Sample records for visualizing snp statistics

  1. LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs

    PubMed Central

    Chang, Hsueh-Wei; Chuang, Li-Yeh; Chang, Yan-Jhu; Cheng, Yu-Huei; Hung, Yu-Chen; Chen, Hsiang-Chi; Yang, Cheng-Hong

    2009-01-01

    Background Linkage disequilibrium (LD) mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. Results We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP) enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δQ, ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. Conclusion LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at . PMID:19500380

  2. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  3. SNP ID-info: SNP ID searching and visualization platform.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei

    2008-09-01

    Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.

  4. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    PubMed Central

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-01-01

    Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806

  5. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    PubMed

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  6. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID:16336665

  7. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694

  8. Across-cohort QC analyses of GWAS summary statistics from complex traits.

    PubMed

    Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M

    2016-01-01

    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics F st statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.

  9. Across-cohort QC analyses of GWAS summary statistics from complex traits

    PubMed Central

    Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M

    2017-01-01

    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy. PMID:27552965

  10. EvoSNP-DB: A database of genetic diversity in East Asian populations.

    PubMed

    Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung

    2013-08-01

    Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

  11. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  12. Dissimilarity based Partial Least Squares (DPLS) for genomic prediction from SNPs.

    PubMed

    Singh, Priyanka; Engel, Jasper; Jansen, Jeroen; de Haan, Jorn; Buydens, Lutgarde Maria Celina

    2016-05-04

    Genomic prediction (GP) allows breeders to select plants and animals based on their breeding potential for desirable traits, without lengthy and expensive field trials or progeny testing. We have proposed to use Dissimilarity-based Partial Least Squares (DPLS) for GP. As a case study, we use the DPLS approach to predict Bacterial wilt (BW) in tomatoes using SNPs as predictors. The DPLS approach was compared with the Genomic Best-Linear Unbiased Prediction (GBLUP) and single-SNP regression with SNP as a fixed effect to assess the performance of DPLS. Eight genomic distance measures were used to quantify relationships between the tomato accessions from the SNPs. Subsequently, each of these distance measures was used to predict the BW using the DPLS prediction model. The DPLS model was found to be robust to the choice of distance measures; similar prediction performances were obtained for each distance measure. DPLS greatly outperformed the single-SNP regression approach, showing that BW is a comprehensive trait dependent on several loci. Next, the performance of the DPLS model was compared to that of GBLUP. Although GBLUP and DPLS are conceptually very different, the prediction quality (PQ) measured by DPLS models were similar to the prediction statistics obtained from GBLUP. A considerable advantage of DPLS is that the genotype-phenotype relationship can easily be visualized in a 2-D scatter plot. This so-called score-plot provides breeders an insight to select candidates for their future breeding program. DPLS is a highly appropriate method for GP. The model prediction performance was similar to the GBLUP and far better than the single-SNP approach. The proposed method can be used in combination with a wide range of genomic dissimilarity measures and genotype representations such as allele-count, haplotypes or allele-intensity values. Additionally, the data can be insightfully visualized by the DPLS model, allowing for selection of desirable candidates from the breeding experiments. In this study, we have assessed the DPLS performance on a single trait.

  13. AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.

    PubMed

    Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y

    2018-06-07

    The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.

  14. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data

    PubMed Central

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201

  15. Glutamate decarboxylase genes and alcoholism in Han Taiwanese men.

    PubMed

    Loh, El-Wui; Lane, Hsien-Yuan; Chen, Chien-Hsiun; Chang, Pi-Shan; Ku, Li-Wen; Wang, Kathy H T; Cheng, Andrew T A

    2006-11-01

    Glutamate decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), may be involved in the development of alcoholism. This study examined the possible roles of the genes that code for 2 forms of GAD (GAD1 and GAD2) in the development of alcoholism. An association study was conducted among 140 male alcoholic subjects meeting the DSM-III-R criteria for alcohol dependence and 146 controls recruited from the Han Taiwanese in community and clinical settings. Psychiatric assessment of drinking conditions was conducted using a Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry. The SHEsis and Haploview programs were used in statistical analyses. Nine single-nucleotide polymorphisms (SNPs) at the GAD1 gene were valid for further statistics. Between alcoholic subjects and controls, significant differences were found in genotype distributions of SNP1 (p=0.000), SNP2 (p=0.015), SNP4 (p=0.015), SNP5 (p=0.031), SNP6 (p=0.012), and SNP8 (p=0.004) and in allele distributions of SNP1 (p=0.001), SNP2 (p=0.009), and SNP8 (p=0.009). Permutation tests of SNP1, SNP2, and SNP8 demonstrated significant differences in allele frequencies but not in 2 major haplotype blocks. Three valid SNPs at the GAD2 gene demonstrated no associations with alcoholism. Further permutation tests in the only 1 haplotype block or individual SNPs demonstrated no significant differences. This is the first report indicating a possible significant role of the GAD1 gene in the development of alcohol dependence and/or the course of alcohol withdrawal and outcome of alcoholism.

  16. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    PubMed

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  17. SNPversity: a web-based tool for visualizing diversity

    PubMed Central

    Schott, David A; Vinnakota, Abhinav G; Portwood, John L; Andorf, Carson M

    2018-01-01

    Abstract Many stand-alone desktop software suites exist to visualize single nucleotide polymorphism (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualization tool that can be implemented on a Unix-like machine and served through a web browser that can be accessible worldwide. SNPversity consists of a HDF5 database back-end for SNPs, a data exchange layer powered by TASSEL libraries that represent data in JSON format, and an interface layer using PHP to visualize SNP information. SNPversity displays data in real-time through a web browser in grids that are color-coded according to a given SNP’s allelic status and mutational state. SNPversity is currently available at MaizeGDB, the maize community’s database, and will be soon available at GrainGenes, the clade-oriented database for Triticeae and Avena species, including wheat, barley, rye, and oat. The code and documentation are uploaded onto github, and they are freely available to the public. We expect that the tool will be highly useful for other biological databases with a similar need to display SNP diversity through their web interfaces. Database URL: https://www.maizegdb.org/snpversity PMID:29688387

  18. Selection and Inhibition in Infancy: Evidence from the Spatial Negative Priming Paradigm

    ERIC Educational Resources Information Center

    Amso, D.; Johnson, S.P.

    2005-01-01

    We used a spatial negative priming (SNP) paradigm to examine visual selective attention in infants and adults using eye movements as the motor selection measure. In SNP, when a previously ignored location becomes the target to be selected, responses to it are impaired, providing a measure of inhibitory selection. Each trial consisted of a prime…

  19. Polymorphic genetic variation in immune system genes: a study of two populations of Espirito Santo, Brazil.

    PubMed

    Dettogni, Raquel Spinassé; Sá, Ricardo Tristão; Tovar, Thaís Tristão; Louro, Iúri Drumond

    2013-08-01

    Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP genotype frequencies were in Hardy-Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.

  20. The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog

    PubMed Central

    Togninalli, Matteo; Seren, Ümit; Meng, Dazhe; Fitz, Joffrey; Nordborg, Magnus; Weigel, Detlef

    2018-01-01

    Abstract The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10−4, of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS. PMID:29059333

  1. Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium.

    PubMed

    Pasaniuc, Bogdan; Zaitlen, Noah; Lettre, Guillaume; Chen, Gary K; Tandon, Arti; Kao, W H Linda; Ruczinski, Ingo; Fornage, Myriam; Siscovick, David S; Zhu, Xiaofeng; Larkin, Emma; Lange, Leslie A; Cupples, L Adrienne; Yang, Qiong; Akylbekova, Ermeg L; Musani, Solomon K; Divers, Jasmin; Mychaleckyj, Joe; Li, Mingyao; Papanicolaou, George J; Millikan, Robert C; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah J; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Chanock, Stephen J; Deming, Sandra L; Rodriguez-Gil, Jorge L; Palmer, Cameron D; Buxbaum, Sarah; Ekunwe, Lynette; Hirschhorn, Joel N; Henderson, Brian E; Myers, Simon; Haiman, Christopher A; Reich, David; Patterson, Nick; Wilson, James G; Price, Alkes L

    2011-04-01

    While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.

  2. Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants

    NASA Astrophysics Data System (ADS)

    Hoskote Anand, Kiran Kumar; Mandal, Badal Kumar

    2015-01-01

    The eco-friendly approach for the green synthesis of silver nanoparticles (SNP) using Terminalia bellirica (T. bellirica) fruit extract is reported herein. Initially formation of SNP was noticed through visual color change from yellow to reddish brown and further analyzed by surface plasmonic resonance (SPR) band at 429 nm using UV-Vis spectroscopy. Identification of different polyphenols present in T. bellirica extract was done using High Pressure Liquid Chromatography (HPLC). Aqueous T. bellirica extract contains high amount of gallic acid which is major secondary metabolite responsible for the reduction and stabilization process. It was established by analyses of extracts before and after reduction using HPLC. Formation of spherical SNP was characterized by Transmission Electron Microscopy (TEM) analysis. X-ray Diffraction (XRD) study revealed crystalline nature of SNP. Presence of different functional groups on the surface of SNP was evidenced by Fourier Transform Infrared Spectroscopy (FTIR) study. A plausible mechanism of reduction and stabilization processes involved in the synthesis of stable SNP was also explained based on HPLC and FTIR data. In addition, the synthesized SNP was tested for antibacterial and antioxidant activities. SNP showed good antimicrobial activity against both gram positive (S. aureus) and gram negative (E. coli) bacteria. It also showed good antioxidant activity compared to ascorbic acid as standard antioxidant by using standard DPPH method.

  3. Clinical relevance of IL-6 gene polymorphism in severely injured patients

    PubMed Central

    Jeremić, Vasilije; Alempijević, Tamara; Mijatović, Srđan; Šijački, Ana; Dragašević, Sanja; Pavlović, Sonja; Miličić, Biljana; Krstić, Slobodan

    2014-01-01

    In polytrauma, injuries that may be surgically treated under regular circumstances due to a systemic inflammatory response become life-threatening. The inflammatory response involves a complex pattern of humoral and cellular responses and the expression of related factors is thought to be governed by genetic variations. This aim of this paper is to examine the influence of interleukin (IL) 6 single nucleotide polymorphism (SNP) -174C/G and -596G/A on the treatment outcome in severely injured patients. Forty-seven severely injured patients were included in this study. Patients were assigned an Injury Severity Score. Blood samples were drawn within 24 h after admission (designated day 1) and on subsequent days (24, 48, 72 hours and 7days) of hospitalization. The IL-6 levels were determined through ELISA technique. Polymorphisms were analyzed by a method of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR). Among subjects with different outcomes, no statistically relevant difference was found with regards to the gene IL-6 SNP-174G/C polymorphism. More than a half of subjects who died had the SNP-174G/C polymorphism, while this polymorphism was represented in a slightly lower number in survivors. The incidence of subjects without polymorphism and those with heterozygous and homozygous gene IL-6 SNP-596G/A polymorphism did not present statistically significant variations between survivors and those who died. The levels of IL-6 over the observation period did not present any statistically relevant difference among subjects without the IL-6 SNP-174 or IL-6 SNP -596 gene polymorphism and those who had either a heterozygous or a homozygous polymorphism. PMID:24856384

  4. SNPversity: A web-based tool for visualizing diversity

    USDA-ARS?s Scientific Manuscript database

    Background: Many stand-alone desktop software suites exist to visualize single nucleotide polymorphisms (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualizat...

  5. Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population

    PubMed Central

    Beaney, Katherine E.; Cooper, Jackie A.; Ullah Shahid, Saleem; Ahmed, Waqas; Qamar, Raheel; Drenos, Fotios; Crockard, Martin A.; Humphries, Steve E.

    2015-01-01

    Background Numerous risk prediction algorithms based on conventional risk factors for Coronary Heart Disease (CHD) are available but provide only modest discrimination. The inclusion of genetic information may improve clinical utility. Methods We tested the use of two gene scores (GS) in the prospective second Northwick Park Heart Study (NPHSII) of 2775 healthy UK men (284 cases), and Pakistani case-control studies from Islamabad/Rawalpindi (321 cases/228 controls) and Lahore (414 cases/219 controls). The 19-SNP GS included SNPs in loci identified by GWAS and candidate gene studies, while the 13-SNP GS only included SNPs in loci identified by the CARDIoGRAMplusC4D consortium. Results In NPHSII, the mean of both gene scores was higher in those who went on to develop CHD over 13.5 years of follow-up (19-SNP p=0.01, 13-SNP p=7x10-3). In combination with the Framingham algorithm the GSs appeared to show improvement in discrimination (increase in area under the ROC curve, 19-SNP p=0.48, 13-SNP p=0.82) and risk classification (net reclassification improvement (NRI), 19-SNP p=0.28, 13-SNP p=0.42) compared to the Framingham algorithm alone, but these were not statistically significant. When considering only individuals who moved up a risk category with inclusion of the GS, the improvement in risk classification was statistically significant (19-SNP p=0.01, 13-SNP p=0.04). In the Pakistani samples, risk allele frequencies were significantly lower compared to NPHSII for 13/19 SNPs. In the Islamabad study, the mean gene score was higher in cases than controls only for the 13-SNP GS (2.24 v 2.34, p=0.04). There was no association with CHD and either score in the Lahore study. Conclusion The performance of both GSs showed potential clinical utility in European men but much less utility in subjects from Pakistan, suggesting that a different set of risk loci or SNPs may be required for risk prediction in the South Asian population. PMID:26133560

  6. GEE-based SNP set association test for continuous and discrete traits in family-based association studies.

    PubMed

    Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong

    2013-12-01

    Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.

  7. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans.

    PubMed

    Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly

    2012-03-06

    Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.

  8. [Comparative analysis of STR and SNP polymorphism in the populations of sockeye salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka].

    PubMed

    Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A

    2010-11-01

    Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.

  9. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes

    PubMed Central

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel

    2009-01-01

    Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481

  10. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.

    PubMed

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel

    2009-03-19

    Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.

  11. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

    PubMed

    Ning, Shangwei; Yue, Ming; Wang, Peng; Liu, Yue; Zhi, Hui; Zhang, Yan; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Zhou, Dianshuang; Li, Xin; Li, Xia

    2017-01-04

    We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Haplotype-based approach to known MS-associated regions increases the amount of explained risk

    PubMed Central

    Khankhanian, Pouya; Gourraud, Pierre-Antoine; Lizee, Antoine; Goodin, Douglas S

    2015-01-01

    Genome-wide association studies (GWAS), using single nucleotide polymorphisms (SNPs), have yielded 110 non-human leucocyte antigen genomic regions that are associated with multiple sclerosis (MS). Despite this large number of associations, however, only 28% of MS-heritability can currently be explained. Here we compare the use of multi-SNP-haplotypes to the use of single-SNPs as alternative methods to describe MS genetic risk. SNP-haplotypes (of various lengths from 1 up to 15 contiguous SNPs) were constructed at each of the 110 previously identified, MS-associated, genomic regions. Even after correcting for the larger number of statistical comparisons made when using the haplotype-method, in 32 of the regions, the SNP-haplotype based model was markedly more significant than the single-SNP based model. By contrast, in no region was the single-SNP based model similarly more significant than the SNP-haplotype based model. Moreover, when we included the 932 MS-associated SNP-haplotypes (that we identified from 102 regions) as independent variables into a logistic linear model, the amount of MS-heritability, as assessed by Nagelkerke's R-squared, was 38%, which was considerably better than 29%, which was obtained by using only single-SNPs. This study demonstrates that SNP-haplotypes can be used to fine-map the genetic associations within regions of interest previously identified by single-SNP GWAS. Moreover, the amount of the MS genetic risk explained by the SNP-haplotype associations in the 110 MS-associated genomic regions was considerably greater when using SNP-haplotypes than when using single-SNPs. Also, the use of SNP-haplotypes can lead to the discovery of new regions of interest, which have not been identified by a single-SNP GWAS. PMID:26185143

  13. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults

    PubMed Central

    2013-01-01

    Background In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body weight. We used a linear regression model. Selected genes corresponded to folate metabolism, vitamins B-12, A, and E, and cholesterol pathways or lipid metabolism. Methods Extracted DNA from both the Sacramento and Beltsville populations was analyzed using an allele discrimination assay with a MALDI-TOF mass spectrometry platform. The adjusted phenotype, y, was HDL levels adjusted for gender and body weight only statistical analyses were performed using the genotype association and regression modules from the SNP Variation Suite v7. Results Statistically significant SNP (where P values were adjusted for false discovery rate) included: CETP (rs7499892 and rs5882); SLC46A1 (rs37514694; rs739439); SLC19A1 (rs3788199); CD36 (rs3211956); BCMO1 (rs6564851), APOA5 (rs662799), and ABCA1 (rs4149267). Many prior association trends of the SNP with HDL were replicated in our cross-validation study. Significantly, the association of SNP in folate transporters (SLC46A1 rs37514694 and rs739439; SLC19A1 rs3788199) with HDL was identified in our study. Conclusions Given recent literature on the role of niacin in the biogenesis of HDL, focus on status and metabolism of B-vitamins and metabolites of eccentric cleavage of β-carotene with lipid metabolism is exciting for future study. PMID:23656756

  14. Fine-mapping additive and dominant SNP effects using group-LASSO and Fractional Resample Model Averaging

    PubMed Central

    Sabourin, Jeremy; Nobel, Andrew B.; Valdar, William

    2014-01-01

    Genomewide association studies sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple SNPs simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights; it estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing a SNP prioritization that best identifies underlying true signals, we show that: our method easily outperforms a single marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and, when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation. PMID:25417853

  15. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. GenomeGems: evaluation of genetic variability from deep sequencing data

    PubMed Central

    2012-01-01

    Background Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist. Findings We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available at http://www.tau.ac.il/~nshomron/GenomeGems. Conclusions GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information. PMID:22748151

  17. A possible genetic association with chronic fatigue in primary Sjögren's syndrome: a candidate gene study.

    PubMed

    Norheim, Katrine Brække; Le Hellard, Stephanie; Nordmark, Gunnel; Harboe, Erna; Gøransson, Lasse; Brun, Johan G; Wahren-Herlenius, Marie; Jonsson, Roland; Omdal, Roald

    2014-02-01

    Fatigue is prevalent and disabling in primary Sjögren's syndrome (pSS). Results from studies in chronic fatigue syndrome (CFS) indicate that genetic variation may influence fatigue. The aim of this study was to investigate single nucleotide polymorphism (SNP) variations in pSS patients with high and low fatigue. A panel of 85 SNPs in 12 genes was selected based on previous studies in CFS. A total of 207 pSS patients and 376 healthy controls were genotyped. One-hundred and ninety-three patients and 70 SNPs in 11 genes were available for analysis after quality control. Patients were dichotomized based on fatigue visual analogue scale (VAS) scores, with VAS <50 denominated "low fatigue" (n = 53) and VAS ≥50 denominated "high fatigue" (n = 140). We detected signals of association with pSS for one SNP in SLC25A40 (unadjusted p = 0.007) and two SNPs in PKN1 (both p = 0.03) in our pSS case versus control analysis. The association with SLC25A40 was stronger when only pSS high fatigue patients were analysed versus controls (p = 0.002). One SNP in PKN1 displayed an association in the case-only analysis of pSS high fatigue versus pSS low fatigue (p = 0.005). This candidate gene study in pSS did reveal a trend for associations between genetic variation in candidate genes and fatigue. The results will need to be replicated. More research on genetic associations with fatigue is warranted, and future trials should include larger cohorts and multicentre collaborations with sharing of genetic material to increase the statistical power.

  18. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs

    PubMed Central

    Pavy, Nathalie; Parsons, Lee S; Paule, Charles; MacKay, John; Bousquet, Jean

    2006-01-01

    Background High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. Results A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (PSNP), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either PSNP ≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using PSNP ≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. Conclusion We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate genes for mapping purposes or association studies. PMID:16824208

  19. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    PubMed

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  20. SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access.

    PubMed

    Amigo, Jorge; Salas, Antonio; Phillips, Christopher; Carracedo, Angel

    2008-10-10

    In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics. We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 x 10(9) genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested. In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, Fst and In.

  1. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    PubMed

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  2. Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern.

    PubMed

    Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai

    2017-07-07

    As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  3. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.

  4. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection

    PubMed Central

    O’Halloran, Damien M.

    2016-01-01

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558

  5. Psychological defensive profile of sciatica patients with neuropathic pain and its relationship to quality of life.

    PubMed

    Tutoglu, A; Boyaci, A; Karababa, I F; Koca, I; Kaya, E; Kucuk, A; Yetisgin, A

    2015-09-01

    To identify differences between defense styles and mechanisms in sciatica patients with or without neuropathic pain and their relationship to quality of life. The study included 37 sciatica patients with neuropathic pain (SNP), 36 sciatica patients without neuropathic pain and 38 healthy subjects. Pain severity was measured using the Visual Analogue Scale (VAS). Psychological condition was assessed using the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI). Defense mechanisms were assessed using a 40-item Defense Style Questionnaire (DSQ-40) and quality of life was assessed using Short Form-36 (SF-36). BDI and BAI scores were significantly higher in the SNP group (p < 0.001). Idealization and immature defense styles, as well as isolation, displacement and somatization were significantly higher in the SNP group (p < 0.05). SF-36 parameters also differed significantly between the groups, with controls having the best scores and the SNP group the worst. In linear regression analysis, acting out and BDI were found to affect the pain domain of the SF-36 (p < 0.001). The acting out defensive style and BDI were independently associated with pain-related quality of life. In the SNP group, significant differences were found in the immature and neurotic styles of the defense mechanisms.

  6. [Association Between SNP rs6007897 of CELSR1 and Acute Ischemic Stroke in Western China Han Population: a Case-control Study].

    PubMed

    Qin, Feng-qin; Yu, Li-hua; Hu, Wen-ting; Guo, Jian; Chen, Ning; Guo, Jiang; Fang, Jing-huan; He, Li

    2015-07-01

    To investigate the relationship between single nucleotide polymorphism (SNP) rs6007897 of CELSR1 and acute ischemic stroke in Western China Han population. All subjects (759 acute ischemic stroke patients and 786 controls) were genotyped using ligation detection reaction (LDR). We analyzed the differences between SNP rs6007897 genotypes and allele frequencies between two groups. Two genotypes (AA, AG) of rs6007897 were found in both stroke and control group. There was no statistically significance between two groups about genotype and allele frequency. After adjusting for risk factors, we found there was no significant association between rs6007897 and ischemic stroke CP = 0.797, odds ratio (OR) = 0.886, 95% confidence interval (CI) = 0.352-2.227). SNP rs6007897 of CELSR1 was not significantly associated with ischemic stroke in Western China Han population.

  7. Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    PubMed Central

    Silver, Matt; Montana, Giovanni

    2012-01-01

    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small. PMID:22499682

  8. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations.

    PubMed

    Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-06-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.

  9. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations

    PubMed Central

    Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-01-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418

  10. Genetic and clinical risk factors of root resorption associated with orthodontic treatment.

    PubMed

    Guo, Yujiao; He, Shushu; Gu, Tian; Liu, Yi; Chen, Song

    2016-08-01

    External apical root resorption (EARR) is a common complication in orthodontic treatment. Despite many studies on EARR, great controversies remain with regard to its risk factors. The objective of this study was to explore the relationship among sex, root movement, IL-1RN single nucleotide polymorphism (SNP) rs419598, IL-6 SNP rs1800796, and EARR associated with orthodontic treatment. Altogether 174 patients (with 174 maxillary left central incisors) were selected for this study. Cone-beam computed tomography was performed before the start of the treatment and at the end of the treatment. Cone-beam computed tomography data were used to reconstruct a 3-dimensional image of each tooth; the volume and the root resorption volume of each tooth were calculated. Three-dimensional matching was used to measure the amount of movement of each root. Genomic DNA was extracted from buccal swabs, and genotypes of SNP rs419598 and SNP rs1800796 of each subject were determined using TaqMan polymerase chain reaction genotyping (Applied Biosystems, Foster City, Calif). The data were analyzed with multiple linear regression analysis. The statistical analysis indicated no relationship between sex, tooth movement amount, and IL-1RN SNP rs419598 with EARR. The IL-6 SNP rs1800796 GC was associated with EARR, and root resorption differed significantly between SNP rs1800796 GC and CC. IL-6 SNP rs1800796 GC is a risk factor for EARR. The amount of root movement, IL-1RN SNP rs419598, and sex as risk factors for EARR need further study. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.

  12. Integrative pathway analysis of a genome-wide association study of V̇o2max response to exercise training

    PubMed Central

    Vivar, Juan C.; Sarzynski, Mark A.; Sung, Yun Ju; Timmons, James A.; Bouchard, Claude; Rankinen, Tuomo

    2013-01-01

    We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation. PMID:23990238

  13. SNP by SNP by environment interaction network of alcoholism.

    PubMed

    Zollanvari, Amin; Alterovitz, Gil

    2017-03-14

    Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50-80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP [Formula: see text]SNP[Formula: see text]E network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.

  14. Tetra-primer ARMS-PCR identified four pivotal genetic variations in bovine PNPLA3 gene and its expression patterns.

    PubMed

    Wang, Zi-nian; Cai, Han-fang; Li, Ming-xun; Cao, Xiu-kai; Lan, Xian-yong; Lei, Chu-zhao; Chen, Hong

    2016-01-10

    Patatin-like phospholipase domain-containing protein 3 (PNPLA3), a member of the patatin like phospholipase domain-containing (PNPLA) family, plays an important role in energy balance, fat metabolism regulation, glucose metabolism and fatty liver disease. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) is a new method offering fast detection and extreme simplicity at a negligible cost for SNP genotyping. In this paper, we investigated the genetic variations at different ages of 660 Chinese indigenous cattle belonging to three breeds (QC, NY, JX) and applied T-ARMS-PCR and PCR-RFLP methods to genotype four SNPs, SNP1: g.A2980G, SNP2: g.A2996T, SNP3: g.A36718G, SNP4: g.G36850A. The statistical analyses indicated that these 4 SNPs affected growth traits markedly (P<0.05) in QC population, whereas combined haplotypes were not (P>0.05). The qPCR (quantitative PCR) indicated that bovine PNPLA3 gene was exclusively expressed in fat tissues. Besides, the analysis between SNP and mRNA expression revealed that, in SNP1, the expression of AG was much higher than AA and GG (P<0.05), which was in accordance with the results of growth traits association analysis, while the results of SNP4 was not. These results supported high potential that SNPs of bovine PNPLA3 gene might be utilized as genetic markers in marker-assisted selection (MAS) for Chinese cattle breeding programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. IL13 genetic polymorphisms, smoking, and eczema in women: a case-control study in Japan.

    PubMed

    Miyake, Yoshihiro; Tanaka, Keiko; Arakawa, Masashi

    2011-10-21

    Several genetic association studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, and have provided contradictory results. We investigated the relationship between the IL13 SNPs rs1800925 and rs20541 and the risk of eczema in Japanese young adult women. Included were 188 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Control subjects were 1,082 women without eczema according to the ISAAC criteria, who had not been diagnosed with atopic eczema by a doctor and who had no current asthma as defined by the European Community Respiratory Health Survey criteria. Adjustment was made for age, region of residence, number of children, smoking, and education. The minor TT genotype of SNP rs1800925 was significantly associated with an increased risk of eczema in the co-dominant model: the adjusted odds ratio was 2.19 (95% confidence interval: 1.03-4.67). SNP rs20541 was not related to eczema. None of the haplotypes were significantly associated with eczema. Compared with women with the CC or CT genotype of SNP rs1800925 who had never smoked, those with the TT genotype who had ever smoked had a 2.85-fold increased risk of eczema, though the adjusted odds ratio was not statistically significant, and neither multiplicative nor additive interaction was statistically significant. Our findings suggest that the IL13 SNP rs1800925 is significantly associated with eczema in Japanese young adult women. We could not find evidence for an interaction between SNP rs1800925 and smoking with regard to eczema.

  16. IL13 genetic polymorphisms, smoking, and eczema in women: a case-control study in Japan

    PubMed Central

    2011-01-01

    Background Several genetic association studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, and have provided contradictory results. We investigated the relationship between the IL13 SNPs rs1800925 and rs20541 and the risk of eczema in Japanese young adult women. Methods Included were 188 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Control subjects were 1,082 women without eczema according to the ISAAC criteria, who had not been diagnosed with atopic eczema by a doctor and who had no current asthma as defined by the European Community Respiratory Health Survey criteria. Adjustment was made for age, region of residence, number of children, smoking, and education. Results The minor TT genotype of SNP rs1800925 was significantly associated with an increased risk of eczema in the co-dominant model: the adjusted odds ratio was 2.19 (95% confidence interval: 1.03-4.67). SNP rs20541 was not related to eczema. None of the haplotypes were significantly associated with eczema. Compared with women with the CC or CT genotype of SNP rs1800925 who had never smoked, those with the TT genotype who had ever smoked had a 2.85-fold increased risk of eczema, though the adjusted odds ratio was not statistically significant, and neither multiplicative nor additive interaction was statistically significant. Conclusions Our findings suggest that the IL13 SNP rs1800925 is significantly associated with eczema in Japanese young adult women. We could not find evidence for an interaction between SNP rs1800925 and smoking with regard to eczema. PMID:22013915

  17. TGFbeta1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFbeta1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy.

