajit; Jambhrunkar, Siddharth; Xu, Chun; Yu, Chengzhong

    2014-05-01

    Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.

    PubMed

    Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-08-10

    Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    PubMed

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  9. Facing the Limitations of Electronic Document Handling.

    ERIC Educational Resources Information Center

    Moralee, Dennis

    1985-01-01

    This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)

  10. Real-time Visualization and Quantification of Retrograde Cardioplegia Delivery using Near Infrared Fluorescent Imaging

    PubMed Central

    Rangaraj, Aravind T.; Ghanta, Ravi K.; Umakanthan, Ramanan; Soltesz, Edward G.; Laurence, Rita G.; Fox, John; Cohn, Lawrence H.; Bolman, R. M.; Frangioni, John V.; Chen, Frederick Y.

    2009-01-01

    Background and Aim of the Study Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. Methods A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in 5 ex-vivo normal porcine hearts and in 5 ex-vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. Results The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed that retrograde cardioplegia primarily distributed to the left ventricle and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior left ventricle. This deficiency was compensated for with retrograde cardioplegia supplementation. Conclusions Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated. PMID:19016995

  11. Biophysical characterization of hydrogel-core, lipid-shell nanoparticles (nanolipogels) for HIV chemoprophylaxis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Reena

    Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.

  12. Inhibition of Experimental Liver Cirrhosis in Mice by Telomerase Gene Delivery

    NASA Astrophysics Data System (ADS)

    Rudolph, Karl Lenhard; Chang, Sandy; Millard, Melissa; Schreiber-Agus, Nicole; DePinho, Ronald A.

    2000-02-01

    Accelerated telomere loss has been proposed to be a factor leading to end-stage organ failure in chronic diseases of high cellular turnover such as liver cirrhosis. To test this hypothesis directly, telomerase-deficient mice, null for the essential telomerase RNA (mTR) gene, were subjected to genetic, surgical, and chemical ablation of the liver. Telomere dysfunction was associated with defects in liver regeneration and accelerated the development of liver cirrhosis in response to chronic liver injury. Adenoviral delivery of mTR into the livers of mTR-/- mice with short dysfunctional telomeres restored telomerase activity and telomere function, alleviated cirrhotic pathology, and improved liver function. These studies indicate that telomere dysfunction contributes to chronic diseases of continual cellular loss-replacement and encourage the evaluation of ``telomerase therapy'' for such diseases.

  13. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    NASA Astrophysics Data System (ADS)

    Sayeh, Naser Ali

    Intracellular delivery of cell-impermeable compounds in a variety cells using delivery systems have been extensively studied in recent years. Obtaining desirable cellular uptake levels often requires the administration of high quantities of drugs to achieve the expected intracellular biological effect. Thus, improving the translocation process across the plasma membrane will significantly reduce the quantity of required administered drug and consequently minimize the side effects in most of the cases. Efficient delivery of these molecules to the cells and tissues is a difficult challenge. Compounds with low cellular permeability are commonly considered to be of limited therapeutic value. Over the past few decades, several biomedical carriers, such as polymers, nanospheres, nanocapsules, liposomes, micelles, peptides and dendrimers have been widely used to deliver therapeutic and diagnostic agents to the cells. Biomaterials generated from nano-scale compounds have shown some promising data for delivery of many compounds in a number of diseases, such as viral infections, cancer, and genetic disorders. Although much progress has been achieved in this field, many challenges still remain, such as toxicity and limited stability. Liposomes suffer from poor stability in the bloodstream and leakage during storage. They tend to aggregate and fuse with or leak entrapped drugs, especially highly hydrophilic small molecules. For solid lipid nanoparticles (SLNs), drug expulsion after polymorphic transition during storage, inadequate loading capacity, and relatively high water content of the dispersions have been observed. Poly(lactic-coglycolic acid (PLGA) degrades in the body producing its original monomers of lactic acid and glycolic acid, which are the by-products of various metabolic pathways. However, this acidic microenvironment that occurs during degradation could negatively affect the stability of the loaded compound. Dendrimers can carry drugs as complexes or as conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the cellular uptake is predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic CPPs are, therefore not ideal small molecule drug delivery vehicles. Linear CPPs are susceptible to hydrolysis by endogenous peptidases. Conjugation to cationic CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the cellular uptake occurs predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic linear CPPs are, therefore, have not become optimized as small molecule drug delivery vehicles. On the other hand, cyclic peptides containing hydrophilic and hydrophobic amino acids have shown greater potential as drug delivery tools due to their enhanced chemical and enzymatic stability. Parang's laboratory has reported that Amphiphilic Cyclic Peptides (ACPs) containing positively charged arginine and hydrophobic tryptophan residues as potential candidates for drug delivery. Cyclic peptides have several benefits compared to linear peptides, such as rigidness of structure and stability against proteolytic enzymes. The rigidity of the structure can enhance the binding affinity of ligands toward receptors by reducing the freedom of possible structural conformations. Cyclic peptides are also present in nature and have been developed as therapeutics. Cyclosporine, gramicidin S, polymoxin B, and daptomycin are well-known examples of cyclic peptide drugs. Parang's laboratory designed amphiphilic cyclic CPPs containing alternative tryptophan and arginine residues as the positively charged and hydrophobic residues, respectively. The peptides were efficient in improving the cellular delivery of anticancer and antiviral drugs. The cellular uptake mechanism of CPPs into cells is still a matter of some debate. The cellular entry of CPP can be influenced by the type of CPP, the cell line, the nature of the cargo, and the conditions of incubation. As described above, linear CPPs pass through the plasma membrane mostly via an energy-independent or endocytosis pathway. Moreover, the cellular delivery of CPP-conjugated molecules also occurs through endosomal pathway and a strong enzymatic degradation and an inadequate cytoplasmic release of intact molecules from the conjugates are expected, thus leading to an inefficient transfer into the cytoplasm. The best strategy to overcome this issue is to designing CPP that by pass the endosomal uptake or by increasing the escape rate from the endosome to improve the intracellular delivery of CPP-attached molecules. Parang laboratory has reported the cellular uptake of a number of cyclic peptides independent of endocytotic pathway. The extraordinary ability of cyclic peptides containing tryptophan and arginine, [WR]4 and [WR] 5 to spontaneously translocate across bilayers independent of an energy source is distinctly different from the behavior of the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow us to explore requirements for generating peptides with optimized drug encapsulation and to establish correlations between the structure of peptides with their drug entrapment properties. Thus, the general objective of this dissertation was to design and evaluate additional cyclic or amphiphilic peptides as nanostructures, compare their efficiency in delivery of small molecules with the previously reported cyclic peptides containing tryptophan and arginine residues. This dissertation consists of three chapters. Chapter 1. MANUSCRIPT (published in Current Organic Chemistry 2014). The objective of this work was to design amphiphilic linear and cyclic peptides containing hydrophobic tryptophan W residues that were linked through a triazole ring to positively charged arginine R and lysine (K) residues. The peptides were synthesized through click chemistry between hydrophobic peptides containing alkyne and positively charged peptides containing azide groups. Characterization of their structures like solubility, CD, TEM, cytotoxicity were investigated. The conjugates were showed minimal cytotoxicity at two cell lines. The secondary structures of both peptides were similar to a distorted α-helix as shown by CD spectroscopy. TEM imaging also showed that linear-linear (WG(triazole-KR-NH2))3 and cyclic-linear [WG(triazole-KR-NH2)]3 peptides formed nano-sized structures. Chapter 2. MANUSCRIPT I (Submitted to Journal of Molecular Modeling). In this work, we investigated the structural and dynamical aspects of cyclic-linear peptide ([WG(triazole-KR-NH2)] 3 and linear-linear peptide (WG(triazole-KR-NH2))3) formed nanostructures compared to a drug delivery system with [WR]4. While [WR]4 was found to be an efficient molecular transporter for small molecule drugs, such as lamivudine and dasatinib, cyclic-linear peptide ([WG(triazole-KR-NH2)]3 was inefficient. Molecular modeling was used to explain the differential behavior of these peptides. We showed how the morphology of these systems can affect the drug delivery efficiency. The result of this work provided insights about optimizing the amphiphilic cyclic-linear trizaolyl peptides can be used to design compounds with more efficient drug delivery capabilities. Chapter 3. MANUSCRIPT II. The objective of this Chapter was to synthesize a different series of amphiphilic peptides for different objectives. First, the amphiphilic trizaolyl peptides in Chapter I were systematically modified by increasing the number of arginine and tryptophan sequence in cyclic and linear peptides. The rationale for the modification was to enhance the possibility of interaction with the cell membrane and therefore improving the cellular uptake process. Moreover, a new class of amphiphilic peptides consist of tryptophan and glutamic acid were conjugated with a peptide containing arginine and lysine residues using Fmoc chemistry. These peptides have an amide bond that generates more flexibility compared to a triazole ring. The chemical and biological properties will be evaluated in future and compared with amphiphilic triazolyl peptides. Finally, additional fatty acids with different length chains were conjugated with positively charged peptides to be evaluated as antibacterial agents. Stearic acid (C16) and myristic acid (C14) were conjugated with a peptides consisting of arginine azide and lysine amino acids to enhance the antibacterial activity. In summary, the work in this dissertation provided insights about the synthesis and characterization of a new class of amphiphilic triazolyl peptides as drug delivery carriers and amphiphilic peptides as antibacterial agents. Molecular modeling was used to explain why triazolyl peptides were unable to enhance the delivery of small molecule drugs compared to the previously synthesized cyclic peptides [WR]4 (Chapter 2) Modification of synthesized peptides in Chapter 1, by addition of more positively charged amino acids or reducing the rigidity by incorporating amide bonds instead of triazoly groups can be used to improve the cell penetrating properties. Finally, we conjugated amphiphilic peptides with different fatty acids (Chapter 3) to investigate their application as antibacterial agents.

  14. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  15. The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Korivi, Mallikarjuna; Lo, Shih-Yen; Aronstam, Robert S; Lee, Han-Jung

    2017-01-01

    Development of effective drug delivery systems (DDS) is a critical issue in health care and medicine. Advances in molecular biology and nanotechnology have allowed the introduction of nanomaterial-based drug delivery systems. Cell-penetrating peptides (CPPs) can form the basis of drug delivery systems by virtue of their ability to support the transport of cargoes into the cell. Potential cargoes include proteins, DNA, RNA, liposomes, and nanomaterials. These cargoes generally retain their bioactivities upon entering cells. In the present study, the smallest, fully-active lactoferricin-derived CPP, L5a is used to demonstrate the primary contributor of cellular internalization. The secondary helical structure of L5a encompasses symmetrical positive charges around the periphery. The contributions of cell-specificity, peptide length, concentration, zeta potential, particle size, and spatial structure of the peptides were examined, but only zeta potential and spatial structure affected protein transduction efficiency. FITC-labeled L5a appeared to enter cells via direct membrane translocation insofar as endocytic modulators did not block FITC-L5a entry. This is the same mechanism of protein transduction active in Cy5 labeled DNA delivery mediated by FITC-L5a. A significant reduction of transduction efficiency was observed with structurally incomplete FITC-L5a formed by tryptic destruction, in which case the mechanism of internalization switched to a classical energydependent endocytosis pathway. These results support the continued development of the non-cytotoxic L5a as an efficient tool for drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Examination of the Specificity of Tumor Cell Derived Exosomes with Tumor Cells In Vitro

    PubMed Central

    Smyth, Tyson J.; Redzic, Jasmina S.; Graner, Michael W.; Anchordoquy, Thomas J.

    2016-01-01

    Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over “immortalized” cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (> 10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH. PMID:25102470

  17. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  18. Cell source determines the immunological impact of biomimetic nanoparticles.

    PubMed

    Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2016-03-01

    Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.

  19. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    NASA Astrophysics Data System (ADS)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim

    2014-09-01

    Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  20. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological

  1. The delivery of therapeutic oligonucleotides

    PubMed Central

    Juliano, Rudolph L.

    2016-01-01

    The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology. PMID:27084936

  2. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle.

    PubMed

    Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier

    2014-03-21

    Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.

  3. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins.

    PubMed

    Luiza Andreazza, Nathalia; Vevert-Bizet, Christine; Bourg-Heckly, Geneviève; Sureau, Franck; José Salvador, Marcos; Bonneau, Stephanie

    2016-08-20

    Recent years have seen a growing interest in Berberine, a phytochemical with multispectrum therapeutic activities, as anti-tumoral agent for photodynamic therapy (PDT). In this context, low density lipoproteins (LDL) play a key role in the delivery of the photosensitizer in tumor cells. We correlate the physicochemical parameters of the berberine association to LDL with the influence of LDL-delivery on its accumulation in a glioma cell line and on its photo-induced activity in view of antitumor PDT. Our results evidence an important binding of 400 berberine molecules per LDL. Changes in berberine and apoprotein fluorescence suggest different fixation types, involving various LDL compartments including the vicinity of the apoprotein. The berberine association to LDL does not affect their recognition by the specific B/E receptors, of which over-expression increases the cellular uptake of LDL-preloaded berberine. Fluorescence microscopy evidences the mitochondrial labeling of the glioma model cells, with no significant modification upon LDL-delivery. Moreover, the cellular delivery of berberine by LDL increases its photocytotoxic effects on such cells. So, this research illustrates the potential of berberine as a photosensitizing agent for PDT, in particular due to their behavior towards LDL as plasma vehicles, and gives insights into its mechanisms of cell uptake. Copyright © 2016. Published by Elsevier B.V.

  4. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  5. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  6. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.

    PubMed

    Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen

    2017-11-01

    A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.

  7. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  8. Enhancing Icing Training for Pilots Through Web-Based Multimedia

    NASA Technical Reports Server (NTRS)

    Fletcher, William; Nolan, Gary; Adanich, Emery; Bond, Thomas H.

    2006-01-01

    The Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids designed to increase pilot awareness about the hazards associated with various icing conditions. The challenges and advantages of transitioning these icing training materials to a Web-based delivery are discussed. Innovative Web-based delivery devices increased course availability to pilots and dispatchers while increasing course flexibility and utility. These courses are customizable for both self-directed and instructor-led learning. Part of our goal was to create training materials with enough flexibility to enable Web-based delivery and downloadable portability while maintaining a rich visual multimedia-based learning experience. Studies suggest that using visually based multimedia techniques increases the effectiveness of icing training materials. This paper describes these concepts, gives examples, and discusses the transitional challenges.

  9. Enhanced cellular transport and drug targeting using dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2003-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  10. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  11. Cationic nanoemulsions as potential carriers for intracellular delivery

    PubMed Central

    Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S.

    2014-01-01

    Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740

  12. Macrophages with cellular backpacks for targeted drug delivery to the brain.

    PubMed

    Klyachko, Natalia L; Polak, Roberta; Haney, Matthew J; Zhao, Yuling; Gomes Neto, Reginaldo J; Hill, Michael C; Kabanov, Alexander V; Cohen, Robert E; Rubner, Michael F; Batrakova, Elena V

    2017-09-01

    Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7-10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders. Copyright © 2017. Published by Elsevier Ltd.

  13. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    PubMed

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  14. [Homeostasis and Disorder of Musculoskeletal System.Cellular dynamics in musculoskeletal system visualized by intravital imaging techniques.

    PubMed

    Kikuta, Junichi; Ishii, Masaru

    Bone is continually remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. Although it has long been believed that bone homeostasis is tightly regulated by communication between osteoclasts and osteoblasts, the fundamental process and dynamics have remained elusive. We originally established an advanced imaging system to visualize living bone tissues using intravital two-photon microscopy. By means of this system, we revealed the in vivo behavior of bone-resorbing osteoclasts and bone-forming osteoblasts in bone tissues. This approach facilitates investigation of cellular dynamics in the pathogenesis of musculoskeletal disorders, and would thus be useful for evaluating the efficacy of novel therapeutic agents.

  15. Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors

    NASA Astrophysics Data System (ADS)

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2017-02-01

    Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.

  16. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    PubMed Central

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  17. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  18. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor.