    PubMed

    Rajkumar, Thangarajan; Samson, Mani; Rama, Ranganathan; Sridevi, Veluswami; Mahji, Urmila; Swaminathan, Rajaraman; Nancy, Nirmala K

    2008-11-01

    The breast cancer incidence has been increasing in the south Indian women. A case (n=250)-control (n=500) study was undertaken to investigate the role of Single Nucleotide Polymorphisms (SNP's) in GSTM1 (Present/Null); GSTP1 (Ile105Val), p53 (Arg72Pro), TGFbeta1 (Leu10Pro), c-erbB2 (Ile655Val), and GSTT1 (Null/Present) in breast cancer. In addition, the value of the SNP's in predicting primary tumor's pathologic response following neo-adjuvant chemo-radiotherapy was assessed. Genotyping was done using PCR (GSTM1, GSTT1), Taqman Allelic discrimination assay (GSTP1, c-erbB2) and PCR-CTPP (p53 and TGFbeta1). None of the gene SNP's studied were associated with a statistically significant increased risk for the breast cancer. However, combined analysis of the SNP's showed that p53 (Arg/Arg and Arg/Pro) with TGFbeta1 (Pro/Pro and Leu/Pro) were associated with greater than 2 fold increased risk for breast cancer in Univariate (P=0.01) and Multivariate (P=0.003) analysis. There was no statistically significant association for the GST family members with the breast cancer risk. TGFbeta1 (Pro/Pro) allele was found to predict complete pathologic response in the primary tumour following neo-adjuvant chemo-radiotherapy (OR=6.53 and 10.53 in Univariate and Multivariate analysis respectively) (P=0.004) and was independent of stage. This study suggests that SNP's can help predict breast cancer risk in south Indian women and that TGFbeta1 (Pro/Pro) allele is associated with a better pCR in the primary tumour.

  18. Biochemical and Genetic Markers in Aggressiveness and Recurrence of Prostate Cancer: Race-Specific Links to Inflammation and Insulin Resistance

    DTIC Science & Technology

    2013-07-01

    as a statistical graphic, and Pearson product moment correlation coefficients as measures of the strength of linear association; 4) performing SNP ...determine if there are differences in single nucleotide polymorphisms ( SNPs ) in selected candidate genes implicated in metabolic syndrome, obesity, chronic...samples for the serum and SNP analyses. We have reached a target of 500 patients at the end of year 2; however, some of the patients turned out to be

  19. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  20. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  1. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  2. Partitioned learning of deep Boltzmann machines for SNP data.

    PubMed

    Hess, Moritz; Lenz, Stefan; Blätte, Tamara J; Bullinger, Lars; Binder, Harald

    2017-10-15

    Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case-control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. A Julia package is provided at 'http://github.com/binderh/BoltzmannMachines.jl'. binderh@imbi.uni-freiburg.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Analysis of glutathione S-transferase Pi isoform (GSTP1) single-nucleotide polymorphisms and macular telangiectasia type 2.

    PubMed

    Szental, Joshua A; Baird, Paul N; Richardson, Andrea J; Islam, F M Amirul; Scholl, Hendrik P N; Charbel Issa, Peter; Holz, Frank G; Gillies, Mark; Guymer, Robyn H

    2010-12-01

    Recent imaging studies have suggested that macular pigment is decreased centrally in macular telangiectasia type 2 (MT2). The uptake of xanthophyll pigment into the macula is thought to be facilitated by a xanthophyll-binding protein (XBP). The Pi isoform of glutathione S-transferase (GSTP1) represents one such XBP with high binding affinity. This case-control study aimed to determine whether two common single-nucleotide polymorphisms (SNPs) of GSTP1 were associated with MT2. DNA samples from 39 cases and 21 controls were collected. Two polymorphic sites of Ile105Val and Ala114Val in exons 5 and 6 respectively, of the GSTP1 gene were analysed. Comparison of alleles and genotypes between cases and controls indicated that there were no statistically significant differences for either the Ile105Val SNP (P=0.43) or the Ala114Val SNP (P=0.85), or for any combinations; however, the homozygous at-risk genotype (GG) of the Ile105Val SNP was present in 8% of cases but absent in controls. This study found no statistically significant association between two common GSTP1 SNPs and MT2; however, a trend towards a greater frequency of the GG genotype of the Ile105Val SNP in cases is of great interest. The biological plausibility of disturbed macular pigment uptake in MT2 makes GSTP1 an excellent candidate gene. Further investigation is warranted in future studies of MT2.

  5. Single nucleotide polymorphism coverage and inference of N-acetyltransferase-2 acetylator phenotypes in wordwide population groups.

    PubMed

    Suarez-Kurtz, Guilherme; Fuchshuber-Moraes, Mateus; Struchiner, Claudio J; Parra, Esteban J

    2016-08-01

    Several algorithms have been proposed to reduce the genotyping effort and cost, while retaining the accuracy of N-acetyltransferase-2 (NAT2) phenotype prediction. Data from the 1000 Genomes (1KG) project and an admixed cohort of Black Brazilians were used to assess the accuracy of NAT2 phenotype prediction using algorithms based on paired single nucleotide polymorphisms (SNPs) (rs1041983 and rs1801280) or a tag SNP (rs1495741). NAT2 haplotypes comprising SNPs rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208 and rs1799931 were assigned according to the arylamine N-acetyltransferases database. Contingency tables were used to visualize the agreement between the NAT2 acetylator phenotypes on the basis of these haplotypes versus phenotypes inferred by the prediction algorithms. The paired and tag SNP algorithms provided more than 96% agreement with the 7-SNP derived phenotypes in Europeans, East Asians, South Asians and Admixed Americans, but discordance of phenotype prediction occurred in 30.2 and 24.8% 1KG Africans and in 14.4 and 18.6% Black Brazilians, respectively. Paired SNP panel misclassification occurs in carriers of NATs haplotypes *13A (282T alone), *12B (282T and 803G), *6B (590A alone) and *14A (191A alone), whereas haplotype *14, defined by the 191A allele, is the major culprit of misclassification by the tag allele. Both the paired SNP and the tag SNP algorithms may be used, with economy of scale, to infer NAT2 acetylator phenotypes, including the ultra-slow phenotype, in European, East Asian, South Asian and American populations represented in the 1KG cohort. Both algorithms, however, perform poorly in populations of predominant African descent, including admixed African-Americans, African Caribbeans and Black Brazilians.

  6. Tumor Touch Imprints as Source for Whole Genome Analysis of Neuroblastoma Tumors

    PubMed Central

    Brunner, Clemens; Brunner-Herglotz, Bettina; Ziegler, Andrea; Frech, Christian; Amann, Gabriele; Ladenstein, Ruth; Ambros, Inge M.; Ambros, Peter F.

    2016-01-01

    Introduction Tumor touch imprints (TTIs) are routinely used for the molecular diagnosis of neuroblastomas by interphase fluorescence in-situ hybridization (I-FISH). However, in order to facilitate a comprehensive, up-to-date molecular diagnosis of neuroblastomas and to identify new markers to refine risk and therapy stratification methods, whole genome approaches are needed. We examined the applicability of an ultra-high density SNP array platform that identifies copy number changes of varying sizes down to a few exons for the detection of genomic changes in tumor DNA extracted from TTIs. Material and Methods DNAs were extracted from TTIs of 46 neuroblastoma and 4 other pediatric tumors. The DNAs were analyzed on the Cytoscan HD SNP array platform to evaluate numerical and structural genomic aberrations. The quality of the data obtained from TTIs was compared to that from randomly chosen fresh or fresh frozen solid tumors (n = 212) and I-FISH validation was performed. Results SNP array profiles were obtained from 48 (out of 50) TTI DNAs of which 47 showed genomic aberrations. The high marker density allowed for single gene analysis, e.g. loss of nine exons in the ATRX gene and the visualization of chromothripsis. Data quality was comparable to fresh or fresh frozen tumor SNP profiles. SNP array results were confirmed by I-FISH. Conclusion TTIs are an excellent source for SNP array processing with the advantage of simple handling, distribution and storage of tumor tissue on glass slides. The minimal amount of tumor tissue needed to analyze whole genomes makes TTIs an economic surrogate source in the molecular diagnostic work up of tumor samples. PMID:27560999

  7. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array.

    PubMed

    Hinze, Lori L; Hulse-Kemp, Amanda M; Wilson, Iain W; Zhu, Qian-Hao; Llewellyn, Danny J; Taylor, Jen M; Spriggs, Andrew; Fang, David D; Ulloa, Mauricio; Burke, John J; Giband, Marc; Lacape, Jean-Marc; Van Deynze, Allen; Udall, Joshua A; Scheffler, Jodi A; Hague, Steve; Wendel, Jonathan F; Pepper, Alan E; Frelichowski, James; Lawley, Cindy T; Jones, Don C; Percy, Richard G; Stelly, David M

    2017-02-03

    Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.

  8. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610

  9. A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data.

    PubMed

    Ye, Xin; Wang, Ke; Zou, Yajie; Lord, Dominique

    2018-01-01

    This paper develops a semi-nonparametric Poisson regression model to analyze motor vehicle crash frequency data collected from rural multilane highway segments in California, US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of transportation safety due to higher driving speeds and the resultant severity level. Unlike the traditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model can accommodate an unobserved heterogeneity following a highly flexible semi-nonparametric (SNP) distribution. Simulation experiments are conducted to demonstrate that the SNP distribution can well mimic a large family of distributions, including normal distributions, log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results show that such flexibility offered by the SNP distribution can greatly improve model precision and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better understanding of crash data structure through its ability to capture potential multimodality in the distribution of unobserved heterogeneity. When estimated coefficients in empirical models are compared, SNP and NB models are found to have a substantially different coefficient for the dummy variable indicating the lane width. The SNP model with better statistical performance suggests that the NB model overestimates the effect of lane width on crash frequency reduction by 83.1%.

  10. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  11. Genome-wide Association Mapping of Qualitatively Inherited Traits in a Germplasm Collection.

    PubMed

    Bandillo, Nonoy B; Lorenz, Aaron J; Graef, George L; Jarquin, Diego; Hyten, David L; Nelson, Randall L; Specht, James E

    2017-07-01

    Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting many major genes governing categorically defined phenotype variants that exist for qualitatively inherited traits in a germplasm collection. Genome-wide association mapping was applied to categorical phenotypic data available for 10 descriptive traits in a collection of ∼13,000 soybean [ (L.) Merr.] accessions that had been genotyped with a 50,000 single nucleotide polymorphism (SNP) chip. A GWA on a panel of accessions of this magnitude can offer substantial statistical power and mapping resolution, and we found that GWA mapping resulted in the identification of strong SNP signals for 24 classical genes as well as several heretofore unknown genes controlling the phenotypic variants in those traits. Because some of these genes had been cloned, we were able to show that the narrow GWA mapping SNP signal regions that we detected for the phenotypic variants had chromosomal bp spans that, with just one exception, overlapped the bp region of the cloned genes, despite local variation in SNP number and nonuniform SNP distribution in the chip set. Copyright © 2017 Crop Science Society of America.

  12. Prevalence of metilentetrahidrofolate reductase C677T polymorphism, consumption of vitamins B6, B9, B12 and determination of lipidic hydroperoxides in obese and normal weight Mexican population.

    PubMed

    Hernández-Guerrero, César; Romo-Palafox, Inés; Díaz-Gutiérrez, Mary Carmen; Iturbe-García, Mariana; Texcahua-Salazar, Alejandra; Pérez-Lizaur, Ana Bertha

    2013-11-01

    Oxidative stress is a key factor in the development of the principal comorbidities of obesity. Methylenetetrahydrofolate reductase enzyme (MTHFR) participates in the metabolism of folate with the action of vitamins B6 and B12. The gene of MTHFR may present a single nucleotide polymorphism (SNP) at position 677 (C677T), which can promote homocysteinemia associated to the production of free radicals. To determine the frequency of SNP C677T of the MTHFR, evaluate the consumption of vitamins B6, B9, B12 and determine the concentration of plasma lipid hydroperoxides (LOOH) in obese and control groups. 128 Mexican mestizo according to their body mass index were classified as normal weight (Nw; n=75) and obesity (ObeI-III; n=53). Identification of SNP C677T of MTHFR was performed by PCR-RFLP technic. The consumption of vitamins B6, B9 and B12 was assessed by a validate survey. LOOH was determined as an indicator of peripheral oxidative stress. There was no statistical difference in the frequency of the C677T polymorphism between the TT homozygous genotype in Nw (0.19) and ObeI-III (0.25). The frequency of T allele in Nw was 0.45 and 0.51 in ObI-III group. There were no statistical differences in the consumption of vitamins B6, B9 and B12 between Nw and ObI-III groups. The LOOH showed statistical difference (p < 0.05) between Nw and ObI–III group. Oxidative stress is present in all grades of obesity although there were no differences in the vitamin consumption and the SNP C677T between Nw and ObeI–III groups. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  13. Bootstrap study of genome-enabled prediction reliabilities using haplotype blocks across Nordic Red cattle breeds.

    PubMed

    Cuyabano, B C D; Su, G; Rosa, G J M; Lund, M S; Gianola, D

    2015-10-01

    This study compared the accuracy of genome-enabled prediction models using individual single nucleotide polymorphisms (SNP) or haplotype blocks as covariates when using either a single breed or a combined population of Nordic Red cattle. The main objective was to compare predictions of breeding values of complex traits using a combined training population with haplotype blocks, with predictions using a single breed as training population and individual SNP as predictors. To compare the prediction reliabilities, bootstrap samples were taken from the test data set. With the bootstrapped samples of prediction reliabilities, we built and graphed confidence ellipses to allow comparisons. Finally, measures of statistical distances were used to calculate the gain in predictive ability. Our analyses are innovative in the context of assessment of predictive models, allowing a better understanding of prediction reliabilities and providing a statistical basis to effectively calibrate whether one prediction scenario is indeed more accurate than another. An ANOVA indicated that use of haplotype blocks produced significant gains mainly when Bayesian mixture models were used but not when Bayesian BLUP was fitted to the data. Furthermore, when haplotype blocks were used to train prediction models in a combined Nordic Red cattle population, we obtained up to a statistically significant 5.5% average gain in prediction accuracy, over predictions using individual SNP and training the model with a single breed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    PubMed Central

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  15. Preselection statistics and Random Forest classification identify population informative single nucleotide polymorphisms in cosmopolitan and autochthonous cattle breeds.

    PubMed

    Bertolini, F; Galimberti, G; Schiavo, G; Mastrangelo, S; Di Gerlando, R; Strillacci, M G; Bagnato, A; Portolano, B; Fontanesi, L

    2018-01-01

    Commercial single nucleotide polymorphism (SNP) arrays have been recently developed for several species and can be used to identify informative markers to differentiate breeds or populations for several downstream applications. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this work, we compared several methods of SNPs preselection (Delta, F st and principal component analyses (PCA)) in addition to Random Forest classifications to analyse SNP data from six dairy cattle breeds, including cosmopolitan (Holstein, Brown and Simmental) and autochthonous Italian breeds raised in two different regions and subjected to limited or no breeding programmes (Cinisara, Modicana, raised only in Sicily and Reggiana, raised only in Emilia Romagna). From these classifications, two panels of 96 and 48 SNPs that contain the most discriminant SNPs were created for each preselection method. These panels were evaluated in terms of the ability to discriminate as a whole and breed-by-breed, as well as linkage disequilibrium within each panel. The obtained results showed that for the 48-SNP panel, the error rate increased mainly for autochthonous breeds, probably as a consequence of their admixed origin lower selection pressure and by ascertaining bias in the construction of the SNP chip. The 96-SNP panels were generally more able to discriminate all breeds. The panel derived by PCA-chrom (obtained by a preselection chromosome by chromosome) could identify informative SNPs that were particularly useful for the assignment of minor breeds that reached the lowest value of Out Of Bag error even in the Cinisara, whose value was quite high in all other panels. Moreover, this panel contained also the lowest number of SNPs in linkage disequilibrium. Several selected SNPs are located nearby genes affecting breed-specific phenotypic traits (coat colour and stature) or associated with production traits. In general, our results demonstrated the usefulness of Random Forest in combination to other reduction techniques to identify population informative SNPs.

  16. Predictors of Arterial Blood Pressure Control During Deliberate Hypotension with Sodium Nitroprusside in Children

    PubMed Central

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-01-01

    Background Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. Methods One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical Process Control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. Results BP was controlled an average 45.4% (SD 23.9%, 95% CI 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 mcg•kg−•min− increase in average titration size, p=0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1 mmHg increase in MAP difference, p=0.0013). Both effects persisted in multivariable models. Conclusions : SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although two inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population. PMID:25099924

  17. Predictors of arterial blood pressure control during deliberate hypotension with sodium nitroprusside in children.

    PubMed

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-10-01

    Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical process control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. BP was controlled an average 45.4% (SD 23.9%; 95% CI, 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 μg·kg·min increase in average titration size, P = 0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1-mm Hg increase in MAP difference, P = 0.0013). Both effects persisted in multivariable models. SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although 2 inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population.

  18. Genetic analysis of interleukin 18 gene polymorphisms in alopecia areata.

    PubMed

    Celik, Sumeyya Deniz; Ates, Omer

    2018-06-01

    Alopecia areata (AA), which appears as nonscarring hair shedding on any hair-bearing area, is a common organ-specific autoimmune condition. Cytokines have important roles in the development of AA. Interleukin (IL) 18 is a significant proinflammatory cytokine that was found higher in the patients with AA. We aimed to investigate whether the IL-18 (rs187238 and rs1946518) single nucleotide polymorphisms (SNPs) may be associated with AA and/or clinical outcome of patients with AA in Turkish population. Genotyping of rs187238 and rs1946518 SNPs were detected using sequence-specific primer-polymerase chain reaction (SSP-PCR) method in 200 patients with AA and 200 control subjects. The genotype distribution of rs1946518 (-607C>A) SNP was found to be statistically significantly different among patients with AA and controls (P = .0008). Distribution of CC+CA genotypes and frequency of -607/allele C of rs1946518 SNP were higher in patients with AA (P = .001, P = .001, respectively). The genotype distribution of rs187238 (-137G>C) SNP was found to be statistically significantly different among patients with AA and control subjects (P = .0014). Distribution of GG genotype and frequency of -137/allele G of rs187238 SNP were higher in patients with AA (P = .0003, P = .001, respectively). The rs1946518 (-607C>A) and rs187238 (-137G>C) polymorphisms were found associated with alopecia areata disease. The study suggests that IL-18 rs187238 and rs1946518 SNPs may be the cause of the AA susceptibility. © 2018 Wiley Periodicals, Inc.

  19. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis.

    PubMed

    Reese, Sarah E; Archer, Kellie J; Therneau, Terry M; Atkinson, Elizabeth J; Vachon, Celine M; de Andrade, Mariza; Kocher, Jean-Pierre A; Eckel-Passow, Jeanette E

    2013-11-15

    Batch effects are due to probe-specific systematic variation between groups of samples (batches) resulting from experimental features that are not of biological interest. Principal component analysis (PCA) is commonly used as a visual tool to determine whether batch effects exist after applying a global normalization method. However, PCA yields linear combinations of the variables that contribute maximum variance and thus will not necessarily detect batch effects if they are not the largest source of variability in the data. We present an extension of PCA to quantify the existence of batch effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test whether a batch effect exists. We apply our proposed test statistic derived using gPCA to simulated data and to two copy number variation case studies: the first study consisted of 614 samples from a breast cancer family study using Illumina Human 660 bead-chip arrays, whereas the second case study consisted of 703 samples from a family blood pressure study that used Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties and is able to identify significant batch effects in two copy number variation case studies. We developed a new statistic that uses gPCA to identify whether batch effects exist in high-throughput genomic data. Although our examples pertain to copy number data, gPCA is general and can be used on other data types as well. The gPCA R package (Available via CRAN) provides functionality and data to perform the methods in this article. reesese@vcu.edu

  20. Comparing CNV detection methods for SNP arrays.

    PubMed

    Winchester, Laura; Yau, Christopher; Ragoussis, Jiannis

    2009-09-01

    Data from whole genome association studies can now be used for dual purposes, genotyping and copy number detection. In this review we discuss some of the methods for using SNP data to detect copy number events. We examine a number of algorithms designed to detect copy number changes through the use of signal-intensity data and consider methods to evaluate the changes found. We describe the use of several statistical models in copy number detection in germline samples. We also present a comparison of data using these methods to assess accuracy of prediction and detection of changes in copy number.

  1. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus.

    PubMed

    Demirci, F Yesim K; Manzi, Susan; Ramsey-Goldman, Rosalind; Kenney, Margaret; Shaw, Penny S; Dunlop-Thomas, Charmayne M; Kao, Amy H; Rhew, Elisa Y; Bontempo, Franklin; Kammerer, Candace; Kamboh, M Ilyas

    2007-08-01

    Toll-like receptors (TLR) play an important role in both adaptive and innate immunity. Variations in TLR genes have been shown to be associated with various infectious and inflammatory diseases. We investigated the association of TLR5 (Arg392Stop, rs5744168) and TLR9 (-1237T-->C, rs5743836) single nucleotide polymorphisms (SNP) with systemic lupus erythematosus (SLE) in Caucasian American subjects. We performed a case-control association study and genotyped 409 Caucasian women with SLE and 509 Caucasian healthy female controls using TaqMan allelic discrimination (rs5744168) or polymerase chain reaction-restriction fragment length polymorphism analysis (rs5743836). None of the 2 TLR SNP showed a statistically significant association with SLE risk in our cohort. Our results do not indicate a major influence of these putative functional TLR SNP on the susceptibility to (or protection from) SLE.

  2. Discovery of 20,000 RAD-SNPs and development of a 52-SNP array for monitoring river otters

    Treesearch

    Jeffrey B. Stetz; Seth Smith; Michael A. Sawaya; Alan B. Ramsey; Stephen J. Amish; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Many North American river otter (Lontra canadensis) populations are threatened or recovering but are difficult to study because they occur at low densities, it is difficult to visually identify individuals, and they inhabit aquatic environments that accelerate degradation of biological samples. Single nucleotide polymorphisms (SNPs) can improve our ability to...

  3. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  4. A tool for selecting SNPs for association studies based on observed linkage disequilibrium patterns.

    PubMed

    De La Vega, Francisco M; Isaac, Hadar I; Scafe, Charles R

    2006-01-01

    The design of genetic association studies using single-nucleotide polymorphisms (SNPs) requires the selection of subsets of the variants providing high statistical power at a reasonable cost. SNPs must be selected to maximize the probability that a causative mutation is in linkage disequilibrium (LD) with at least one marker genotyped in the study. The HapMap project performed a genome-wide survey of genetic variation with about a million SNPs typed in four populations, providing a rich resource to inform the design of association studies. A number of strategies have been proposed for the selection of SNPs based on observed LD, including construction of metric LD maps and the selection of haplotype tagging SNPs. Power calculations are important at the study design stage to ensure successful results. Integrating these methods and annotations can be challenging: the algorithms required to implement these methods are complex to deploy, and all the necessary data and annotations are deposited in disparate databases. Here, we present the SNPbrowser Software, a freely available tool to assist in the LD-based selection of markers for association studies. This stand-alone application provides fast query capabilities and swift visualization of SNPs, gene annotations, power, haplotype blocks, and LD map coordinates. Wizards implement several common SNP selection workflows including the selection of optimal subsets of SNPs (e.g. tagging SNPs). Selected SNPs are screened for their conversion potential to either TaqMan SNP Genotyping Assays or the SNPlex Genotyping System, two commercially available genotyping platforms, expediting the set-up of genetic studies with an increased probability of success.

  5. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows.

    PubMed

    Welderufael, B G; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L G; Fikse, W F

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t -test and a genome-wide significance level of P -value < 10 -4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2 ) and genes involved in macrophage recruitment and regulation of inflammations ( PDGFD and PTX3 ) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.

  6. Statistical modelling of growth using a mixed model with orthogonal polynomials.

    PubMed

    Suchocki, T; Szyda, J

    2011-02-01

    In statistical modelling, the effects of single-nucleotide polymorphisms (SNPs) are often regarded as time-independent. However, for traits recorded repeatedly, it is very interesting to investigate the behaviour of gene effects over time. In the analysis, simulated data from the 13th QTL-MAS Workshop (Wageningen, The Netherlands, April 2009) was used and the major goal was the modelling of genetic effects as time-dependent. For this purpose, a mixed model which describes each effect using the third-order Legendre orthogonal polynomials, in order to account for the correlation between consecutive measurements, is fitted. In this model, SNPs are modelled as fixed, while the environment is modelled as random effects. The maximum likelihood estimates of model parameters are obtained by the expectation-maximisation (EM) algorithm and the significance of the additive SNP effects is based on the likelihood ratio test, with p-values corrected for multiple testing. For each significant SNP, the percentage of the total variance contributed by this SNP is calculated. Moreover, by using a model which simultaneously incorporates effects of all of the SNPs, the prediction of future yields is conducted. As a result, 179 from the total of 453 SNPs covering 16 out of 18 true quantitative trait loci (QTL) were selected. The correlation between predicted and true breeding values was 0.73 for the data set with all SNPs and 0.84 for the data set with selected SNPs. In conclusion, we showed that a longitudinal approach allows for estimating changes of the variance contributed by each SNP over time and demonstrated that, for prediction, the pre-selection of SNPs plays an important role.

  7. Exploiting sequence similarity to validate the sensitivity of SNP arrays in detecting fine-scaled copy number variations.

    PubMed

    Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam

    2010-04-15

    High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.

  8. KCNK3 VARIANTS ARE ASSOCIATED WITH HYPERALDOSTERONISM AND HYPERTENSION

    PubMed Central

    Manichaikul, Ani; Rich, Stephen S.; Allison, Matthew A.; Guagliardo, Nick A.; Bayliss, Douglas A.; Carey, Robert M.; Barrett, Paula Q.

    2016-01-01

    Blood pressure (BP) is a complex trait that is the consequence of an interaction between genetic and environmental determinants. Previous studies have demonstrated increased blood pressure in mice with global deletion of TASK-1 channels contemporaneous with diverse dysregulation of aldosterone production. In humans, genome-wide association studies (GWAS) in ~100,000 individuals of European, East Asian and South Asian ancestry identified a single nucleotide polymorphism (SNP) in KCNK3 (the gene encoding TASK-1) associated with mean arterial pressure (MAP). The current study was motivated by the hypotheses that (1) association of KCNK3 SNPs with BP and related traits extends to African Americans and Hispanics, and (2) KCNK3 SNPs exhibit associations with plasma renin activity (PRA) and aldosterone levels. We examined baseline BP measurements for 7,840 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), and aldosterone levels and PRA in a subset of 1,653 MESA participants. We identified statistically significant association of the previously reported KCNK3 SNP (rs1275988) with MAP in MESA African Americans (P=0.024) and a nearby SNP (rs13394970) in MESA Hispanics (P=0.031). We discovered additional KCNK3 SNP associations with systolic BP (SBP), MAP and hypertension. We also identified statistically significant association of KCNK3 rs2586886 with plasma aldosterone level in MESA and demonstrated that global deletion of TASK-1 channels in mice produces a mild-hyperaldosteronism, not associated with a decrease in renin. Our results suggest genetic variation in the KCNK3 gene may contribute to blood pressure variation and less severe hypertensive disorders in which aldosterone may be one of several causative factors. PMID:27296998

  9. [Relationship between nitric oxide in cervical microenvironment and different HPV types and effect on cervical cancer cells].

    PubMed

    Wei, Xue-min; Wang, Qing; Gao, Shu-jun; Sui, Long

    2011-04-01

    To study the relationship between nitric oxide within cervical microenvironment and different HPV types as well as the effect of sodium nitroprusside (SNP), a nitric oxide donor, on the proliferation and apoptosis of cervical cancer cell lines. HPV typing test was assessed from 115 women by using high-risk HPV (HR-HPV) 21 typing test and the release of cervical nitric oxide (NO) was assessed as nitrate, nitrite in cervical fluid. Cervical NO was then compared between women showing different HPV types. Proliferation of Caski and HeLa cervical cells was determined by methyl thiazolyl tetrazolium (MTT) assay, cell apoptosis was detected by flow cytometry after 24 hours treated by different final concentration of SNP (0.125, 0.25, 0.5, 1.0 and 2.0 mmol/L, respectively). The expressions of HPV E6, E7 gene mRNA and p53 protein were detected by SYBR Green I quantitative real-time PCR and western blot. (1) The cervical NO release of women with HR-HPV was higher compared to that in HPV negative women [(47.6±1.4) µmol/L vs (22.8±0.3) µmol/L; P<0.05]; but there was no statistical difference between low-risk HPV (LR-HPV) group [(24.1±1.2) µmol/L] and control group (P>0.05). (2) After 24 hours treated by different final concentration of SNP, the results shown that SNP could inhibited the proliferation and increased apoptosis rate in Caski and HeLa cells, in which the concentration of SNP≥1.0 mmol/L, there were significantly different (P<0.05), while when SNP≥2.0 mmol/L, the proliferation of cells inhibited seriously. Treated by SNP (1.0 mmol/L) 24 hours, the expressions of HPV18 E6, E7 mRNA in HeLa cells were reduced from 27.362±0.191, 22.962±0.053 to 19.181±0.360, 17.571±0.010 and the protein expression of p53 increased from 1.17±0.03 to 0.23±0.05, there were statistically significant differences between adding SNP group and the control group (P<0.05); but there were no statistically significant differences in HPV16 E6, E7 mRNA and that of p53 in Caski cells (P>0.05). The presence of HR-HPV is associated with an increased release of NO in the human uterine cervix; NO could inhibit the growth and proliferation and enhance the apoptosis of cervical cancer cells, inhibit the expression of HPV18 E6, E7 mRNA in HeLa cells and activate the expression of p53 protein, the mechanism may be due to higher sensitivity of HeLa cells (cervical adenocarcinoma cell) to SNP. The increasing release of NO may play a role in regulating the elimination of HPV in cervical microenvironment, which is a part of mucous membrane immunity.

  10. Hypoxia Inducible Factor-2 Alpha and Prolinhydroxylase 2 Polymorphisms in Patients with Acute Respiratory Distress Syndrome (ARDS).

    PubMed

    Dötsch, Annika; Eisele, Lewin; Rabeling, Miriam; Rump, Katharina; Walstein, Kai; Bick, Alexandra; Cox, Linda; Engler, Andrea; Bachmann, Hagen S; Jöckel, Karl-Heinz; Adamzik, Michael; Peters, Jürgen; Schäfer, Simon T

    2017-06-14

    Hypoxia-inducible-factor-2α (HIF-2α) and HIF-2 degrading prolyl-hydroxylases (PHD) are key regulators of adaptive hypoxic responses i.e., in acute respiratory distress syndrome (ARDS). Specifically, functionally active genetic variants of HIF-2α (single nucleotide polymorphism (SNP) [ch2:46441523(hg18)]) and PHD2 (C/T; SNP rs516651 and T/C; SNP rs480902) are associated with improved adaptation to hypoxia i.e., in high-altitude residents. However, little is known about these SNPs' prevalence in Caucasians and impact on ARDS-outcome. Thus, we tested the hypotheses that in Caucasian ARDS patients SNPs in HIF-2α or PHD2 genes are (1) common, and (2) independent risk factors for 30-day mortality. After ethics-committee approval, 272 ARDS patients were prospectively included, genotyped for PHD2 (Taqman SNP Genotyping Assay) and HIF-2α -polymorphism (restriction digest + agarose-gel visualization), and genotype dependent 30-day mortality was analyzed using Kaplan-Meier-plots and multivariate Cox-regression analyses. Frequencies were 99.62% for homozygous HIF-2α CC-carriers (CG: 0.38%; GG: 0%), 2.3% for homozygous PHD2 SNP rs516651 TT-carriers (CT: 18.9%; CC: 78.8%), and 3.7% for homozygous PHD2 SNP rs480902 TT-carriers (CT: 43.9%; CC: 52.4%). PHD2 rs516651 TT-genotype in ARDS was independently associated with a 3.34 times greater mortality risk (OR 3.34, CI 1.09-10.22; p = 0.034) within 30-days, whereas the other SNPs had no significant impact ( p = ns). The homozygous HIF-2α GG-genotype was not present in our Caucasian ARDS cohort; however PHD2 SNPs exist in Caucasians, and PHD2 rs516651 TT-genotype was associated with an increased 30-day mortality suggesting a relevance for adaptive responses in ARDS.

  11. Mutation screening in the Greek population and evaluation of NLGN3 and NLGN4X genes causal factors for autism.

    PubMed

    Volaki, Konstantina; Pampanos, Andreas; Kitsiou-Tzeli, Sophia; Vrettou, Christina; Oikonomakis, Vasilis; Sofocleous, Christalena; Kanavakis, Emmanuel

    2013-10-01

    Molecular and neurobiological evidence for the involvement of neuroligins (particularly NLGN3 and NLGN4X genes) in autistic disorder is accumulating. However, previous mutation screening studies on these two genes have yielded controversial results. The present study explores, for the first time, the contribution of NLGN3 and NLGN4X genetic variants in Greek patients with autistic disorder. We analyzed the full exonic sequence of NLGN3 and NLGN4X genes in 40 patients strictly fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for autistic disorder. We identified nine nucleotide changes in NLGN4X--one probable causative mutation (p.K378R) previously reported by our research group, one novel variant (c.-206G>C), one nonvalidated single nucleotide polymorphism (SNP, rs111953947), and six known human SNPs reported in the SNP database--and one known human SNP in NLGN3 also reported in the SNP database. The variants identified are expected to be benign. However, they should be investigated in the context of variants in interacting cellular pathways to assess their contribution to the etiology of autism.

  12. SNP-VISTA: An Interactive SNPs Visualization Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.

    2005-07-05

    Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmentalmore » samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.« less

  13. Nitrosative stress uncovers potent β2-adrenergic receptor-linked vasodilation further enhanced by blockade of clathrin endosome formation.

    PubMed

    Frame, Mary D; Dewar, Anthony M; Calizo, Rhodora C; Qifti, Androniqi; Scarlata, Suzanne F

    2018-06-01

    This study investigated the effect of sodium nitroprusside (SNP) preexposure on vasodilation via the β-adrenergic receptor (BAR) system. SNP was used as a nitrosative/oxidative proinflammatory insult. Small arterioles were visualized by intravital microscopy in the hamster cheek pouch tissue (isoflurane, n = 45). Control dilation to isoproterenol (EC 50 : 10 -7 mol/l) became biphasic as a function of concentration after 2 min of exposure to SNP (10 -4 M), with increased potency at picomolar dilation uncovered and decreased efficacy at the micromolar dilation. Control dilation to curcumin was likewise altered after SNP, but only the increased potency at a low dose was uncovered, whereas micromolar dilation was eliminated. The picomolar dilations were blocked by the potent BAR-2 inverse agonist carazolol (10 -9 mol/l). Dynamin inhibition with dynasore mimicked this effect, suggesting that SNP preexposure prevented BAR agonist internalization. Using HeLa cells transfected with BAR-2 tagged with monomeric red fluorescent protein, exposure to 10 -8 -10 -6 mol/l curcumin resulted in internalization and colocalization of BAR-2 and curcumin (FRET) that was prevented by oxidative stress (10 -3 mol/l CoCl 2 ), supporting that stress prevented internalization of the BAR agonist with the micromolar agonist. This study presents novel data supporting that distinct pools of BARs are differentially available after inflammatory insult. NEW & NOTEWORTHY Preexposure to an oxidative/nitrosative proinflammatory insult provides a "protective preconditioning" against future oxidative damage. We examined immediate vasoactive and molecular consequences of a brief preexposure via β-adrenergic receptor signaling in small arterioles. Blocked receptor internalization with elevated reactive oxygen levels coincides with a significant and unexpected vasodilation to β-adrenergic agonists at picomolar doses.

  14. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    PubMed

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  15. SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.

    PubMed

    Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi

    2017-09-14

    The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Genome-wide association analysis to identify genotype × environment interaction for milk protein yield and level of somatic cell score as environmental descriptors in German Holsteins.

    PubMed

    Streit, M; Reinhardt, F; Thaller, G; Bennewitz, J

    2013-01-01

    Genotype by environment interaction (G × E) has been widely reported in dairy cattle. If the environment can be measured on a continuous scale, reaction norms can be applied to study G × E. The average herd milk production level has frequently been used as an environmental descriptor because it is influenced by the level of feeding or the feeding regimen. Another important environmental factor is the level of udder health and hygiene, for which the average herd somatic cell count might be a descriptor. In the present study, we conducted a genome-wide association analysis to identify single nucleotide polymorphisms (SNP) that affect intercept and slope of milk protein yield reaction norms when using the average herd test-day solution for somatic cell score as an environmental descriptor. Sire estimates for intercept and slope of the reaction norms were calculated from around 12 million daughter records, using linear reaction norm models. Sires were genotyped for ~54,000 SNP. The sire estimates were used as observations in the association analysis, using 1,797 sires. Significant SNP were confirmed in an independent validation set consisting of 500 sires. A known major gene affecting protein yield was included as a covariable in the statistical model. Sixty (21) SNP were confirmed for intercept with P ≤ 0.01 (P ≤ 0.001) in the validation set, and 28 and 11 SNP, respectively, were confirmed for slope. Most but not all SNP affecting slope also affected intercept. Comparison with an earlier study revealed that SNP affecting slope were, in general, also significant for slope when the environment was modeled by the average herd milk production level, although the two environmental descriptors were poorly correlated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows

    PubMed Central

    Welderufael, B. G.; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L. G.; Fikse, W. F.

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to – but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to – or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to – and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to – and recoverability from mastitis. PMID:29755506

  18. Familiality and SNP heritability of age at onset and episodicity in major depressive disorder.

    PubMed

    Ferentinos, P; Koukounari, A; Power, R; Rivera, M; Uher, R; Craddock, N; Owen, M J; Korszun, A; Jones, L; Jones, I; Gill, M; Rice, J P; Ising, M; Maier, W; Mors, O; Rietschel, M; Preisig, M; Binder, E B; Aitchison, K J; Mendlewicz, J; Souery, D; Hauser, J; Henigsberg, N; Breen, G; Craig, I W; Farmer, A E; Müller-Myhsok, B; McGuffin, P; Lewis, C M

    2015-07-01

    Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.

  19. WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations

    PubMed Central

    Wangkumhang, Pongsakorn; Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Ruangrit, Uttapong; Chanprasert, Juntima; Assawamakin, Anunchai; Tongsima, Sissades

    2007-01-01

    Background Allele-specific (AS) Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs) and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end) base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG) draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number), this tool facilitates the awkward process of getting flanking sequences and other related information from public SNP databases. It takes into account the underlying destabilizing effect to ensure the effectiveness of designed primers. With user-friendly SVG interface, WASP intuitively presents resulting designed primers, which assist users to export or to make further adjustment to the design. This software can be freely accessed at . PMID:17697334

  20. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    PubMed

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.

  1. MTHFR gene polymorphism and risk of myeloid leukemia: a meta-analysis.

    PubMed

    Dong, Song; Liu, Yueling; Chen, Jieping

    2014-09-01

    An increasing body of evidence has shown that the amino acid changes at position 1298 might eliminate methylenetetrahydrofolate reductase (MTHFR) enzyme activity, leading to insufficient folic acid and subsequent human chromosome breakage. Epidemiological studies have linked MTHFR single-nucleotide polymorphism (SNP) rs1801131 to myeloid leukemia risk, with considerable discrepancy in their results. We therefore were prompted to clarify this issue by use of a meta-analysis. The search terms were used to cover the possible reports in the MEDLINE, Web of Knowledge, and China National Knowledge Infrastructure (CNKI) databases. Odds ratios were estimated to assess the association of SNP rs1801131 with myeloid leukemia risk. Statistical heterogeneity was detected using the Q-statistic and I (2) metric. Subgroup analysis was performed by ethnicity, histological subtype, and Hardy-Weinberg equilibrium (HWE). This meta-analysis of eight publications with a total of 1,114 cases and 3,227 controls revealed no global association. Nor did the subgroup analysis according to histological subtype and HWE show any significant associations. However, Asian individuals who harbored the CC genotype were found to have 1.66-fold higher risk of myeloid leukemia (odds ratio, 1.66; 95 % confidence interval, 1.10 to 2.49; P h = 0.342; I (2) = 0.114). Our meta-analysis has presented evidence supporting a possible association between the CC genotype of MTHFR SNP rs1801131 and myeloid leukemia in Asian populations.

  2. CONAN: copy number variation analysis software for genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at. PMID:20546565

  3. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease

    PubMed Central

    Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A.G.

    2016-01-01

    Abstract Background/aims: Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Methods: We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. Results: The meta-analysis included 4 eligible case–control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene–dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46–0.81) for the total group, and 0.63 (0.45–0.88) for Caucasian patients. Conclusion: The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD. PMID:27399132

  4. Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS

    PubMed Central

    Wang, Yunpeng; Thompson, Wesley K.; Schork, Andrew J.; Holland, Dominic; Chen, Chi-Hua; Bettella, Francesco; Desikan, Rahul S.; Li, Wen; Witoelar, Aree; Zuber, Verena; Devor, Anna; Nöthen, Markus M.; Rietschel, Marcella; Chen, Qiang; Werge, Thomas; Cichon, Sven; Weinberger, Daniel R.; Djurovic, Srdjan; O’Donovan, Michael; Visscher, Peter M.; Andreassen, Ole A.; Dale, Anders M.

    2016-01-01

    Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic (“z-score”) of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a “relative enrichment score” for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3. PMID:26808560

  5. Analysis of RANKL gene polymorphism (rs9533156 and rs2277438) in Iranian patients with chronic periodontitis and periimplantitis.

    PubMed

    Kadkhodazadeh, Mahdi; Ebadian, Ahmad Reza; Gholami, Gholam Ali; Khosravi, Alireza; Tabari, Zahra Alizadeh

    2013-05-01

    RANK/OPG/RANKL pathway plays a significant role in osteoclastogenesis, osteoclast activation, and regulation of bone resorption. The aim of this study was to investigate the association of RANKL gene polymorphisms (rs9533156 and rs2277438) with chronic periodontitis and peri-implantitis in an Iranian population. 77 patients with chronic periodontitis, 40 patients with peri-implantitis and 89 periodontally healthy patients were enrolled in this study. 5cc of blood was obtained from the cephalic vein of subjects arms and transferred into tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP) technique. Differences in the frequencies of genotypes and alleles in the disease and control groups were analyzed using Chi-square and Fisher's exact statistical tests. Comparison of frequency of alleles in SNP rs9533156 of RANKL gene between the chronic periodontitis group with the control and peri-implantitis groups revealed statistically significant differences (P=0.024 and P=0.027, respectively). Comparison of genotype expression of SNP rs9533156 on RANKL gene between the peri-implantitis group with chronic periodontitis and control groups revealed statistically significant differences (P=0.001); the prevalence of CT genotype was significantly higher amongst the chronic periodontitis group. Regarding SNP rs2277438 of RANKL gene, comparison of prevalence of genotypes and frequency of alleles did not reveal any significant differences (P=0.641/P=0.537, respectively). The results of this study indicate that CT genotype of rs9533156 RANKL gene polymorphism was significantly associated with peri-implantitis, and may be considered as a genetic determinant for peri-implantitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Successful treatment with adalimumab for severe multifocal choroiditis and panuveitis in presumed (early-onset) ocular sarcoidosis.

    PubMed

    Achille, Marino; Ilaria, Pagnini; Teresa, Giani; Roberto, Caputo; Ilir, Arapi; Piergiorgio, Neri; Rolando, Cimaz; Gabriele, Simonini

    2016-02-01

    Early-onset sarcoidosis (EOS) and Blau syndrome are rare auto-inflammatory diseases characterized by a triad of skin rash, granulomatous uveitis, and symmetrical polyarthritis occurring in early childhood. In this paper, we describe a case report very interesting for the multidisciplinary management (pediatric rheumatologist and ophthalmologist), the challenging diagnosis and the difficult choice of the best treatment. We describe a case report of an 8-year old with recurrent episodes of acute uveitis that developed bilateral granulomatous panuveitis initially treated with topical and systemic steroids. Genetic testing for NOD2/CARD15 revealed a heterozygous mutation on exon 4 in the NBD domain (P268S/SNP5). Therefore, an incomplete EOS was suspected. Because uveitis worsening with multifocal chorioretinitis aggravation, intravenous boluses of methylprednisolone were administered. During the steroids tapering, she flared again, and methotrexate was started along with corticosteroids pulse therapy. However, new ocular granuloma appeared, macular oedema with poor visual outcome occurred, and therefore, adalimumab was added to MTX and steroids. After 6 months since the new therapy started, she had a complete visual recovery, and she was able to stop steroid treatment. At 2 years of follow-up, she is still in remission on treatment, and her visual acuity is normal. No side effects were observed. In our patient, we found a heterozygous mutation on exon 4 in the NBD domain (P268S/SNP5) of NOD2/CARD15 gene and an incomplete EOS was hypothesized. The role of this variant is currently under study. Adalimumab use dramatically changed the course of eye disease, prompting to stop steroid treatment and preserving visual acuity.

  7. DISTMIX: direct imputation of summary statistics for unmeasured SNPs from mixed ethnicity cohorts.

    PubMed

    Lee, Donghyung; Bigdeli, T Bernard; Williamson, Vernell S; Vladimirov, Vladimir I; Riley, Brien P; Fanous, Ayman H; Bacanu, Silviu-Alin

    2015-10-01

    To increase the signal resolution for large-scale meta-analyses of genome-wide association studies, genotypes at unmeasured single nucleotide polymorphisms (SNPs) are commonly imputed using large multi-ethnic reference panels. However, the ever increasing size and ethnic diversity of both reference panels and cohorts makes genotype imputation computationally challenging for moderately sized computer clusters. Moreover, genotype imputation requires subject-level genetic data, which unlike summary statistics provided by virtually all studies, is not publicly available. While there are much less demanding methods which avoid the genotype imputation step by directly imputing SNP statistics, e.g. Directly Imputing summary STatistics (DIST) proposed by our group, their implicit assumptions make them applicable only to ethnically homogeneous cohorts. To decrease computational and access requirements for the analysis of cosmopolitan cohorts, we propose DISTMIX, which extends DIST capabilities to the analysis of mixed ethnicity cohorts. The method uses a relevant reference panel to directly impute unmeasured SNP statistics based only on statistics at measured SNPs and estimated/user-specified ethnic proportions. Simulations show that the proposed method adequately controls the Type I error rates. The 1000 Genomes panel imputation of summary statistics from the ethnically diverse Psychiatric Genetic Consortium Schizophrenia Phase 2 suggests that, when compared to genotype imputation methods, DISTMIX offers comparable imputation accuracy for only a fraction of computational resources. DISTMIX software, its reference population data, and usage examples are publicly available at http://code.google.com/p/distmix. dlee4@vcu.edu Supplementary Data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  8. Influence of TP53 Codon 72 Polymorphism Alone or in Combination with HDM2 SNP309 on Human Infertility and IVF Outcome.

    PubMed

    Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru

    2016-01-01

    To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.

  9. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.

    PubMed

    Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C

    2003-09-30

    Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.

  10. Selection of Phototransduction Genes in Homo sapiens.

    PubMed

    Christopher, Mark; Scheetz, Todd E; Mullins, Robert F; Abràmoff, Michael D

    2013-08-13

    We investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level. SNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively. Six of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes. There is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.

  11. Association of MEOX2 polymorphism with nonsyndromic cleft palate only in a Vietnamese population.

    PubMed

    Tran, Duy L; Imura, Hideto; Mori, Akihiro; Suzuki, Satoshi; Niimi, Teruyuki; Ono, Maya; Sakuma, Chisato; Nakahara, Shinichi; Nguyen, Tham T H; Pham, Phuong T; Hoang, Viet; Tran, Van T T; Nguyen, Minh D; Natsume, Nagato

    2017-10-14

    To evaluate the association between the single nucleotide polymorphism (SNP) rs227493 in the MEOX2 gene and nonsyndromic cleft palate only, this research was conducted as a case-control study by comparing a nonsyndromic cleft palate only group with an independent, healthy, and unaffected control group who were both examined by specialists. Based on clinical examination and medical records, we analyzed a total of 570 DNA samples, including 277 cases and 293 controls, which were extracted from dry blood spot samples collected from both the Odonto and Maxillofacial Hospital in Ho Chi Minh City and Nguyen Dinh Chieu Hospital in Ben Tre province, respectively. The standard procedures of genotyping the specific SNP (rs2237493) for MEOX2 were performed on a StepOne Realtime PCR system with TaqMan SNP Genotyping Assays. Significant statistical differences were observed in allelic frequencies (allele T and allele G) between the non-syndromic cleft palate only and control groups in female subjects, with an allelic odds ratio of 1.455 (95% confidence interval: 1.026-2.064) and P < 0.05. These study findings suggest that nonsyndromic isolated cleft palate might be influenced by variation of MEOX2, especially SNP rs2237493 in Vietnamese females. © 2017 Japanese Teratology Society.

  12. GPHMM: an integrated hidden Markov model for identification of copy number alteration and loss of heterozygosity in complex tumor samples using whole genome SNP arrays

    PubMed Central

    Li, Ao; Liu, Zongzhi; Lezon-Geyda, Kimberly; Sarkar, Sudipa; Lannin, Donald; Schulz, Vincent; Krop, Ian; Winer, Eric; Harris, Lyndsay; Tuck, David

    2011-01-01

    There is an increasing interest in using single nucleotide polymorphism (SNP) genotyping arrays for profiling chromosomal rearrangements in tumors, as they allow simultaneous detection of copy number and loss of heterozygosity with high resolution. Critical issues such as signal baseline shift due to aneuploidy, normal cell contamination, and the presence of GC content bias have been reported to dramatically alter SNP array signals and complicate accurate identification of aberrations in cancer genomes. To address these issues, we propose a novel Global Parameter Hidden Markov Model (GPHMM) to unravel tangled genotyping data generated from tumor samples. In contrast to other HMM methods, a distinct feature of GPHMM is that the issues mentioned above are quantitatively modeled by global parameters and integrated within the statistical framework. We developed an efficient EM algorithm for parameter estimation. We evaluated performance on three data sets and show that GPHMM can correctly identify chromosomal aberrations in tumor samples containing as few as 10% cancer cells. Furthermore, we demonstrated that the estimation of global parameters in GPHMM provides information about the biological characteristics of tumor samples and the quality of genotyping signal from SNP array experiments, which is helpful for data quality control and outlier detection in cohort studies. PMID:21398628

  13. VEGFA and VEGFR2 gene polymorphisms and response to anti-vascular endothelial growth factor therapy: comparison of age-related macular degeneration treatments trials (CATT).

    PubMed

    Hagstrom, Stephanie A; Ying, Gui-shuang; Pauer, Gayle J T; Sturgill-Short, Gwen M; Huang, Jiayan; Maguire, Maureen G; Martin, Daniel F

    2014-05-01

    Individual variation in response and duration of anti-vascular endothelial growth factor (VEGF) therapy is seen among patients with neovascular age-related macular degeneration. Identification of genetic markers that affect clinical response may result in optimization of anti-VEGF therapy. To evaluate the pharmacogenetic relationship between genotypes of single-nucleotide polymorphisms (SNPs) in the VEGF signaling pathway and response to treatment with ranibizumab or bevacizumab for neovascular age-related macular degeneration. In total, 835 of 1149 patients (72.7%) participating in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT) at 43 CATT clinical centers. Each patient was genotyped for 7 SNPs in VEGFA (rs699946, rs699947, rs833069, rs833070, rs1413711, rs2010963, and rs2146323) and 1 SNP in VEGFR2 (rs2071559) using TaqMan SNP genotyping assays. Genotypic frequencies were compared with clinical measures of response to therapy at 1 year, including the mean visual acuity, mean change in visual acuity, at least a 15-letter increase, retinal thickness, mean change in total foveal thickness, presence of fluid on optical coherence tomography, presence of leakage on fluorescein angiography, mean change in lesion size, and mean number of injections administered. Differences in response by genotype were evaluated with tests of linear trend calculated from logistic regression models for categorical outcomes and linear regression models for continuous outcomes. The method of controlling the false discovery rate was used to adjust for multiple comparisons. For each of the measures of visual acuity evaluated, no association was observed with any of the genotypes or with the number of risk alleles. Four VEGFA SNPs demonstrated an association with retinal thickness: rs699947 (P = .03), rs833070 (P = .04), rs1413711 (P = .045), and rs2146323 (P = .006). However, adjusted P values for these associations were all statistically nonsignificant (range, P = .24 to P = .45). Among the participants in 2 as-needed groups, no association was found in the number of injections among the different genotypes or for the total number of risk alleles. The effect of risk alleles on each clinical measure did not differ by treatment group, drug, or dosing regimen (P > .01 for all). This study provides evidence that no pharmacogenetic associations exist between the studied VEGFA and VEGFR2 SNPs and response to anti-VEGF therapy. clinicaltrials.gov Identifier: NCT00593450.

  14. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.

    PubMed

    Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P

    2017-06-01

    Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using 300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples.

  15. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    PubMed Central

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232

  16. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies.

    PubMed

    Yang, Tsun-Po; Beazley, Claude; Montgomery, Stephen B; Dimas, Antigone S; Gutierrez-Arcelus, Maria; Stranger, Barbara E; Deloukas, Panos; Dermitzakis, Emmanouil T

    2010-10-01

    Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. http://www.sanger.ac.uk/resources/software/genevar.

  17. [Association analysis of SNP-63 and indel-19 variant in the calpain-10 gene with polycystic ovary syndrome in women of reproductive age].

    PubMed

    Flores-Martínez, Silvia Esperanza; Castro-Martínez, Anna Gabriela; López-Quintero, Andrés; García-Zapién, Alejandra Guadalupe; Torres-Rodríguez, Ruth Noemí; Sánchez-Corona, José

    2015-01-01

    Polycystic ovary syndrome is a complex and heterogeneous disease involving both reproductive and metabolic problems. It has been suggested a genetic predisposition in the etiology of this syndrome. The identification of calpain-10 gene (CAPN10) as the first candidate gene for type 2 diabetes mellitus, has focused the interest in investigating their possible relation with the polycystic ovary syndrome, because this syndrome is associated with hyperinsulinemia and insulin resistance, two metabolic abnormalities associated with type 2 diabetes mellitus. To investigate if there is association between the SNP-63 and the variant indel-19 of the CAPN10 gene and polycystic ovary syndrome in women of reproductive age. This study included 101 women (55 with polycystic ovary syndrome and 46 without polycystic ovary syndrome). The genetic variant indel-19 was identified by electrophoresis of the amplified fragments by PCR, and the SNP-63 by PCR-RFLP. The allele and genotype frequencies of the two variants do not differ significatly between women with polycystic ovary syndrome and control women group. The haplotype 21 (defined by the insertion allele of indel-19 variant and C allele of SNP-63) was found with higher frequency in both study groups, being more frequent in the polycystic ovary syndrome patients group, however, this difference was not statistically significant (p = 0.8353). The results suggest that SNP-63 and indel-19 variant of the CAPN10 gene do not represent a risk factor for polycystic ovary syndrome in our patients group. Copyright © 2015. Published by Masson Doyma México S.A.

  18. In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    PubMed Central

    Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe

    2010-01-01

    Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950

  19. Genotype-Phenotype Analysis, Neuropsychological Assessment, and Growth Hormone Response in a Patient with 18p Deletion Syndrome.

    PubMed

    Sun, Huihui; Wan, Naijun; Wang, Xinli; Chang, Liang; Cheng, Dazhi

    2018-01-01

    18p deletion syndrome is a rare chromosomal disease caused by deletion of the short arm of chromosome 18. By using cytogenetic and SNP array analysis, we identified a girl with 18p deletion syndrome exhibiting craniofacial anomalies, intellectual disability, and short stature. G-banding analysis of metaphase cells revealed an abnormal karyotype 46,XX,del(18)(p10). Further, SNP array detected a 15.3-Mb deletion at 18p11.21p11.32 (chr18:12842-15375878) including 61 OMIM genes. Genotype-phenotype correlation analysis showed that clinical manifestations of the patient were correlated with LAMA1, TWSG1, and GNAL deletions. Her neuropsychological assessment test demonstrated delay in most cognitive functions including impaired mathematics, linguistic skills, visual motor perception, respond speed, and executive function. Meanwhile, her integrated visual and auditory continuous performance test (IVA-CPT) indicated a severe comprehensive attention deficit. At age 7 and 1/12 years, her height was 110.8 cm (-2.5 SD height for age). Growth hormone (GH) treatment was initiated. After 27 months treatment, her height was increased to 129.6 cm (-1.0 SD height for age) at 9 and 4/12 years, indicating an effective response to GH treatment. © 2018 S. Karger AG, Basel.