    PubMed

    Ambühl, Lea M M; Leonhard, Anne K; Widen Zakhary, Carina; Jørgensen, Annemette; Blaakaer, Jan; Dybkaer, Karen; Baandrup, Ulrik; Uldbjerg, Niels; Sørensen, Suzette

    2017-10-01

    Recently, an association between human papillomavirus infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported human papillomavirus prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed to investigate human papillomavirus infection in placental tissue of a Danish study cohort. Furthermore, we studied the cellular localization of human papillomavirus. In this prospective case-control study, placental tissue was analyzed for human papillomavirus infection by nested PCR in the following four study groups: full-term delivery (n = 103), spontaneous preterm delivery (n = 69), elective abortion (n = 54), and spontaneous abortion (n = 44). Moreover, human papillomavirus cellular target was identified using in situ hybridization. Human papillomavirus prevalence in placental tissue was 8.7% in full-term deliveries, 8.8% in spontaneous preterm deliveries, 10.9% in spontaneous abortions, and 20.4% in elective abortions. Twelve different human papillomavirus types were detected, and placental human papillomavirus infection was associated to a disease history of cervical cancer. Human papillomavirus DNA was identified in trophoblast cells, cells of the placental villi mesenchyme including Hofbauer cells, and in parts of the encasing endometrium. Placental human papillomavirus infections are not likely to constitute a risk factor for spontaneous preterm labor or spontaneous abortions in the Danish population, although an effect of human papillomavirus DNA in placental cells cannot be excluded. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels.

    PubMed

    Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed

    2018-08-01

    This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.

  20. Biomimetics in drug delivery systems: A critical review.

    PubMed

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  2. The application of nanomaterials in controlled drug delivery for bone regeneration.

    PubMed

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  3. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    PubMed Central

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  4. Career Development of Blind and Visually Impaired Persons. Proceedings of the Macfarland Seminar, Annual Meeting of the American Association of Workers for the Blind (Phoenix, Arizona, July 1983).

    ERIC Educational Resources Information Center

    Graves, William H.; And Others

    These seven presentations cover various aspects of career development and employment of the visually impaired. "Career Development Theory Applied to the Delivery of Services to Blind and Visually Impaired Persons" (William H. Graves) describes the Career Development Intervention Strategy model developed by the Rehabilitation Research and Training…

  5. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S

    PubMed Central

    Sezgin, Erdinc; Can, Fatma Betul; Schneider, Falk; Clausen, Mathias P.; Galiani, Silvia; Stanly, Tess A.; Waithe, Dominic; Colaco, Alexandria; Honigmann, Alf; Wüstner, Daniel; Platt, Frances; Eggeling, Christian

    2016-01-01

    Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics. PMID:26701325

  6. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    PubMed Central

    Qu, M.; Mehrmohammadi, M.; Emelianov, S.Y.

    2015-01-01

    Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells. PMID:26640773

  7. Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches

    PubMed Central

    Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal

    2015-01-01

    Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141

  8. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics.

    PubMed

    Stayton, P S; Hoffman, A S; Murthy, N; Lackey, C; Cheung, C; Tan, P; Klumb, L A; Chilkoti, A; Wilbur, F S; Press, O W

    2000-03-01

    There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.

  9. Delivery of RNA interference therapeutics using polycation-based nanoparticles.

    PubMed

    Howard, Kenneth Alan

    2009-07-25

    RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.

  10. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.

    PubMed

    Petrenko, Valery A

    2017-12-01

    Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of 'addressed self-navigating drug-delivery vehicles,' in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of 'promiscuous' phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a 'hub and spoke' delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The 'self-navigating' drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text].

  11. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  12. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  13. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo

    PubMed Central

    Zhang, Youwen; Tong, Deyin; Che, Daobiao; Pei, Bing; Xia, Xiaodong; Yuan, Gaofeng; Jin, Xin

    2017-01-01

    The roles of ginsenoside compound K (CK) in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP)/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS) mixed micelles were prepared as a delivery system to increase the absorption and targeted antitumor effect of CK. Consequently, the solubility of CK increased from 35.2±4.3 to 1,463.2±153.3 μg/mL. Furthermore, in an in vitro A549 cell model, CK AP/TPGS mixed micelles significantly inhibited cell growth, induced G0/G1 phase cell cycle arrest, induced cell apoptosis, and inhibited cell migration compared to free CK, all indicating that the developed micellar delivery system could increase the antitumor effect of CK in vitro. Both in vitro cellular fluorescence uptake and in vivo near-infrared imaging studies indicated that AP/TPGS mixed micelles can promote cellular uptake and enhance tumor targeting. Moreover, studies in the A549 lung cancer xenograft mouse model showed that CK AP/TPGS mixed micelles are an efficient tumor-targeted drug delivery system with an effective antitumor effect. Western blot analysis further confirmed that the marked antitumor effect in vivo could likely be due to apoptosis promotion and P-gp efflux inhibition. Therefore, these findings suggest that the AP/TPGS mixed micellar delivery system could be an efficient delivery strategy for enhanced tumor targeting and antitumor effects. PMID:28144142

  14. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.

    PubMed

    Chen, Wenqi; Liu, Yong; Liang, Xiao; Huang, Yu; Li, Quanshun

    2017-07-15

    Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    NASA Astrophysics Data System (ADS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-08-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  16. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines.

    PubMed

    Landry, Breanne; Aliabadi, Hamidreza Montazeri; Samuel, Anuja; Gül-Uludağ, Hilal; Jiang, Xiaoyan; Kutsch, Olaf; Uludağ, Hasan

    2012-01-01

    Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ≈ 0.5 and led to siRNA/polymer complexes of ≈ 100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.

  17. Effective Non-Viral Delivery of siRNA to Acute Myeloid Leukemia Cells with Lipid-Substituted Polyethylenimines

    PubMed Central

    Landry, Breanne; Aliabadi, Hamidreza Montazeri; Samuel, Anuja; Gül-Uludağ, Hilal; Jiang, Xiaoyan; Kutsch, Olaf; Uludağ, Hasan

    2012-01-01

    Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ∼0.5 and led to siRNA/polymer complexes of ∼100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia. PMID:22952927

  18. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

    PubMed Central

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.

    2014-01-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology. PMID:21959846

  19. Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kubelick, Kelsey; Snider, Eric; Yoon, Heechul; Ethier, C. Ross; Emelianov, Stanislav Y.

    2017-03-01

    Glaucoma is associated with dysfunction of the trabecular meshwork (TM), a fluid drainage tissue in the anterior eye. A promising treatment involves delivery of stem cells to the TM to restore tissue function. Currently histology is the gold standard for tracking stem cell delivery and differentiation. To expedite clinical translation, non-invasive longitudinal monitoring in vivo is desired. Our current research explores a technique combining ultrasound (US) and photoacoustic (PA) imaging to track mesenchymal stem cells (MSCs) after intraocular injection. Adipose-derived MSCs were incubated with gold nanospheres to label cells (AuNS-MSCs) for PA imaging. Successful labeling was first verified with in vitro phantom studies. Next, MSC delivery was imaged ex vivo in porcine eyes, while intraocular pressure was hydrostatically clamped to maintain a physiological flow rate through the TM. US/PA imaging was performed before, during, and after AuNS-MSC delivery. Additionally, spectroscopic PA imaging was implemented to isolate PA signals from AuNS-MSCs. In vitro cell imaging showed AuNS-MSCs produce strong PA signals, suggesting that MSCs can be tracked using PA imaging. While the cornea, sclera, iris, and TM region can be visualized with US imaging, pigmented tissues also produce PA signals. Both modalities provide valuable anatomical landmarks for MSC localization. During delivery, PA imaging can visualize AuNS-MSC motion and location, creating a unique opportunity to guide ocular cell delivery. Lastly, distinct spectral signatures of AuNS-MSCs allow unmixing, with potential for quantitative PA imaging. In conclusion, results show proof-of-concept for monitoring MSC ocular delivery, raising opportunities for in vivo image-guided cell delivery.

  20. Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fleming, Christine P.; Quan, Kara J.; Rollins, Andrew M.

    2010-07-01

    Radiofrequency ablation (RFA) is the standard of care to cure many cardiac arrhythmias. Epicardial ablation for the treatment of ventricular tachycardia has limited success rates due in part to the presence of epicardial fat, which prevents proper rf energy delivery, inadequate contact of ablation catheter with tissue, and increased likelihood of complications with energy delivery in close proximity to coronary vessels. A method to directly visualize the epicardial surface during RFA could potentially provide feedback to reduce complications and titrate rf energy dose by detecting critical structures, assessing probe contact, and confirming energy delivery by visualizing lesion formation. Currently, there is no technology available for direct visualization of the heart surface during epicardial RFA therapy. We demonstrate that optical coherence tomography (OCT) imaging has the potential to fill this unmet need. Spectral domain OCT at 1310 nm is employed to image the epicardial surface of freshly excised swine hearts using a microscope integrated bench-top scanner and a forward imaging catheter probe. OCT image features are observed that clearly distinguish untreated myocardium, ablation lesions, epicardial fat, and coronary vessels, and assess tissue contact with catheter-based imaging. These results support the potential for real-time guidance of epicardial RFA therapy using OCT imaging.

  1. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  2. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  3. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  4. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  5. Delivery Pain and the Development of Mother-Infant Interaction

    ERIC Educational Resources Information Center

    Ferber, Sari Goldstein; Feldman, Ruth

    2005-01-01

    This study examined delivery pain as a possible risk factor for the development of mother-infant interaction. Eighty-one mothers completed the Pain Catastrophizing Scale, the State-Trait Anxiety Inventory, and the Edinburgh Postnatal Depression Scale. A retrospective evaluation of labor pain was performed using the Visual Analog Scale at 2 days…

  6. Managing the care of patients who have visual impairment.

    PubMed

    Watkinson, Sue; Scott, Eileen

    An ageing population means that the incidence of people who are visually impaired will increase. However, extending the role of ophthalmic nurses will promote delivery of a more effective health service for these patients. Using Maslow's hierarchy of needs as a basis for addressing the care of patients with visual impairment is a means of ensuring that they receive high quality, appropriate care at the right time.

  7. Living-Cell Microarrays

    PubMed Central

    Yarmush, Martin L.; King, Kevin R.

    2011-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510

  8. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  9. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Robust imaging and gene delivery to study human lymphoblastoid cell lines.

    PubMed

    Jolly, Lachlan A; Sun, Ying; Carroll, Renée; Homan, Claire C; Gecz, Jozef

    2018-06-20

    Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.

  11. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  12. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  13. Efficient Delivery and Nuclear Uptake Is Not Sufficient to Detect Gene Editing in CD34+ Cells Directed by a Ribonucleoprotein Complex.

    PubMed

    Modarai, Shirin R; Man, Dula; Bialk, Pawel; Rivera-Torres, Natalia; Bloh, Kevin; Kmiec, Eric B

    2018-06-01

    CD34+ cells are prime targets for therapeutic strategies for gene editing, because modified progenitor cells have the capacity to differentiate through an erythropoietic lineage. Although experimental advances have been reported, the associated experimental protocols have largely been less than clear or robust. As such, we evaluated the relationships among cellular delivery; nuclear uptake, often viewed as the benchmark metric of successful gene editing; and single base repair. We took a combinatorial approach using single-stranded oligonucleotide and a CRISPR/Cas9 ribonucleoprotein to convert wild-type HBB into the sickle cell genotype by evaluating conditions for two common delivery strategies of gene editing tools into CD34+ cells. Confocal microscopy data show that the CRISPR/Cas9 ribonucleoprotein tends to accumulate at the outer membrane of the CD34+ cell nucleus when the Neon Transfection System is employed, while the ribonucleoproteins do pass into the cell nucleus when nucleofection is used. Despite the high efficiency of cellular transformation, and the traditional view of success in efficient nuclear uptake, neither delivery methodology enabled gene editing activity. Our results indicate that more stringent criteria must be established to facilitate the clinical translation and scientific robustness of gene editing for sickle cell disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    PubMed

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.

    PubMed

    Abou Matar, Tamara; Karam, Pierre

    2018-02-01

    It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design and characterization of nanomaterial-biomolecule conjugates

    NASA Astrophysics Data System (ADS)

    Yim, Tae-Jin

    In the field of nanobiotechnology, nanoscale dimensions result in physical properties that differ from more conventional bulk material state. The integration of nanomaterials with biomolecules has begun to be used for unique physical properties, and for biological specific recognition, thereby leading to novel nanomaterial-biomolecule conjugates. The direction of this dissertation is to develop biocatalytic nanomaterial-biomolecule conjugates and to characterize them. For this, biological catalysts are employed to combine with nanomaterials. Two large parts include functional ization of nanomaterials with biomolecules and assembly of nanomaterials using a biological catalyst. First part of this thesis work is the exploration of the biocatalytic properties of nanomaterial-biomolecule conjugates. Si nanocolumns have higher surface area which leads more amount of biocatalytis immobilization than flat Si wafer with the same projected area. The enhanced activity of soybean peroxidase (SBP) immobilized onto Si nanocolumns as novel nanostructured supports is focused. Next, the catalytic activity of immobilized DNAzyme onto multiwalled carbon nanotubes (MWNTs) is compared to that in solution phase, and multiple turnovers are examined. The relationship between hybridization efficiency and activity is investigated as a function of surface density of DNAzyme on MWNTs. Then, cellular delivery of silica nanoparticle-protein conjugates is visually confirmed and therefore the intracellular function of a protein delivered by silica nanoparticle-protein conjugates is proved. For one example of the intracellular function, stable SBP immobilized onto silica nanoparticles to activate a prodrug is demonstrated. Second part of this thesis work is the formation of nanostructured materials through the enzymatic assembly of single-walled carbon nanotubes (SWNTs). Enzymatic polymerization of a phenol compound is applied to the bridging of two or more SWNTs functionalized with phenol monomers. Next, future work based on previous works is proposed; first, the cellular delivery of DNAzyme using SWNTs is proposed to be a promising nonviral nanovehicle for gene silencing. Second, hydrophobic/hydrophilic switchable surface using DNAzyme is suggested to expand its usage to hydrophobically gradient surface. Finally, reversible assembly and disassembly of poly-L-histidine coated MWNTs can be applied to a reversible nanotube patterning on surface. And, the expansion of the works presented in this thesis to "nanomedicine" is suggested.

  17. Passage of Trojan peptoids into plant cells.

    PubMed

    Eggenberger, Kai; Birtalan, Esther; Schröder, Tina; Bräse, Stefan; Nick, Peter

    2009-10-12

    Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However, most of the research has been done by using mammalian cell cultures as model organisms and the actual cellular mechanism of membrane passage has not been elucidated. Plant cells, which are encased in a cellulosic cell wall and differ in membrane composition, represent an alternative experimental system to address this issue, but so far, have attracted only little attention for both peptide- and peptoid-based carrier systems. Moreover, efficient delivery of nonproteinaceous bioactive macromolecules into living plant cells could complement genetic engineering in biotechnological applications, such as metabolic engineering and molecular farming. In the present study, we investigated carrier peptoids with or without guanidinium side chains with regard to their uptake into plant cells, the cellular mechanism of uptake, and intracellular localization. We can show that in contrast to polyamine peptoids (polylysine-like) fluorescently labeled polyguanidine peptoids (polyarginine-like) enter rapidly into tobacco BY-2 cells without affecting the viability of these cells. A quantitative comparison of this uptake with endocytosis of fluorescently labeled dextranes indicates that the main uptake of the guanidinium peptoids occurs between 30-60 min after the start of incubation and clearly precedes endocytosis. Dual visualization with the endosomal marker FM4-64 shows that the intracellular guanidinium peptoid is distinct from endocytotic vesicles. Once the polyguanidine peptoids have entered the cell, they associate with actin filaments and microtubules. By pharmacological manipulation of the cytoskeleton we tested whether the association with the cytoskeleton is necessary for uptake, and observed that the actin inhibitor latrunculin B as well as the microtubule inhibitor oryzalin impaired uptake and intracellular spread of the guanidinium carrier to a certain extent. These findings are discussed with respect to the potential mechanisms of uptake and with respect to the potential of Trojan peptoids as tools for metabolic engineering in plant biotechnology.

  18. Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery.

    PubMed

    Flak, Dorota; Yate, Luis; Nowaczyk, Grzegorz; Jurga, Stefan

    2017-09-01

    In this study ZnPc@TiO 2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO 2 . In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO 2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO 2 and FA/ZnPc@TiO 2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells, released and evenly distributed in the cytoplasm. In conclusion, prepared hybrid nanostructures exhibit high potential as selective bioimaging agents next to their photodynamic activity and drug delivery ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedam, S.; Archambault, L.; Starkschall, G.