  20. Gene- and pathway-based association tests for multiple traits with GWAS summary statistics.

    PubMed

    Kwak, Il-Youp; Pan, Wei

    2017-01-01

    To identify novel genetic variants associated with complex traits and to shed new insights on underlying biology, in addition to the most popular single SNP-single trait association analysis, it would be useful to explore multiple correlated (intermediate) traits at the gene- or pathway-level by mining existing single GWAS or meta-analyzed GWAS data. For this purpose, we present an adaptive gene-based test and a pathway-based test for association analysis of multiple traits with GWAS summary statistics. The proposed tests are adaptive at both the SNP- and trait-levels; that is, they account for possibly varying association patterns (e.g. signal sparsity levels) across SNPs and traits, thus maintaining high power across a wide range of situations. Furthermore, the proposed methods are general: they can be applied to mixed types of traits, and to Z-statistics or P-values as summary statistics obtained from either a single GWAS or a meta-analysis of multiple GWAS. Our numerical studies with simulated and real data demonstrated the promising performance of the proposed methods. The methods are implemented in R package aSPU, freely and publicly available at: https://cran.r-project.org/web/packages/aSPU/ CONTACT: weip@biostat.umn.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Statistical Genomic Approach Identifies Association between FSHR Polymorphisms and Polycystic Ovary Morphology in Women with Polycystic Ovary Syndrome

    PubMed Central

    Du, Tao; Duan, Yu; Li, Kaiwen; Zhao, Xiaomiao; Ni, Renmin; Li, Yu; Yang, Dongzi

    2015-01-01

    Background. Single-nucleotide polymorphisms (SNPs) in the follicle stimulating hormone receptor (FSHR) gene are associated with PCOS. However, their relationship to the polycystic ovary (PCO) morphology remains unknown. This study aimed to investigate whether PCOS related SNPs in the FSHR gene are associated with PCO in women with PCOS. Methods. Patients were grouped into PCO (n = 384) and non-PCO (n = 63) groups. Genomic genotypes were profiled using Affymetrix human genome SNP chip 6. Two polymorphisms (rs2268361 and rs2349415) of FSHR were analyzed using a statistical approach. Results. Significant differences were found in the allele distributions of the GG genotype of rs2268361 between the PCO and non-PCO groups (27.6% GG, 53.4% GA, and 19.0% AA versus 33.3% GG, 36.5% GA, and 30.2% AA), while no significant differences were found in the allele distributions of the GG genotype of rs2349415. When rs2268361 was considered, there were statistically significant differences of serum follicle stimulating hormone, estradiol, and sex hormone binding globulin between genotypes in the PCO group. In case of the rs2349415 SNP, only serum sex hormone binding globulin was statistically different between genotypes in the PCO group. Conclusions. Functional variants in FSHR gene may contribute to PCO susceptibility in women with PCOS. PMID:26273622

  2. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.

    PubMed

    Liley, James; Wallace, Chris

    2015-02-01

    Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.

  3. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    PubMed

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. SSGP: SNP-set based genomic prediction to incorporate biological information

    USDA-ARS?s Scientific Manuscript database

    Genomic prediction has emerged as an effective approach in plant and animal breeding and in precision medicine. Much research has been devoted to an improved accuracy in genomic prediction, and one of the potential ways is to incorporate biological information. Due to the statistical and computation...

  5. Evaluation of 41 Candidate Gene Variants for Obesity in the EPIC-Potsdam Cohort by Multi-Locus Stepwise Regression

    PubMed Central

    Knüppel, Sven; Rohde, Klaus; Meidtner, Karina; Drogan, Dagmar; Holzhütter, Hermann-Georg; Boeing, Heiner; Fisher, Eva

    2013-01-01

    Objective Obesity has become a leading preventable cause of morbidity and mortality in many parts of the world. It is thought to originate from multiple genetic and environmental determinants. The aim of the current study was to introduce haplotype-based multi-locus stepwise regression (MSR) as a method to investigate combinations of unlinked single nucleotide polymorphisms (SNPs) for obesity phenotypes. Methods In 2,122 healthy randomly selected men and women of the EPIC-Potsdam cohort, the association between 41 SNPs from 18 obesity-candidate genes and either body mass index (BMI, mean = 25.9 kg/m2, SD = 4.1) or waist circumference (WC, mean = 85.2 cm, SD = 12.6) was assessed. Single SNP analyses were done by using linear regression adjusted for age, sex, and other covariates. Subsequently, MSR was applied to search for the ‘best’ SNP combinations. Combinations were selected according to specific AICc and p-value criteria. Model uncertainty was accounted for by a permutation test. Results The strongest single SNP effects on BMI were found for TBC1D1 rs637797 (β = −0.33, SE = 0.13), FTO rs9939609 (β = 0.28, SE = 0.13), MC4R rs17700144 (β = 0.41, SE = 0.15), and MC4R rs10871777 (β = 0.34, SE = 0.14). All these SNPs showed similar effects on waist circumference. The two ‘best’ six-SNP combinations for BMI (global p-value = 3.45⋅10–6 and 6.82⋅10–6) showed effects ranging from −1.70 (SE = 0.34) to 0.74 kg/m2 (SE = 0.21) per allele combination. We selected two six-SNP combinations on waist circumference (global p-value = 7.80⋅10–6 and 9.76⋅10–6) with an allele combination effect of −2.96 cm (SE = 0.76) at maximum. Additional adjustment for BMI revealed 15 three-SNP combinations (global p-values ranged from 3.09⋅10–4 to 1.02⋅10–2). However, after carrying out the permutation test all SNP combinations lost significance indicating that the statistical associations might have occurred by chance. Conclusion MSR provides a tool to search for risk-related SNP combinations of common traits or diseases. However, the search process does not always find meaningful SNP combinations in a dataset. PMID:23874820

  6. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters

    PubMed Central

    2015-01-01

    Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. Conclusions Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine. PMID:26694100

  7. Case-control study of IL13 polymorphisms, smoking, and rhinoconjunctivitis in Japanese women: the Kyushu Okinawa Maternal and Child Health Study

    PubMed Central

    2011-01-01

    Background Six previous studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and allergic rhinitis, but the results have been inconsistent. However, a recent meta-analysis using data from these 6 studies has shown that the A allele of IL13 SNP rs20541 was associated with an increased risk of allergic rhinitis, whereas no such relationship existed between IL13 SNP rs1800925 and allergic rhinitis. We investigated the associations between IL13 SNPs rs1800925 and rs20541 and the risk of rhinoconjunctivitis in Japanese women. Methods Included were 393 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for rhinoconjunctivitis. Control subjects were 767 women without rhinoconjunctivitis according to the ISAAC criteria, who had also not been diagnosed with allergic rhinitis by a doctor. Adjustment was made for age, region of residence, presence of older siblings, smoking, family history of allergic rhinitis, and education. Results Compared with the GG genotype of IL13 SNP rs20541, the AA genotype, occurring in 7.1% of control subjects, was significantly positively related to the risk of rhinoconjunctivitis: the adjusted odds ratio was 1.65 (95% confidence interval: 1.05 - 2.60). SNP rs1800925 was not associated with rhinoconjunctivitis. The haplotype comprising the rs1800925 C allele and the rs20541 A allele was significantly positively related to rhinoconjunctivitis. The multiplicative interactions between the two SNPs under study and smoking on the risk of rhinoconjunctivitis were not statistically significant. Based on the recessive model, however, the additive interaction between SNP rs1800925, but not rs20541, and smoking was significant. Conclusions This study suggests that the minor genotype of IL13 SNP rs20541 and the CA haplotype are significantly positively associated with the risk of rhinoconjunctivitis. In addition, a new pattern of biological interaction that affects the risk of rhinoconjunctivitis is described between SNP rs1800925 and smoking. PMID:22023794

  8. A Genetic Variant in TGFBR3-CDC7 Is Associated with Visual Field Progression in Primary Open-Angle Glaucoma Patients from Singapore.

    PubMed

    Trikha, Sameer; Saffari, Ehsan; Nongpiur, Monisha; Baskaran, Mani; Ho, Henrietta; Li, Zheng; Tan, Peng-Yi; Allen, John; Khor, Chiea-Chuen; Perera, Shamira A; Cheng, Ching-Yu; Aung, Tin; Vithana, Eranga

    2015-12-01

    To investigate whether known genetic loci for primary open-angle glaucoma (POAG) are associated with visual field (VF) progression in patients from a Singaporean Chinese population. Retrospective study. Patients with 5 or more reliable VF measurements who were being followed up at a Singapore hospital. Visual field progression was identified using Progressor software version 3.7 (Medisoft, Leeds, United Kingdom) and defined by pointwise linear regression (PLR) criteria as follows: any 2 contiguous points in the same hemifield progressing (≤-1.00 dB/year for inner points and ≤-2.00 dB/year for edge points; P < 0.01). Single nucleotide polymorphisms (SNPs) and their proxies from 10 POAG-associated loci (CAV1-CAV2, CDKN2B-AS1, SIX1-SIX6, an intergenic region on chromosome 8q22, ABCA1, GAS7, AFAP1, GMDS, PMM2, and TGFBR3-CDC7) identified from genome-wide association studies were tested for association with VF progression using logistic regression with an additive genetic model adjusting for age, gender, average intraocular pressure (IOP), central corneal thickness (CCT), and baseline vertical cup-to-disc ratio (VCDR). Visual field progression. Of the 1334 patients included in the study, 469 subjects (35.1%) completed 5 or more reliable VF measurements (mean follow-up, 9.01 years; standard deviation, 5.00 years). The mean age of patients was 59.6 years (standard deviation, 9.0 years); 305 patients were men and all were Chinese. The average IOP in eyes fulfilling PLR progression was 16.5 mmHg versus 17.7 mmHg in those who did not (P = 0.52). Univariate analysis revealed that increased VCDR (P = 0.003), reduced CCT (P = 0.045), and reduced superior and inferior retinal nerve fiber layer thickness (P = 0.01, respectively) were associated with VF progression. No clinical or structural features were associated significantly with VF progression on multivariate analysis. The rs1192415 index SNP in TGFBR3-CDC7 (P = 0.002; odds ratio, 6.71 per risk allele) was the only SNP associated with VF progression. The presence of the index SNP rs1192415 (TGFBR3-CDC7) was associated with VF progression in POAG patients. These findings warrant further investigation in independent cohorts. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. Relationship of phosphodiesterase 4D (PDE4D) gene polymorphisms with risk of ischemic stroke: a hospital based case-control study.

    PubMed

    Kumar, Amit; Misra, Shubham; Kumar, Pradeep; Sagar, Ram; Gulati, Arti; Prasad, Kameshwar

    2017-08-01

    Stroke remains a leading cause of death and disability worldwide. Ischemic stroke (IS) accounts for around 80-85% of total stroke and is a complex polygenic multi-factorial disorder which is affected by a complex combination of vascular, environmental, and genetic factors. The study was conducted with an aim to examine the relationship of single nucleotide polymorphisms (SNPs) of PDE4D (T83C, C87T, and C45T) gene with increasing risk of IS in patients in North Indian population. In this hospital-based case-control study, 250 IS subjects and 250 age-and sex-matched control subjects were enrolled from the Neurosciences Centre, A.I.I.M.S., New Delhi, India. Deoxyribonucleic acids (DNAs) were extracted using the conventional Phenol-Chloroform isolation method. Different genotypes were determined by Polymerase chain reaction- Restriction fragment length polymorphism method. Odds ratio (OR) and 95% Confidence Interval (CI) of relationship of polymorphisms with risk of IS were calculated by conditional multivariable regression analysis. High blood pressure, low socioeconomic status, dyslipidemia, diabetes, and family history of stroke were observed to be statistically significant risk factors for IS. Multivariable adjusted analysis demonstrated a statistically significant relationship between SNP 83 of PDE4D gene polymorphism and increasing odds of IS under the dominant model of inheritance (OR, 1.59; 95% CI, 1.02 to 2.50; p value = 0.04) after adjustment of potential confounding variables. Stratified analysis on the basis of TOAST classification demonstrated a statistically significant association for increasing 2.73 times odds for developing large vessel disease stroke as compared to controls (OR, 2.73; 95% CI, 1.16 to 0.02; p value = 0.02). We did not find any significant association of SNPs (C87T and C45T) of the PDE4D gene with the risk of IS. SNP 83 of PDE4D gene may increase the risk for developing IS whereas SNP 87 and SNP45 of PDE4D may not be associated with the risk of IS in the North Indian population. Prospective cohort studies are required to corroborate these findings.

  10. Breeding and Genetics Symposium: networks and pathways to guide genomic selection.

    PubMed

    Snelling, W M; Cushman, R A; Keele, J W; Maltecca, C; Thomas, M G; Fortes, M R S; Reverter, A

    2013-02-01

    Many traits affecting profitability and sustainability of meat, milk, and fiber production are polygenic, with no single gene having an overwhelming influence on observed variation. No knowledge of the specific genes controlling these traits has been needed to make substantial improvement through selection. Significant gains have been made through phenotypic selection enhanced by pedigree relationships and continually improving statistical methodology. Genomic selection, recently enabled by assays for dense SNP located throughout the genome, promises to increase selection accuracy and accelerate genetic improvement by emphasizing the SNP most strongly correlated to phenotype although the genes and sequence variants affecting phenotype remain largely unknown. These genomic predictions theoretically rely on linkage disequilibrium (LD) between genotyped SNP and unknown functional variants, but familial linkage may increase effectiveness when predicting individuals related to those in the training data. Genomic selection with functional SNP genotypes should be less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction across unrelated populations. Although the specific variants causing polygenic variation may never be known with certainty, a number of tools and resources can be used to identify those most likely to affect phenotype. Associations of dense SNP genotypes with phenotype provide a 1-dimensional approach for identifying genes affecting specific traits; in contrast, associations with multiple traits allow defining networks of genes interacting to affect correlated traits. Such networks are especially compelling when corroborated by existing functional annotation and established molecular pathways. The SNP occurring within network genes, obtained from public databases or derived from genome and transcriptome sequences, may be classified according to expected effects on gene products. As illustrated by functionally informed genomic predictions being more accurate than naive whole-genome predictions of beef tenderness, coupling evidence from livestock genotypes, phenotypes, gene expression, and genomic variants with existing knowledge of gene functions and interactions may provide greater insight into the genes and genomic mechanisms affecting polygenic traits and facilitate functional genomic selection for economically important traits.

  11. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    PubMed

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.

  12. Association of Interleukin 23 Receptor Polymorphisms with Anti-Topoisomerase-I Positivity and Pulmonary Hypertension in Systemic Sclerosis

    PubMed Central

    AGARWAL, SANDEEP K.; GOURH, PRAVITT; SHETE, SANJAY; PAZ, GENE; DIVECHA, DIPAL; REVEILLE, JOHN D.; ASSASSI, SHERVIN; TAN, FILEMON K.; MAYES, MAUREEN D.; ARNETT, FRANK C.

    2010-01-01

    Objective IL23R has been identified as a susceptibility gene for development of multiple autoimmune diseases. We investigated the possible association of IL23R with systemic sclerosis (SSc), an autoimmune disease that leads to the development of cutaneous and visceral fibrosis. Methods We tested 9 single-nucleotide polymorphisms (SNP) in IL23R for association with SSc in a cohort of 1402 SSc cases and 1038 controls. IL23R SNP tested were previously identified as SNP showing associations with inflammatory bowel disease. Results Case-control comparisons revealed no statistically significant differences between patients and healthy controls with any of the IL23R polymorphisms. Analyses of subsets of SSc patients showed that rs11209026 (Arg381Gln variant) was associated with anti-topoisomerase I antibody (ATA)-positive SSc (p = 0.001)) and rs11465804 SNP was associated with diffuse and ATA-positive SSc (p = 0.0001, p = 0.0026, respectively). These associations remained significant after accounting for multiple comparisons using the false discovery rate method. Wild-type genotype at both rs11209026 and rs11465804 showed significant protection against the presence of pulmonary hypertension (PHT). (p = 3×10−5, p = 1×10−5, respectively). Conclusion Polymorphisms in IL23R are associated with susceptibility to ATA-positive SSc and protective against development of PHT in patients with SSc. PMID:19918037

  13. Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Saijo, Y; Namiki, M; Sengoku, K

    2014-04-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, ten novel genes involved in human spermatogenesis, including human LRWD1, have been identified by expression microarray analysis of human testictissue. The human LRWD1 protein mediates the origin recognition complex in chromatin, which is critical for the initiation of pre-replication complex assembly in G1 and chromatin organization in post-G1 cells. The Lrwd1 gene expression is specific to the testis in mice. Therefore, we hypothesized that mutation or polymorphisms of LRWD1 participate in male infertility, especially azoospermia. To investigate whether LRWD1 gene defects are associated with azoospermia caused by SCOS and meiotic arrest (MA), mutational analysis was performed in 100 and 30 Japanese patients by direct sequencing of the coding regions, respectively. Statistical analysis was performed for patients with SCOS and MA and in 100 healthy control men. No mutations were found in LRWD1; however, three coding single-nucleotide polymorphisms (SNP1-SNP3) could be detected in the patients. The genotype and allele frequencies in SNP1 and SNP2 were notably higher in the SCOS group than in the control group (P < 0.05). These results suggest the critical role of LRWD1 in human spermatogenesis. © 2013 Blackwell Verlag GmbH.

  14. Lack of Association of Bone Morphogenetic Protein 2 Gene Haplotypes with Bone Mineral Density, Bone Loss, or Risk of Fractures in Men

    PubMed Central

    Varanasi, Satya S.; Tuck, Stephen P.; Mastana, Sarabjit S.; Dennison, Elaine; Cooper, Cyrus; Vila, Josephine; Francis, Roger M.; Datta, Harish K.

    2011-01-01

    Introduction. The association of bone morphogenetic protein 2 (BMP2) with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs) across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala) genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser), showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort. PMID:22013543

  15. No association of dynamin binding protein (DNMBP) gene SNPs and Alzheimer's disease.

    PubMed

    Minster, Ryan L; DeKosky, Steven T; Kamboh, M Ilyas

    2008-10-01

    A recent scan of single nucleotide polymorphisms (SNPs) on chromosome 10q found significant association of six correlated SNPs with late-onset Alzheimer's disease (AD) among Japanese. We examined the SNP with the highest statistical significance (rs3740058) in a large Caucasian American case-control cohort and the remaining five SNPs in a smaller subset of cases and controls. We observed no association of statistical significance in either the total sample or the APOE*4 non-carriers for any of the SNPs.

  16. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies

    PubMed Central

    Yang, Tsun-Po; Beazley, Claude; Montgomery, Stephen B.; Dimas, Antigone S.; Gutierrez-Arcelus, Maria; Stranger, Barbara E.; Deloukas, Panos; Dermitzakis, Emmanouil T.

    2010-01-01

    Summary: Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. Availability: http://www.sanger.ac.uk/resources/software/genevar Contact: emmanouil.dermitzakis@unige.ch PMID:20702402

  17. Microvascular endothelial function and severity of primary open angle glaucoma.

    PubMed

    Bukhari, S M I; Kiu, K Y; Thambiraja, R; Sulong, S; Rasool, A H G; Liza-Sharmini, A T

    2016-12-01

    PurposeThe role of microvascular endothelial dysfunction on severity of primary open angle glaucoma (POAG) was investigated in this study.Patients and methodsA prospective cohort study was conducted. One hundred and fourteen ethnically Malay patients (114 eyes) with POAG treated at the eye clinic of Hospital University Sains Malaysia between April 2012 and December 2014 were recruited. Patients aged between 40 and 80 years with two consecutive reliable and reproducible Humphrey visual field 24-2 analyses were selected. Patients who were diagnosed with any other type of glaucoma, previous glaucoma-filtering surgery, or other surgeries except uncomplicated cataract and pterygium surgery were excluded. Humphrey visual field analysis 24-2 was used to stratify the severity of glaucoma using Advanced Glaucoma Intervention Study (AGIS) score at the time of recruitment. Microvascular endothelial function was assessed using Laser Doppler fluximetry and iontophoresis. Iontophoresis process with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and -independent vasodilatation, respectively.ResultsBased on the AGIS score, 55 patients showed mild glaucoma, with 29 moderate and 30 severe. There was statistically significant difference in microvascular endothelial function (ACh% and ACh max ) between mild and moderate POAG cases (P=0.023) and between mild and severe POAG cases (P<0.001). There was negative correlation between microvascular endothelial function and severity of POAG (r=-0.457, P<0.001).ConclusionMicrovascular endothelial dysfunction may have a role in influencing the severity of POAG in Malay patients.

  18. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.

    PubMed

    Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H

    2012-07-28

    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.

  19. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium

    PubMed Central

    Milne, Roger L.; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P.; Zamora, M. Pilar; Arias-Perez, José Ignacio; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Wang, Qin; Bolla, Manjeet K.; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Li, Jingmei; Anton-Culver, Hoda; Neuhausen, Susan L.; Ziogas, Argyrios; Clarke, Christina A.; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Chenevix-Trench, Georgia; Swerdlow, Anthony; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Wang, Xianshu; Olson, Janet E.; Vachon, Celine; Purrington, Kristen; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Dunning, Alison M.; Shah, Mitul; Guénel, Pascal; Truong, Thérèse; Sanchez, Marie; Mulot, Claire; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; Collée, J. Margriet; Jager, Agnes; Cox, Angela; Brock, Ian W.; Reed, Malcolm W.R.; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Dumont, Martine; Soucy, Penny; Dörk, Thilo; Bogdanova, Natalia V.; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Fasching, Peter A.; Häberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; dos Santos Silva, Isabel; Peto, Julian; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Mariani, Paolo; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J.; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Couch, Fergus J.; Toland, Amanda E.; Yannoukakos, Drakoulis; Pharoah, Paul D.P.; Hall, Per; Benítez, Javier; Malats, Núria; Easton, Douglas F.

    2014-01-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70 917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46 450 breast cancer cases and 42 461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10−4) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10−8. Results from the second analytic approach were consistent with those from the first (P > 10−10). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome. PMID:24242184

  20. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium.

    PubMed

    Milne, Roger L; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P; Zamora, M Pilar; Arias-Perez, José Ignacio; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Wang, Qin; Bolla, Manjeet K; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Li, Jingmei; Anton-Culver, Hoda; Neuhausen, Susan L; Ziogas, Argyrios; Clarke, Christina A; Hopper, John L; Dite, Gillian S; Apicella, Carmel; Southey, Melissa C; Chenevix-Trench, Georgia; Swerdlow, Anthony; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Wang, Xianshu; Olson, Janet E; Vachon, Celine; Purrington, Kristen; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Dunning, Alison M; Shah, Mitul; Guénel, Pascal; Truong, Thérèse; Sanchez, Marie; Mulot, Claire; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; Collée, J Margriet; Jager, Agnes; Cox, Angela; Brock, Ian W; Reed, Malcolm W R; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Dumont, Martine; Soucy, Penny; Dörk, Thilo; Bogdanova, Natalia V; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Fasching, Peter A; Häberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; dos Santos Silva, Isabel; Peto, Julian; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Mariani, Paolo; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; García-Closas, Montserrat; Chanock, Stephen J; Lissowska, Jolanta; Figueroa, Jonine D; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Couch, Fergus J; Toland, Amanda E; Yannoukakos, Drakoulis; Pharoah, Paul D P; Hall, Per; Benítez, Javier; Malats, Núria; Easton, Douglas F

    2014-04-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.

  1. The 3'UTR 1188A/C polymorphism of IL-12p40 is not associated with susceptibility for developing plaque psoriasis in Mestizo population from western Mexico.

    PubMed

    Sandoval-Talamantes, Ana Karen; Brito-Luna, Myrian Johanna; Fafutis-Morris, Mary; Villanueva-Quintero, Delfina Guadalupe; Graciano-Machuca, Omar; Ramírez-Dueñas, María Guadalupe; Alvarado-Navarro, Anabell

    2015-02-01

    Psoriasis is a chronic autoimmune inflammatory disease that affects the skin and the joints. Psoriasis is characterized by the keratinocyte proliferation, which is induced by cytokines Th1 and Th17. Patients with plaque psoriasis present a chronic inflammatory response with high levels of interleukin (IL)-12 and IL-23. Various single-nucleotide polymorphisms (SNP) have been identified in the IL12B gene, such as SNP 3' UTR 1188 A/C (SNP rs3212227), which has been associated with susceptibility to developing plaque psoriasis and with the production of IL-12 and IL-23 in individuals of different ethnic groups. In this study, we determined whether there is an association of SNP rs3212227 with the susceptibility of developing plaque psoriasis and with serum levels of IL-12 and IL-23 in Mestizo population in western Mexico. We included 112 patients with psoriasis and 112 clinical healthy individuals in the study. The frequencies of genotypes A/A, A/C, and C/C in patients with plaque psoriasis were 41, 53, and 6%, respectively, while in the control group, these were 37, 53, and 10%, respectively, without finding statistically significant differences between both groups (p>0.05). Although IL-12 and IL-23 serum levels were higher in patients than in controls, we found no significant differences. The group of patients with genotype CC presented the highest levels of IL-23 (p<0.05). These data suggest that the SNP rs3212227 phenotype is not associated with the risk of developing plaque psoriasis or with IL-12 and IL-23 levels in Mestizo population in western Mexico. Copyright © 2014 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen

    PubMed Central

    Tahir, Imtiaz Mahmood; Iqbal, Tahira; Saleem, Sadaf; Perveen, Sofia; Farooqi, Aboubakker

    2017-01-01

    Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population. PMID:28932176

  3. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: An analysis accounting for gender from the United States

    PubMed Central

    Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2013-01-01

    Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166

  4. Association between ABCG1 polymorphism rs1893590 and high-density lipoprotein (HDL) in an asymptomatic Brazilian population.

    PubMed

    Zago, V H S; Scherrer, D Z; Parra, E S; Panzoldo, N B; Alexandre, F; Nakandakare, E R; Quintão, E C R; de Faria, E C

    2015-03-01

    ATP binding cassette transporter G1 (ABCG1) promotes lipidation of nascent high-density lipoprotein (HDL) particles, acting as an intracellular transporter. SNP rs1893590 (c.-204A > C) of ABCG1 gene has been previously studied and reported as functional over plasma HDL-C and lipoprotein lipase activity. This study aimed to investigate the relationships of SNP rs1893590 with plasma lipids and lipoproteins in a large Brazilian population. Were selected 654 asymptomatic and normolipidemic volunteers from both genders. Clinical and anthropometrical data were taken and blood samples were drawn after 12 h fasting. Plasma lipids and lipoproteins, as well as HDL particle size and volume were determined. Genomic DNA was isolated for SNP rs1893590 detection by TaqMan(®) OpenArray(®) Real-Time PCR Plataform (Applied Biosystems). Mann-Whitney U, Chi square and two-way ANOVA were the used statistical tests. No significant differences were found in the comparison analyses between the allele groups for all studied parameters. Conversely, significant interactions were observed between SNP and age over plasma HDL-C, were volunteers under 60 years with AA genotype had increased HDL-C (p = 0.048). Similar results were observed in the group with body mass index (BMI) < 25 kg/m(2), where volunteers with AA genotype had higher HDL-C levels (p = 0.0034), plus an increased HDL particle size (p = 0.01). These findings indicate that SNP rs1893590 of ABCG1 has a significant impact over HDL-C under asymptomatic clinical conditions in an age and BMI dependent way.

  5. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants.

    PubMed

    Romanos, Jihane; Rosén, Anna; Kumar, Vinod; Trynka, Gosia; Franke, Lude; Szperl, Agata; Gutierrez-Achury, Javier; van Diemen, Cleo C; Kanninga, Roan; Jankipersadsing, Soesma A; Steck, Andrea; Eisenbarth, Georges; van Heel, David A; Cukrowska, Bozena; Bruno, Valentina; Mazzilli, Maria Cristina; Núñez, Concepcion; Bilbao, Jose Ramon; Mearin, M Luisa; Barisani, Donatella; Rewers, Marian; Norris, Jill M; Ivarsson, Anneli; Boezen, H Marieke; Liu, Edwin; Wijmenga, Cisca

    2014-03-01

    The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case-control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD.

  6. Analysis of rs8067378 Polymorphism in the Risk of Uterine Cervical Cancer from a Polish Population and its Impact on Gasdermin B Expression.

    PubMed

    Lutkowska, Anna; Roszak, Andrzej; Lianeri, Margarita; Sowińska, Anna; Sotiri, Emianka; Jagodziński, Pawel P

    2017-04-01

    We studied the role of the NC_000017.10:g.38051348A>G (rs8067378) single nucleotide polymorphism (SNP) located 9.5 kb downstream of gasdermin B (GSDMB), in the development and progression of cervical squamous cell carcinomas (SCC). Using high-resolution melting curve analysis, we genotyped this SNP in patients with cervical SCC (n = 486) and controls (n = 511) from the Polish Caucasian population. Logistic regression analysis was used to adjust for the effect of confounders such as age, parity, oral contraceptive use, tobacco smoking, and menopausal status. The effect of this SNP on the expression of GSDMB was studied by reverse transcription and quantitative real-time polymerase chain reaction analysis of GSDMB transcript levels in SCC tissues. For all patients with SCC, the p trend value calculated for rs8067378 was statistically significant (p trend  = 0.0019). The adjusted odds ratio for the G/G vs. A/A genotype was 1.304 (95% confidence interval 1.080-1.574, p = 0.0057) and the adjusted odds ratio for the G/A + G/G vs. A/A genotype was 1.444 (95% confidence interval 1.064-1.959, p = 0.0181). We also found a significant association of the rs8067378 SNP with tumor stages III, IV, and grade of differentiation G3, and with parity, oral contraceptive use, smoking, and women of postmenopausal age. We found increased GSDMB1 isoform transcripts in the cancerous and non-cancerous tissues from carriers of the G allele vs. carriers of the A/A genotype. The rs8067378 SNP variants may increase the expression of GSDMB and the risk of the development and progression of cervical SCC.

  7. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: Results of the ALFA-0701 trial

    PubMed Central

    Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine

    2014-01-01

    We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n = 146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P < 0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients. PMID:24659740

  8. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: results of the ALFA-0701 trial.