    2007-11-15

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the deliverymore » gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation and delivery gate thresholds to within 0.3%. For patient data analysis, differences between simulation and delivery gate thresholds are reported as a fraction of the total respiratory motion range. For the smaller phase interval, the differences between simulation and delivery gate thresholds are 8{+-}11% and 14{+-}21% with and without audio-visual biofeedback, respectively, when the simulation gate threshold is determined based on the mean respiratory displacement within the 40%-60% gating phase interval. For the longer phase interval, corresponding differences are 4{+-}7% and 8{+-}15% with and without audio-visual biofeedback, respectively. Alternatively, when the simulation gate threshold is determined based on the maximum average respiratory displacement within the gating phase interval, greater differences between simulation and delivery gate thresholds are observed. A relationship between retrospective simulation gate threshold and prospective delivery gate threshold for respiratory gating is established and validated for regular and nonregular respiratory motion. Using this relationship, the delivery gate threshold can be reliably estimated at the time of 4D CT simulation, thereby improving the accuracy and efficiency of respiratory-gated radiation delivery.« less

  20. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin

    PubMed Central

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S.; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E.

    2016-01-01

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. PMID:27894716

  1. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin.

    PubMed

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E; Smith, Trevor R F

    2017-01-03

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing.

    PubMed

    Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P

    2016-07-01

    Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. © 2016 Wiley Periodicals, Inc.

  3. Designing synthetic RNA for delivery by nanoparticles

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  4. Comprehensive Interrogation of the Cellular Response to Fluorescent, Detonation and Functionalized Nanodiamonds

    PubMed Central

    Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.

    2015-01-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  5. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  6. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  7. Intraoperative intravital microscopy permits the study of human tumour vessels

    PubMed Central

    Fisher, Daniel T.; Muhitch, Jason B.; Kim, Minhyung; Doyen, Kurt C.; Bogner, Paul N.; Evans, Sharon S.; Skitzki, Joseph J.

    2016-01-01

    Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment. PMID:26883450

  8. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    PubMed Central

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  9. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang

    2016-06-01

    The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

  10. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.

    PubMed

    Afadzi, Mercy; Strand, Sabina P; Nilssen, Esben A; Måsøy, Svein-Erik; Johansen, Tonni F; Hansen, Rune; Angelsen, Bjørn A; de L Davies, Catharina

    2013-01-01

    The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.

  11. Cell Penetrating Peptides in the Delivery of Biopharmaceuticals

    PubMed Central

    Munyendo, Were LL; Lv, Huixia; Benza-Ingoula, Habiba; Baraza, Lilechi D.; Zhou, Jianping

    2012-01-01

    The cell membrane is a highly selective barrier. This limits the cellular uptake of molecules including DNA, oligonucleotides, peptides and proteins used as therapeutic agents. Different approaches have been employed to increase the membrane permeability and intracellular delivery of these therapeutic molecules. One such approach is the use of Cell Penetrating Peptides (CPPs). CPPs represent a new and innovative concept, which bypasses the problem of bioavailability of drugs. The success of CPPs lies in their ability to unlock intracellular and even intranuclear targets for the delivery of agents ranging from peptides to antibodies and drug-loaded nanoparticles. This review highlights the development of cell penetrating peptides for cell-specific delivery strategies involving biomolecules that can be triggered spatially and temporally within a cell transport pathway by change in physiological conditions. The review also discusses conjugations of therapeutic agents to CPPs for enhanced intracellular delivery and bioavailability that are at the clinical stage of development. PMID:24970133

  12. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy.

    PubMed

    Gupta, Anshita; Kaur, Chanchal Deep; Saraf, Shailendra; Saraf, Swarnlata

    2017-06-01

    Targeted drug delivery through folate receptor (FR) has emerged as a most biocompatible, target oriented, and non-immunogenic cargoes for the delivery of anticancer drugs. FRs are highly overexpressed in many tumor cells (like ovarian, lung, breast, kidney, brain, endometrial, and colon cancer), and targeting them through conjugates bearing specific ligand with encapsulated nanodrug moiety is undoubtedly, a promising approach toward tumor targeting. Folate, being an endogenous ligand, can be exploited well to affect various cellular events occurring during the progress of tumor, in a more natural and definite way. Thus, the aim of the review lies in summarizing the advancements taken place in the drug delivery system of different therapeutics through FRs and to refine its role as an endogenous ligand, in targeting of synthetic as well as natural bioactives. The review also provides an update on the patents received on the folate-based drug delivery system.

  13. Dendrimer Nanovectors for SiRNA Delivery.

    PubMed

    Liu, Xiaoxuan; Peng, Ling

    2016-01-01

    Small interfering RNA (SiRNA) delivery remains a major challenge in RNAi-based therapy. Dendrimers are emerging as appealing nonviral vectors for SiRNA delivery thanks to their well-defined architecture and their unique cooperativity and multivalency confined within a nanostructure. We have recently demonstrated that structurally flexible poly(amidoamine) (PAMAM) dendrimers are safe and effective nanovectors for SiRNA delivery in various disease models in vitro and in vivo. The present chapter showcases these dendrimers can package different SiRNA molecules into stable and nanosized particles, which protect SiRNA from degradation and promote cellular uptake of SiRNA, resulting in potent gene silencing at both mRNA and protein level in the prostate cancer cell model. Our results demonstrate this set of flexible PAMAM dendrimers are indeed safe and effective nonviral vectors for SiRNA delivery and hold great promise for further applications in functional genomics and RNAi-based therapies.

  14. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  15. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    PubMed Central

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  16. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex.

    PubMed

    Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2016-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5 -/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5 -/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5 -/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.

  17. Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy.

    PubMed

    Wang, Xin; Zhang, Manjie; Zhang, Lingyu; Li, Lu; Li, Shengnan; Wang, Chungang; Su, Zhongmin; Yuan, Yue; Pan, Weisan

    2017-05-11

    Herein, we report a facile strategy to prepare supported lipid-bilayer-coated polyacrylic acid/calcium phosphate nanoparticles (designated as PAA/CaP@SLB NPs) as a new dual pH-responsive drug-delivery platform for cancer chemotherapy. The synthesized PAA/CaP NPs exhibited both a high payload of doxorubicin (DOX) and dual pH-responsive drug-release properties. Additionally, the coated lipid bilayer had the ability to enhance the cellular uptake of PAA/CaP NPs without affecting the pH-responsive drug release. Moreover, the blank PAA/CaP@SLB NPs exhibited excellent biocompatibility and the DOX-loaded PAA/CaP@SLB NPs markedly increased the cellular accumulation of DOX and its cytotoxic effects on HepG-2 cells. Furthermore, when used to evaluate the in vivo therapeutic efficacy in mice with the hepatocarcinoma cell line (H-22), the DOX-loaded PAA/CaP@SLB NPs exhibited superior inhibition of tumor growth compared with the free DOX group. Thus, PAA/CaP@SLB NPs are a promising drug-delivery vehicle to increase the therapeutic efficacy of anticancer drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors.

    PubMed

    Huang, Rongqin; Liu, Shuhuan; Shao, Kun; Han, Liang; Ke, Weilun; Liu, Yang; Li, Jianfeng; Huang, Shixian; Jiang, Chen

    2010-07-02

    Dendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes. The result of gel retardation assay showed that pDNA could be effectively packed by all the vectors at a DGLs to pDNA weight ratio greater than 2. An increase in the PEGylation extent of vectors resulted in a decrease in the incorporation efficiency and cytotoxicity of complexes in 293 cells, which also decreased the zeta potential a little but did not affect the mean diameter of complexes. Higher generation of DGLs could mediate higher gene transfection in vitro. Confocal microscopy and cellular uptake inhibition studies demonstrated that caveolae-mediated process and macropinocytosis were involved in the cellular uptake of DGLs-based complexes. Also the results indicate that proper PEGylated DGLs could mediate efficient gene transfection, showing their potential as an alternate biodegradable vector in the field of nonviral gene delivery.

  19. Graphene Oxide Based Nanocarrier Combined with a pH-Sensitive Tracer: A Vehicle for Concurrent pH Sensing and pH-Responsive Oligonucleotide Delivery.

    PubMed

    Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun

    2015-06-03

    We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.

  20. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  1. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery.

    PubMed

    Dong, Yixuan; Dong, Pin; Huang, Di; Mei, Liling; Xia, Yaowen; Wang, Zhouhua; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-04-01

    The unique structure and protective mechanisms of the eye result in low bioavailability of ocular drugs. Using a mucoadhesive material is an efficient solution to improve ocular drug therapeutic efficacy. This study was designed to prepare a liposomal formulation coated by a novel adhesive excipient, silk fibroin (SF), for topical ocular drug delivery. The regenerated silk fibroins (SFs) with different dissolving time were coated onto the ibuprofen-loaded liposomes. The morphology, drug encapsulation efficiency, in vitro release and in vitro corneal permeation of SF-coated liposomes (SLs) were investigated in comparison with the conventional liposome. Cellular adhesion and cytotoxicity assay of SF and SLs were tested using human corneal epithelial cells (HCEC). SLs showed sustained drug release and in vitro corneal permeation of ibuprofen as compared to drug solution and conventional liposome. The cellular fluorescence appeared after 7 min of exposure to SF, and the intensity increased sustainedly up to 12h with no detectable cytotoxicity. Higher fluorescence intensity of Nile red in SLs was observed in a short period of 15 min showing a rapid uptake. These favorable properties make SF-coated liposome be a promising ocular drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Template-assisted fabrication of protein nanocapsules

    NASA Astrophysics Data System (ADS)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  3. Albumin-based drug delivery: harnessing nature to cure disease.

    PubMed

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

  4. Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs.

    PubMed

    Maity, Amit Ranjan; Chakraborty, Atanu; Mondal, Avijit; Jana, Nikhil R

    2014-03-07

    Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs.

  5. Technical Considerations in the Delivery of Audio-Visual Course Content.

    ERIC Educational Resources Information Center

    Lightfoot, Jay M.

    2002-01-01

    In an attempt to provide students with the benefit of the latest technology, some instructors include multimedia content on their class Web sites. This article introduces the basic terms and concepts needed to understand the multimedia domain. Provides a brief tutorial designed to help instructors create good, consistent audio-visual content. (AEF)

  6. Blended Learning in the Visual Communications Classroom: Student Reflections on a Multimedia Course

    ERIC Educational Resources Information Center

    George-Palilonis, Jennifer; Filak, Vincent

    2009-01-01

    Advances in digital technology and a rapidly evolving media landscape continue to dramatically change teaching and learning. Among these changes is the emergence of multimedia teaching and learning tools, online degree programs, and hybrid classes that blend traditional and digital content delivery. At the same time, visual communication programs…

  7. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    NASA Astrophysics Data System (ADS)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  8. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-20

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  10. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  11. Progress and perspective of inorganic nanoparticles based siRNA delivery system

    PubMed Central

    Jiang, Ying; Huo, Shuaidong; Hardie, Joseph; Liang, Xing-Jie; Rotello, Vincent M.

    2016-01-01

    Introduction Small interfering RNA (siRNA) is an effective method for regulating the expression of proteins, even “undruggable” ones that are nearly impossible to target through traditional small molecule therapeutics. Delivery to the cell and then to the cytosol is the primary requirement for realization of therapeutic potential of siRNA. Areas covered We summarize recent advances in the design of inorganic nanoparticle with surface functionality and physicochemical properties engineered for siRNA delivery. Specifically, we discuss the main approaches developed so far to load siRNA into/onto NPs, and NP surface chemistry engineered for enhanced intracellular siRNA delivery, endosomal escape, and targeted delivery of siRNA to disease cells and tissues. Expert Opinion Several challenges remain in developing inorganic NPs for efficient and effective siRNA delivery. Getting the material to the chosen site is important, however the greatest hurdle may well be delivery into the cytosol, either through efficient endosomal escape or by direct cytosolic siRNA delivery. Effective delivery at the organismic and cellular level coupled with biocompatible vehicles with low immunogenic response will facilitate the clinical translation of RNAi for the treatment of genetic diseases. PMID:26735861

  12. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    NASA Astrophysics Data System (ADS)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  13. Peroxotitanates for Biodelivery of Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 hmore » in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.« less

  14. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    PubMed

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  15. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells.

    PubMed

    Homma, Mitsumasa; Takei, Yoshiaki; Murata, Atsushi; Inoue, Takafumi; Takeoka, Shinji

    2015-04-11

    Mitochondrial thermodynamics is the key to understand cellular activities related to homeostasis and energy balance. Here, we report the first ratiometric fluorescent molecular probe (Mito-RTP) that is selectively localized in the mitochondria and visualize the temperature. We confirmed that Mito-RTP could work as a ratiometric thermometer in a cuvette and living cells.

  16. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34242e

  17. Imaging of the interaction of cancer cells and the lymphatic system.

    PubMed

    Tran Cao, Hop S; McElroy, Michele; Kaushal, Sharmeela; Hoffman, Robert M; Bouvet, Michael

    2011-09-10

    A thorough understanding of the lymphatic system and its interaction with cancer cells is crucial to our ability to fight cancer metastasis. Efforts to study the lymphatic system had previously been limited by the inability to visualize the lymphatic system in vivo in real time. Fluorescence imaging can address these limitations and allow for visualization of lymphatic delivery and trafficking of cancer cells and potentially therapeutic agents as well. Here, we review recent articles in which antibody-fluorophore conjugates are used to label the lymphatic network and fluorescent proteins to label cancer cells in the evaluation of lymphatic delivery and imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity

    EPA Science Inventory

    The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...

  19. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes

    NASA Astrophysics Data System (ADS)

    Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri

    2010-03-01

    An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.

  20. ON THE PERCEPTION OF PROBABLE THINGS

    PubMed Central

    Albright, Thomas D.

    2012-01-01

    SUMMARY Perception is influenced both by the immediate pattern of sensory inputs and by memories acquired through prior experiences with the world. Throughout much of its illustrious history, however, study of the cellular basis of perception has focused on neuronal structures and events that underlie the detection and discrimination of sensory stimuli. Relatively little attention has been paid to the means by which memories interact with incoming sensory signals. Building upon recent neurophysiological/behavioral studies of the cortical substrates of visual associative memory, I propose a specific functional process by which stored information about the world supplements sensory inputs to yield neuronal signals that can account for visual perceptual experience. This perspective represents a significant shift in the way we think about the cellular bases of perception. PMID:22542178

  1. Efficient Cisplatin Pro-Drug Delivery Visualized with Sub-100 nm Resolution: Interfacing Engineered Thermosensitive Magnetomicelles with a Living System

    DOE PAGES

    Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker; ...

    2014-06-06

    Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this paper, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe 3O 4 nanoparticles though self-assembly.more » The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. In conclusion, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.« less

  2. Superparamagnetic nanoparticles for cancer diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Kohler, Nathan

    2005-11-01

    This dissertation describes the development of a magnetic nanoparticle conjugate that can potentially serve as both a contrast enhancement agent in magnetic resonance imaging (MRI) and as a drug carrier in controlled drug release, targeted for cancer diagnostics and therapeutics. In this work, we developed a unique method to synthesize well-dispersed 10-nm superparamagnetic iron oxide nanoparticles (SPION) without using chemical surfactants. This approach is especially advantageous for subsequent surface modification of nanoparticles with functional coatings. To target the SPION for cancer cells in vivo to facilitate MRI contrast enhancement of tumors, we immobilized folic acid on the particle surface. Folic acid is a low molecular weight growth factor over-expressed on many forms of cancer. The covalent immobilization of folic acid to the nanoparticle surface was characterized with FTIR and the intracellular uptake of the folic acid nanoparticles was visualized with scanning confocal microscopy. To use SPION for controlled drug release, we immobilized methotrexate (MTX), a chemotherapeutic drug, to the nanoparticle surface. MTX-modified nanoparticles have several combined advantages including real-time monitoring of drug delivery using MRI, higher intracellular concentrations of methotrexate that increase cellular cytotoxicity, and reduced non-specific uptake by healthy cells within the body. We successfully conducted drug release experiments demonstrating that MTX was released under low pH conditions that mimic the intracellular conditions in the lysozome. To assess cellular cytotoxicity, we tested MTX-nanoparticle conjugates in human breast cancer cells (MCF-7), human cervical cancer cells (HeLa), and glioma cells (9L), and showed that the drug efficacy of MTX-nanoparticle conjugates was similar to that of free MTX. To improve nanoparticle circulation time and intracellular uptake, we developed a novel bifunctional poly(ethylene glycol) (PEG) SAM capable of reducing protein adsorption and particle agglomeration in vivo. The trifluoroethylester-terminal PEG SAM is compatible with oxide surfaces through silanization and ligand functionalization of the chain terminus through amidation. The structure of the silane was characterized by FTIR and NMR. Immobilization of the SAM on the particle surface and ligand grafting of folic acid was confirmed by FTIR and visualized with TEM.

  3. Droplet aerodynamics, cellular uptake, and efficacy of a nebulizable corticosteroid nanosuspension are superior to a micronized dosage form.

    PubMed

    Britland, Stephen; Finter, Wayne; Chrystyn, Henry; Eagland, Donald; Abdelrahim, Mohamed E

    2012-01-01

    Inhaled corticosteroids are considered to be an effective prophylactic against the morbid symptoms of several lung diseases, but scope remains for improvement in drug delivery technology to benefit bioavailability and treatment compliance. To ascertain whether dosage form might influence bioavailability, the emission characteristics and efficacy of a nanoparticulate budesonide formulation (Nanagel®) were compared with those of a proprietary micronized suspension (Pulmicort®) when delivered as a nebulized aerosol to human airway epithelial cells in a culture model. Having the visual appearance of a clear solution, Nanagel® was delivered by both jet and vibrating mesh nebulizers as an increased fine particle fraction and with a smaller mass median aerodynamic diameter (MMAD) compared to the micronized suspension. Quantitative high performance liquid chromatography (HPLC) analysis of cultured epithelia one hour after treatment with Nanagel® revealed a significantly greater cellular accumulation of budesonide when compared with Pulmicort® for an equivalent dose, a differential which persisted 24 and 48 h later. A quantitative in vitro assay measuring the activity of enzymes involved in superoxide production revealed that stressed HaCaT cells (a long-lived, spontaneously immortalized human keratinocyte line) treated with Nanagel® continued to show significantly greater attenuation of inflammatory response compared with Pulmicort®-treated cells 24 h after the application of an equivalent budesonide dose. The present in vitro findings suggest that formulation of inhalable drugs such as budesonide as aerosolized nanoparticulate, rather than microparticulate, suspensions can enhance bioavailability with concomitant improvements in efficacy. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. From morphology to clinical pathophysiology: multiphoton fluorescence lifetime imaging at patients' bedside

    NASA Astrophysics Data System (ADS)

    Mess, Christian; Zens, Katharina; Gorzelanny, Christian; Metze, Dieter; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.; Huck, Volker

    2017-02-01

    Application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of skin diseases. By means of multiphoton excitation, endogenous biomolecules like NADH, collagen or elastin show autofluorescence or second harmonic generation. Thus, these molecules provide information about the subcellular morphology, epidermal architecture and physiological condition of the skin. To gain a deeper understanding of the linkage between cellular structure and physiological processes, non-invasive multiphotonbased intravital tomography (MPT) and fluorescence lifetime imaging (FLIM) were combined within the scopes of inflammatory skin, chronic wounds and drug delivery in clinical application. The optical biopsies generated via MPT were morphologically analyzed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Independent morphometric algorithms reliably showed a perinuclear accumulation in lesional skin in contrast to an even distribution in healthy skin. Confirmatively, MPT-FLIM showed an obvious metabolic shift in lesions. Moreover, detection of the onset and progression of inflammatory processes could be achieved. The feasibility of primary in vivo tracking of applied therapeutic agents further broadened our scope: We examined the permeation and subsequent distribution of agents directly visualized in patientś skin in short-term repetitive measurements. Furthermore, we performed MPT-FLIM follow-up investigations in the long-term course of therapy. Therefore, clinical MPT-FLIM application offers new insights into the pathophysiology and the individual therapeutic course of skin diseases, facilitating a better understanding of the processes of inflammation and wound healing.

  5. Cell-Permeable, MMP-2 Activatable, Nickel Ferrite and His-Tagged Fusion Protein Self-Assembled Fluorescent Nanoprobe for Tumor Magnetic-Targeting and Imaging.

    PubMed

    Sun, Lu; Xie, Shuping; Qi, Jing; Liu, Ergang; Liu, Di; Liu, Quan; Chen, Sunhui; He, Huining; Yang, Victor C

    2017-11-15

    Matrix metalloproteinases (MMPs) activatable imaging probe has been explored for tumor detection. However, activation of the probe is mainly done in the extracellular space without intracellular uptake of the probe for more sensitivity. Although cell-penetrating peptides (CPPs) have been demonstrated to enable intracellular delivery of the imaging probe, they nevertheless encounter off-target delivery of the cargos to normal tissues. Herein, we have developed a dual MMP-2-activatable and tumor cell-permeable magnetic nanoprobe to simultaneously achieve selective and intracellular tumor imaging. This novel imaging probe was constructed by self-assembling a hexahistidine-tagged (His-tagged) fluorescent fusion protein chimera and nickel ferrite nanoparticles via a chelation mechanism. The His-tagged fluorescent protein chimera consisted of a red fluorescent protein mCherry that acted as the fluorophore, the low-molecular-weight protamine peptide as the CPP, and the MMP-2 cleavage sequence fused with the hexahistidine tag, whereas the nickel ferrite nanoparticles functioned as the His-tagged protein binder and also the fluorescent quencher. Both in vitro and in vivo results revealed that this imaging probe would not only remain nonpermeable to normal tissues, thereby offsetting the nonselective cellular uptake, but was also suppressed of fluorescent signals during magnetic tumor-targeting in the circulation, primarily because of the masking of the CPP activity and quenching of the fluorophore by the associated NiFe 2 O 4 nanoparticles. However, these properties were recovered or "turned on" by the action of tumor-associated MMP-2 stimuli, leading to cell penetration of the nanoprobes as well as fluorescence restoration and visualization within the tumor cells. In this regard, the presented tumor-activatable and cell-permeable system deems to be an appealing platform to achieve selective tumor imaging and intracellular protein delivery. Its impact is therefore significant, far-reaching, and wide-spread.

  6. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include methods for conducting crystallization experiments in syringes, detecting and characterizing the crystal samples, optimizing crystal density, loading microcrystal laden LCP into the injector device and delivering the sample to the beam for data collection.

  7. An introduction to DARC technology.

    PubMed

    Ahmad, Syed Shoeb

    2017-01-01

    Glaucoma is a multi-factorial neurodegenerative disorder. The common denominator in all types of glaucomas is retinal ganglion cell death through apoptosis. However, this cellular demise in glaucoma is detected late by structural or functional analyses. There can be a 10-year delay prior to the appearance of visual field defects and pre-perimetric glaucoma is an issue still being addressed. However, a new cutting-edge technology called detection of apoptosing retinal cells (DARC) is being developed. This technique is capable of non-invasive, real-time visualization of apoptotic changes at the cellular level. It can detect glaucomatous cell damage at a very early stage, at the moment apoptosis starts, and thus management can be initiated even prior to development of visual field changes. In future, this technique will also be able to provide conclusive evidence of the effectiveness of treatment protocol and the need for any modifications which may be required. This article aims to provide a concise review of DARC technology.

  8. Drug delivery with microsecond laser pulses into gelatin

    NASA Astrophysics Data System (ADS)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  9. Effect of Cellular Mobile Phone Use and Cetrizine on Hand-Eye Coordination and Visual Acuity.

    PubMed

    Gawit, Kalpita Ganpat; Tiwari, Smita Anand; Kasabe, Gauri Hari; Deshpande, Pradeep Kisanrao; Ghongane, Balasaheb Baburao

    2017-09-01

    Cellular mobile phones are a major cause of distraction especially while driving. The aggressive and inappropriate use of cellular mobile phones has increased the risk of accidents. Similar alerts are available in literature for certain substances and drugs (e.g. second generation anti H1 drug -Cetirizine) which also derange psychomotor performance and parameters of alertness. This study measured variations in hand-eye coordination and visual acuity due to use of cellular mobile phone in comparison to that of commonly used antihistaminic drug viz., single dose Cetirizine 10 mg. It was a single blind, single dose, interventional study, 100 healthy human volunteers divided into two groups. Baseline readings of all volunteers were noted. Group-I (n=50) was Cetirizine group (10mg orally stat), Group -II (n=50) Cellular mobile phone user group. Alertness was tested on hand- steadiness tester (Reaction Time Index = RTI) and on Flicker-fusion apparatus (visual acuity - Critical Flicker Fusion Frequency per second= CFFF/sec). Baseline readings of all volunteers were noted before intervention. Baseline was compared with readings at three hour post-intervention and was analysed by paired t-test. Inter-group comparison of parameters was also done and was analysed by unpaired t-test. The baseline RTI (95.46±41.74, 85.11±39.05) and CFF low and high (40.07±9.970, 40.76±9.309 and 40.42±9.035, 40.48±9.863) respectively, in Cetirizine group and Mobile user group were comparable. The RTI increased significantly (116.4±51.46, 102.8±49.26) in both the groups after intervention. However, there is no significant change in CFF intensity from baseline in either group post-intervention. Concurrent use of mobile phone while performing tasks, showed significant impairment of hand-steadiness which was comparable to that produced by single dose Cetirizine 10 mg and this may be one of the factors contributing to their close association with road traffic accidents.

  10. Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation

    PubMed Central

    Kagan, Daniel; Benchimol, Michael J.; Claussen, Jonathan C.; Chuluun-Erdene, Erdembileg

    2012-01-01

    Acoustic droplet vaporization of perfluorocarbon-loaded microbullets triggered by an ultrasound pulse provides the necessary force to penetrate, cleave, and deform cellular tissue for potential targeted drug delivery and precision nanosurgery. PMID:22692791

  11. Current trends in the use of liposomes for tumor targeting

    PubMed Central

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  12. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in the lysosomes with time.

  13. Approaches to utilize mesenchymal progenitor cells as cellular vehicles.

    PubMed

    Pereboeva, L; Komarova, S; Mikheeva, G; Krasnykh, V; Curiel, D T

    2003-01-01

    Mammalian cells represent a novel vector approach for gene delivery that overcomes major drawbacks of viral and nonviral vectors and couples cell therapy with gene delivery. A variety of cell types have been tested in this regard, confirming that the ideal cellular vector system for ex vivo gene therapy has to comply with stringent criteria and is yet to be found. Several properties of mesenchymal progenitor cells (MPCs), such as easy access and simple isolation and propagation procedures, make these cells attractive candidates as cellular vehicles. In the current work, we evaluated the potential utility of MPCs as cellular vectors with the intent to use them in the cancer therapy context. When conventional adenoviral (Ad) vectors were used for MPC transduction, the highest transduction efficiency of MPCs was 40%. We demonstrated that Ad primary-binding receptors were poorly expressed on MPCs, while the secondary Ad receptors and integrins presented in sufficient amounts. By employing Ad vectors with incorporated integrin-binding motifs (Ad5lucRGD), MPC transduction was augmented tenfold, achieving efficient genetic loading of MPCs with reporter and anticancer genes. MPCs expressing thymidine kinase were able to exert a bystander killing effect on the cancer cell line SKOV3ip1 in vitro. In addition, we found that MPCs were able to support Ad replication, and thus can be used as cell vectors to deliver oncolytic viruses. Our results show that MPCs can foster expression of suicide genes or support replication of adenoviruses as potential anticancer therapeutic payloads. These findings are consistent with the concept that MPCs possess key properties that ensure their employment as cellular vehicles and can be used to deliver either therapeutic genes or viruses to tumor sites.

  14. Sonoporation as a cellular stress: induction of morphological repression and developmental delays.

    PubMed

    Chen, Xian; Wan, Jennifer M F; Yu, Alfred C H

    2013-06-01

    For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Role of Enhancing Visual Effects Education Delivery to Encounter Career Challenges in Malaysia

    ERIC Educational Resources Information Center

    Ng, Lynn-Sze

    2017-01-01

    Problem-based Learning (PBL) is one of the most effective methods of instruction that helps Visual Effects (VFX) students to be more adaptable at encountering career challenges in Malaysia. These challenges are; lack of several important requirements such as, the basic and fundamental knowledge of VFX concepts, the ability to understand real-world…

  16. The Effects of Task Clarification, Visual Prompts, and Graphic Feedback on Customer Greeting and Up-Selling in a Restaurant

    ERIC Educational Resources Information Center

    Squires, James; Wilder, David A.; Fixsen, Amanda; Hess, Erica; Rost, Kristen; Curran, Ryan; Zonneveld, Kimberly

    2007-01-01

    An intervention consisting of task clarification, visual prompts, and graphic feedback was evaluated to increase customer greeting and up-selling in a restaurant. A combination multiple baseline and reversal design was used to evaluate intervention effects. Although all interventions improved performance over baseline, the delivery of graphic…

  17. E-Books Plus: Role of Interactive Visuals in Exploration of Mathematical Information and E-Learning

    ERIC Educational Resources Information Center

    Rowhani, Sonja; Sedig, Kamran

    2005-01-01

    E-books promise to become a widespread delivery mechanism for educational resources. However, current e-books do not take full advantage of the power of computing tools. In particular, interaction with the content is often reduced to navigation through the information. This article investigates how adding interactive visuals to an e-book…

  18. The Power of Popular Education and Visual Arts for Trauma Survivors' Critical Consciousness and Collective Action

    ERIC Educational Resources Information Center

    Escueta, Mok; Butterwick, Shauna

    2012-01-01

    How can visual arts and popular education pedagogy contribute to collective recovery from and reconstruction after trauma? This question framed the design and delivery of the Trauma Recovery and Reconstruction Group (TRRG), which consisted of 12 group sessions delivered to clients (trauma survivors) of the Centre for Concurrent Disorders (CCD) in…

  19. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.

    PubMed

    Caracciolo, Giulio; Amenitsch, Heinz

    2012-10-01

    Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

  20. Application of data mining approaches to drug delivery.

    PubMed

    Ekins, Sean; Shimada, Jun; Chang, Cheng

    2006-11-30

    Computational approaches play a key role in all areas of the pharmaceutical industry from data mining, experimental and clinical data capture to pharmacoeconomics and adverse events monitoring. They will likely continue to be indispensable assets along with a growing library of software applications. This is primarily due to the increasingly massive amount of biology, chemistry and clinical data, which is now entering the public domain mainly as a result of NIH and commercially funded projects. We are therefore in need of new methods for mining this mountain of data in order to enable new hypothesis generation. The computational approaches include, but are not limited to, database compilation, quantitative structure activity relationships (QSAR), pharmacophores, network visualization models, decision trees, machine learning algorithms and multidimensional data visualization software that could be used to improve drug delivery after mining public and/or proprietary data. We will discuss some areas of unmet needs in the area of data mining for drug delivery that can be addressed with new software tools or databases of relevance to future pharmaceutical projects.

  1. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters

    PubMed Central

    Lai, Charles P.; Kim, Edward Y.; Badr, Christian E.; Weissleder, Ralph; Mempel, Thorsten R.; Tannous, Bakhos A.; Breakefield, Xandra O.

    2015-01-01

    Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. PMID:25967391

  2. Accessing and Visualizing Satellite Data for Fisheries Managers in the Northeast Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Mecray, E. L.; Pershing, A. J.

    2015-12-01

    As interest in the global change in temperatures and precipitation patterns grow, federal, state, and local agencies are turning to the delivery of 'actionable science and information' or 'information for decision-makers.' NOAA/National Centers for Environmental Information's Regional Climate Services program builds these bridges between the user of information and the producers of the information. With the Climate Data Records program, this study will present the extraction and use of the sea-surface temperature datasets specifically for access and use by fisheries managers in the north Atlantic. The work demonstrates the staged approach of accessing the records, converting their initial data formats into maps and charts, and the delivery of the data as a value-added information dashboard for use by managers. The questions to be reviewed include the ease of access, the delivery of open source software for visualizing the information, and a discussion on the roles of government and the private sector in the provision of climate information at different scales.

  3. Multimodal imaging of the human knee down to the cellular level

    NASA Astrophysics Data System (ADS)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  4. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Stabilization of exosome-targeting peptides via engineered glycosylation.

    PubMed

    Hung, Michelle E; Leonard, Joshua N

    2015-03-27

    Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    PubMed

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    PubMed

    Thakur, Sachin S; Ward, Micheal S; Popat, Amirali; Flemming, Nicole B; Parat, Marie-Odile; Barnett, Nigel L; Parekh, Harendra S

    2017-01-01

    Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  8. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina

    PubMed Central

    Thakur, Sachin S.; Ward, Micheal S.; Popat, Amirali; Flemming, Nicole B.; Parat, Marie-Odile; Barnett, Nigel L.