    PubMed

    Renneville, Aline; Abdelali, Raouf Ben; Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine; Dombret, Hervé; Castaigne, Sylvie; Preudhomme, Claude

    2014-02-28

    We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n=146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P <0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients.

  9. Association of functional SNP-1562C>T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients.

    PubMed

    Singh, Kanhaiya; Goyal, Prabhjot; Singh, Manju; Deshmukh, Sujit; Upadhyay, Divyesh; Kant, Sri; Agrawal, Neeraj K; Gupta, Sanjeev K; Singh, Kiran

    2017-12-01

    Retinal angiogenesis is a hallmark of diabetic retinopathy. Matrix Metalloproteinases (MMPs) are involved in degradation of extracellular matrix (ECM). Functional SNP-1562C>T in the promoter of the MMP-9 gene results increase in transcriptional activity. The present work was designed to evaluate the contribution of functional SNP-1562C>T of MMP-9 gene to the risk of proliferative diabetic retinopathy (PDR) in type 2 diabetes mellitus (T2DM) patients in north Indian Population. This Case control study comprised of a total of 645 individuals in which 320 were T2DM patients out of which 73 had PDR, 98 had non- proliferative diabetic retinopathy (NPDR), 149 T2DM cases without any eye related disease (DM) and 325 non diabetic healthy individuals as controls (non DM controls). Genotyping for SNP-1562C>T of MMP-9 was done by polymerase chain reactions followed by restriction analyses with specific endonucleases (PCR-RFLP). DNA sequencing was used to ascertain PCR-RFLP results. T allele frequency in PDR patients was 32.1%, 20.4% in NPDR, 15.4% in DM and 13.7% in controls. Statistically significant difference was observed in both allele and genotype distribution between the PDR versus non-DM control group (p<0.0001 by T allele; p=0.002 by TT and p<0.0001 by CT genotype). The present study suggests that the functional SNP-1562C>T in the promoter of the MMP-9 gene could be regarded as a major risk factor for PDR as increased MMP-9 production from high expressing T allele may promote retinal angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evaluation of polygenic cause in Korean patients with familial hypercholesterolemia - A study supported by Korean Society of Lipidology and Atherosclerosis.

    PubMed

    Kwon, Manjae; Han, Soo Min; Kim, Do-Il; Rhee, Moo-Yong; Lee, Byoung-Kwon; Ahn, Young Keun; Cho, Byung Ryul; Woo, Jeongtaek; Hur, Seung-Ho; Jeong, Jin-Ok; Jang, Yangsoo; Lee, Sang-Hak; Lee, Ji Hyun

    2015-09-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused by mutations in LDLR, APOB, or PCSK9. Polygenicity is a plausible cause in mutation-negative FH patients based on LDL cholesterol (LDL-C)-associated single nucleotide polymorphisms (SNPs) identified by the Global Lipids Genetics Consortium (GLGC). However, there are limited data regarding the polygenic cause of FH in Asians. We gathered data from 66 mutation-negative and 31 mutation-positive Korean FH patients, as well as from 2274 controls who participated in the Korean Health Examinee (HEXA) shared control study. We genotyped the patients for six GLGC SNPs and four East Asian LDL-C-associated SNPs and compared SNP scores among patient groups and controls. Weighted mean 6- and 4-SNP scores (0.67 [SD = 0.07] and 0.46 [0.11], respectively) were both significantly associated with LDL-C levels in controls (p = 2.1 × 10(-4), R(2) = 0.01 and p = 5.0 × 10(-12), R(2) = 0.02, respectively). Mutation-negative FH patients had higher 6-SNP (0.72 [0.07]) and 4-SNP (0.49 [0.08]) scores than controls (p = 1.8 × 10(-8) and p = 3.6 × 10(-3), respectively). We also observed higher scores in mutation-positive FH patients compared with controls, but the difference did not reach statistical significance. The present study demonstrates the utility of SNP score analysis for identifying polygenic FH in Korean patients by showing that small-effect common SNPs may cumulatively elevate LDL-C levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Influence of the KDM4A rs586339 polymorphism on overall survival in Asian non-small-cell lung cancer patients.

    PubMed

    Marvalim, Charlie; Wong, Jing Xiang Gimson; Sutiman, Natalia; Lim, Wan Teck; Tan, Shao Weng; Kanesvaran, Ravindran; Ng, Quan Sing; Jain, Amit; Ang, Mei Kim; Tan, Wan Ling; Toh, Chee Keong; Tan, Eng Huat; Chowbay, Balram

    2017-03-01

    The critical role of lysine demethylase 4A (KDM4A), in regulating chromatin structure and consequently in driving cellular proliferation and oncogenesis has been the focus of recent studies. Non-small-cell lung cancer (NSCLC) patients with adenocarcinoma histology who were homozygous for KDM4A single nucleotide polymorphism (SNP)-A482 (rs586339) were recently shown to have significantly worse overall survival (OS) compared with patients with the wild-type or the heterozygous genotype at this locus (hazard ratio=1.68, P=0.042). In the current study, we investigated the association between the same polymorphism with OS in our Asian NSCLC-adenocarcinoma patients comprising Chinese (N=572), Malays (N=50), and Indians (N=22). KDM4A SNP-A482 genotype status was determined by Sanger sequencing. OS was calculated from the date of diagnosis to date of death or censored at the date of last follow-up. Kaplan-Meier analysis, log-rank test, and Cox regression methods were utilized to evaluate OS outcomes. KDM4A SNP-A482 had a minor allele (C) frequency of 18.8% and a major allele (A) frequency of 81.2% in our Asian NSCLC (adenocarcinoma) patients. However, the OS in our Asian NSCLC patients homozygous for KDM4A SNP-A482 was not significantly different from those who were wild type or heterozygous at this locus [CC vs. AA/AC: median OS (95% confidence interval): 40.2 (18.7-61.6) vs. 29.6 (26.9-32.3) months; P=0.858]. The results remained statistically nonsignificant even after adjustment for epidermal growth factor receptor mutational status, suggesting that KDM4A SNP-A482 does not significantly influence OS in Asian NSCLC patients.

  12. A KCNJ6 gene polymorphism modulates theta oscillations during reward processing.

    PubMed

    Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Edenberg, Howard J; Wetherill, Leah; Schuckit, Marc; Wang, Jen-Chyong; Kuperman, Samuel; Kramer, John; Tischfield, Jay A; Porjesz, Bernice

    2017-05-01

    Event related oscillations (EROs) are heritable measures of neurocognitive function that have served as useful phenotype in genetic research. A recent family genome-wide association study (GWAS) by the Collaborative Study on the Genetics of Alcoholism (COGA) found that theta EROs during visual target detection were associated at genome-wide levels with several single nucleotide polymorphisms (SNPs), including a synonymous SNP, rs702859, in the KCNJ6 gene that encodes GIRK2, a G-protein inward rectifying potassium channel that regulates excitability of neuronal networks. The present study examined the effect of the KCNJ6 SNP (rs702859), previously associated with theta ERO to targets in a visual oddball task, on theta EROs during reward processing in a monetary gambling task. The participants were 1601 adolescent and young adult offspring within the age-range of 17-25years (800 males and 801 females) from high-dense alcoholism families as well as control families of the COGA prospective study. Theta ERO power (3.5-7.5Hz, 200-500ms post-stimulus) was compared across genotype groups. ERO theta power at central and parietal regions increased as a function of the minor allele (A) dose in the genotype (AA>AG>GG) in both loss and gain conditions. These findings indicate that variations in the KCNJ6 SNP influence magnitude of theta oscillations at posterior loci during the evaluation of loss and gain, reflecting a genetic influence on neuronal circuits involved in reward-processing. Increased theta power as a function of minor allele dose suggests more efficient cognitive processing in those carrying the minor allele of the KCNJ6 SNPs. Future studies are needed to determine the implications of these genetic effects on posterior theta EROs as possible "protective" factors, or as indices of delays in brain maturation (i.e., lack of frontalization). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Congruence as a measurement of extended haplotype structure across the genome

    PubMed Central

    2012-01-01

    Background Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC) for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC), we developed software for studying extended haplotypes. Methods The software, called ExHap (Extended Haplotype), uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. Results Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A). Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity). We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. Conclusions Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies. PMID:22369243

  14. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  15. A flexible bayesian model for testing for transmission ratio distortion.

    PubMed

    Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel

    2014-12-01

    Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents' genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. Copyright © 2014 by the Genetics Society of America.

  16. A Candidate Gene Association Study of Bone Mineral Density in an Iranian Population.

    PubMed

    Dastgheib, Seyed Alireza; Gartland, Alison; Tabei, Seyed Mohammad Bagher; Omrani, Gholamhossein Ranjbar; Teare, Marion Dawn

    2016-01-01

    The genetic epidemiology of variation in bone mineral density (BMD) and osteoporosis is not well studied in Iranian populations and needs more research. We report a candidate gene association study of BMD variation in a healthy cross-sectional study of 501 males and females sampled from the Iranian Multi-Centre Osteoporosis Study, Shiraz, Iran. We selected to study the association with 21 single nucleotide polymorphisms (SNPs) located in the 7 candidate genes LRP5, RANK, RANKL, OPG, P2RX7, VDR , and ESR1 . BMD was measured at the three sites L2-L4, neck of femur, and total hip. Association between BMD and each SNP was assessed using multiple linear regression assuming an allele dose (additive effect) on BMD (adjusted for age and sex). Statistically significant (at the unadjusted 5% level) associations were seen with seven SNPs in five of the candidate genes. Two SNPs showed statistically significant association with more than one BMD site. Significant association was seen between BMD at all the three sites with the VDR SNP rs731246 (L2-L4 p  = 0.038; neck of femur p  = 0.001; and total hip p  < 0.001). The T allele was consistently associated with lower BMD than the C allele. Significant association was also seen for the P2RX7 SNP rs3751143, where the G allele was consistently associated with lower BMD than the T allele (L2-L4 p  = 0.069; neck of femur p  = 0.024; and total hip p  = 0.045).

  17. Covariance Between Genotypic Effects and its Use for Genomic Inference in Half-Sib Families

    PubMed Central

    Wittenburg, Dörte; Teuscher, Friedrich; Klosa, Jan; Reinsch, Norbert

    2016-01-01

    In livestock, current statistical approaches utilize extensive molecular data, e.g., single nucleotide polymorphisms (SNPs), to improve the genetic evaluation of individuals. The number of model parameters increases with the number of SNPs, so the multicollinearity between covariates can affect the results obtained using whole genome regression methods. In this study, dependencies between SNPs due to linkage and linkage disequilibrium among the chromosome segments were explicitly considered in methods used to estimate the effects of SNPs. The population structure affects the extent of such dependencies, so the covariance among SNP genotypes was derived for half-sib families, which are typical in livestock populations. Conditional on the SNP haplotypes of the common parent (sire), the theoretical covariance was determined using the haplotype frequencies of the population from which the individual parent (dam) was derived. The resulting covariance matrix was included in a statistical model for a trait of interest, and this covariance matrix was then used to specify prior assumptions for SNP effects in a Bayesian framework. The approach was applied to one family in simulated scenarios (few and many quantitative trait loci) and using semireal data obtained from dairy cattle to identify genome segments that affect performance traits, as well as to investigate the impact on predictive ability. Compared with a method that does not explicitly consider any of the relationship among predictor variables, the accuracy of genetic value prediction was improved by 10–22%. The results show that the inclusion of dependence is particularly important for genomic inference based on small sample sizes. PMID:27402363

  18. The role of TNF alpha polymorphism and expression in susceptibility to nasal polyposis.

    PubMed

    Zhang, Guimin; Zhang, Jinmei; Kuang, Manbao; Lin, Peng

    2018-05-01

    In this study, we first performed a meta-analysis to assess the role of single-nucleotide polymorphism (SNP) within tumor necrosis factor alpha (TNF alpha) gene and TNF alpha expression in the risk of nasal polyposis. STATA 12.0 software was utilized to conduct the Mantel-Haenszel statistics, Cohen statistics, Begg's test, Egger's tests and sensitivity analysis. We systemically carried out the database retrieval and initially identified 486 articles. After screening, 15 articles were included in our meta-analysis. For TNF alpha rs1800629 G/A SNP, compared with control group, an increased risk of nasal polyposis of case group was observed in the models of A vs. G [p (P value of association) = 0.009, OR (odds ratio) = 1.35], GA vs. GG (p = 0.001, OR = 1.69), GA+AA vs. GG (p = 0.010, OR = 1.47). The similar results were observed in Caucasian subgroup (p < 0.05, OR > 1). For TNF alpha rs361525 G/A SNP, no significant difference between control and case group was detected (all p > 0.05). In addition, a significant difference exists between case and control groups in the meta-analyses of TNF alpha expression in nasal mucosal cells, secreted TNF alpha (p < 0.05, OR > 1), but not serum TNF alpha (p = 0.090). The present meta-analysis revealed that TNF alpha rs1800629, increased TNF alpha expression and secretion of nasal mucosal cells were associated with an increased risk of nasal polyposis.

  19. Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.

    PubMed

    Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V

    2018-04-01

    A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.

  20. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet-dependent associations between SNPs and feed efficiency suggest that further refinement of variant panels require the consideration of the breed and management practices. The unique genomic variants associated with the one- and two-step indicators suggest that both types of indicators offer complementary description of feed efficiency that can be exploited for genome-enabled selection purposes. PMID:24066663

  1. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    PubMed

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are sufficiently accurate to provide useful information for a breeding program. Treating genotypes as quantitative values is an alternative to perturbing genotypes using an assumed error distribution, but can produce very different results. An understanding of the distribution of the error is required for SNP genotyping platforms.

  2. Performance Comparison of Two Gene Set Analysis Methods for Genome-wide Association Study Results: GSA-SNP vs i-GSEA4GWAS.

    PubMed

    Kwon, Ji-Sun; Kim, Jihye; Nam, Dougu; Kim, Sangsoo

    2012-06-01

    Gene set analysis (GSA) is useful in interpreting a genome-wide association study (GWAS) result in terms of biological mechanism. We compared the performance of two different GSA implementations that accept GWAS p-values of single nucleotide polymorphisms (SNPs) or gene-by-gene summaries thereof, GSA-SNP and i-GSEA4GWAS, under the same settings of inputs and parameters. GSA runs were made with two sets of p-values from a Korean type 2 diabetes mellitus GWAS study: 259,188 and 1,152,947 SNPs of the original and imputed genotype datasets, respectively. When Gene Ontology terms were used as gene sets, i-GSEA4GWAS produced 283 and 1,070 hits for the unimputed and imputed datasets, respectively. On the other hand, GSA-SNP reported 94 and 38 hits, respectively, for both datasets. Similar, but to a lesser degree, trends were observed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets as well. The huge number of hits by i-GSEA4GWAS for the imputed dataset was probably an artifact due to the scaling step in the algorithm. The decrease in hits by GSA-SNP for the imputed dataset may be due to the fact that it relies on Z-statistics, which is sensitive to variations in the background level of associations. Judicious evaluation of the GSA outcomes, perhaps based on multiple programs, is recommended.

  3. Effect of interleukin-6 polymorphism on risk of preterm birth within population strata: a meta-analysis.

    PubMed

    Wu, Wilfred; Clark, Erin A S; Stoddard, Gregory J; Watkins, W Scott; Esplin, M Sean; Manuck, Tracy A; Xing, Jinchuan; Varner, Michael W; Jorde, Lynn B

    2013-04-25

    Because of the role of inflammation in preterm birth (PTB), polymorphisms in and near the interleukin-6 gene (IL6) have been association study targets. Several previous studies have assessed the association between PTB and a single nucleotide polymorphism (SNP), rs1800795, located in the IL6 gene promoter region. Their results have been inconsistent and SNP frequencies have varied strikingly among different populations. We therefore conducted a meta-analysis with subgroup analysis by population strata to: (1) reduce the confounding effect of population structure, (2) increase sample size and statistical power, and (3) elucidate the association between rs1800975 and PTB. We reviewed all published papers for PTB phenotype and SNP rs1800795 genotype. Maternal genotype and fetal genotype were analyzed separately and the analyses were stratified by population. The PTB phenotype was defined as gestational age (GA) < 37 weeks, but results from earlier GA were selected when available. All studies were compared by genotype (CC versus CG+GG), based on functional studies.For the maternal genotype analysis, 1,165 PTBs and 3,830 term controls were evaluated. Populations were stratified into women of European descent (for whom the most data were available) and women of heterogeneous origin or admixed populations. All ancestry was self-reported. Women of European descent had a summary odds ratio (OR) of 0.68, (95% confidence interval (CI) 0.51 - 0.91), indicating that the CC genotype is protective against PTB. The result for non-European women was not statistically significant (OR 1.01, 95% CI 0.59 - 1.75). For the fetal genotype analysis, four studies were included; there was no significant association with PTB (OR 0.98, 95% CI 0.72 - 1.33). Sensitivity analysis showed that preterm premature rupture of membrane (PPROM) may be a confounding factor contributing to phenotype heterogeneity. IL6 SNP rs1800795 genotype CC is protective against PTB in women of European descent. It is not significant in other heterogeneous or admixed populations, or in fetal genotype analysis.Population structure is an important confounding factor that should be controlled for in studies of PTB.

  4. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies weremore » found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 {+-} 1.57 ppb, 30.62 {+-} 14.13 ppb, 0.98 {+-} 0.49 ppm and 1.04 {+-} 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: > MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. > MT2A GG individuals should be more careful for their health against metal toxicity. > This SNP might be considered as a biomarker for risk of disease related to metals.« less

  5. A Single Nucleotide Polymorphism in the Phospholipase D1 Gene is Associated with Risk of Non-Small Cell Lung Cancer

    PubMed Central

    Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo

    2012-01-01

    Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264

  6. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Lin, Yu-Da

    2017-08-01

    Detecting epistatic interactions in genome-wide association studies (GWAS) is a computational challenge. Such huge numbers of single-nucleotide polymorphism (SNP) combinations limit the some of the powerful algorithms to be applied to detect the potential epistasis in large-scale SNP datasets. We propose a new algorithm which combines the differential evolution (DE) algorithm with a classification based multifactor-dimensionality reduction (CMDR), termed DECMDR. DECMDR uses the CMDR as a fitness measure to evaluate values of solutions in DE process for scanning the potential statistical epistasis in GWAS. The results indicated that DECMDR outperforms the existing algorithms in terms of detection success rate by the large simulation and real data obtained from the Wellcome Trust Case Control Consortium. For running time comparison, DECMDR can efficient to apply the CMDR to detect the significant association between cases and controls amongst all possible SNP combinations in GWAS. DECMDR is freely available at https://goo.gl/p9sLuJ . chuang@isu.edu.tw or e0955767257@yahoo.com.tw. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Analytical and statistical consideration on the use of the ISAG-ICAR-SNP bovine panel for parentage control, using the Illumina BeadChip technology: example on the German Holstein population.

    PubMed

    Schütz, Ekkehard; Brenig, Bertram

    2015-02-05

    Parentage control is moving from short tandem repeats- to single nucleotide polymorphism (SNP) systems. For SNP-based parentage control in cattle, the ISAG-ICAR Committee proposes a set of 100/200 SNPs but quality criteria are lacking. Regarding German Holstein-Friesian cattle with only a limited number of evaluated individuals, the exclusion probability is not well-defined. We propose a statistical procedure for excluding single SNPs from parentage control, based on case-by-case evaluation of the GenCall score, to minimize parentage exclusion, based on miscalled genotypes. Exclusion power of the ISAG-ICAR SNPs used for the German Holstein-Friesian population was adjusted based on the results of more than 25,000 individuals. Experimental data were derived from routine genomic selection analyses of the German Holstein-Friesian population using the Illumina BovineSNP50 v2 BeadChip (20,000 individuals) or the EuroG10K variant (7000 individuals). Averages and standard deviations of GenCall scores for the 200 SNPs of the ISAG-ICAR recommended panel were calculated and used to calculate the downward Z-value. Based on minor allelic frequencies in the Holstein-Friesian population, one minus exclusion probability was equal to 1.4×10⁻¹⁰ and 7.2×10⁻²⁶, with one and two parents, respectively. Two monomorphic SNPs from the 100-SNP ISAG-ICAR core-panel did not contribute. Simulation of 10,000 parentage control combinations, using the GenCall score data from both BeadChips, showed that with a Z-value greater than 3.66 only about 2.5% parentages were excluded, based on the ISAG-ICAR recommendations (core-panel: ≥ 90 SNPs for one, ≥ 85 SNPs for two parents). When applied to real data from 1750 single parentage assessments, the optimal threshold was determined to be Z = 5.0, with only 34 censored cases and reduction to four (0.2%) doubtful parentages. About 70 parentage exclusions due to weak genotype calls were avoided, whereas true exclusions (n = 34) were unaffected. Using SNPs for parentage evaluation provides a high exclusion power also for parent identification. SNPs with a low GenCall score show a high tendency towards intra-molecular secondary structures and substantially contribute to false exclusion of parentages. We propose a method that controls this error without excluding too many parent combinations from the evaluation.

  8. TPH2 -703G/T SNP may have important effect on susceptibility to suicidal behavior in major depression.

    PubMed

    Yoon, Ho-Kyoung; Kim, Yong-Ku

    2009-04-30

    Serotonergic system-related genes can be good candidate genes for both major depressive disorder (MDD) and suicidal behavior. In this study, we aimed to investigate the association of serotonin 2A receptor gene -1438A/G SNP (HTR2A -1438A/G), tryptophan hydroxylase 2 gene -703G/T SNP (TPH2 -703G/T) and serotonin 1A receptor C-1019G (HTR1A C-1019G) with suicidal behavior. One hundred and eighty one suicidal depressed patients and 143 non-suicidal depressed patients who met DSM-IV criteria for major depressive disorder were recruited from patients who were admitted to Korea University Ansan Hospital. One hundred seventy six normal controls were healthy volunteers who were recruited by local advertisement. Patients and normal controls were genotyped for HTR2A -1438A/G, TPH2 -703G/T and 5-HT1A C-1019G. The suicidal depressed patients were evaluated by the lethality of individual suicide attempts using Weisman and Worden's risk-rescue rating (RRR) and the Lethality Suicide Attempt Rating Scale-updated (LSARS-II). In order to assess the severity of depressive symptoms of patients, Hamilton's Depression Rating Scale (HDRS) was administered. Genotype and allele frequencies were compared between groups by chi(2) statistics. Association of genotype of the candidate genes with the lethality of suicidal behavior was examined with ANOVA by comparing the mean scores of LSARS and RRR according to the genotype. There were statistically significant differences in the genotype distributions and allele frequencies of TPH2 -703G/T between the suicidal depressive group and the normal control group. The homozygous allele G (G/G genotype) frequency was significantly higher in suicidal depressed patients than in controls. However, no differences in either genotype distribution or in allele frequencies of HTR2A -1438A/G and HTR1A C-1019G were observed between the suicidal depressed patients, the non-suicidal depressed patients, and the normal controls. There were no differences in the lethality of suicidal behavior in suicidal depressed patients according to the genotypes of three polymorphisms. Our results suggest that TPH2 -703G/T SNP may have an important effect on susceptibility to suicidal behavior. Furthermore, an increased frequency of G allele of TPH2 SNP may be associated with elevated suicidal behavior itself rather than with the diagnosis of major depression and may increase risk of suicidality, independent of diagnosis.

  9. A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data.

    PubMed

    Andrews, Kimberly R; Adams, Jennifer R; Cassirer, E Frances; Plowright, Raina K; Gardner, Colby; Dwire, Maggie; Hohenlohe, Paul A; Waits, Lisette P

    2018-06-05

    The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with >95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP genotyping assays for parentage analysis with relatively small numbers of loci. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease

    PubMed Central

    2014-01-01

    Background Kidney stone disease (KSD) is a complex disorder with unknown etiology in majority of the patients. Genetic and environmental factors may cause the disease. In the present study, we used DNA microarray to genotype single nucleotide polymorphisms (SNP) and performed candidate gene association analysis to determine genetic variations associated with the disease. Methods A whole genome SNP genotyping by DNA microarray was initially conducted in 101 patients and 105 control subjects. A set of 104 candidate genes reported to be involved in KSD, gathered from public databases and candidate gene association study databases, were evaluated for their variations associated with KSD. Results Altogether 82 SNPs distributed within 22 candidate gene regions showed significant differences in SNP allele frequencies between the patient and control groups (P < 0.05). Of these, 4 genes including BGLAP, AHSG, CD44, and HAO1, encoding osteocalcin, fetuin-A, CD44-molecule and glycolate oxidase 1, respectively, were further assessed for their associations with the disease because they carried high proportion of SNPs with statistical differences of allele frequencies between the patient and control groups within the gene. The total of 26 SNPs showed significant differences of allele frequencies between the patient and control groups and haplotypes associated with disease risk were identified. The SNP rs759330 located 144 bp downstream of BGLAP where it is a predicted microRNA binding site at 3′UTR of PAQR6 – a gene encoding progestin and adipoQ receptor family member VI, was genotyped in 216 patients and 216 control subjects and found to have significant differences in its genotype and allele frequencies (P = 0.0007, OR 2.02 and P = 0.0001, OR 2.02, respectively). Conclusions Our results suggest that these candidate genes are associated with KSD and PAQR6 comes into our view as the most potent candidate since associated SNP rs759330 is located in the miRNA binding site and may affect mRNA expression level. PMID:24886237

  11. Sequencing analysis of ghrelin gene 5' flanking region: relations between the sequence variants, fasting plasma total ghrelin concentrations, and body mass index.

    PubMed

    Vartiainen, Johanna; Kesäniemi, Y Antero; Ukkola, Olavi

    2006-10-01

    Ghrelin is a 28-amino-acid peptide with several functions linked to energy metabolism. Low ghrelin plasma concentrations are associated with obesity, hypertension, and type 2 diabetes mellitus, whereas high concentrations reflect states of negative energy balance. Several studies addressing the hormonal and neural regulation of ghrelin gene expression have been carried out, but the role of genetic factors in the regulation of ghrelin plasma levels remains unclear. To elucidate the role of genetic factors in the regulation of ghrelin expression, we screened 1657 nucleotides of the ghrelin gene 5' flanking region (promoter and possible regulatory sites) for new sequential variations from patient samples with low (n = 50) and high (n = 50) fasting plasma total ghrelin concentrations (low- and high-ghrelin groups). Eleven single nucleotide polymorphisms (SNPs), 3 of which were rare variants (allelic frequency less than 1%) were found in our population. The genotype distribution patterns of the SNPs did not differ between the study groups, except for SNP-501A>C (P = .039). In addition, the SNP-01A>C was associated with body mass index (BMI) (P = .018). This variant was studied further in our large and well-defined Oulu Project Elucidating Risk for Atherosclerosis (OPERA) cohort (n = 1045) by the restriction fragment length polymorphism (RFLP) technique. No significant association of SNP-501A>C genotypes with fasting ghrelin plasma concentrations was found in the whole OPERA population. However, the association of this SNP with BMI and with waist circumference reached statistical significance in OPERA (P = .047 and .049, respectively), remaining of borderline significance for BMI after adjustments (P = .055). The results indicate that factors other than the 11 SNPs found in this study in the 5' flanking region of ghrelin gene are the main determinants of ghrelin plasma levels. However, SNP-501 A>C genotype distribution seems to be different in subjects having the highest compared with those with the lowest ghrelin levels, and the SNP may be associated with BMI and waist circumference.

  12. Effect of interleukin-10 gene promoter polymorphisms -1082 G/A and -592 C/A on response to therapy in children and adolescents with chronic hepatitis C virus infection.

    PubMed

    El-Karaksy, Hanaa M; Sharaf, Sahar A; Mandour, Iman A; Mogahed, Engy A; Rady, Normeen H; El-Mougy, Fatma A

    2016-12-01

    Studying predictors of response to therapy for hepatitis C virus (HCV) infection in children may help avoid the inappropriate use of currently available costly therapy associated with numerous adverse effects. We tested the hypothesis that inheritance of single nucleotide polymorphisms (SNPs) of the interleukin-10 (IL-10) promoter gene might influence response to HCV treatment. The impact of SNPs, -1082 G/A and -592 C/A, in the promoter region of IL-10 gene, on response to HCV therapy was assessed in a cohort of 40 children treated with a combination of pegylated interferon (Peg-IFN) α2b and ribavirin. Sustained virological response was achieved in 48.7%. High viral load was associated with non-response to therapy. There was no association between histopathological degree of inflammation or fibrosis and response to therapy. There was no direct statistically significant association between polymorphisms in the IL-10 gene (-1082G/A and -592 C/A) as regards inflammation or response to therapy in children. As for the SNP -592 C/A; there was a statistically significant association with the score of fibrosis (P<0.004), concluding that the A allele was protective from moderate and severe fibrosis. Meanwhile the SNP -1082G/A did not show any association with the fibrosis score. We could not associate response to therapy for HCV with IL-10 polymorphisms -1082 G/A and -592 C/A. For the SNP -592 C/A, the A allele protected from moderate and severe fibrosis. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Predicting paclitaxel-induced neutropenia using the DMET platform.