    2017-01-01

    Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye. PMID:28542473

  9. High-Throughput Identification of Combinatorial Ligands for DNA Delivery in Cell Culture

    NASA Astrophysics Data System (ADS)

    Svahn, Mathias G.; Rabe, Kersten S.; Barger, Geoffrey; EL-Andaloussi, Samir; Simonson, Oscar E.; Didier, Boturyn; Olivier, Renaudet; Dumy, Pascal; Brandén, Lars J.; Niemeyer, Christof M.; Smith, C. I. Edvard

    2008-10-01

    Finding the optimal combinations of ligands for tissue-specific delivery is tedious even if only a few well-established compounds are tested. The cargo affects the receptor-ligand interaction, especially when it is charged like DNA. The ligand should therefore be evaluated together with its cargo. Several viruses have been shown to interact with more than one receptor, for efficient internalization. We here present a DNA oligonucleotide-based method for inexpensive and rapid screening of biotin labeled ligands for combinatorial effects on cellular binding and uptake. The oligonucleotide complex was designed as a 44 bp double-stranded DNA oligonucleotide with one central streptavidin molecule and a second streptavidin at the terminus. The use of a highly advanced robotic platform ensured stringent processing and execution of the experiments. The oligonucleotides were fluorescently labeled and used for detection and analysis of cell-bound, internalized and intra-cellular compartmentalized constructs by an automated line-scanning confocal microscope, IN Cell Analyzer 3000. All possible combinations of 22 ligands were explored in sets of 2 and tested on 6 different human cell lines in triplicates. In total, 10 000 transfections were performed on the automation platform. Cell-specific combinations of ligands were identified and their relative position on the scaffold oligonucleotide was found to be of importance. The ligands were found to be cargo dependent, carbohydrates were more potent for DNA delivery whereas cell penetrating peptides were more potent for delivery of less charged particles.

  10. Engineering nanoparticles to overcome barriers to immunotherapy

    PubMed Central

    Toy, Randall

    2016-01-01

    Abstract Advances in immunotherapy have led to the development of a variety of promising therapeutics, including small molecules, proteins and peptides, monoclonal antibodies, and cellular therapies. Despite this wealth of new therapeutics, the efficacy of immunotherapy has been limited by challenges in targeted delivery and controlled release, that is, spatial and temporal control on delivery. Particulate carriers, especially nanoparticles have been widely studied in drug delivery and vaccine research and are being increasingly investigated as vehicles to deliver immunotherapies. Nanoparticle‐mediated drug delivery could provide several benefits, including control of biodistribution and transport kinetics, the potential for site‐specific targeting, immunogenicity, tracking capability using medical imaging, and multitherapeutic loading. There are also a unique set of challenges, which include nonspecific uptake by phagocytic cells, off‐target biodistribution, permeation through tissue (transport limitation), nonspecific immune‐activation, and poor control over intracellular localization. This review highlights the importance of understanding the relationship between a nanoparticle's size, shape, charge, ligand density and elasticity to its vascular transport, biodistribution, cellular internalization, and immunogenicity. For the design of an effective immunotherapy, we highlight the importance of selecting a nanoparticle's physical characteristics (e.g., size, shape, elasticity) and its surface functionalization (e.g., chemical or polymer modifications, targeting or tissue‐penetrating peptides) with consideration of its reactivity to the targeted microenvironment (e.g., targeted cell types, use of stimuli‐sensitive biomaterials, immunogenicity). Applications of this rational nanoparticle design process in vaccine development and cancer immunotherapy are discussed. PMID:29313006

  11. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  12. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes

    PubMed Central

    Massignani, Marzia; Canton, Irene; Sun, Tao; Hearnden, Vanessa; MacNeil, Sheila; Blanazs, Adam; Armes, Steven P.; Lewis, Andrew; Battaglia, Giuseppe

    2010-01-01

    Background Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. Principal Findings We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes) that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. Significance We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation. PMID:20454666

  13. Drug delivery with microsecond laser pulses into gelatin.

    PubMed

    Shangguan, H; Casperson, L W; Shearin, A; Gregory, K W; Prahl, S A

    1996-07-01

    Photo acoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 µm when the gelatin structure was not fractured.

  14. Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhao, Nana; Yu, Bingran; Liu, Fusheng; Xu, Fu-Jian

    2014-06-01

    Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems.Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems. Electronic supplementary information (ESI) available: 1H NMR assay and synthetic route of Dex-Ad and Dex-SS-Ad. See DOI: 10.1039/c4nr01590h

  15. A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways.

    PubMed

    Jiang, Kai; Chi, Ting; Li, Tao; Zheng, Guirong; Fan, Lulu; Liu, Yajun; Chen, Xiufen; Chen, Sijia; Jia, Lee; Shao, Jingwei

    2017-07-13

    Ursolic acid (UA) has been recently used as a promising anti-tumor and cancer metastatic chemo-preventive agent due to its low toxicity and liver-protecting property. However, the low bioavailability and nonspecific tumor targeting restrict its further clinical application. To address the problem, a silica-based mesoporous nanosphere (MSN) controlled-release drug delivery system (denoted UA@M-CS-FA) was designed and successfully synthesized, and was functionalized with folic acid (FA) and pH-sensitive chitosan (CS) for the targeted delivery of UA to folate receptor (FR) positive tumor cells. UA@M-CS-FA were spherical with mean diameter below 150 nm, and showed about -20 mV potential. Meanwhile, UA@M-CS-FA exhibited a pH-sensitive release manner and high cellular uptake in FR over-expressing HeLa cancer cells. Also, in vitro cellular assays suggested that UA@M-CS-FA inhibited cancer cell growth, invasion and migration. Mechanistically, UA@M-CS-FA induced cancer cell apoptosis and inhibited migration via cell cycle arrest in the G0/G1 stage, regulating the PARP/Bcl-2/MMP-9/CD44/PTEN/P53. Importantly, in vivo experiments further confirmed that UA@M-CS-FA significantly suppressed the tumor progression and lung metastasis in tumor-bearing nude mice. Immunohistochemical analysis revealed that UA@M-CS-FA treatment regulated CD44, a biomarker of cancer metastasis. Overall, our data demonstrated that a CS and FA modified MSN controlled-release drug delivery system could help broaden the usage of UA and reflect the great application potential of the UA as an anticancer or cancer metastatic chemopreventive agent.

  16. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system.

    PubMed

    Ho, Yi-Ju; Chiang, Yu-Jung; Kang, Shih-Tsung; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2018-05-28

    Adipose-derived stem cells (ADSCs) have been utilized in cellular delivery systems to carry therapeutic agents into tumors by migration. Drug-loaded nanodroplets release drugs and form bubbles after acoustic droplet vaporization (ADV) triggered by ultrasound stimulation, providing a system for ultrasound-induced cellular delivery of theranostic agents. In order to improve the efficiency of drug release, fusogenic nanodroplets were designed to go from nano to micron size upon uptake by ADSCs for reducing ADV threshold. The purpose of our study was to demonstrate the utility of camptothecin-loaded fusogenic nanodroplets (CPT-FNDs) as ultrasound theranostic agents in an ADSCs delivery system. CPT-FNDs showed an increase in size from 81.6 ± 3.5 to 1043.5 ± 28.3 nm and improved CPT release from 22.0 ± 1.8% to 37.6 ± 2.1%, demonstrating the fusion ability of CPT-FNDs. CPT-FNDs-loaded ADSCs demonstrated a cell viability of 77 ± 4%, and the in vitro migration ability was 3.2 ± 1.2-fold for the tumor condition compared to the cell growth condition. Ultrasound enhancement imaging showed intratumoral ADV-generated bubble formation (increasing 3.24 ± 0.47 dB) triggered by ultrasound after CPT-FNDs-loaded ADSCs migration into B16F0 tumors. Histological images revealed intratumoral distribution of CPT-FNDs-loaded ADSCs and tissue damage due to the ADV. The CPT-FNDs can be used as theranostic agents in an ADSCs delivery system to provide the ultrasound contrast imaging and deliver combination therapy of drug release and physical damage after ADV. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Biodistribution and Efficacy of Targeted Pulmonary Delivery of a Protein Kinase C-δ Inhibitory Peptide: Impact on Indirect Lung Injury

    PubMed Central

    Mondrinos, Mark J.; Knight, Linda C.; Kennedy, Paul A.; Wu, Jichuan; Kauffman, Matthew; Baker, Sandy T.; Wolfson, Marla R.

    2015-01-01

    Sepsis and sepsis-induced lung injury remain a leading cause of death in intensive care units. We identified protein kinase C-δ (PKCδ) as a critical regulator of the acute inflammatory response and demonstrated that PKCδ inhibition was lung-protective in a rodent sepsis model, suggesting that targeting PKCδ is a potential strategy for preserving pulmonary function in the setting of indirect lung injury. In this study, whole-body organ biodistribution and pulmonary cellular distribution of a transactivator of transcription (TAT)–conjugated PKCδ inhibitory peptide (PKCδ-TAT) was determined following intratracheal (IT) delivery in control and septic [cecal ligation and puncture (CLP)] rats to ascertain the impact of disease pathology on biodistribution and efficacy. There was negligible lung uptake of radiolabeled peptide upon intravenous delivery [<1% initial dose (ID)], whereas IT administration resulted in lung retention of >65% ID with minimal uptake in liver or kidney (<2% ID). IT delivery of a fluorescent-tagged (tetramethylrhodamine-PKCδ-TAT) peptide demonstrated uniform spatial distribution and cellular uptake throughout the peripheral lung. IT delivery of PKCδ-TAT at the time of CLP surgery significantly reduced PKCδ activation (tyrosine phosphorylation, nuclear translocation and cleavage) and acute lung inflammation, resulting in improved lung function and gas exchange. Importantly, peptide efficacy was similar when delivered at 4 hours post-CLP, demonstrating therapeutic relevance. Conversely, spatial lung distribution and efficacy were significantly impaired at 8 hours post-CLP, which corresponded to marked histopathological progression of lung injury. These studies establish a functional connection between peptide spatial distribution, inflammatory histopathology in the lung, and efficacy of this anti-inflammatory peptide. PMID:26243739

  18. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues.

    PubMed

    Ma, Yan; Gong, Cheng; Ma, Yilong; Fan, Fengkai; Luo, Meijie; Yang, Fei; Zhang, Yu-Hui

    2012-09-10

    The ability of cell-penetrating peptides (CPPs) to deliver a range of membrane-impermeable molecules into living cells makes them attractive potential vehicles for therapeutics. However, in vivo, the efficiency of CPP delivery to the cytosol remains unsatisfactory owing to endosomal entrapment and/or systemic toxicity, which severely restrict their bioavailability and efficacy in in vivo applications. In this study, we developed a series of novel chimeras consisting of various numbers of d- and l-arginine residues and investigated their cellular uptake behaviors and systemic toxicities. We demonstrated that the intracellular distribution, uptake efficiency, and systemic toxicity of these oligoarginines were all significantly affected by the number of d-arginine residues in the peptide sequence. We also found that a hybrid peptide, (rR)(3)R(2), possessed low systemic toxicity, high uptake efficiency, and, remarkably, achieved efficient cytosolic delivery not only in cultured cells but also in living tissue cells in mice after intravenous injection, implying that this heterogeneous motif might have promising applications in the delivery of cargoes of small sizes directed to cytosolic targets in vivo. Our studies into the uptake mechanism of (rR)(3)R(2) indicate that its cellular uptake was not affected by pharmacological or physical inhibitors of endocytosis but by the elimination of the membrane potential, suggesting that (rR)(3)R(2) does not enter the cells via endocytosis but rather through direct membrane translocation driven by the membrane potential. The results here might provide useful guidelines for the design and application of CPPs in drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  20. Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department.

    PubMed

    Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael

    2007-01-01

    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.

  1. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex

    PubMed Central

    Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2016-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5−/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5−/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5−/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development. PMID:27965538

  2. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  3. Findings

    MedlinePlus

    ... Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry ... Glycobiology, Synthesis, Natural Products, Chemical Reactions Computers in Biology Bioinformatics, Modeling, Systems Biology, Data Visualization Diseases Cancer, ...

  4. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy

    PubMed Central

    Lin, Lizhou; Fan, Yu; Gao, Feng; Jin, Lifang; Li, Dan; Sun, Wenjie; Li, Fan; Qin, Peng; Shi, Qiusheng; Shi, Xiangyang; Du, Lianfang

    2018-01-01

    Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments. PMID:29556365

  5. A study on the cytotoxicity of carbon-based materials

    DOE PAGES

    Saha, Dipendu; Heldt, Caryn L.; Gencoglu, Maria F.; ...

    2016-05-25

    With an aim to understand the origin and key contributing factors towards carboninduced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, x-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROX) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicitymore » in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under study. None of the carbons induced oxidative stress to the cells as indicated by the ROX generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.« less

  6. PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways.

    PubMed

    Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M

    2002-07-01

    Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.

  7. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via caspase activation. Preliminary investigations substantiated that Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals must be further explored and utilized for the delivery of noscapinoids to melanoma cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles.

    PubMed

    Ducat, E; Deprez, J; Gillet, A; Noël, A; Evrard, B; Peulen, O; Piel, G

    2011-11-28

    The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG(750)-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Improvement of in-hospital telemetry monitoring in coronary care units: an intervention study for achieving optimal electrode placement and attachment, hygiene and delivery of critical information to patients.

    PubMed

    Pettersen, Trond R; Fålun, Nina; Norekvål, Tone M

    2014-12-01

    In-hospital telemetry monitoring is important for diagnosis and treatment of patients at risk of developing life-threatening arrhythmias. It is widely used in critical and non-critical care wards. Nurses are responsible for correct electrode placement, thus ensuring optimal quality of the monitoring. The aims of this study were to determine whether a complex educational intervention improves (a) optimal electrode placement, (b) hygiene, and (c) delivery of critical information to patients (reason for monitoring, limitations in cellular phone use, and not to leave the ward without informing a member of staff). A prospective interventional study design was used, with data collection occurring over two six-week periods: before implementation of the intervention (n=201) and after the intervention (n=165). Standard abstraction forms were used to obtain data on patients' clinical characteristics, and 10 variables related to electrode placement and attachment, hygiene and delivery of critical information. At pre-intervention registration, 26% of the electrodes were misplaced. Twelve per cent of the patients received information about limiting their cellular phone use while monitored, 70% were informed of the purpose of monitoring, and 71% used a protective cover for their unit. Post-intervention, outcome measures for the three variables improved significantly: use of protective cover (p<0.001), information about the purpose of monitoring (p=0.005) and information about limitations in cellular phone use (p=0.003). Nonetheless, 23% of the electrodes were still misplaced. The study highlights the need for better, continued education for in-hospital telemetry monitoring in coronary care units, and other units that monitor patients with telemetry. © The European Society of Cardiology 2013.

  10. Chitosan microparticles loaded with yeast-derived PCV2 virus-like particles elicit antigen-specific cellular immune response in mice after oral administration.

    PubMed

    Bucarey, Sergio A; Pujol, Myriam; Poblete, Joaquín; Nuñez, Ignacio; Tapia, Cecilia V; Neira-Carrillo, Andrónico; Martinez, Jonatán; Bassa, Oliver

    2014-08-20

    Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to improved management and husbandry practices, the availability of several anti-PCV2 vaccines provides an efficient immunological option for reducing the impact of these diseases. Most anti-PCV2 vaccines are marketed as injectable formulations. Although these are effective, there are problems associated with the use of injectable products, including laborious and time-consuming procedures, the induction of inflammatory responses at the injection site, and treatment-associated stress to the animals. Oral vaccines represent an improvement in antigen delivery technology; they overcome the problems associated with injection management and facilitate antigen boosting when an animals' immunity falls outside the protective window. Chitosan microparticles were used as both a vehicle and mucosal adjuvant to deliver yeast-derived PCV2 virus-like particles (VLPs) in an attempt to develop an oral vaccine. The physical characteristics of the microparticles, including size, Zeta potential, and polydispersity, were examined along with the potential to induce PCV2-specific cellular immune responses in mice after oral delivery. Feeding mice with PCV2 VLP-loaded, positively-charged chitosan microparticles with an average size of 2.5 μm induced the proliferation of PCV2-specific splenic CD4+/CD8+ lymphocytes and the subsequent production of IFN-γ to levels comparable with those induced by an injectable commercial formulation. Chitosan microparticles appear to be a safe, simple system on which to base PCV2 oral vaccines. Oral chitosan-mediated antigen delivery is a novel strategy that efficiently induces anti-PCV2 cellular responses in a mouse model. Further studies in swine are warranted.

  11. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    NASA Astrophysics Data System (ADS)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  12. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    PubMed Central

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  13. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    PubMed

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  14. Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience

    2017-02-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. In PDT of cancer, irradiation with light of a specific wavelength leads to activation of a photosensitizer which results in generation of reactive oxygen species (ROS) which induces cell death. Many phthalocyanine photosensitizers are hydrophobic and insoluble in water, which limits their therapeutic efficiency. Consequently, advanced delivery systems and strategies are needed to improve the effectiveness of these photosensitizers. Nanoparticles have shown promising results in increasing aqueous solubility, bioavailability, stability and delivery of photosensitizers to their target. This study investigated the photodynamic activity of zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. The photodynamic activity of ZnMCPPc conjugated to AuAg nanoparticles were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated ZnMCPPc conjugated to AuAg nanoparticles showed changes in cell morphology and a dose dependent decrease in cellular viability, proliferation and an increase in cell membrane damage. The ZnMCPPc conjugated to AuAg nanoparticles used in this study was highly effective in inducing cell death of melanoma cancer cells.

  15. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides.

    PubMed

    Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-18

    A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.

  16. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  17. Service Delivery for Persons with Blindness or Visual Impairment and Addiction as Coexisting Disabilities: Implications for Addiction Science Education

    ERIC Educational Resources Information Center

    Koch, D. Shane; Shearer, Brenda; Nelipovich, Mike

    2004-01-01

    Although research strongly suggests that individuals who are blind or visually impaired (BVI) experience alcohol and other drug abuse (AODA) disorders at rates higher than those expected within the general population (NAADD, 1999), less is known about specific barriers that influence AODA treatment for these consumers (Koch & Nelipovich, 1999).…

  18. Survey of Multiply Handicapped, Visually Impaired Children in the Rocky Mountain/Great Plains Region.

    ERIC Educational Resources Information Center

    Gates, Carmella Ficociello

    1985-01-01

    A survey of visually impaired children (from birth to age 12) in the Rocky Mountain/Great Plains region indicated that the majority were multiply handicapped, and that within this group, the greatest number were in the mild to moderate range. Data are presented on age ranges, current service delivery options, vocational and alternative-living…

  19. Models for Improving the Delivery of Services to: Gifted Students in the Areas of Visual and Performing Arts. Research & Demonstration Series in Gifted Education.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Special Education.

    This report describes three model demonstration projects in Ohio school districts which focused on strategies for identifying students gifted in visual and performing arts and delivering hands-on arts education and appreciation experiences. Presented for each program is information on: identifying characteristics (district, location, school…

  20. Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery.

    PubMed

    Hao, Na; Sun, Changzhen; Wu, Zhengfei; Xu, Long; Gao, Wenxia; Cao, Jun; Li, Li; He, Bin

    2017-07-19

    With the aim of obtaining effective cancer therapy with simultaneous cellular imaging, dynamic drug-release monitoring, and chemotherapeutic treatment, a polymeric micelle with aggregation-induced emission (AIE) imaging and a Forster resonance energy transfer (FRET) effect was fabricated as the drug carrier. An amphiphilic conjugate of 1H-pyrrole-1-propanoicacid (MAL)-poly(ethylene glycol) (PEG)-Tripp-bearing AIE molecules were synthesized and self-assembled into micelles to load the anticancer drug doxorubicin (DOX). Spherical DOX-loaded micelles with the mean size of 106 nm were obtained with good physiological stability (CMC, 12.5 μg/mL), high drug-loading capacity (10.4%), and encapsulation efficiency (86%). The cellular uptake behavior of DOX-loaded MAL-PEG-Tripp micelles was visible for high-quality intracellular imaging due to the AIE property. The delivery of DOX from the drug-loaded micelles was dynamic monitored by the FRET effect between the DOX and MAL-PEG-Tripp. Both in vitro (IC50, 2.36 μg/mL) and in vivo anticancer activity tests revealed that the DOX-loaded MAL-PEG-Tripp micelles exhibited promising therapeutic efficacy to cancer with low systematic toxicity. In summary, this micelle provided an effective way to fabricate novel nanoplatform for intracellular imaging, drug-delivery tracing, and chemotherapy.

  1. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles.

    PubMed

    Yuan, Xue; Xie, Qian; Su, Keyu; Li, Zhijie; Dong, Dong; Wu, Baojian

    2017-01-01

    Arenobufagin (ABG) is a major active component of toad venom, a traditional Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its pharmacological studies in vivo due to administration difficulties. In this study, we aimed to develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene glycol)-block-poly (d,l-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The nanomicelles showed increased drug concentrations in the liver and lung. In contrast, drug concentrations in both heart and brain were decreased. Moreover, the nanomicelles enhanced the anticancer effect of the pure drug probably via increased cellular uptake of drug molecules. In conclusion, the mPEG-PLGA-based nanomicelle system is a satisfactory carrier for the systemic delivery of ABG.

  2. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.

    PubMed

    Liang, Le; Li, Jiang; Li, Qian; Huang, Qing; Shi, Jiye; Yan, Hao; Fan, Chunhai

    2014-07-21

    DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single-particle tracking. We found that the TDNs were rapidly internalized by a caveolin-dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule-dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA-nanostructure-based drug delivery nanocarriers for targeted therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon.

    PubMed

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis.

  4. CellMap visualizes protein-protein interactions and subcellular localization

    PubMed Central

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  5. The barista on the bus: cellular and synaptic mechanisms for visual recognition memory.

    PubMed

    Barth, Alison L; Wheeler, Mark E

    2008-04-24

    Our ability to recognize that something is familiar, often referred to as visual recognition memory, has been correlated with a reduction in neural activity in the perirhinal cortex. In this issue of Neuron, Griffiths et al. now provide evidence that this form of memory requires AMPA receptor endocytosis and long-term depression of excitatory synapses in this brain area.

  6. A new technique for reversible permeabilization of live cells for intracellular delivery of quantum dots

    NASA Astrophysics Data System (ADS)

    Medepalli, Krishnakiran; Alphenaar, Bruce W.; Keynton, Robert S.; Sethu, Palaniappan

    2013-05-01

    A major challenge with the use of quantum dots (QDs) for cellular imaging and biomolecular delivery is the attainment of QDs freely dispersed inside the cells. Conventional methods such as endocytosis, lipids based delivery and electroporation are associated with delivery of QDs in vesicles and/or as aggregates that are not monodispersed. In this study, we demonstrate a new technique for reversible permeabilization of cells to enable the introduction of freely dispersed QDs within the cytoplasm. Our approach combines osmosis driven fluid transport into cells achieved by creating a hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. Our results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. The best results were obtained when the cells were treated with 50 μg ml-1 Saponin in a hypotonic buffer at a 3:2 physiological buffer:DI water ratio for 5 min at 4 ° C.

  7. 2-Aminoimidazole facilitates efficient gene delivery in a low molecular weight poly(amidoamine) dendrimer.

    PubMed

    Wang, Jing; Hu, Xuefeng; Wang, Dongli; Xie, Cao; Lu, Weiyue; Song, Jie; Wang, Ruifeng; Gao, Chunli; Liu, Min

    2018-06-20

    Functional groups have shown great potential in gene delivery. However, a number of the reported functional groups can only overcome one certain physiological barrier, resulting in limited transfection efficiencies. Based on the structure-activity relationships of both imidazolyl and guanidyl, we designed a novel multifunctional group, 2-aminoimidazole (AM), for gene delivery. On modifying with the AM group, the transfection efficiency of low molecular weight poly(amidoamine) (G2) was 200 times greater than the parent dendrimer in vitro. In contrast, the transfection efficiency of G2 showed a decreasing trend when it was grafted with imidazole. Assays revealed that the AM group played multiple roles in gene delivery, including condensing DNA into monodisperse nanoparticles of 80-90 nm in diameter, achieving nearly ten times higher cellular-uptake efficacy, and enhancing the abilities of endosome/lysosome escape and nuclear localization. What's more, AM showed low toxicity. These results demonstrate that the AM group could be a promising tool in non-viral gene delivery.

  8. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System.

    PubMed

    Ma, Yingcong; Sha, Meng; Cheng, Shixuan; Yao, Wang; Li, Zhongjun; Qi, Xian-Rong

    2018-06-14

    The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

  9. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  10. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  11. Amylose-Based Cationic Star Polymers for siRNA Delivery.

    PubMed

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.

  12. Synergistic effect of amino acids modified on dendrimer surface in gene delivery.

    PubMed

    Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun

    2014-11-01

    Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla.

    PubMed

    Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F

    2011-02-01

    Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA

    PubMed Central

    Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.

    2011-01-01

    Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854

  15. Learning STEM Through Integrative Visual Representations

    NASA Astrophysics Data System (ADS)

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.

  16. Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization?

    PubMed

    Clavagnier, Simon; Dumoulin, Serge O; Hess, Robert F

    2015-11-04

    The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies. Copyright © 2015 the authors 0270-6474/15/3514740-16$15.00/0.

  17. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    PubMed

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  18. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  19. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  20. Charge-conversional poly(amino acid)s derivatives as a drug delivery carrier in response to the tumor environment.

    PubMed

    Yoon, Se Rim; Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Chung, Bong Hyun; Kim, Jong-Duk

    2012-08-01

    A charge-converting and pH-dependent nanocarrier was achieved by conjugating 2,3-dimethylmaleic anhydride (DMMA) to the amino group of an octadecyl grafted poly (2-hydroxyethyl aspartamide) (PHEA-g-C(18)-NH(2)) backbone, thereby forming a spherical micelle. PHEA, a poly(amino acid)s derivative, was derived from poly(succinimide), which is biocompatible and biodegradable. DMMA, a detachable component at the tumor site, was added, preventing aggregation with negative blood serum and enhancing the nanocarrier's cellular uptake. The polymeric micelle was comprehensively characterized and doxorubicin was encapsulated successively. The cellular uptake and anticancer therapeutic effect were evaluated by flow cytometry, confocal laser scanning microscopy, and a MTT assay. The properties of the nanocarrier can further be exploited to develop an early detection module for cancer. The present work is also expected to advance the study of designing smart carriers for drug and gene delivery. Copyright © 2012 Wiley Periodicals, Inc.

  1. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy.

    PubMed

    Zhu, Hai; Zhou, Binwei; Chan, Leung; Du, Yanxin; Chen, Tianfeng

    2017-01-01

    Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.

  2. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability.

    PubMed

    Wang, Qian; Zhao, Yingyuan; Guan, Lei; Zhang, Yaping; Dang, Qifeng; Dong, Ping; Li, Jing; Liang, Xingguo

    2017-07-15

    DNA/chitosan co-assemblies were initially used as nanocarriers for efficient astaxanthin encapsulation and delivery. The obtained astaxanthin-loaded DNA/chitosan (ADC) colloidal system was transparent and homogenous, with astaxanthin content up to 65μg/ml. Compared to free astaxanthin, ADC nanoparticles with an astaxanthin concentration as low as 3.35nM still showed a more powerful cytoprotective effect on H 2 O 2 -induced oxidative cell damage, and improved cell viability from 49.9% to 61.9%. The ROS scavenging efficiency of ADC nanoparticles was as high as 54.3%, which was 2-fold higher than that of free astaxanthin. Besides this, ADC nanoparticles were easily engulfed by Caco-2 cells in a short time, indicating that the encapsulated astaxanthin could be absorbed through endocytosis by intestinal epithelial cells. The improved antioxidation capability and facilitated cellular uptake enabled the ADC nanoparticles to be good candidates for efficient delivery and absorption of astaxanthin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Glycosaminoglycan-resistant and pH-sensitive lipid-coated DNA complexes produced by detergent removal method.

    PubMed

    Lehtinen, Julia; Hyvönen, Zanna; Subrizi, Astrid; Bunjes, Heike; Urtti, Arto

    2008-10-21

    Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.

  4. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy.

    PubMed

    Jiang, Shan; Hua, Li; Guo, Zilong; Sun, Lin

    2018-09-01

    The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.

    PubMed

    Göse, Martin; Scheffler, Kira; Reibetanz, Uta

    2016-11-14

    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.

  6. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    PubMed

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.

  7. Spatio-Temporal Cellular Imaging of Polymer-pDNA Nanocomplexes Affords In Situ Morphology and Trafficking Trends

    PubMed Central

    Ingle, Nilesh P.; Lian, Xue; Reineke, Theresa M.

    2013-01-01

    Synthetic polymers are ubiquitous in the development of drug and polynucleotide delivery vehicles, offering promise for personalized medicine. However, the polymer structure plays a central yet elusive role in dictating the efficacy, safety, mechanisms, and kinetics of therapeutic transport in a spatial and temporal manner. Here, we decipher the intracellular evolutionary pathways pertaining to shape, size, location, and mechanism of four structurally-divergent polymer vehicles (Tr455, Tr477, jetPEI™ and Glycofect™) that create colloidal nanoparticles (polyplexes) when complexed with fluorescently-labeled plasmid DNA (pDNA). Multiple high resolution tomographic images of whole HeLa (human cervical adenocarcinoma) cells were captured via confocal microscopy at 4, 8, 12 and 24 hours. The images were reconstructed to visualize and quantify trends in situ in a four-dimensional spatio-temporal manner. The data revealed heretofore-unseen images of polyplexes in situ and structure-function relationships, i.e., Glycofect™ polyplexes are trafficked as the smallest polyplex complexes and Tr455 polyplexes have expedited translocation to the perinuclear region. Also, all of the polyplex types appeared to be preferentially internalized and trafficked via early endosomes affiliated with caveolae, a Rab-5-dependent pathway, actin, and microtubules. PMID:24007201

  8. Glaucoma: Biological Trabecular and Neuroretinal Pathology with Perspectives of Therapy Innovation and Preventive Diagnosis

    PubMed Central

    Nuzzi, Raffaele; Tridico, Federico

    2017-01-01

    Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC) and optic nerve axons, with progressive and chronic course. It is one of the most important reasons of social blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual field loss, if not treated. Diagnosis may be difficult due to lack of symptoms in early stages of disease. In many cases, when patients arrive at clinical evaluation, a severe neuronal damage may have already occurred. In recent years, newer perspective in glaucoma treatment have emerged. The current research is focusing on finding newer drugs and associations or better delivery systems in order to improve the pharmacological treatment and patient compliance. Moreover, the application of various stem cell types with restorative and neuroprotective intent may be found appealing (intravitreal autologous cellular therapy). Advances are made also in terms of parasurgical treatment, characterized by various laser types and techniques. Moreover, recent research has led to the development of central and peripheral retinal rehabilitation (featuring residing cells reactivation and replacement of defective elements), as well as innovations in diagnosis through more specific and refined methods and inexpensive tests. PMID:28928631

  9. Histone-Targeted Nucleic Acid Delivery for Tissue Regenerative Applications

    NASA Astrophysics Data System (ADS)

    Munsell, Erik V.

    Nucleic acid delivery has garnered significant attention as an innovative therapeutic approach for treating a wide variety of diseases. However, the design of non-viral delivery systems that negotiate efficient intracellular trafficking and nuclear entry represents a significant challenge. Overcoming these hurdles requires a combination of well-controlled materials approaches with techniques to understand and direct cellular delivery. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and retention, as well as activating DNA transcription. We established the ability to recapitulate these natural histone tail activities within non-viral gene nanocarriers, driving gene transfer/expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. A unique finding of this histone-targeted approach was that nanocarriers gained enhanced access to the nucleus during mitosis. The work described in this dissertation builds off of these fundamental insights to facilitate the translation of this histone-targeted delivery approach toward regenerative medicine applications. During native tissue repair, actively proliferating mesenchymal stem cells (MSCs) respond to a complex series of growth factor signals that direct their differentiation. Accordingly, the investigations in this work focused on utilizing the histone-targeted nanocarriers to enhance osteogenic growth factor gene transfer in dividing MSCs leading to augmented MSC chondrogenic differentiation, an essential first step in skeletal tissue repair. Concurrently, additional studies focused on optimizing the histone-targeted nanocarrier design strategy to enable improved plasmid DNA (pDNA) binding stability and tunable harnessing of native cellular processing pathways for enhanced gene transfer. Overall, the work presented herein demonstrated substantial increases in growth factor expression following histone-targeted gene transfer. This enhanced expression enabled more robust levels of chondrogenesis in MSCs than treatments with equivalent amounts of recombinant growth factor protein. Additionally, nanocarrier design optimization provided effective pDNA condensation and controllable interactions with native histone effectors. Importantly, these optimized nanocarriers conferred stable nanoplex formation and maintained transfection efficiency under physiologically relevant conditions. Taken together, these advances may help drive the clinical translation of histone-targeted nucleic acid delivery strategies for the regeneration of damaged tissue following traumatic injury.