    PubMed

    Nieuweboer, Annemieke J M; Smid, Marcel; de Graan, Anne-Joy M; Elbouazzaoui, Samira; de Bruijn, Peter; Martens, John W; Mathijssen, Ron H J; van Schaik, Ron H N

    2015-01-01

    The use of paclitaxel in cancer treatment is limited by paclitaxel-induced neutropenia. We investigated the ability of genetic variation in drug-metabolizing enzymes and transporters to predict hematological toxicity. Using a discovery and validation approach, we identified a pharmacogenetic predictive model for neutropenia. For this, a drug-metabolizing enzymes and transporters plus DNA chip was used, which contains 1936 SNPs in 225 metabolic enzyme and drug-transporter genes. Our 10-SNP model in 279 paclitaxel-dosed patients reached 43% sensitivity in the validation cohort. Analysis in 3-weekly treated patients only resulted in improved sensitivity of 79%, with a specificity of 33%. None of our models reached statistical significance. Our drug-metabolizing enzymes and transporters-based SNP-models are currently of limited value for predicting paclitaxel-induced neutropenia in clinical practice. Original submitted 9 March 2015; Revision submitted 20 May 2015.

  14. TNF-308 G/A polymorphism and risk of systemic lupus erythematosus in the Polish population.

    PubMed

    Piotrowski, Piotr; Wudarski, Mariusz; Sowińska, Anna; Olesińska, Marzena; Jagodziński, Paweł P

    2015-09-01

    Numerous studies have been performed with TNF-α-308 G/A (rs1800629) single nuclear polymorphism (SNP) to evaluate the risk of SLE in various ethnicities. However, the significance of TNF-α-308 G/A in both clinical and laboratory studies of the disease remains unclear. Using a high-resolution melting curve analysis, we assessed the prevalence of TNF-α-308 G/A SNP in SLE patients (n = 262) and controls (n = 528) in a Polish population. We also assessed the contribution of this SNP to various clinical symptoms and the presence of autoantibodies in SLE patients. The p-value obtained using a χ(2) test for the trend of TNF-α-308 G/A was statistically significant (ptrend = 0.0297). However, using logistic regression analysis for the presence of the HLA-DRB1*03:01 haplotype, we observed that the TNF-α-308 G/A SNP may be the DRB1*03:01-dependent risk factor of SLE in the Polish population. There was a significant contribution of TNF-α-308 A/A and A/G genotypes to arthritis OR = [2.692 (1.503-4.822, p = 0.0007, pcorr = 0.0119)] as well as renal SLE manifestation OR = [2.632 (1.575-4.397, p = 0.0002, pcorr = 0.0034)]. There was a significant association between TNF-α-308 A/A and A/G genotypes and the presence of anti-Ro antibodies (Ab) OR = 3.375(1.711-6.658, p = 0.0003, pcorr = 0.0051). However, the logistic regression analysis revealed that only renal manifestations and the presence of anti-anti-Ro antibodies remained significant after adjustment to the presence of the HLA-DRB1*03:01 haplotype. Our studies indicate that the TNF-α-308 G/A polymorphism may be a DRB1*03:01 haplotype-dependent genetic risk factor for SLE. However, this SNP was independently associated with renal manifestations and production of anti-Ro Ab.

  15. GACT: a Genome build and Allele definition Conversion Tool for SNP imputation and meta-analysis in genetic association studies.

    PubMed

    Sulovari, Arvis; Li, Dawei

    2014-07-19

    Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep-sequencing, particularly for data from the dbGaP and other public databases. http://www.uvm.edu/genomics/software/gact.

  16. Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.)

    PubMed Central

    2013-01-01

    Background Frost tolerance is a key trait with economic and agronomic importance in barley because it is a major component of winter hardiness, and therefore limits the geographical distribution of the crop and the effective transfer of quality traits between spring and winter crop types. Three main frost tolerance QTL (Fr-H1, Fr-H2 and Fr-H3) have been identified from bi-parental genetic mapping but it can be argued that those mapping populations only capture a portion of the genetic diversity of the species. A genetically broad dataset consisting of 184 genotypes, representative of the barley gene pool cultivated in the Mediterranean basin over an extended time period, was genotyped with 1536 SNP markers. Frost tolerance phenotype scores were collected from two trial sites, Foradada (Spain) and Fiorenzuola (Italy) and combined with the genotypic data in genome wide association analyses (GWAS) using Eigenstrat and kinship approaches to account for population structure. Results GWAS analyses identified twelve and seven positive SNP associations at Foradada and Fiorenzuola, respectively, using Eigenstrat and six and four, respectively, using kinship. Linkage disequilibrium analyses of the significant SNP associations showed they are genetically independent. In the kinship analysis, two of the significant SNP associations were tightly linked to the Fr-H2 and HvBmy loci on chromosomes 5H and 4HL, respectively. The other significant kinship associations were located in genomic regions that have not previously been associated with cold stress. Conclusions Haplotype analysis revealed that most of the significant SNP loci are fixed in the winter or facultative types, while they are freely segregating within the un-adapted spring barley genepool. Although there is a major interest in detecting new variation to improve frost tolerance of available winter and facultative types, from a GWAS perspective, working within the un-adapted spring germplasm pool is an attractive alternative strategy which would minimize statistical issues, simplify the interpretation of the data and identify phenology independent genetic determinants of frost tolerance. PMID:23802597

  17. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD

    PubMed Central

    Shook, Devon; Brouwer, Rachel; de Zeeuw, Patrick; Oranje, Bob; Durston, Sarah

    2017-01-01

    A single-nucleotide polymorphism (SNP) of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD). This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in children with and without ADHD. We collected 279 longitudinal T1-weighted structural images and DNA from 58 children with ADHD and 64 typically developing (TD) children matched for age, IQ, and gender. Groups were divided by the XKR4 rs2939678 SNP into A-allele carriers versus subjects homozygous for the G-allele. Cerebellar lobular volumes were segmented into 35 regions of interest using MAGeTBrain, an automated multi-atlas segmentation pipeline for anatomical MRI, and statistically analyzed using linear mixed models. We found decreased gray matter (GM) volumes in ADHD compared to TD children in bilateral lobules VIIIA, left VIIIB, right VIIB, and vermis VI. Furthermore, we found a linear age by gene interaction in left lobule VIIB where subjects homozygous for the G-allele showed a decrease in volume over time compared to A-allele carriers. We further found quadratic age × gene and age × diagnosis interactions in left lobule IV. Subjects homozygous for the G-allele (the genotype overtransmitted in ADHD) showed more suppressed, almost flat quadratic growth curves compared to A-allele carriers, similar to individuals with ADHD compared to controls. However, there was no interaction between genotype and diagnosis, suggesting that any effects of this SNP on cerebellar development are not specific to the disorder. PMID:29311829

  18. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD.

    PubMed

    Shook, Devon; Brouwer, Rachel; de Zeeuw, Patrick; Oranje, Bob; Durston, Sarah

    2017-01-01

    A single-nucleotide polymorphism (SNP) of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD). This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in children with and without ADHD. We collected 279 longitudinal T1-weighted structural images and DNA from 58 children with ADHD and 64 typically developing (TD) children matched for age, IQ, and gender. Groups were divided by the XKR4 rs2939678 SNP into A-allele carriers versus subjects homozygous for the G-allele. Cerebellar lobular volumes were segmented into 35 regions of interest using MAGeTBrain, an automated multi-atlas segmentation pipeline for anatomical MRI, and statistically analyzed using linear mixed models. We found decreased gray matter (GM) volumes in ADHD compared to TD children in bilateral lobules VIIIA, left VIIIB, right VIIB, and vermis VI. Furthermore, we found a linear age by gene interaction in left lobule VIIB where subjects homozygous for the G-allele showed a decrease in volume over time compared to A-allele carriers. We further found quadratic age × gene and age × diagnosis interactions in left lobule IV. Subjects homozygous for the G-allele (the genotype overtransmitted in ADHD) showed more suppressed, almost flat quadratic growth curves compared to A-allele carriers, similar to individuals with ADHD compared to controls. However, there was no interaction between genotype and diagnosis, suggesting that any effects of this SNP on cerebellar development are not specific to the disorder.

  19. Linear reduction methods for tag SNP selection.

    PubMed

    He, Jingwu; Zelikovsky, Alex

    2004-01-01

    It is widely hoped that constructing a complete human haplotype map will help to associate complex diseases with certain SNP's. Unfortunately, the number of SNP's is huge and it is very costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNP's that should be sequenced to considerably small number of informative representatives, so called tag SNP's. In this paper, we propose a new linear algebra based method for selecting and using tag SNP's. Our method is purely combinatorial and can be combined with linkage disequilibrium (LD) and block based methods. We measure the quality of our tag SNP selection algorithm by comparing actual SNP's with SNP's linearly predicted from linearly chosen tag SNP's. We obtain an extremely good compression and prediction rates. For example, for long haplotypes (>25000 SNP's), knowing only 0.4% of all SNP's we predict the entire unknown haplotype with 2% accuracy while the prediction method is based on a 10% sample of the population.

  20. Four types of ensemble coding in data visualizations.

    PubMed

    Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven

    2016-01-01

    Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.

  1. A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.

    PubMed

    Zhou, Xiang

    2017-12-01

    Linear mixed models (LMMs) are among the most commonly used tools for genetic association studies. However, the standard method for estimating variance components in LMMs-the restricted maximum likelihood estimation method (REML)-suffers from several important drawbacks: REML requires individual-level genotypes and phenotypes from all samples in the study, is computationally slow, and produces downward-biased estimates in case control studies. To remedy these drawbacks, we present an alternative framework for variance component estimation, which we refer to as MQS. MQS is based on the method of moments (MoM) and the minimal norm quadratic unbiased estimation (MINQUE) criterion, and brings two seemingly unrelated methods-the renowned Haseman-Elston (HE) regression and the recent LD score regression (LDSC)-into the same unified statistical framework. With this new framework, we provide an alternative but mathematically equivalent form of HE that allows for the use of summary statistics. We provide an exact estimation form of LDSC to yield unbiased and statistically more efficient estimates. A key feature of our method is its ability to pair marginal z -scores computed using all samples with SNP correlation information computed using a small random subset of individuals (or individuals from a proper reference panel), while capable of producing estimates that can be almost as accurate as if both quantities are computed using the full data. As a result, our method produces unbiased and statistically efficient estimates, and makes use of summary statistics, while it is computationally efficient for large data sets. Using simulations and applications to 37 phenotypes from 8 real data sets, we illustrate the benefits of our method for estimating and partitioning SNP heritability in population studies as well as for heritability estimation in family studies. Our method is implemented in the GEMMA software package, freely available at www.xzlab.org/software.html.

  2. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

    PubMed

    Knappskog, Stian; Gansmo, Liv B; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D; Lin, Dongxin; Van Camp, Guy; Manolopoulos, Vangelis G; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E

    2014-09-30

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.

  3. Graphical genotyping as a method to map Ny (o,n)sto and Gpa5 using a reference panel of tetraploid potato cultivars.

    PubMed

    van Eck, Herman J; Vos, Peter G; Valkonen, Jari P T; Uitdewilligen, Jan G A M L; Lensing, Hellen; de Vetten, Nick; Visser, Richard G F

    2017-03-01

    The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable. Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny (o,n)sto ) conferring resistance to two PVY strains, PVY O and PVY NTN . Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f sto , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.

  4. ParallABEL: an R library for generalized parallelization of genome-wide association studies.

    PubMed

    Sangket, Unitsa; Mahasirimongkol, Surakameth; Chantratita, Wasun; Tandayya, Pichaya; Aulchenko, Yurii S

    2010-04-29

    Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL.

  5. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL

    PubMed Central

    Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh

    2018-01-01

    Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028

  6. A Genealogical Interpretation of Principal Components Analysis

    PubMed Central

    McVean, Gil

    2009-01-01

    Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557

  7. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  8. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.

  9. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping.

    PubMed

    He, Fei; Zhou, Wanjun; Cai, Ren; Yan, Tizhen; Xu, Xiangmin

    2018-04-01

    In this study, we aimed to assess the performance of two whole-genome amplification methods, multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycle (MALBAC), for β-thalassemia genotyping and single-nucleotide polymorphism (SNP)/copy-number variant (CNV) detection using two DNA sequencing assays. We collected peripheral blood, cell lines, and discarded embryos, and carried out MALBAC and MDA on single-cell and five-cell samples. We detected and statistically analyzed differences in the amplification efficiency, positive predictive value, sensitivity, allele dropout (ADO) rate, SNPs, and CV values between the two methods. Through Sanger sequencing at the single-cell and five-cell levels, we showed that both the amplification rate and ADO rate of MDA were better than those using MALBAC, and the sensitivity and positive predictive value obtained from MDA were higher than those from MALBAC for β-thalassemia genotyping. Using next-generation sequencing (NGS) at the single-cell level, we confirmed that MDA has better properties than MALBAC for SNP detection. However, MALBAC was more stable and homogeneous than MDA using low-depth NGS at the single-cell level for CNV detection. We conclude that MALBAC is the better option for CNV detection, while MDA is better suited for SNV detection.

  10. An APOE-independent cis-eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk.

    PubMed

    Rao, Shuquan; Ghani, Mahdi; Guo, Zhiyun; Deming, Yuetiva; Wang, Kesheng; Sims, Rebecca; Mao, Canquan; Yao, Yao; Cruchaga, Carlos; Stephan, Dietrich A; Rogaeva, Ekaterina

    2018-06-01

    Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Characterization of Insect Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies

    PubMed Central

    Chang, Hao-Xun; Hartman, Glen L.

    2017-01-01

    Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs) to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA), have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB), potato leafhopper (PLH), SBA, soybean looper (SBL), velvetbean caterpillar (VBC), and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP) polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects. PMID:28555141

  12. The Statistics of Visual Representation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    2002-01-01

    The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?

  13. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  14. Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels.

    PubMed

    Lau, Cia-Hin; Muniandy, Sekaran

    2011-05-01

    Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.

  15. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCOM1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults

    USDA-ARS?s Scientific Manuscript database

    In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...

  16. Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow

    PubMed Central

    Levin, Alex; Reich, David; Patterson, Nick; Berger, Bonnie

    2013-01-01

    The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations—including previously undetected admixture in Sardinians and Basques—involving a proportion of 20–40% ancient northern Eurasian ancestry. PMID:23709261

  17. Association Analysis of the Ephrin-B2 Gene in African-Americans with End-Stage Renal Disease

    PubMed Central

    Hicks, Pamela J.; Staten, Jennifer L.; Palmer, Nicholette D.; Langefeld, Carl D.; Ziegler, Julie T.; Keene, Keith L.; Sale, Michele M.; Bowden, Donald W.; Freedman, Barry I.

    2008-01-01

    Background Genome scans in African-Americans with end-stage renal disease (ESRD) identified linkage on chromosome 13q33 in the region containing the ephrin-B2 ligand (EFNB2) genes. Interactions between the ephrin-B2 receptor and ephrin-B2 ligand play essential roles in renal angiogenesis, blood vessel maturation, and kidney disease. Methods The EFNB2 gene was evaluated as a positional candidate for non-diabetic and diabetic ESRD susceptibility in 1,071 unrelated African-American subjects; 316 with non-diabetic etiologies of ESRD, 394 with type 2 diabetes-associated ESRD and 361 healthy controls. Single nucleotide polymorphism (SNP) genotyping was performed on the Sequenom Mass Array System. Statistical analyses were computed using Dandelion version 1.26, Snpaddmix version 1.4 and Haploview version 3.32. Results Twenty-eight HapMap tag SNPs were genotyped spanning the 39 kilobases (kb) of the EFNB2 coding region, with average spacing of 1.43 kb. Analysis of 710 ESRD patient samples and 361 controls provided no evidence of single SNP associations in either diabetic or non-diabetic ESRD; although nominal evidence of association with all-cause ESRD was observed with a two SNP (p = 0.022) and three SNP (p = 0.023) haplotype, both containing SNPs rs7490924 and rs2391335 in intron 1. Conclusions Although an attractive positional candidate gene, polymorphisms in the EFNB2 gene do not appear to contribute in a substantial way to non-diabetic, diabetic or all-cause ESRD susceptibility in African-Americans. Additional genes within the chromosome 13q33 linkage interval are likely contributors to African-American non-diabetic ESRD. PMID:18580054

  18. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts

    PubMed Central

    Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.

    2016-01-01

    Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945

  19. The associations of two SNPs in miRNA-146a and one SNP in ZBTB38-RASA2 with the disease susceptibility and the clinical features of the Chinese patients of sCJD and FFI.

    PubMed

    Gao, Chen; Shi, Qiang; Wei, Jing; Zhou, Wei; Xiao, Kang; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2018-01-02

    Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals. Besides of the pathological agent, prion, there are some elements that can influence or determine susceptibility to prion infection and the clinical phenotype of the diseases, e.g., the polymorphism in PRNP gene. Another polymorphism in ZBTB38-RASA2 has been observed to be associated with the susceptibility of sporadic Creutzfeldt-Jacob disease (sCJD) in UK. MicroRNAs are endogenous small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. In this study, two polymorphic loci in miR-146a (rs2910164 and rs57095329) and one locus in ZBTB38-RASA2 (rs295301) of 561 Chinese patients of sCJD and 31 cases of fatal familial insomnia (FFI) were screened by PCR and sequencing. Our data did not figure out any association of those three SNPs with the susceptibility of sCJD. However, a significant association of the SNP of rs57095329 in miR-146a showed the association with the susceptibility of FFI. Additionally, the SNP of rs57095329 showed statistical significances with the appearances of mutism and the positive of cerebrospinal fluid (CSF) protein 14-3-3 in sCJD patients, while the SNP of ZBTB38-RASA2 was significantly related with the appearance of myoclonus in sCJD patients. It indicates that the SNPs of ZBTB38-RASA2 and miR-146a are not associated with the susceptibility of the Chinese sCJD patients, but may influence the appearances of clinical manifestations somehow.

  20. Protein-based forensic identification using genetically variant peptides in human bone.

    PubMed

    Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon

    2018-04-22

    Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.

  1. Replication of Genome Wide Association Studies of Alcohol Dependence: Support for Association with Variation in ADH1C

    PubMed Central

    Biernacka, Joanna M.; Geske, Jennifer R.; Schneekloth, Terry D.; Frye, Mark A.; Cunningham, Julie M.; Choi, Doo-Sup; Tapp, Courtney L.; Lewis, Bradley R.; Drews, Maureen S.; L.Pietrzak, Tracy; Colby, Colin L.; Hall-Flavin, Daniel K.; Loukianova, Larissa L.; Heit, John A.; Mrazek, David A.; Karpyak, Victor M.

    2013-01-01

    Genome-wide association studies (GWAS) have revealed many single nucleotide polymorphisms (SNPs) associated with complex traits. Although these studies frequently fail to identify statistically significant associations, the top association signals from GWAS may be enriched for true associations. We therefore investigated the association of alcohol dependence with 43 SNPs selected from association signals in the first two published GWAS of alcoholism. Our analysis of 808 alcohol-dependent cases and 1,248 controls provided evidence of association of alcohol dependence with SNP rs1614972 in the ADH1C gene (unadjusted p = 0.0017). Because the GWAS study that originally reported association of alcohol dependence with this SNP [1] included only men, we also performed analyses in sex-specific strata. The results suggest that this SNP has a similar effect in both sexes (men: OR (95%CI) = 0.80 (0.66, 0.95); women: OR (95%CI) = 0.83 (0.66, 1.03)). We also observed marginal evidence of association of the rs1614972 minor allele with lower alcohol consumption in the non-alcoholic controls (p = 0.081), and independently in the alcohol-dependent cases (p = 0.046). Despite a number of potential differences between the samples investigated by the prior GWAS and the current study, data presented here provide additional support for the association of SNP rs1614972 in ADH1C with alcohol dependence and extend this finding by demonstrating association with consumption levels in both non-alcoholic and alcohol-dependent populations. Further studies should investigate the association of other polymorphisms in this gene with alcohol dependence and related alcohol-use phenotypes. PMID:23516558

  2. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    PubMed

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  3. Image Statistics and the Representation of Material Properties in the Visual Cortex

    PubMed Central

    Baumgartner, Elisabeth; Gegenfurtner, Karl R.

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  4. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    PubMed

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  5. Uterine Cancer Statistics

    MedlinePlus

    ... Doing AMIGAS Stay Informed Cancer Home Uterine Cancer Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... the most commonly diagnosed gynecologic cancer. U.S. Cancer Statistics Data Visualizations Tool The Data Visualizations tool makes ...

  6. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    PubMed

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  7. Genetic influences on the outcome of anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration.

    PubMed

    Abedi, Farshad; Wickremasinghe, Sanjeewa; Richardson, Andrea J; Islam, Amirul F M; Guymer, Robyn H; Baird, Paul N

    2013-08-01

    To determine the association of genetic variants in known age-related macular degeneration (AMD) risk-associated genes with outcome of anti-vascular endothelial growth factor (VEGF) treatment in neovascular AMD. Prospective cohort study. We enrolled 224 consecutive patients with neovascular AMD at the Royal Victorian Eye and Ear Hospital, Australia. Patients were treated with 3 initial monthly ranibizumab or bevacizumab injections followed by 9 months of "as required" injections based on clinician's decision at each follow-up visit according to retreatment criteria. Seventeen single nucleotide polymorphisms (SNPs) in known AMD risk-associated genes including CFH (rs800292, rs3766404, rs1061170, rs2274700 and rs393955), HTRA1 (rs11200638), CFHR1-5 (rs10922153, rs16840639, rs6667243, and rs1853883), LOC387715/ARMS2 (rs3793917 and rs10490924), C3 (rs2230199 and rs1047286), C2 (rs547154), CFB (rs641153) and F13B (rs6003) were examined. Multivariate analysis was used to determine the role of each SNP in treatment outcome. The influence of selected SNPs on mean change in visual acuity (VA) at 12 months. Mean baseline VA was 51 ± 16.8 Early Treatment Diabetic Retinopathy Study letters. Overall, the mean change in VA from baseline was +3.2 ± 14.9 letters at 12 months. The AA (homozygote risk) genotype at rs11200638 - HTRA1 promoter SNP (P = 0.001) and GG (homozygote risk) genotype at rs10490924 (A69S) in LOC387715/ARMS2 (P = 0.002) were each significantly associated with poorer VA outcome at 12 months after multiple correction. Mean ± standard deviation change in VA from baseline in patients with AA genotype at rs11200638 was -2.9 ± 15.2 letters after 12 months compared with +5.1 ± 14.1 letters in patients with AG or GG genotypes at this SNP. Patients with either of these genotypes were also significantly more likely to lose >15 letters after 12 months. SNPs rs11200638 and rs10490924 were in high linkage disequilibrium (r(2) = 0.92). None of the other examined SNPs was associated with outcome. The HTRA1 promoter SNP (rs11200638) and A69S at LOC387715/ARMS2 were associated with a poorer visual outcome for ranibizumab or bevacizumab treatment in neovascular AMD, suggesting strong pharmacogenetic associations with anti-VEGF treatment. This finding could aid in applying more individualized treatment regimens based on patients' genotype to achieve optimal treatment response in AMD. The authors have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.

    PubMed

    Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan

    2011-07-28

    The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.

  9. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context

    PubMed Central

    2011-01-01

    Background The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. Results We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. Conclusions FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:21884636

  10. Infants' statistical learning: 2- and 5-month-olds' segmentation of continuous visual sequences.

    PubMed

    Slone, Lauren Krogh; Johnson, Scott P

    2015-05-01

    Past research suggests that infants have powerful statistical learning abilities; however, studies of infants' visual statistical learning offer differing accounts of the developmental trajectory of and constraints on this learning. To elucidate this issue, the current study tested the hypothesis that young infants' segmentation of visual sequences depends on redundant statistical cues to segmentation. A sample of 20 2-month-olds and 20 5-month-olds observed a continuous sequence of looming shapes in which unit boundaries were defined by both transitional probability and co-occurrence frequency. Following habituation, only 5-month-olds showed evidence of statistically segmenting the sequence, looking longer to a statistically improbable shape pair than to a probable pair. These results reaffirm the power of statistical learning in infants as young as 5 months but also suggest considerable development of statistical segmentation ability between 2 and 5 months of age. Moreover, the results do not support the idea that infants' ability to segment visual sequences based on transitional probabilities and/or co-occurrence frequencies is functional at the onset of visual experience, as has been suggested previously. Rather, this type of statistical segmentation appears to be constrained by the developmental state of the learner. Factors contributing to the development of statistical segmentation ability during early infancy, including memory and attention, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  12. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle.

    PubMed

    Sherman, E L; Nkrumah, J D; Murdoch, B M; Li, C; Wang, Z; Fu, A; Moore, S S

    2008-01-01

    Genes that regulate metabolism and energy partitioning have the potential to influence economically important traits in farm animals, as do polymorphisms within these genes. In the current study, SNP in the bovine neuropeptide Y (NPY), growth hormone receptor (GHR), ghrelin (GHRL), uncoupling proteins 2 and 3 (UCP2 and UCP3), IGF2, corticotrophin-releasing hormone (CRH), cocaine and amphetamine regulated transcript (CART), melanocortin-4 receptor (MC4R), proopiomelanocortin (POMC), and GH genes were evaluated for associations with growth, feed efficiency, and carcass merit in beef steers. In total, 24 SNP were evaluated for associations with these traits and haplotypes were constructed within each gene when 2 or more SNP showed significant associations. An A/G SNP located in intron 4 of the GHR gene had the largest effects on BW of the animals (dominance effect P < 0.01) and feed efficiency (allele substitution effect P < 0.05). Another A/G SNP located in the promoter region of GHR had similar effects but the haplotypes of these 2 SNP reduced the effects of the SNP located in intron 4. Three SNP in the NPY gene showed associations to marbling (P < 0.001) as well as with ADG, BW, and feed conversion ratio (FCR; P < 0.05). The combination of these 3 SNP into haplotypes generally improved the association or had a similar scale of association as each single SNP. Only 1 SNP in UCP3, an A/G SNP in intron 3, was associated with ADG (P = 0.025), partial efficiency of growth, and FCR (P < 0.01). Three SNP in UCP2 gene were in almost complete linkage disequilibrium and showed associations with lean meat yield, yield grade, DMI, and BW (P < 0.05). Haplo-types between the SNP in UCP3 and UCP2 generally reduced the associations seen individually in each SNP. An A/G SNP in the GHRL gene tended to show effects on residual feed intake, FCR, and partial efficiency of growth (P < 0.10). The IGF2 SNP most strongly affected LM area (P < 0.01), back fat, ADG, and FCR (P < 0.05). The SNP in the CART, MC4R, POMC, GH, and CRH genes did not show associations at P < 0.05 with any of the traits. Although most of the SNP that showed associations do not cause amino acid changes, these SNP could be linked to other yet to be detected causative mutations or nearby QTL. It will be very important to verify these results in other cattle populations.

  13. Photodynamic synchrotron x-ray therapy in Glioma cell using superparamagnetic iron nanoparticle

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Tae; Kim, Ki-Hong; Choi, Gi-Hwan; Jheon, Sanghoon; Park, Sung-Hwan; Kim, Bong-Il; Hyodo, Kazuyuki; Ando, Masami; Kim, Jong-Ki

    2009-06-01

    In order to evaluate cytotoxic effects of secondary Auger electron emission(Photon Activation Therapy:PAT) from alginate-coated iron nanoparticles(Alg-SNP), Alg-SNP-uptaken C6 glioma cell lines were irradiated with 6.89/7.2 Kev synchrotron X-ray. 0-125 Gy were irradiated on three experimental groups including No-SNP group incubating without SNP as control group, 6hr-SNP group incubating with SNP for 6hr and ON-SNP group incubating with SNP overnight. Irradiated cells were stained with Acridine Orange(AO) and Edithium Bromide(EB) to count their viability with fluorescent microscopy in comparison with control groups. AO stained in damaged DNA, giving FL color change in X-ray plus SNP group. EB did not or less enter inside the cell nucleus of control group. In contrast, EB entered inside the cell nucleus of Alg-SNP group which means more damage compared with Control groups. The results of MTT assay demonstrated a X-ray dose-dependent reduction generally in cell viability in the experimental groups. 3 or 9 times increase in cell survival loss rate was observed at 6hr-SNP and ON-SNP groups, respectively compared to No-SNP control group in first experiment that was done to test cell survival rate at relatively lower dose, from 0 to 50 Gy. In second experiment X-ray dose was increased to 125 Gy. Survival loss was sharply decreased in a relatively lower dose from 5 to 25 Gy, and then demonstrated an exponentially decreasing behavior with a convergence until 125 Gy for each group. This observation suggests PAT effects on the cell directly by X-ray in the presence of Alg-SNP occurs within lower X-ray dose, and conventional X-ray radiation effect becomes dominant in higher X-ray dose. The cell viability loss of ON-SNP group was three times higher compared with that of 6hr-SNP group. In conclusion, it is possible to design photodynamic X-ray therapy study using a monochromatic x-ray energy and metal nanoparticle as x-ray sensitizer, which may enable new X-ray PDT to disseminated tumors without side effects to normal surrounding tissue.

  14. A new risk locus in CHCHD5 for hypertension and obesity in a Chinese child population: a cohort study.

    PubMed

    Wu, Lijun; Gao, Liwang; Zhao, Xiaoyuan; Zhang, Meixian; Wu, Jianxin; Mi, Jie

    2017-09-11

    Coiled-coil-helix-coiled-coil-helix domain containing 5 (CHCHD5), a mitochondrial protein, is involved in the oxidative folding process in the mitochondrial intermembrane space. A previous study identified a hypertension-related single nucleotide polymorphism (SNP), rs3748024, in CHCHD5 in adults, but there are no reports regarding the association between CHCHD5 and obesity, which is a known risk factor for hypertension. The aim of the present study is to investigate the associations of the SNP rs3748024 with hypertension and obesity. Cohort study. Institute of Pediatrics in China. We genotyped the SNP rs3748024 in the Beijing Child and Adolescent Metabolic Syndrome study. A total of 3503 children participated in the study. Genotyping of rs3748024 was conducted using the TaqMan Allelic Discrimination Assay. Lipids and glucose were analysed by an automatic biochemical analyser using a kit assay. The levels of adipocytokines (leptin, adiponectin and resistin) were measured by ELISA techniques. There was a statistically significant association between rs3748024 and systolic blood pressure (SBP) (β=-0.853, 95% CI -1.482 to -0.024, p=0.044) under an additive model adjusted for age, gender and body mass index (BMI) after correction for multiple testing. The SNP was also significantly associated with BMI (β=-0.286, 95% CI -0.551 to -0.021, p=0.043), obesity (OR=0.828, 95% CI 0.723 to 0.949, p=0.018) and triglycerides (β=-0.039, 95% CI -0.070 to -0.007, p=0.044) after correction for multiple testing. We demonstrate for the first time that the SNP rs3748024 in CHCHD5 is associated with SBP, BMI, obesity and triglycerides in Chinese children. Our study identifies a new risk locus for hypertension and obesity in a child population. The function of CHCHD5 remains to be further studied to help elucidate the pathogenic role of CHCHD5 in hypertension and obesity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Pharmacological and electrophysiological characterization of nine, single nucleotide polymorphisms of the hERG-encoded potassium channel

    PubMed Central

    Männikkö, R; Overend, G; Perrey, C; Gavaghan, CL; Valentin, J-P; Morten, J; Armstrong, M; Pollard, CE

    2010-01-01

    Background and purpose: Potencies of compounds blocking KV11.1 [human ether-ago-go-related gene (hERG)] are commonly assessed using cell lines expressing the Caucasian wild-type (WT) variant. Here we tested whether such potencies would be different for hERG single nucleotide polymorphisms (SNPs). Experimental approach: SNPs (R176W, R181Q, Del187-189, P347S, K897T, A915V, P917L, R1047L, A1116V) and a binding-site mutant (Y652A) were expressed in Tet-On CHO-K1 cells. Potencies [mean IC50; lower/upper 95% confidence limit (CL)] of 48 hERG blockers was estimated by automated electrophysiology [IonWorks™ HT (IW)]. In phase one, rapid potency comparison of each WT-SNP combination was made for each compound. In phase two, any compound-SNP combinations from phase one where the WT upper/lower CL did not overlap with those of the SNPs were re-examined. Electrophysiological WT and SNP parameters were determined using conventional electrophysiology. Key results: IW detected the expected sixfold potency decrease for propafenone in Y652A. In phase one, the WT lower/upper CL did not overlap with those of the SNPs for 77 compound-SNP combinations. In phase two, 62/77 cases no longer yielded IC50 values with non-overlapping CLs. For seven of the remaining 15 cases, there were non-overlapping CLs but in the opposite direction. For the eight compound-SNP combinations with non-overlapping CLs in the same direction as for phase 1, potencies were never more than twofold apart. The only statistically significant electrophysiological difference was the voltage dependence of activation of R1047L. Conclusion and implications: Potencies of hERG channel blockers defined using the Caucasian WT sequence, in this in vitro assay, were representative of potencies for common SNPs. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:19673885

  16. Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo.

    PubMed

    El-Magd, Mohammed Abu; Abo-Al-Ela, Haitham G; El-Nahas, Abeer; Saleh, Ayman A; Mansour, Ali A

    2014-05-01

    Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit.

    PubMed

    Pendergrass, Sarah A; Verma, Shefali S; Holzinger, Emily R; Moore, Carrie B; Wallace, John; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A; Ritchie, Marylyn D

    2013-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach provides an additional source of data for seeking these advanced explanatory models of the etiology of complex disease/outcome such as cataracts.

  18. CD44 Gene Polymorphisms in Breast Cancer Risk and Prognosis: A Study in North Indian Population

    PubMed Central

    Tulsyan, Sonam; Agarwal, Gaurav; Lal, Punita; Agrawal, Sushma; Mittal, Rama Devi; Mittal, Balraj

    2013-01-01

    Background Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. Materials & Methods A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. Results No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. Conclusions These findings suggest that CD44 rs353639 genetic variants may have significant effect in breast cancer prognosis. However, both the polymorphisms- rs13347 and rs353639 had no effect on breast cancer susceptibility. PMID:23940692

  19. A polymorphism of the CYP17 gene related to sex steroid metabolism is associated with female-to-male but not male-to-female transsexualism.

    PubMed

    Bentz, Eva-Katrin; Hefler, Lukas A; Kaufmann, Ulrike; Huber, Johannes C; Kolbus, Andrea; Tempfer, Clemens B

    2008-07-01

    To assess the association between transsexualism and allele and genotype frequencies of the common cytochrome P450 (CYP) 17 -34 T>C single nucleotide polymorphism (SNP). Case-control study. Academic research institution. 102 male-to-female (MtF) and 49 female-to-male (FtM) transsexuals, 756 male controls, and 915 female controls. Buccal swabs and multiplex polymerase chain reaction on a microarray system. Analysis of the CYP17 -34 T>C SNP. CYP17 -34 T>C SNP allele frequencies were statistically significantly different between FtM transsexuals and female controls (CYP17 T: 55/98 [56%] and CYP17 C: 43/98 [44%] versus CYP17 T: 1253/1826 [69%] and CYP17 C: 573/1826 [31%], respectively). In accordance, genotype distributions were also different between FtM transsexuals and female controls using a recessive genotype model (CYP17 T/T+T/C: 39/49 [80%] and C/C 10/49 [20%] vs. CYP17 T/T+T/C: 821/913 [90%] and C/C 92/913 [10%], respectively). The CYP17 -34 T>C allele and genotype distributions were not statistically significantly different between MtF transsexuals and male controls. Of note, the CYP17 -34 T>C allele distribution was gender-specific among controls (CYP17 C: males; 604 of 1512 [40%] vs. females; 573 of 1826 [31%]). The MtF transsexuals had an allele distribution equivalent to male controls, whereas FtM transsexuals did not follow the gender-specific allele distribution of female controls but rather had an allele distribution equivalent to MtF transsexuals and male controls. These data support CYP17 as a candidate gene of FtM transsexualism and indicate that loss of a female-specific CYP17 T -34C allele distribution pattern is associated with FtM transsexualism.

  20. The RS4939827 polymorphism in the SMAD7 GENE and its association with Mediterranean diet in colorectal carcinogenesis.

    PubMed

    Alonso-Molero, Jéssica; González-Donquiles, Carmen; Palazuelos, Camilo; Fernández-Villa, Tania; Ramos, Elena; Pollán, Marina; Aragonés, Nuria; Llorca, Javier; Henar Alonso, M; Tardón, Adonina; Amiano, Pilar; Moleon, José Juan Jiménez; Pérez, Rosana Peiró; Capelo, Rocío; Molina, Antonio J; Acebo, Inés Gómez; Guevara, Marcela; Perez-Gomez, Beatriz; Lope, Virginia; Huerta, José María; Castaño-Vinyals, Gemma; Kogevinas, Manolis; Moreno, Victor; Martín, Vicente

    2017-10-30

    The objective of our investigation is to study the relationship between the rs4939827 SNP in the SMAD7 gene, Mediterranean diet pattern and the risk of colorectal cancer. We examined 1087 cases of colorectal cancer and 2409 population controls with available DNA samples from the MCC-Spain study, 2008-2012. Descriptive statistical analyses, and multivariate logistic mixed models were performed. The potential synergistic effect of rs4939827 and the Mediterranean diet pattern was evaluated with logistic regression in different strata of of adherence to the Mediterranean diet and the genotype. High adherence to Mediterrenean diet was statistically significantly associated with colorectal cancer risk. A decreased risk for CRC cancer was observed for the CC compared to the TT genotype (OR = 0.65 and 95% CI = 0.51-0.81) of the rs4939827 SNP Also, we could show an association between the Mediterranean diet pattern (protective factor) and rs4939827. Although the decreased risk for the CC genotype was slightly more pronounced in subjects with high adherence to Mediterrenean diet, there was no statistically significant synergistic effect between genotype CC and adherence to the Mediterranean dietary pattern factors. The SMAD7 gene and specifically the allele C could be protective for colorectal cancer. An independent protective association was also observed between high adherence Mediterranean diet pattern and CRC risk. Findings form this study indicate that high adherence to Mediterranean diet pattern has a protective role for CRC cancer probably involving the Tumor Growth Factor- β pathway in this cancer.

  1. Family genome browser: visualizing genomes with pedigree information.

    PubMed

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP. PMID:20950478

  3. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle.

    PubMed

    Xu, Qing; Mei, Gui; Sun, Dongxiao; Zhang, Qin; Zhang, Yuan; Yin, Cengceng; Chen, Huiyong; Ding, Xiangdong; Liu, Jianfeng

    2012-11-02

    We previously localized a quantitative trait locus (QTL) on bovine chromosome 6 affecting milk production traits to a 1.5-Mb region between BMS483 and MNB-209 via genome scanning followed by fine mapping. Totally 15 genes were mapped within such linkage region through bioinformatic analysis of the cattle-human comparative map and bovine genome assembly. Of them, the UDP-glucose dehydrogenase (UGDH) was suggested as a potential positional candidate gene for milk production traits based on its corresponding physiological and biochemical functions and genetic effects. By sequencing all the coding exons and the untranslated regions in UGDH with pooled DNA of 8 sires represented the separated families detected in our previous studies, a total of ten SNPs were identified and genotyped in 1417 Holstein cows of 8 separation families. Individual SNP-based association analysis revealed 4 significant associations of SNP Ex1-1, SNP Int3-1, SNP Int5-1, and SNP Ex12-3 with milk yield (P < 0.05), and 2 significant associations of SNP Ex1-1 and SNP Ex12-3 with protein yield (P < 0.05). Furthermore, our haplotype-based association analyses indicated that haplotypes G-C-C, formed by SNP Ex12-2-SNP Int11-1-SNP Ex11-1, T-G, formed by SNP Int9-3-SNP Int9-2, and C-C, formed by SNP Int5-1-SNP Int3-1, are significantly associated with protein percentage (F=4.15; P=0.0418) and fat percentage (F=5.18~7.25; P=0.0072~0.0231). Finally, by using an in vitro expression assay, we demonstrated that the A allele of SNP Ex1-1 and T allele of SNP Ex11-1of UGDH significantly decreases the expression of UGDH by 68.0% at the RNA, and 50.1% at the protein level, suggesting that SNP Ex1-1 and Ex11-1 represent two functional polymorphisms affecting expression of UGDH and may partly contributed to the observed association of the gene with milk production traits in our samples. Taken together, our findings strongly indicate that UGDH gene could be involved in genetic variation underlying the QTL for milk production traits.

  4. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  6. Local statistics of retinal optic flow for self-motion through natural sceneries.

    PubMed

    Calow, Dirk; Lappe, Markus

    2007-12-01

    Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.

  7. Genetic differences in the two main groups of the Japanese population based on autosomal SNPs and haplotypes.

    PubMed

    Yamaguchi-Kabata, Yumi; Tsunoda, Tatsuhiko; Kumasaka, Natsuhiko; Takahashi, Atsushi; Hosono, Naoya; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki

    2012-05-01

    Although the Japanese population has a rather low genetic diversity, we recently confirmed the presence of two main clusters (the Hondo and Ryukyu clusters) through principal component analysis of genome-wide single-nucleotide polymorphism (SNP) genotypes. Understanding the genetic differences between the two main clusters requires further genome-wide analyses based on a dense SNP set and comparison of haplotype frequencies. In the present study, we determined haplotypes for the Hondo cluster of the Japanese population by detecting SNP homozygotes with 388,591 autosomal SNPs from 18,379 individuals and estimated the haplotype frequencies. Haplotypes for the Ryukyu cluster were inferred by a statistical approach using the genotype data from 504 individuals. We then compared the haplotype frequencies between the Hondo and Ryukyu clusters. In most genomic regions, the haplotype frequencies in the Hondo and Ryukyu clusters were very similar. However, in addition to the human leukocyte antigen region on chromosome 6, other genomic regions (chromosomes 3, 4, 5, 7, 10 and 12) showed dissimilarities in haplotype frequency. These regions were enriched for genes involved in the immune system, cell-cell adhesion and the intracellular signaling cascade. These differentiated genomic regions between the Hondo and Ryukyu clusters are of interest because they (1) should be examined carefully in association studies and (2) likely contain genes responsible for morphological or physiological differences between the two groups.

  8. Population and performance analyses of four major populations with Illumina's FGx Forensic Genomics System.

    PubMed

    Churchill, Jennifer D; Novroski, Nicole M M; King, Jonathan L; Seah, Lay Hong; Budowle, Bruce

    2017-09-01

    The MiSeq FGx Forensic Genomics System (Illumina) enables amplification and massively parallel sequencing of 59 STRs, 94 identity informative SNPs, 54 ancestry informative SNPs, and 24 phenotypic informative SNPs. Allele frequency and population statistics data were generated for the 172 SNP loci included in this panel on four major population groups (Chinese, African Americans, US Caucasians, and Southwest Hispanics). Single-locus and combined random match probability values were generated for the identity informative SNPs. The average combined STR and identity informative SNP random match probabilities (assuming independence) across all four populations were 1.75E-67 and 2.30E-71 with length-based and sequence-based STR alleles, respectively. Ancestry and phenotype predictions were obtained using the ForenSeq™ Universal Analysis System (UAS; Illumina) based on the ancestry informative and phenotype informative SNP profiles generated for each sample. Additionally, performance metrics, including profile completeness, read depth, relative locus performance, and allele coverage ratios, were evaluated and detailed for the 725 samples included in this study. While some genetic markers included in this panel performed notably better than others, performance across populations was generally consistent. The performance and population data included in this study support that accurate and reliable profiles were generated and provide valuable background information for laboratories considering internal validation studies and implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Masking as an effective quality control method for next-generation sequencing data analysis.

    PubMed

    Yun, Sajung; Yun, Sijung

    2014-12-13

    Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).

  10. Results of a SNP genome screen in a large Costa Rican pedigree segregating for severe bipolar disorder.

    PubMed

    Service, Susan; Molina, Julio; Deyoung, Joseph; Jawaheer, Damini; Aldana, Ileana; Vu, Thuy; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Fournier, Eduardo; Ramirez, Magui; Mathews, Carol A; Davanzo, Pablo; Macaya, Gabriel; Sandkuijl, Lodewijk; Sabatti, Chiara; Reus, Victor; Freimer, Nelson

    2006-06-05

    We have ascertained in the Central Valley of Costa Rica a new kindred (CR201) segregating for severe bipolar disorder (BP-I). The family was identified by tracing genealogical connections among eight persons initially independently ascertained for a genome wide association study of BP-I. For the genome screen in CR201, we trimmed the family down to 168 persons (82 of whom are genotyped), containing 25 individuals with a best-estimate diagnosis of BP-I. A total of 4,690 SNP markers were genotyped. Analysis of the data was hampered by the size and complexity of the pedigree, which prohibited using exact multipoint methods on the entire kindred. Two-point parametric linkage analysis, using a conservative model of transmission, produced a maximum LOD score of 2.78 on chromosome 6, and a total of 39 loci with LOD scores >1.0. Multipoint parametric and non-parametric linkage analysis was performed separately on four sections of CR201, and interesting (nominal P-value from either analysis <0.01), although not statistically significant, regions were highlighted on chromosomes 1, 2, 3, 12, 16, 19, and 22, in at least one section of the pedigree, or when considering all sections together. The difficulties of analyzing genome wide SNP data for complex disorders in large, potentially informative, kindreds are discussed.

  11. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-08-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA.

  12. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-01-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA. PMID:23016130

  13. Is there any relation between IL-6 gene -174 G>C polymorphism and postmenopausal osteoporosis?

    PubMed

    Deveci, Derya; Ozkan, Zehra Sema; Yuce, Huseyin

    2012-09-01

    IL-6 gene single nucleotide polymorphisms (SNPs) have been reported to have a protective effect against bone resorption. We aimed to investigate the association between bone mineral density and IL-6 promoter region -174 G>C SNP. This study included 356 postmenopausal Turkish women, of whom 201 were osteoporotic (lumbar spine T score<-2.5 SD) and 155 non-osteoporotic (lumbar spine T score>-1.5 SD). Bone mineral density (BMD) measures were obtained using dual-energy X-ray absorptiometry. SNP of the IL-6 gene (-174 G>C) was examined by polymerase chain reaction-restriction fragment length polymorphism. The frequencies of the variant C allele (24% vs. 30%, p=0.074) and mutant CC genotype (12% vs. 20%, p=0.094) were higher in non-osteoporotic women. Lumbar spine and total hip BMD values were lowest among women with the G/G genotype, intermediate in the heterozygotes, and highest in women with the C/C genotype. The GG (p=0.022) and GC (p=0.037) genotypes were covariates which approached statistical significance in the regression model fitting of BMD. IL-6 promoter region SNP showed an association with BMD in this postmenopausal Turkish population and these data suggest that the wild GG genotype influences the phenotype. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors

    PubMed Central

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T.; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05–4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs. PMID:28008994

  15. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors.

    PubMed

    Campa, Daniele; Capurso, Gabriele; Pastore, Manuela; Talar-Wojnarowska, Renata; Milanetto, Anna Caterina; Landoni, Luca; Maiello, Evaristo; Lawlor, Rita T; Malecka-Panas, Ewa; Funel, Niccola; Gazouli, Maria; De Bonis, Antonio; Klüter, Harald; Rinzivillo, Maria; Delle Fave, Gianfranco; Hackert, Thilo; Landi, Stefano; Bugert, Peter; Bambi, Franco; Archibugi, Livia; Scarpa, Aldo; Katzke, Verena; Dervenis, Christos; Liço, Valbona; Furlanello, Sara; Strobel, Oliver; Tavano, Francesca; Basso, Daniela; Kaaks, Rudolf; Pasquali, Claudio; Gentiluomo, Manuel; Rizzato, Cosmeri; Canzian, Federico

    2016-12-23

    Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (OR hom  = 2.08, 95% CI 1.05-4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs.

  16. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.

    PubMed

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C; Souza, Milena M; Cirillo, Cintia A; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88- 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10(-13), r(2) = 8.9%, β = -0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with-but is statistically distinct from-the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10(-37), r(2) = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception.

  17. Visualizing statistical significance of disease clusters using cartograms.

    PubMed

    Kronenfeld, Barry J; Wong, David W S

    2017-05-15

    Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.

  18. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Local image statistics: maximum-entropy constructions and perceptual salience

    PubMed Central

    Victor, Jonathan D.; Conte, Mary M.

    2012-01-01

    The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397

  20. T.I.M.S: TaqMan Information Management System, tools to organize data flow in a genotyping laboratory

    PubMed Central

    Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico

    2005-01-01

    Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298

  1. GPU Accelerated Browser for Neuroimaging Genomics.

    PubMed

    Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2018-04-25

    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

  2. ParallABEL: an R library for generalized parallelization of genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Results Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors. Conclusions Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL. PMID:20429914

  3. Integrated Analysis of Pharmacologic, Clinical, and SNP Microarray Data using Projection onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing

    PubMed Central

    Pounds, Stan; Cao, Xueyuan; Cheng, Cheng; Yang, Jun; Campana, Dario; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.

    2010-01-01

    Powerful methods for integrated analysis of multiple biological data sets are needed to maximize interpretation capacity and acquire meaningful knowledge. We recently developed Projection Onto the Most Interesting Statistical Evidence (PROMISE). PROMISE is a statistical procedure that incorporates prior knowledge about the biological relationships among endpoint variables into an integrated analysis of microarray gene expression data with multiple biological and clinical endpoints. Here, PROMISE is adapted to the integrated analysis of pharmacologic, clinical, and genome-wide genotype data that incorporating knowledge about the biological relationships among pharmacologic and clinical response data. An efficient permutation-testing algorithm is introduced so that statistical calculations are computationally feasible in this higher-dimension setting. The new method is applied to a pediatric leukemia data set. The results clearly indicate that PROMISE is a powerful statistical tool for identifying genomic features that exhibit a biologically meaningful pattern of association with multiple endpoint variables. PMID:21516175

  4. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-06-09

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  5. A survey about methods dedicated to epistasis detection.

    PubMed

    Niel, Clément; Sinoquet, Christine; Dina, Christian; Rocheleau, Ghislain

    2015-01-01

    During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).

  6. [Association between single-nucleotide polymorphisms in the IRAK-4 gene and allergic rhinitis].

    PubMed

    Zhang, Yuan; Xi, Lin; Zhao, Yan-ming; Zhao, Li-ping; Zhang, Luo

    2012-06-01

    To investigate the genetic association pattern between single-nucleotide polymorphisms (SNP) in the interleukin-1 receptor-associated kinase 4 (IRAK-4) gene and allergic rhinitis (AR). A population of 379 patients with the diagnosis of AR and 333 healthy controls who lived in Beijing region was recruited. A total of 8 reprehensive marker SNP which were in IRAK-4 gene region were selected according to the Beijing people database from Hapmap website. The individual genotyping was performed by MassARRAY platform. SPSS 13.0 software was used for statistic analysis. Subgroup analysis for the presence of different allergen sensitivities displayed associations only in the house dust mite-allergic cohorts (rs3794262: P = 0.0034, OR = 1.7388; rs4251481: P = 0.0023, OR = 2.6593), but not in subjects who were allergic to pollens as well as mix allergens. The potential genetic contribution of the IRAK-4 gene to AR demonstrated an allergen-dependant association pattern in Chinese population.

  7. AncestrySNPminer: A bioinformatics tool to retrieve and develop ancestry informative SNP panels

    PubMed Central

    Amirisetty, Sushil; Khurana Hershey, Gurjit K.; Baye, Tesfaye M.

    2012-01-01

    A wealth of genomic information is available in public and private databases. However, this information is underutilized for uncovering population specific and functionally relevant markers underlying complex human traits. Given the huge amount of SNP data available from the annotation of human genetic variation, data mining is a faster and cost effective approach for investigating the number of SNPs that are informative for ancestry. In this study, we present AncestrySNPminer, the first web-based bioinformatics tool specifically designed to retrieve Ancestry Informative Markers (AIMs) from genomic data sets and link these informative markers to genes and ontological annotation classes. The tool includes an automated and simple “scripting at the click of a button” functionality that enables researchers to perform various population genomics statistical analyses methods with user friendly querying and filtering of data sets across various populations through a single web interface. AncestrySNPminer can be freely accessed at https://research.cchmc.org/mershalab/AncestrySNPminer/login.php. PMID:22584067

  8. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  9. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  10. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus mutans and Its Serotypes

    PubMed Central

    Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco

    2016-01-01

    (1) Background: Streptococcus mutans (S. mutans) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes (c, e, f, and k). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria. PMID:28335264

  11. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus mutans and Its Serotypes.

    PubMed

    Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco

    2016-07-22

    (1) Background: Streptococcus mutans ( S. mutans ) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes ( c , e , f , and k ). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans ; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria.

  12. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    PubMed

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  13. [Correlation between genetic polymorphisms of -855 G/C and -1140 G/A in GRIN1 gene and paranoid schizophrenia].

    PubMed

    Li, Zhong-Jie; Ding, Mei; Pang, Hao; Sun, Xue-Fei; Xing, Jia-Xin; Xuan, Jin-Feng; Wang, Bao-Jie

    2013-04-01

    To investigate the single nucleotide polymorphisms (SNP) of -855 G/C and -1140 G/A in promoter regions of GRIN1 gene and find their genetic correlation to paranoid schizophrenia as well as their applicable values in forensic medicine. The genetic polymorphisms of -855 G/C and -1140 G/A at the 5' end of GRIN1 gene were detected by PCR restriction fragment length polymorphism and PAGE in 183 healthy unrelated individuals of northern Chinese Han population and 172 patients of paranoid schizophrenia, respectively. The chi2 test was used to identify Hardy-Weinberg equilibrium of the genotype distribution. The differences of genotypes and allelic frequency distributions were compared between the two groups. Distributions of the genotypic frequencies satisfied Hardy-Weinberg equilibrium in both groups. The difference of genotypes was statistically significant between female patient group and female control group in -855 G/C distribution (P < 0.05). The differences of genotypes and allelic frequencies were statistically significant not only between the patient group and the control group but also between female patient group and female control group in -1140 G/A distribution (P < 0.05). The SNP of -1140 G/A in promoter regions of GRIN1 gene might positively correlate to paranoid schizophrenia. The genetic factor of schizophrenia is involved in gender tendency. And it could be useful in forensic identification of schizophrenia.

  14. Factors related to respiration influencing survival and respiratory function in patients with amyotrophic lateral sclerosis: a retrospective study.

    PubMed

    Leonardis, L; Dolenc Grošelj, L; Vidmar, G

    2012-12-01

    Various breathing abnormalities (Neurology 2009; 73: 1218) have been proposed as indicators for the introduction of non-invasive positive-pressure ventilation (NIV) in patients with amyotrophic lateral sclerosis (ALS). We were interested in the usefulness of symptoms of respiratory insufficiency and abnormal results of daytime arterial gas analyses (AGA) as predictors of survival and the effect of NIV on respiratory volumes and pressures. Reported symptoms, respiratory subscore of the ALS Functional Rating Scale (ALSFRS-r), Norris scale (Norris-r), and AGA were retrospectively analyzed in 189 ALS patients. Longitudinal follow-up of forced vital capacity (FVC), maximal inspiratory and expiratory pressure (MIP, MEP), and sniff nasal pressure (SNP) were analyzed with regard to the introduction of NIV. Respiratory symptoms were a bad prognostic sign (P = 0.007). Abnormalities in Norris-r, ALSFRS-r, pO(2), pCO(2), and oxygen saturation tended to be associated with a shorter survival, although they were not statistically significant. NIV prolonged survival and reduced the decline in FVC (P = 0.007), MIP, MEP, and SNP (the last three were not statistically significant). Symptoms, abnormal FVC, and AGA do not always coincide, and they can appear in a different sequence. Any respiratory abnormality should prompt the clinician to start discussing NIV with the patient. NIV prolongs survival and improves respiratory function. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  15. Pooled Genome-Wide Analysis to Identify Novel Risk Loci for Pediatric Allergic Asthma

    PubMed Central

    Ricci, Giampaolo; Astolfi, Annalisa; Remondini, Daniel; Cipriani, Francesca; Formica, Serena; Dondi, Arianna; Pession, Andrea

    2011-01-01

    Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population. PMID:21359210

  16. Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD.

    PubMed

    Jeste, Shafali S; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F N; Johnson, Scott P

    2015-01-01

    Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism spectrum disorder (ASD) using an event-related potential shape learning paradigm, and we examined the relation between visual statistical learning and cognitive function. Compared to typically developing (TD) controls, the ASD group as a whole showed reduced evidence of learning as defined by N1 (early visual discrimination) and P300 (attention to novelty) components. Upon further analysis, in the ASD group there was a positive correlation between N1 amplitude difference and non-verbal IQ, and a positive correlation between P300 amplitude difference and adaptive social function. Children with ASD and a high non-verbal IQ and high adaptive social function demonstrated a distinctive pattern of learning. This is the first study to identify electrophysiological markers of visual statistical learning in children with ASD. Through this work we have demonstrated heterogeneity in statistical learning in ASD that maps onto non-verbal cognition and adaptive social function. © 2014 John Wiley & Sons Ltd.