  10. Supramolecular delivery of photoactivatable fluorophores in developing embryos

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Sansalone, Lorenzo; Thapaliya, Ek Raj; Baker, James D.; Raymo, Françisco M.

    2017-02-01

    The identification of noninvasive strategies to monitor dynamics within living organisms in real time is essential to elucidate the fundamental factors governing a diversity of biological processes. This study demonstrates that the supramolecular delivery of photoactivatable fluorophores in Drosophila melanogaster embryos allows the real-time tracking of translocating molecules. The designed photoactivatable fluorophores switch from an emissive reactant to an emissive product with spectrally-resolved fluorescence, under moderate blue-light irradiation conditions. These hydrophobic fluorescent probes can be encapsulated within supramolecular hosts and delivered to the cellular blastoderm of the embryos. Thus, the combination of supramolecular delivery and fluorescence photoactivation translates into a noninvasive method to monitor dynamics in vivo and can evolve into a general chemical tool to track motion in biological specimens.

  11. Ultrafast optical pulse delivery with fibers for nonlinear microscopy

    PubMed Central

    Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.

    2008-01-01

    Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597

  12. Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

    PubMed Central

    Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna

    2015-01-01

    Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892

  13. Nanomaterials in cancer-therapy drug delivery system.

    PubMed

    Zhang, Gen; Zeng, Xin; Li, Ping

    2013-05-01

    Nanomaterials can enhance the delivery and treatment efficiency of anti-cancer drugs, and the mechanisms of the tumor-reducing activity of nanomaterials with cancer drug have been investigated. The task for drug to reach pathological areas has facilitated rapid advances in nanomedicine. Herein, we summarize promising findings with respect to cancer therapeutics based on nano-drug delivery vectors. Relatively high toxicity of uncoated nanoparticles restricts the use of these materials in humans. In order to reduce toxicity, many approaches have focused on the encapsulation of nanoparticles with biocompatible materials. Efficient delivery systems have been developed that utilized nanoparticles loaded with high dose of cancer drug in the presence of bilayer molecules. Well-established nanotechnologies have been designed for drug delivery with specific bonding. Surface-modified nanoparticles as vehicles for drug delivery system that contains multiple nano-components, each specially designed to achieve aimed task for the emerging application delivery of therapeutics. Drug-coated polymer nanoparticles could efficiently increase the intracellular accumulation of anti-cancer drugs. This review also introduces the nanomaterials with drug on the induction of apoptosis in cancer cells in vitro and in vivo. Direct interactions between the particles and cellular molecules to cause adverse biological responses are also discussed.

  14. Visual system manifestations of Alzheimer's disease.

    PubMed

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A

    2017-12-01

    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer.

    PubMed

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2008-03-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.

  16. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

    PubMed Central

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2010-01-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734

  17. Delivering safer immunotherapies for cancer

    PubMed Central

    Milling, Lauren; Zhang, Yuan; Irvine, Darrell J.

    2017-01-01

    Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential. PMID:28545888

  18. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    PubMed

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. Published by Elsevier B.V.

  19. Gelatin device for the delivery of growth factors involved in endochondral ossification.

    PubMed

    Ahrens, Lucas A J; Vonwil, Daniel; Christensen, Jon; Shastri, V Prasad

    2017-01-01

    Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo.

  20. Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine.

    PubMed

    Tao, Pan; Li, Qin; Shivachandra, Sathish B; Rao, Venigalla B

    2017-01-01

    Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.

  1. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.

    PubMed

    Chen, Shixuan; Li, Ruiquan; Li, Xiaoran; Xie, Jingwei

    2018-05-02

    Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances

    PubMed Central

    Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2012-01-01

    Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636

  3. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  4. Delivery of peptide and protein drugs over the blood-brain barrier.

    PubMed

    Brasnjevic, Ivona; Steinbusch, Harry W M; Schmitz, Christoph; Martinez-Martinez, Pilar

    2009-04-01

    Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.

  5. Gelatin device for the delivery of growth factors involved in endochondral ossification

    PubMed Central

    Ahrens, Lucas A. J.; Vonwil, Daniel; Christensen, Jon

    2017-01-01

    Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo. PMID:28380024

  6. Developing Visual Thinking in the Electronic Health Record.

    PubMed

    Boyd, Andrew D; Young, Christine D; Amatayakul, Margret; Dieter, Michael G; Pawola, Lawrence M

    2017-01-01

    The purpose of this vision paper is to identify how data visualization could transform healthcare. Electronic Health Records (EHRs) are maturing with new technology and tools being applied. Researchers are reaping the benefits of data visualization to better access compilations of EHR data for enhanced clinical research. Data visualization, while still primarily the domain of clinical researchers, is beginning to show promise for other stakeholders. A non-exhaustive review of the literature indicates that respective to the growth and development of the EHR, the maturity of data visualization in healthcare is in its infancy. Visual analytics has been only cursorily applied to healthcare. A fundamental issue contributing to fragmentation and poor coordination of healthcare delivery is that each member of the healthcare team, including patients, has a different view. Summarizing all of this care comprehensively for any member of the healthcare team is a "wickedly hard" visual analytics and data visualization problem to solve.

  7. ClonEvol: clonal ordering and visualization in cancer sequencing.

    PubMed

    Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A

    2017-12-01

    Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones throughout metastatic progression observed in the tumors of a published breast cancer patient. ClonEvol has broad applicability for longitudinal monitoring of clonal populations in tumor biopsies, or noninvasively, to guide precision medicine. ClonEvol is written in R and is available at https://github.com/ChrisMaherLab/ClonEvol. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proetto, Maria T.; Anderton, Christopher R.; Hu, Dehong

    Synthetic drug-carrying nanomaterials offer great potential as targeted cellular delivery vehicles. Typically, their size, morphology, surface chemistry and stability are optimized in order to control their effect on drug release kinetics, cellular uptake pathways, efficiency and site of action. However, methods to track the carriers and their cargo independently at the micro- and nanoscale have been severely underutilized preventing the correlation between structure and function. Here we show that by using combined optical and isotopic nanoscopy we can track the uptake in cancer cells and subsequent drug release of a Pt(II)-loaded anticancer nanoparticle (NP) system. We found that by directlymore » polymerizing an oxaliplatin analogue containing a norbornyl moiety amenable to polymerization via ring opening metathesis polymerization (ROMP) we could generate amphiphiles in one pot. Spontaneous self-assembly of the drug-containing polymers in aqueous solution led to well-defined NPs in a reproducible manner. Our results demonstrate that the covalently loaded NPs are equipotent with free oxaliplatin and are taken up intact via endocytic pathways before release of the cytotoxic cargo. This was confirmed by super resolution fluorescence structured illumination microscopy (SIM) and nanoscale secondary ion mass spectrometry (NanoSIMS). We anticipate that this type of multimodal cellular tracking of NP and drug will bridge the knowledge gap between particle structure and performance for the vast array of currently generalizable systems in the literature. Furthermore, the use of covalently loaded NP drug systems should allow development of more stable, reproducible and site specific nanodelivery agents.« less

  9. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.

    2018-05-01

    Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p  <  0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.

  10. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy.

    PubMed

    Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K

    2012-07-01

    Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery.

    PubMed

    Cai, Xiaojun; Jin, Rongrong; Wang, Jiali; Yue, Dong; Jiang, Qian; Wu, Yao; Gu, Zhongwei

    2016-03-09

    Polymeric vectors have shown great promise in the development of safe and efficient gene delivery systems; however, only a few have been developed in clinical settings due to poor transport across multiple physiological barriers. To address this issue and promote clinical translocation of polymeric vectors, a new type of polymeric vector, bioreducible fluorinated peptide dendrimers (BFPDs), was designed and synthesized by reversible cross-linking of fluorinated low generation peptide dendrimers. Through masterly integration all of the features of reversible cross-linking, fluorination, and polyhedral oligomeric silsesquioxane (POSS) core-based peptide dendrimers, this novel vector exhibited lots of unique features, including (i) inactive surface to resist protein interactions; (ii) virus-mimicking surface topography to augment cellular uptake; (iii) fluorination-mediated efficient cellular uptake, endosome escape, cytoplasm trafficking, and nuclear entry, and (iv) disulfide-cleavage-mediated polyplex disassembly and DNA release that allows efficient DNA transcription. Noteworthy, all of these features are functionally important and can synergistically facilitate DNA transport from solution to the nucleus. As a consequences, BFPDs showed excellent gene transfection efficiency in several cell lines (∼95% in HEK293 cells) and superior biocompatibility compared with polyethylenimine (PEI). Meanwhile BFPDs provided excellent serum resistance in gene delivery. More importantly, BFPDs offer considerable in vivo gene transfection efficiency (in muscular tissues and in HepG2 tumor xenografts), which was approximately 77-fold higher than that of PEI in luciferase activity. These results suggest bioreducible fluorinated peptide dendrimers are a new class of highly efficient and safe gene delivery vectors and should be used in clinical settings.

  12. Pulmonary Delivery of Anti-Tubercular Drugs Using Ligand Anchored pH Sensitive Liposomes for the Treatment of Pulmonary Tuberculosis.

    PubMed

    Bhardwaj, Ankur; Grobler, Anne; Rath, Goutam; Goyal, Amit Kumar; Jain, Amit Kumar; Mehta, Abhinav

    2016-01-01

    Mycobacterium tuberculosis (M. TB) remains the prime cause of bacterial mortality and morbidity world-wide. Therefore, effective delivery and targeting of drug to the cellular tropics is essentially required to generate significant results for tuberculosis treatment. The aim of the present study was to develop and characterize ligand anchored pH sensitive liposomes (TPSL) as dry powder inhaler for the targeted delivery of drugs in the target site i.e. lungs. Ligand anchored PSL (TPSL) was prepared by thin film hydration for the combined delivery of Isoniazid (INH) and Ciprofloxacin HCl (CIP HCl) using 4-aminophenyl-α-D mannopyranoside (Man) as surface functionalized ligand and characterized using different parameters. It was observed that size of the ligand anchored liposomes (TPSL) was slightly more than the non-ligand anchored liposomes (PSL). Drug release was studied at different pH for 24 hrs and it was observed that liposomes exhibited slow release at alkaline pH (58-64%) as compared to macrophage pH (81-87%) where it increased dramatically due to the destabilization of pH sensitive liposome (PSL). In vitro cellular uptake study showed that much higher concentration was achieved in the alveolar macrophage using ligand anchored liposomes as compared to its counterpart. In vivo study showed that maximum drug accumulation was achieved in the lung by delivering drug using ligand anchored PSL as compared to conventional PSL. It was concluded that ligand anchored pH sensitive liposome is one of the promising systems for the targeted drug therapy in pulmonary tuberculosis.

  13. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells.

    PubMed

    Deng, Liwei; Li, Li; Yang, Hong; Li, Li; Zhao, Fenglong; Wu, Chunhui; Liu, Yiyao

    2014-04-01

    Microbubbles (MBs, usually 2-8 microm) as ultrasound contrast agent and drug carrier are promising for ultrasonic imaging and drug delivery. However, MBs posed some limitations due to their large diameters. In the current study, we developed a nanoscale bubbles (nanobubbles, NBs) by encapsulating the doxorubicin (DOX) into poly(lactic-co-glycolic acid) (PLGA) shells (denoted as DOX-PLGA NBs) for drug delivery into cancer cells. The size, morphology, particle stability, drug encapsulation efficiency, and drug payload were determined. The results showed that the DOX-PLGA NBs were uniform (270 +/- 3 nm) and spherical with a smooth surface, and were well dispersed and stable in water. The encapsulation efficiency and payload of DOX increased with its initial loading concentrations. The release behavior of DOX from the DOX-PLGA NBs exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous release at both pH 7.4 and pH 4.4, and also presented in a pH-triggered releasing profile. The qualitative analysis of cellular internalization into HeLa cells by inverted fluorescence microscope showed that the cellular uptake of DOX-PLGA NBs was both concentration- and time-dependent. Moreover, the cell viability was also investigated using CCK-8 assay. It was found that DOX-PLGA NBs showed greater HeLa cell growth inhibition effect in vitro compared with free DOX. It was concluded that the DOX-PLGA NBs were biocompatible and appropriate for anti-cancer drug delivery, and were potentially promising as a new therapeutic system for cancer treatment.

  14. [Development of a Novel Liposomal DDS by Manipulating Pharmacokinetics and Intracellular Trafficking for Drug Therapy and Nucleic Acid Medicine].

    PubMed

    Hatakeyama, Hiroto

    2018-01-01

     Nucleic acid therapy is expected to be a next generation medicine. We recently developed a multifunctional envelope-type nano device (MEND) for use as a novel delivery system. The modification of polyethylene glycol (PEG), i.e., PEGylation, is useful for achieving the delivery of MENDs to tumors via an enhanced permeability and retention (EPR) effect. However, PEGylation strongly inhibits the cellular uptake and endosomal escape of MEND, which results in significant loss of action, and therefore lost effectiveness, of the cargo therapeutic. For successful nucleic acid delivery in cancer treatment, the crucial problem associated with the use of PEG, known as the "PEG dilemma", must be solved. In this review, we describe the development and application of MEND in overcoming the PEG dilemma based on manipulating both the pharmacokinetics and intracellular trafficking of cellular uptake and endosomal release using a cleavable PEG lipid, a pH-sensitive fusogenic peptide, and a pH-sensitive cationic lipid. We also developed dual-ligand liposomes with a controlled diameter of around 300 nm, then modified these with a specific ligand and a cell penetrating peptide designed to target the neovasculature of tumors. Dual-ligand liposomes could induce an anti-tumor effect in drug resistant tumors by delivering drugs to tumor blood vessels, rather than to the cancer cells themselves. Here, we review our recent efforts to develop a novel liposomal drug delivery system (DDS) by manipulating pharmacokinetics and intracellular trafficking for drug therapy and nucleic acid medicine.

  15. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  17. Novel Texture-based Visualization Methods for High-dimensional Multi-field Data Sets

    DTIC Science & Technology

    2013-07-06

    project: In standard format showing authors, title, journal, issue, pages, and date, for each category list the following: b) papers published...visual- isation [18]. Novel image acquisition and simulation tech- niques have made is possible to record a large number of co-located data fields...function, structure, anatomical changes, metabolic activity, blood perfusion, and cellular re- modelling. In this paper we investigate texture-based

  18. Lymphoma diagnosis in histopathology using a multi-stage visual learning approach

    NASA Astrophysics Data System (ADS)

    Codella, Noel; Moradi, Mehdi; Matasar, Matt; Sveda-Mahmood, Tanveer; Smith, John R.

    2016-03-01

    This work evaluates the performance of a multi-stage image enhancement, segmentation, and classification approach for lymphoma recognition in hematoxylin and eosin (H and E) stained histopathology slides of excised human lymph node tissue. In the first stage, the original histology slide undergoes various image enhancement and segmentation operations, creating an additional 5 images for every slide. These new images emphasize unique aspects of the original slide, including dominant staining, staining segmentations, non-cellular groupings, and cellular groupings. For the resulting 6 total images, a collection of visual features are extracted from 3 different spatial configurations. Visual features include the first fully connected layer (4096 dimensions) of the Caffe convolutional neural network trained from ImageNet data. In total, over 200 resultant visual descriptors are extracted for each slide. Non-linear SVMs are trained over each of the over 200 descriptors, which are then input to a forward stepwise ensemble selection that optimizes a late fusion sum of logistically normalized model outputs using local hill climbing. The approach is evaluated on a public NIH dataset containing 374 images representing 3 lymphoma conditions: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Results demonstrate a 38.4% reduction in residual error over the current state-of-art on this dataset.

  19. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have amore » direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. - Highlights: • The unstained whole pine pollen was visualized by high-resolution laboratory-based HXRM for the first time. • The comparison study of pollen grains by LM, SEM and high-resolution laboratory-based HXRM. • Phase contrast imaging provides significantly higher contrast of the raw images compared to absorption contrast imaging. • Surface and internal structure of the pine pollen including exine, intine and cellular structures are clearly visualized. • 3D volume data of unstained whole pollen grains are acquired and the specific volumes of the different layer are calculated.« less

  20. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    NASA Technical Reports Server (NTRS)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  1. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.

  2. Immunohistochemical Detection of the Autophagy Markers LC3 and p62/SQSTM1 in Formalin-Fixed and Paraffin-Embedded Tissue.

    PubMed

    Berezowska, Sabina; Galván, José A

    2017-01-01

    Autophagy is a highly conserved cellular mechanism of "self digestion," ensuring cellular homeostasis, and playing a role in many diseases including cancer. As a stress response mechanism, it may also be involved in cellular response to therapy.LC3 and Sequestosome 1 (p62/SQSTM1) are among the most widely used markers to monitor autophagy, and can be visualized in formalin-fixed and paraffin-embedded tissue by immunohistochemistry. Here we describe a validated staining protocol using an automated staining system available in many routine pathology laboratories, enabling high-throughput staining under standardized conditions.

  3. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  4. Noninvasive 3D Visualization of Defects and Crack Propagation in Layered Foam Structures by Phase Contrast Microimaging

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; DeCarlo, F.

    2006-01-01

    Applications of polymeric foams in our modern society continue to grow because of their light weight, high strength, excellent thermal and mechanical insulation, and the ease of engineering. Among others, closed-cell foam has been structurally used for thermally insulating the shuttle external tank. However, internal defects of the foams were difficult to observe non-invasively due to limited sensitivity to the low-density structures possessed by traditional imaging tools such as computed X-ray tomography By combining phase contrast X-ray imaging with pressure loading, we succeeded in precisely mapping intact cellular structure and defects inside the bulk of layered foam and visualizing its subsequent response to the pressure in three-dimensional space. The work demonstrated a powerfir1 approach for yielding insight into underlying problems in lightweight cellular materials otherwise unobtainable.

  5. Intravitreal Injection of Proinsulin-Loaded Microspheres Delays Photoreceptor Cell Death and Vision Loss in the rd10 Mouse Model of Retinitis Pigmentosa.

    PubMed

    Isiegas, Carolina; Marinich-Madzarevich, Jorge A; Marchena, Miguel; Ruiz, José M; Cano, María J; de la Villa, Pedro; Hernández-Sánchez, Catalina; de la Rosa, Enrique J; de Pablo, Flora

    2016-07-01

    The induction of proinsulin expression by transgenesis or intramuscular gene therapy has been shown previously to retard retinal degeneration in mouse and rat models of retinitis pigmentosa (RP), a group of inherited conditions that result in visual impairment. We investigated whether intraocular treatment with biodegradable poly (lactic-co-glycolic) acid microspheres (PLGA-MS) loaded with proinsulin has cellular and functional neuroprotective effects in the retina. Experiments were performed using the Pde6brd10 mouse model of RP. Methionylated human recombinant proinsulin (hPI) was formulated in PLGA-MS, which were administered by intravitreal injection on postnatal days (P) 14 to 15. Retinal neuroprotection was assessed at P25 by electroretinography, and by evaluating outer nuclear layer (ONL) cellular preservation. The attenuation of photoreceptor cell death by hPI was determined by TUNEL assay in cultured P22 retinas, as well as Akt phosphorylation by immunoblotting. We successfully formulated hPI PLGA-MS to deliver the active molecule for several weeks in vitro. The amplitude of b-cone and mixed b-waves in electroretinographic recording was significantly higher in eyes injected with hPI-PLGA-MS compared to control eyes. Treatment with hPI-PLGA-MS attenuated photoreceptor cell loss, as revealed by comparing ONL thickness and the number of cell rows in this layer in treated versus untreated retinas. Finally, hPI prevented photoreceptor cell death and increased AktThr308 phosphorylation in organotypic cultured retinas. Retinal degeneration in the rd10 mouse was slowed by a single intravitreal injection of hPI-PLGA-MS. Human recombinant proinsulin elicited a rapid and effective neuroprotective effect when administered in biodegradable microspheres, which may constitute a future potentially feasible delivery method for proinsulin-based treatment of RP.

  6. Photoacoustic microscopy imaging for microneedle drug delivery

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  7. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  8. Using cellular automata to generate image representation for biological sequences.

    PubMed

    Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C

    2005-02-01

    A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.

  9. Measurement of the traction force of biological cells by digital holography

    PubMed Central

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  10. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  11. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  12. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  13. Myeloid-derived suppressor cells: Cellular missiles to target tumors.

    PubMed

    Chandra, Dinesh; Gravekamp, Claudia

    2013-11-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

  14. A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation.

    PubMed

    Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2014-01-01

    We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.

  15. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    DOE PAGES

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; ...

    2015-05-15

    Fabrication of stimuli-triggered drug delivery vehicle is is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). In conclusion, the enzyme-activated intracellular deliverymore » of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.« less

  16. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  17. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  18. Clinical evaluation of a confocal microendoscope system for imaging the ovary

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Hatch, Kenneth D.; Sampliner, Richard E.; Udovich, Josh A.; Gmitro, Arthur F.

    2008-02-01

    We have developed a mobile confocal microendoscope system that provides live cellular imaging during surgery to aid in diagnosing microscopic abnormalities including cancer. We present initial clinical trial results using the device to image ovaries in-vivo using fluorescein and ex-vivo results using acridine orange. The imaging catheter has improved depth control and localized dye delivery mechanisms than previously presented. A manual control now provides a simple way for the surgeon to adjust and optimize imaging depth during the procedure while a tiny piezo valve in the imaging catheter controls the dye delivery.

  19. The Roles and Responsibilities of Paraprofessionals Who Work with Students with Visual Impairments in Public Schools as Recommended by Experts/Practitioners to Influence and Develop In-Service Training and Supervision

    ERIC Educational Resources Information Center

    Casias, Nicholas

    2017-01-01

    Purpose: The purpose of this study was to determine, through the feedback of experts, the roles and responsibilities, training needs, and supervision needs of paraprofessionals who work with students with visual impairments in public schools (within the itinerant orientation and mobility [O&M] service delivery model). Theoretical Framework:…

  20. Visual Image Transmission. An Examination of Electronic Delivery of Visual Images and Text from the Library to the Academic Community. Final Report.

    ERIC Educational Resources Information Center

    Smith, Merrill W.; And Others

    Designed to examine the potential for delivering images stored on videodisc and other optical media from the library to the classroom, the pilot project described in this report has focused on ways to transmit still color or black and white images from the library's collection to a constituent academic unit. This report discusses analog and…

  1. Gaze-contingent reinforcement learning reveals incentive value of social signals in young children and adults

    PubMed Central

    Smith, Tim J.; Senju, Atsushi

    2017-01-01

    While numerous studies have demonstrated that infants and adults preferentially orient to social stimuli, it remains unclear as to what drives such preferential orienting. It has been suggested that the learned association between social cues and subsequent reward delivery might shape such social orienting. Using a novel, spontaneous indication of reinforcement learning (with the use of a gaze contingent reward-learning task), we investigated whether children and adults' orienting towards social and non-social visual cues can be elicited by the association between participants' visual attention and a rewarding outcome. Critically, we assessed whether the engaging nature of the social cues influences the process of reinforcement learning. Both children and adults learned to orient more often to the visual cues associated with reward delivery, demonstrating that cue–reward association reinforced visual orienting. More importantly, when the reward-predictive cue was social and engaging, both children and adults learned the cue–reward association faster and more efficiently than when the reward-predictive cue was social but non-engaging. These new findings indicate that social engaging cues have a positive incentive value. This could possibly be because they usually coincide with positive outcomes in real life, which could partly drive the development of social orienting. PMID:28250186

  2. Gaze-contingent reinforcement learning reveals incentive value of social signals in young children and adults.

    PubMed

    Vernetti, Angélina; Smith, Tim J; Senju, Atsushi

    2017-03-15

    While numerous studies have demonstrated that infants and adults preferentially orient to social stimuli, it remains unclear as to what drives such preferential orienting. It has been suggested that the learned association between social cues and subsequent reward delivery might shape such social orienting. Using a novel, spontaneous indication of reinforcement learning (with the use of a gaze contingent reward-learning task), we investigated whether children and adults' orienting towards social and non-social visual cues can be elicited by the association between participants' visual attention and a rewarding outcome. Critically, we assessed whether the engaging nature of the social cues influences the process of reinforcement learning. Both children and adults learned to orient more often to the visual cues associated with reward delivery, demonstrating that cue-reward association reinforced visual orienting. More importantly, when the reward-predictive cue was social and engaging, both children and adults learned the cue-reward association faster and more efficiently than when the reward-predictive cue was social but non-engaging. These new findings indicate that social engaging cues have a positive incentive value. This could possibly be because they usually coincide with positive outcomes in real life, which could partly drive the development of social orienting. © 2017 The Authors.

  3. Visual Attention and Applications in Multimedia Technologies

    PubMed Central

    Le Callet, Patrick; Niebur, Ernst

    2013-01-01

    Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications. PMID:24489403

  4. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  5. Tip-enhanced Raman scattering of bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  6. Registering Ground and Satellite Imagery for Visual Localization

    DTIC Science & Technology

    2012-08-01

    reckoning, inertial, stereo, light detection and ranging ( LIDAR ), cellular radio, and visual. As no sensor or algorithm provides perfect localization in...by metric localization approaches to confine the region of a map that needs to be searched. Simultaneous Localization and Mapping ( SLAM ) (5, 6), using...estimate the metric location of the camera. Se et al. (7) use SIFT features for both appearance-based global localization and incremental 3D SLAM . Johns and

  7. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    NASA Astrophysics Data System (ADS)

    Mandal, Biman B.; Kundu, S. C.

    2009-09-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  8. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Zhao, Qinfu; Geng, Hongjian; Wang, Ying; Gao, Yikun; Huang, Jiahao; Wang, Yan; Zhang, Jinghai; Wang, Siling

    2014-11-26

    A redox-responsive delivery system based on colloidal mesoporous silica (CMS) has been developed, in which 6-mercaptopurine (6-MP) was conjugated to vehicles by cleavable disulfide bonds. The oligosaccharide of hyaluronic acid (oHA) was modified on the surface of CMS by disulfide bonds as a targeting ligand and was able to increase the stability and biocompatibility of CMS under physiological conditions. In vitro release studies indicated that the cumulative release of 6-MP was less than 3% in the absence of glutathione (GSH), and reached nearly 80% within 2 h in the presence of 3 mM GSH. Confocal microscopy and fluorescence-activated cell sorter (FACS) methods were used to evaluate the cellular uptake performance of fluorescein isothiocyanate (FITC) labeled CMS, with and without oHA modification. The CMS-SS-oHA exhibited a higher cellular uptake performance via CD44 receptor-mediated endocytosis in HCT-116 (CD44 receptor-positive) cells than in NIH-3T3 (CD44 receptor-negative) cells. 6-MP loaded CMS-SS-oHA exhibited greater cytotoxicity against HCT-116 cells than NIH-3T3 cells due to the enhanced cell uptake behavior of CMS-SS-oHA. This study provides a novel strategy to covalently link bioactive drug and targeting ligand to the interiors and exteriors of mesoporous silica to construct a stimulus-responsive targeted drug delivery system.

  9. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery.

    PubMed

    Mandal, Biman B; Kundu, S C

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  10. Association of chitosan and aluminium as a new adjuvant strategy for improved vaccination.

    PubMed

    Lebre, F; Bento, D; Ribeiro, J; Colaço, M; Borchard, G; de Lima, M C Pedroso; Borges, O

    2017-07-15

    The use of particulate adjuvants offers an interesting possibility to enhance and modulate the immune responses elicited by vaccines. Aluminium salts have been extensively used as vaccine adjuvants, but they lack the capacity to induce a strong cellular and mucosal immune response. Taking this into consideration, in this study we designed a new antigen delivery system combining aluminium salts with chitosan. Chitosan-aluminium nanoparticles (CH-Al NPs) exhibited a mean diameter of 280nm and a positive surface charge. The newly developed CH-Al NPs are more stable at physiological environment than classical CH NPs, showing no cytotoxic effects and revealing potential as a delivery system for a wide range of model antigens. In vivo studies showed that mice immunized with hepatitis B surface antigen (HBsAg)-containing CH NPs display high anti-HBsAg IgG titers in the serum, as well as the highest antigen-specific IgG on vaginal washes. Furthermore, in contrast to mice receiving antigen alone, mice immunized with the particulate adjuvant were able to elicit IgG2c antibody titers and exhibited higher antigen-specific IFN-γ levels in splenocytes. In conclusion, we established that CH-Al NPs, combining two immunostimulants to enhance both humoral and cellular immune responses, are a safe and promising system for antigen delivery. Our findings point towards their potential in future vaccination approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae.

    PubMed

    Ramesh Kumar, D; Elumalai, Rajasegaran; Raichur, Ashok M; Sanjuktha, M; Rajan, J J; Alavandi, S V; Vijayan, K K; Poornima, M; Santiago, T C

    2016-07-01

    In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system

    NASA Astrophysics Data System (ADS)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung

    2014-11-01

    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p < 0.01). For the in vivo human xenograft-nude mouse model, the Dox-ChS-CS NPs were more effective with less body weight loss and anti-tumor growth suppression in comparison with the Dox solution. The prepared Dox-ChS-CS NPs offer a new effective targeting nanoparticle delivery system platform for anti-tumor therapy.

  13. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate.

    PubMed

    Burns, Kelly E; Delehanty, James B

    2018-04-27

    In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC 50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug. Published by Elsevier B.V.

  14. A Disposable Microfluidic Device for Controlled Drug Release from Thermal-Sensitive Liposomes by High Intensity Focused Ultrasound.

    PubMed

    Meng, Long; Deng, Zhiting; Niu, Lili; Li, Fei; Yan, Fei; Wu, Junru; Cai, Feiyan; Zheng, Hairong

    2015-01-01

    The drug release triggered thermally by high intensity focused ultrasound (HIFU) has been considered a promising drug delivery strategy due to its localized energy and non-invasive characters. However, the mechanism underlying the HIFU-mediated drug delivery remains unclear due to its complexity at the cellular level. In this paper, micro-HIFU (MHIFU) generated by a microfluidic device is introduced which is able to control the drug release from temperature-sensitive liposomes (TSL) and evaluate the thermal and mechanical effects of ultrasound on the cellular drug uptake and apoptosis. By simply adjusting the input electrical signal to the device, the temperature of sample can be maintained at 37 °C, 42 °C and 50 °C with the deviation of ± 0.3 °C as desired. The flow cytometry results show that the drug delivery under MHIFU sonication leads to a significant increase in apoptosis compared to the drug release by incubation alone at elevated temperature of 42 °C. Furthermore, increased squamous and protruding structures on the surface membrane of cells were detected by atomic force microscopy (AFM) after MHIFU irradiation of TSL. We demonstrate that compared to the routine HIFU treatment, MHIFU enables monitoring of in situ interactions between the ultrasound and cell in real time. Furthermore, it can quantitatively analyze and characterize the alterations of the cell membrane as a function of the treatment time.

  15. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery

    PubMed Central

    van Dongen, Helena M.; Masoumi, Niala

    2016-01-01

    SUMMARY Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors. PMID:26935137

  16. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.

    PubMed

    Rao, Shasha; Prestidge, Clive A

    2016-01-01

    A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.

  17. LHRH-Targeted Drug Delivery Systems for Cancer Therapy.

    PubMed

    Li, Xiaoning; Taratula, Oleh; Taratula, Olena; Schumann, Canan; Minko, Tamara

    2017-01-01

    Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.

  18. Curb Challenges of the “Trojan Horse” Approach: Smart Strategies in Achieving Effective yet Safe Cell-penetrating Peptide-based Drug Delivery

    PubMed Central

    Huang, Yongzhuo; Jiang, Yifan; Wang, Huiyuan; Wang, Jianxin; Shin, Meong Cheol; Byun, Youngro; He, Huining; Liang, Yanqin; Yang, Victor C.

    2013-01-01

    Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as “the Trojan horse approach”, has become the “holy grail” in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, this “Trojan horse” approach also acts like a double-edged sword, causing serious safety and toxicity concerns to normal tissues or organs for in vivo application, due to lack of target selectivity of the powerful cell penetrating activity. To overcome this problem of potent yet non-selective penetration vs. targeting delivery, a number of “smart” strategies have been developed in recent years, including controllable CPP-based drug delivery systems based on various stimuli-responsive mechanisms. This review article provides a fundamental understanding of these smart systems, as well as a discussion of their real-time in vivo applicability. PMID:23369828

  19. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  20. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

Top