  17. Statistics on Children with Visual Impairments.

    ERIC Educational Resources Information Center

    Viisola, Michelle

    This report summarizes statistical data relating to children with visual impairments, including incidence, causes, and education. Data include: (1) prevalence estimates that indicate 1 percent of persons under the age of 18 in the United States have a visual impairment that cannot be corrected with glasses; (2) the leading cause of childhood…

  18. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes

    PubMed Central

    Hein, David W; Doll, Mark A

    2012-01-01

    Aim Humans exhibit genetic polymorphism in NAT2 resulting in rapid, intermediate and slow acetylator phenotypes. Over 65 NAT2 variants possessing one or more SNPs in the 870-bp NAT2 coding region have been reported. The seven most frequent SNPs are rs1801279 (191G>A), rs1041983 (282C>T), rs1801280 (341T>C), rs1799929 (481C>T), rs1799930 (590G>A), rs1208 (803A>G) and rs1799931 (857G>A). The majority of studies investigate the NAT2 genotype assay for three SNPs: 481C>T, 590G>A and 857G>A. A tag-SNP (rs1495741) recently identified in a genome-wide association study has also been proposed as a biomarker for the NAT2 phenotype. Materials & methods Sulfamethazine N-acetyltransferase catalytic activities were measured in cryopreserved human hepatocytes from a convenience sample of individuals in the USA with an ethnic frequency similar to the 2010 US population census. These activities were segregated by the tag-SNP rs1495741 and each of the seven SNPs described above. We assessed the accuracy of the tag-SNP and various two-, three-, four- and seven-SNP genotyping panels for their ability to accurately infer NAT2 phenotype. Results The accuracy of the various NAT2 SNP genotype panels to infer NAT2 phenotype were as follows: seven-SNP: 98.4%; tag-SNP: 77.7%; two-SNP: 96.1%; three-SNP: 92.2%; and four-SNP: 98.4%. Conclusion A NAT2 four-SNP genotype panel of rs1801279 (191G>A), rs1801280 (341T>C), rs1799930 (590G>A) and rs1799931 (857G>A) infers NAT2 acetylator phenotype with high accuracy, and is recommended over the tag-, two-, three- and (for economy of scale) the seven-SNP genotyping panels, particularly in populations of non-European ancestry. PMID:22092036

  19. PoMaMo--a comprehensive database for potato genome data.

    PubMed

    Meyer, Svenja; Nagel, Axel; Gebhardt, Christiane

    2005-01-01

    A database for potato genome data (PoMaMo, Potato Maps and More) was established. The database contains molecular maps of all twelve potato chromosomes with about 1000 mapped elements, sequence data, putative gene functions, results from BLAST analysis, SNP and InDel information from different diploid and tetraploid potato genotypes, publication references, links to other public databases like GenBank (http://www.ncbi.nlm.nih.gov/) or SGN (Solanaceae Genomics Network, http://www.sgn.cornell.edu/), etc. Flexible search and data visualization interfaces enable easy access to the data via internet (https://gabi.rzpd.de/PoMaMo.html). The Java servlet tool YAMB (Yet Another Map Browser) was designed to interactively display chromosomal maps. Maps can be zoomed in and out, and detailed information about mapped elements can be obtained by clicking on an element of interest. The GreenCards interface allows a text-based data search by marker-, sequence- or genotype name, by sequence accession number, gene function, BLAST Hit or publication reference. The PoMaMo database is a comprehensive database for different potato genome data, and to date the only database containing SNP and InDel data from diploid and tetraploid potato genotypes.

  20. PoMaMo—a comprehensive database for potato genome data

    PubMed Central

    Meyer, Svenja; Nagel, Axel; Gebhardt, Christiane

    2005-01-01

    A database for potato genome data (PoMaMo, Potato Maps and More) was established. The database contains molecular maps of all twelve potato chromosomes with about 1000 mapped elements, sequence data, putative gene functions, results from BLAST analysis, SNP and InDel information from different diploid and tetraploid potato genotypes, publication references, links to other public databases like GenBank (http://www.ncbi.nlm.nih.gov/) or SGN (Solanaceae Genomics Network, http://www.sgn.cornell.edu/), etc. Flexible search and data visualization interfaces enable easy access to the data via internet (https://gabi.rzpd.de/PoMaMo.html). The Java servlet tool YAMB (Yet Another Map Browser) was designed to interactively display chromosomal maps. Maps can be zoomed in and out, and detailed information about mapped elements can be obtained by clicking on an element of interest. The GreenCards interface allows a text-based data search by marker-, sequence- or genotype name, by sequence accession number, gene function, BLAST Hit or publication reference. The PoMaMo database is a comprehensive database for different potato genome data, and to date the only database containing SNP and InDel data from diploid and tetraploid potato genotypes. PMID:15608284

  1. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues.

    PubMed

    Pedroso, M C; Magalhaes, J R; Durzan, D

    2000-06-01

    Leaves and callus of Kalanchoë daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalanchoë and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.

  2. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  3. Visual Survey of Infantry Troops. Part 1. Visual Acuity, Refractive Status, Interpupillary Distance and Visual Skills

    DTIC Science & Technology

    1989-06-01

    letters on one line and several letters on the next line, there is no accurate way to credit these extra letters for statistical analysis. The decimal and...contains the descriptive statistics of the objective refractive error components of infantrymen. Figures 8-11 show the frequency distributions for sphere...equivalents. Nonspectacle wearers Table 12 contains the idescriptive statistics for non- spectacle wearers. Based or these refractive error data, about 30

  4. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.

  5. Identification of an interaction between VWF rs7965413 and platelet count as a novel risk marker for metabolic syndrome: an extensive search of candidate polymorphisms in a case-control study.

    PubMed

    Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki

    2015-01-01

    Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP-SNP interaction, SNP-environment interaction, and SNP-clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS.

  6. Automated Box-Cox Transformations for Improved Visual Encoding.

    PubMed

    Maciejewski, Ross; Pattath, Avin; Ko, Sungahn; Hafen, Ryan; Cleveland, William S; Ebert, David S

    2013-01-01

    The concept of preconditioning data (utilizing a power transformation as an initial step) for analysis and visualization is well established within the statistical community and is employed as part of statistical modeling and analysis. Such transformations condition the data to various inherent assumptions of statistical inference procedures, as well as making the data more symmetric and easier to visualize and interpret. In this paper, we explore the use of the Box-Cox family of power transformations to semiautomatically adjust visual parameters. We focus on time-series scaling, axis transformations, and color binning for choropleth maps. We illustrate the usage of this transformation through various examples, and discuss the value and some issues in semiautomatically using these transformations for more effective data visualization.

  7. Comparative in vivo assessment of the subacute toxicity of gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rathore, Mansee; Mohanty, Ipseeta Ray; Maheswari, Ujjwala; Dayal, Navami; Suman, Rajesh; Joshi, D. S.

    2014-04-01

    In spite of the projected therapeutic potentials of gold nanoparticles (GNP) and silver nanoparticles (SNP), very limited data are available on the interaction of nanoparticles with the biological systems. The present investigation was designed to evaluate as well as compare the subacute toxicity of GNP and SNP. Stable suspensions of GNP and SNP with mean particle diameter 10 and 25 nm, respectively, were prepared. Wistar rats were orally fed SNP (3 mg/kg) or GNP (20 μg/kg), once a day for 21 days. Biochemical indices (creatinine phosphokinase-MB, urea, blood urea nitrogen, aspartate transaminase, alkaline alanine transferase) and histopathological features of the liver, heart, brain, lungs, and kidney were evaluated for signs of toxicity. A significant decline in hepatic and renal function in the GNP treated group was observed as compared to SNP. GNP was found to be relatively more toxic on the lungs and SNP on the myocardial tissue as compared to SNP and GNP treatments, respectively. Interestingly, neither SNP nor GNP adversely affected the basal architecture of the brain as compared to sham. The present study demonstrated that GNP was significantly more noxious on the liver and kidney as compared with SNP.

  8. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification

    PubMed Central

    McClure, Matthew C.; McCarthy, John; Flynn, Paul; McClure, Jennifer C.; Dair, Emma; O'Connell, D. K.; Kearney, John F.

    2018-01-01

    A major use of genetic data is parentage verification and identification as inaccurate pedigrees negatively affect genetic gain. Since 2012 the international standard for single nucleotide polymorphism (SNP) verification in Bos taurus cattle has been the ISAG SNP panels. While these ISAG panels provide an increased level of parentage accuracy over microsatellite markers (MS), they can validate the wrong parent at ≤1% misconcordance rate levels, indicating that more SNP are needed if a more accurate pedigree is required. With rapidly increasing numbers of cattle being genotyped in Ireland that represent 61 B. taurus breeds from a wide range of farm types: beef/dairy, AI/pedigree/commercial, purebred/crossbred, and large to small herd size the Irish Cattle Breeding Federation (ICBF) analyzed different SNP densities to determine that at a minimum ≥500 SNP are needed to consistently predict only one set of parents at a ≤1% misconcordance rate. For parentage validation and prediction ICBF uses 800 SNP (ICBF800) selected based on SNP clustering quality, ISAG200 inclusion, call rate (CR), and minor allele frequency (MAF) in the Irish cattle population. Large datasets require sample and SNP quality control (QC). Most publications only deal with SNP QC via CR, MAF, parent-progeny conflicts, and Hardy-Weinberg deviation, but not sample QC. We report here parentage, SNP QC, and a genomic sample QC pipelines to deal with the unique challenges of >1 million genotypes from a national herd such as SNP genotype errors from mis-tagging of animals, lab errors, farm errors, and multiple other issues that can arise. We divide the pipeline into two parts: a Genotype QC and an Animal QC pipeline. The Genotype QC identifies samples with low call rate, missing or mixed genotype classes (no BB genotype or ABTG alleles present), and low genotype frequencies. The Animal QC handles situations where the genotype might not belong to the listed individual by identifying: >1 non-matching genotypes per animal, SNP duplicates, sex and breed prediction mismatches, parentage and progeny validation results, and other situations. The Animal QC pipeline make use of ICBF800 SNP set where appropriate to identify errors in a computationally efficient yet still highly accurate method. PMID:29599798

  9. The Influence of Genetics on Response to Treatment with Ranibizumab (Lucentis) for Age-Related Macular Degeneration: The Lucentis Genotype Study (An American Ophthalmological Society Thesis)

    PubMed Central

    Francis, Peter James

    2011-01-01

    Purpose Age-related macular degeneration (AMD) has a complex etiology arising from genetic and environmental influences. This past decade have seen several genes associated with the disease. Variants in five genes have been confirmed to play a major role. The objective of this study was to evaluate whether genes influence treatment response to ranibizumab for neovascular AMD. The hypothesis was that an individual’s genetic variation will determine treatment response. Methods The study was a two-site prospective open-label observational study of patients newly diagnosed with exudative (neovascular) AMD receiving intravitreal ranibizumab therapy. Treatment-naïve patients were enrolled at presentation and received monthly “as needed” therapy. Clinical data was collected monthly and DNA extracted. Genotyping was performed using the Illumina (San Diego, California) 660-Quad single-nucleotide polymorphism (SNP) chip. Regression analyses were performed to identify SNPs associated with treatment-response end points. Results Sixty-five patients were enrolled. No serious adverse events were recorded. The primary outcome measure was change in ETDRS visual acuity at 12 months. A SNP in the CFH gene was found to be associated with less improvement in visual acuity while receiving ranibizumab therapy. The C3 gene, among others, was associated with reduced thickening and improved retinal architecture. VEGFA, FLT1, and CFH were associated with requiring fewer ranibizumab injections over the 12-month study. Conclusions This study is one of the first prospective pharmacogenetic study of intravitreal ranibizumab. Although preliminary, the results identify a number of putative genetic variants, which will be further examined by replication and functional studies to elucidate the complete pharmacogenetic architecture of therapy for AMD. PMID:22253485

  10. SNPMeta: SNP annotation and SNP metadata collection without a reference genome

    USDA-ARS?s Scientific Manuscript database

    The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a ...

  11. Statistical regularities in art: Relations with visual coding and perception.

    PubMed

    Graham, Daniel J; Redies, Christoph

    2010-07-21

    Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  13. High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  14. Global Statistical Learning in a Visual Search Task

    ERIC Educational Resources Information Center

    Jones, John L.; Kaschak, Michael P.

    2012-01-01

    Locating a target in a visual search task is facilitated when the target location is repeated on successive trials. Global statistical properties also influence visual search, but have often been confounded with local regularities (i.e., target location repetition). In two experiments, target locations were not repeated for four successive trials,…

  15. A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.

    PubMed

    Qian, Jing; Nunez, Sara; Reed, Eric; Reilly, Muredach P; Foulkes, Andrea S

    2016-01-01

    Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs. We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT), to identify protein-coding gene association with 14 cardiometabolic (CMD) related traits across 6 publicly available genome wide association (GWA) meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1. We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes. We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and adds significant value with respect to its potential for identifying multiple novel and clinically relevant trait associations.

  16. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC)

    PubMed Central

    Lattka, Eva; Koletzko, Berthold; Zeilinger, Sonja; Hibbeln, Joseph R.; Klopp, Norman; Ring, Susan M.; Steer, Colin D.

    2012-01-01

    Fetal supply with long-chain PUFA (LC-PUFA) during pregnancy is important for brain growth and visual and cognitive development and is provided by materno–fetal placental transfer. We recently showed that maternal fatty acid desaturase (FADS) genotypes modulate the amounts of LC-PUFA in maternal blood. Whether FADS genotypes influence the amounts of umbilical cord fatty acids has not been investigated until now. The aim of the present study was to investigate the influence of maternal and child FADS genotypes on the amounts of LC-PUFA in umbilical cord venous plasma as an indicator of fetal fatty acid supply during pregnancy. A total of eleven cord plasma n-6 and n-3 fatty acids were analysed for association with seventeen FADS gene cluster SNP in over 2000 mothers and children from the Avon Longitudinal Study of Parents and Children. In a multivariable analysis, the maternal genotype effect was adjusted for the child genotype and vice versa to estimate which of the two has the stronger influence on cord plasma fatty acids. Both maternal and child FADS genotypes and haplotypes influenced amounts of cord plasma LC-PUFA and fatty acid ratios. Specifically, most analysed maternal SNP were associated with cord plasma levels of the precursor n-6 PUFA, whereas the child genotypes were mainly associated with more highly desaturated n-6 LC-PUFA. This first study on FADS genotypes and cord fatty acids suggests that fetal LC-PUFA status is determined to some extent by fetal fatty acid conversion. Associations of particular haplotypes suggest specific effects of SNP rs498793 and rs968567 on fatty acid metabolism. PMID:22877655

  17. Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction.

    PubMed

    Bi, Sai; Zhang, Zhipeng; Dong, Ying; Wang, Zonghua

    2015-03-15

    A novel ligation chain reaction (LCR) methodology for single-nucleotide polymorphism (SNP) detection was developed based on luminol-H2O2-horseradish peroxidase (HRP)-mimicking DNAzyme-fluorescein chemiluminescence resonance energy transfer (CRET) imaging on magnetic particles. For LCR, four unique target-complement probes (X and X(⁎), YG and Y(⁎)) for the amplification of K-ras (G12C) were designed by modifying G-quadruplex sequence at 3'-end of YG and fluorescein at 5'-end of Y(⁎). After the LCR, the resulting products of XYG/X(⁎)Y(⁎) with biotin-labeled X(⁎) were captured onto streptavidin-coated magnetic particles (SA-MPs) via specific biotin-SA interaction, which stimulated the CRET reaction from hemin/G-quadruplex-catalyzed luminol-H2O2 CL system to fluorescein. By collecting signals by a cooled low-light CCD, a CRET imaging method was proposed for visual detection and quantitative analysis of SNP. As low as 0.86fM mutant DNA was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10,000:1. This high sensitivity and specificity could be attributed to not only the exponential amplification and excellent discrimination of LCR but also the employment of SA-MPs. SA-MPs ensured the feasibility of the proposed strategy, which also simplified the operations through magnetic separation and separated the reaction and detection procedures to improve sensitivity. The proposed LCR-CRET imaging strategy extends the application of signal amplification techniques to SNP detection, providing a promising platform for effective and high-throughput genetic diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC).

    PubMed

    Lattka, Eva; Koletzko, Berthold; Zeilinger, Sonja; Hibbeln, Joseph R; Klopp, Norman; Ring, Susan M; Steer, Colin D

    2013-04-14

    Fetal supply with long-chain PUFA (LC-PUFA) during pregnancy is important for brain growth and visual and cognitive development and is provided by materno-fetal placental transfer. We recently showed that maternal fatty acid desaturase (FADS) genotypes modulate the amounts of LC-PUFA in maternal blood. Whether FADS genotypes influence the amounts of umbilical cord fatty acids has not been investigated until now. The aim of the present study was to investigate the influence of maternal and child FADS genotypes on the amounts of LC-PUFA in umbilical cord venous plasma as an indicator of fetal fatty acid supply during pregnancy. A total of eleven cord plasma n-6 and n-3 fatty acids were analysed for association with seventeen FADS gene cluster SNP in over 2000 mothers and children from the Avon Longitudinal Study of Parents and Children. In a multivariable analysis, the maternal genotype effect was adjusted for the child genotype and vice versa to estimate which of the two has the stronger influence on cord plasma fatty acids. Both maternal and child FADS genotypes and haplotypes influenced amounts of cord plasma LC-PUFA and fatty acid ratios. Specifically, most analysed maternal SNP were associated with cord plasma levels of the precursor n-6 PUFA, whereas the child genotypes were mainly associated with more highly desaturated n-6 LC-PUFA. This first study on FADS genotypes and cord fatty acids suggests that fetal LC-PUFA status is determined to some extent by fetal fatty acid conversion. Associations of particular haplotypes suggest specific effects of SNP rs498793 and rs968567 on fatty acid metabolism.

  19. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.

  20. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis.

    PubMed

    de Tayrac, Marie; Roth, Marie-Paule; Jouanolle, Anne-Marie; Coppin, Hélène; le Gac, Gérald; Piperno, Alberto; Férec, Claude; Pelucchi, Sara; Scotet, Virginie; Bardou-Jacquet, Edouard; Ropert, Martine; Bouvet, Régis; Génin, Emmanuelle; Mosser, Jean; Deugnier, Yves

    2015-03-01

    Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (p<0.01). Serum iron levels were also associated with fibrosis stage (p<0.0001). This GWAS, the largest one performed so far in unselected HFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. The reduction of Calpain-10 expression is associated with risk polymorphisms in obese children.

    PubMed

    Mendoza-Lorenzo, Patricia; Salazar, Ana Maria; Cortes-Arenas, Eladio; Saucedo, Renata; Taja-Chayeb, Lucia; Flores-Dorantes, Maria T; Pánico, Pablo; Sordo, Monserrat; Ostrosky-Wegman, Patricia

    2013-03-01

    Excessive weight gain and obesity are major public health concerns. Childhood obesity is growing at an alarming rate. Polymorphisms in the Calpain-10 gene and the reduced expression of this gene in muscle cells and adipocytes have been associated with an increased risk of type 2 diabetes mellitus in several populations. In the present study, we explored the contribution of Calpain-10 in the development of metabolic impairment in childhood. We evaluated the presence of risk polymorphisms in the CAPN10 gene (SNP-44, SNP-43, InDel-19 and SNP-63) and the associated changes in the Calpain-10 mRNA levels in a pediatric population. A total of 161 Mexican children between 4 and 18 years old were included in this study. This population was classified into three groups according to international growth references: healthy weight (HW), overweight (OW) and obese (OB). Association studies of the anthropometric data, clinical values, genotyping and expression assays showed a decrease in the Calpain-10 mRNA and protein expression in the OW and OB groups with respect to the HW group. This decrease in the Calpain-10 mRNA expression was more evident in individuals homozygous for SNP-44 (T/T) and InDel-19 (3/3), alone (p<0.001 and p=0.015, respectively) or in combination (p=0.017). These polymorphisms were also associated with elevated BMI, weight percentiles, z-scores, waist circumferences, fasting glucose levels and beta cell functions in the OW and OB groups (p<0.05). Moreover, our results indicate a statistically significant decrease in the expression of the 75-kDa Calpain-10 isoform in the OW+OB group. The presence of polymorphisms and alterations in the expression of the CAPN10 gene at early ages might result in metabolic impairment in adulthood and should be further investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Kartsonaki, Christiana; Gayther, Simon A.; Pharoah, Paul D. P.; Sinilnikova, Olga M.; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Healey, Sue; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Barile, Monica; Viel, Alessandra; Allavena, Anna; Ottini, Laura; Papi, Laura; Gismondi, Viviana; Capra, Fabio; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria Adelaide; Olsson, Håkan; Kristoffersson, Ulf; Lindblom, Annika; Arver, Brita; Karlsson, Per; Stenmark Askmalm, Marie; Borg, Ake; Neuhausen, Susan L.; Ding, Yuan Chun; Nathanson, Katherine L.; Domchek, Susan M.; Jakubowska, Anna; Lubiński, Jan; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Górski, Bohdan; Cybulski, Cezary; Dębniak, Tadeusz; Osorio, Ana; Durán, Mercedes; Tejada, Maria-Isabel; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; Verhoef, Senno; Tilanus-Linthorst, Madeleine A.; Vreeswijk, Maaike P.; Bodmer, Danielle; Ausems, Margreet G. E. M.; van Os, Theo A.; Asperen, Christi J.; Blok, Marinus J.; Meijers-Heijboer, Hanne E. J.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Dunning, Alison M.; Evans, D. Gareth; Eeles, Ros; Pichert, Gabriella; Cole, Trevor; Hodgson, Shirley; Brewer, Carole; Morrison, Patrick J.; Porteous, Mary; Kennedy, M. John; Rogers, Mark T.; Side, Lucy E.; Donaldson, Alan; Gregory, Helen; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Moncoutier, Virginie; Castera, Laurent; Mazoyer, Sylvie; Barjhoux, Laure; Bonadona, Valérie; Leroux, Dominique; Faivre, Laurence; Lidereau, Rosette; Nogues, Catherine; Bignon, Yves-Jean; Prieur, Fabienne; Collonge-Rame, Marie-Agnès; Venat-Bouvet, Laurence; Fert-Ferrer, Sandra; Miron, Alex; Buys, Saundra S.; Hopper, John L.; Daly, Mary B.; John, Esther M.; Terry, Mary Beth; Goldgar, David; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Agnarsson, Bjarni A.; Offit, Kenneth; Kirchhoff, Tomas; Vijai, Joseph; Dutra-Clarke, Ana V. C.; Przybylo, Jennifer A.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Janavicius, Ramunas; Blanco, Ignacio; Lázaro, Conxi; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Beattie, Mary S.; Schmutzler, Rita; Wappenschmidt, Barbara; Meindl, Alfons; Ruehl, Ina; Fiebig, Britta; Sutter, Christian; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Kast, Karin; Niederacher, Dieter; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Soucy, Penny; Spurdle, Amanda B.; Holland, Helene; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-wide association study recently identified an association between the rare allele of the single-nucleotide polymorphism (SNP) rs3814113 (ie, the C allele) at 9p22.2 and decreased risk of ovarian cancer for women in the general population. We evaluated the association of this SNP with ovarian cancer risk among BRCA1 or BRCA2 mutation carriers by use of data from the Consortium of Investigators of Modifiers of BRCA1/2. Methods We genotyped rs3814113 in 10 029 BRCA1 mutation carriers and 5837 BRCA2 mutation carriers. Associations with ovarian and breast cancer were assessed with a retrospective likelihood approach. All statistical tests were two-sided. Results The minor allele of rs3814113 was associated with a reduced risk of ovarian cancer among BRCA1 mutation carriers (per-allele hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.72 to 0.85; P = 4.8 × 10-9) and BRCA2 mutation carriers (hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.67 to 0.90; P = 5.5 × 10-4). This SNP was not associated with breast cancer risk among either BRCA1 or BRCA2 mutation carriers. BRCA1 mutation carriers with the TT genotype at SNP rs3814113 were predicted to have an ovarian cancer risk to age 80 years of 48%, and those with the CC genotype were predicted to have a risk of 33%. Conclusion Common genetic variation at the 9p22.2 locus was associated with decreased risk of ovarian cancer for carriers of a BRCA1 or BRCA2 mutation. PMID:21169536

  3. Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice.

    PubMed

    Wu, Yahui; Luo, Lixin; Chen, Likai; Tao, Xingxing; Huang, Ming; Wang, Hui; Chen, Zhiqiang; Xiao, Wuming

    2016-11-18

    Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Validation of a Cost-Efficient Multi-Purpose SNP Panel for Disease Based Research

    PubMed Central

    Hou, Liping; Phillips, Christopher; Azaro, Marco; Brzustowicz, Linda M.; Bartlett, Christopher W.

    2011-01-01

    Background Here we present convergent methodologies using theoretical calculations, empirical assessment on in-house and publicly available datasets as well as in silico simulations, that validate a panel of SNPs for a variety of necessary tasks in human genetics disease research before resources are committed to larger-scale genotyping studies on those samples. While large-scale well-funded human genetic studies routinely have up to a million SNP genotypes, samples in a human genetics laboratory that are not yet part of such studies may be productively utilized in pilot projects or as part of targeted follow-up work though such smaller scale applications require at least some genome-wide genotype data for quality control purposes such as DNA “barcoding” to detect swaps or contamination issues, determining familial relationships between samples and correcting biases due to population effects such as population stratification in pilot studies. Principal Findings Empirical performance in classification of relative types for any two given DNA samples (e.g., full siblings, parental, etc) indicated that for outbred populations the panel performs sufficiently to classify relationship in extended families and therefore also for smaller structures such as trios and for twin zygosity testing. Additionally, familial relationships do not significantly diminish the (mean match) probability of sharing SNP genotypes in pedigrees, further indicating the uniqueness of the “barcode.” Simulation using these SNPs for an African American case-control disease association study demonstrated that population stratification, even in complex admixed samples, can be adequately corrected under a range of disease models using the SNP panel. Conclusion The panel has been validated for use in a variety of human disease genetics research tasks including sample barcoding, relationship verification, population substructure detection and statistical correction. Given the ease of genotyping our specific assay contained herein, this panel represents a useful and economical panel for human geneticists. PMID:21611176

  5. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    PubMed Central

    2011-01-01

    Background Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. Methods A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. Results The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. Conclusions The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets. PMID:21388557

  6. Analysis of population structure and genetic history of cattle breeds based on high-density SNP data

    USDA-ARS?s Scientific Manuscript database

    Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...

  7. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses.

    PubMed

    Painter, Jodie N; O'Mara, Tracy A; Morris, Andrew P; Cheng, Timothy H T; Gorman, Maggie; Martin, Lynn; Hodson, Shirley; Jones, Angela; Martin, Nicholas G; Gordon, Scott; Henders, Anjali K; Attia, John; McEvoy, Mark; Holliday, Elizabeth G; Scott, Rodney J; Webb, Penelope M; Fasching, Peter A; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Rübner, Matthias; Hall, Per; Czene, Kamila; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Lambrechts, Diether; Amant, Frederic; Annibali, Daniela; Depreeuw, Jeroen; Vanderstichele, Adriaan; Goode, Ellen L; Cunningham, Julie M; Dowdy, Sean C; Winham, Stacey J; Trovik, Jone; Hoivik, Erling; Werner, Henrica M J; Krakstad, Camilla; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Tham, Emma; Mints, Miriam; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Pharoah, Paul D P; Dunning, Alison M; Dennis, Joe; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Zondervan, Krina T; Nyholt, Dale R; MacGregor, Stuart; Montgomery, Grant W; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2018-05-01

    Epidemiological, biological, and molecular data suggest links between endometriosis and endometrial cancer, with recent epidemiological studies providing evidence for an association between a previous diagnosis of endometriosis and risk of endometrial cancer. We used genetic data as an alternative approach to investigate shared biological etiology of these two diseases. Genetic correlation analysis of summary level statistics from genomewide association studies (GWAS) using LD Score regression revealed moderate but significant genetic correlation (r g  = 0.23, P = 9.3 × 10 -3 ), and SNP effect concordance analysis provided evidence for significant SNP pleiotropy (P = 6.0 × 10 -3 ) and concordance in effect direction (P = 2.0 × 10 -3 ) between the two diseases. Cross-disease GWAS meta-analysis highlighted 13 distinct loci associated at P ≤ 10 -5 with both endometriosis and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD associated at a genomewide significant level (P = 4.9 × 10 -8 , OR = 1.11, 95% CI = 1.07-1.15). PTPRD acts in the STAT3 pathway, which has been implicated in both endometriosis and endometrial cancer. This study demonstrates the value of cross-disease genetic analysis to support epidemiological observations and to identify biological pathways of relevance to multiple diseases. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Circulating insulin-like growth factors and Alzheimer disease: A mendelian randomization study.

    PubMed

    Williams, Dylan M; Karlsson, Ida K; Pedersen, Nancy L; Hägg, Sara

    2018-01-23

    To examine whether genetically predicted variation in circulating insulin-like growth factor 1 (IGF1) or its binding protein, IGFBP3, are associated with risk of Alzheimer disease (AD), using a mendelian randomization study design. We first examined disease risk by genotypes of 9 insulin-like growth factor (IGF)-related single nucleotide polymorphisms (SNPs) using published summary genome-wide association statistics from the International Genomics of Alzheimer's Project (IGAP; n = 17,008 cases; 37,154 controls). We then assessed whether any SNP-disease results replicated in an independent sample derived from the Swedish Twin Registry (n = 984 cases; 10,304 controls). Meta-analyses of SNP-AD results did not suggest that variation in IGF1, IGFBP3, or the molar ratio of these affect AD risk. Only one SNP appeared to affect AD risk in IGAP data. This variant is located in the gene FOXO3, implicated in human longevity. In a meta-analysis of both IGAP and secondary data, the odds ratio of AD per FOXO3 risk allele was 1.04 (95% confidence interval 1.01-1.08; p = 0.008). These findings suggest that circulating IGF1 and IGFBP3 are not important determinants of AD risk. FOXO3 function may influence AD development via pathways that are independent of IGF signaling (i.e., pleiotropic actions). Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  9. Genotyping of 75 SNPs using arrays for individual identification in five population groups.

    PubMed

    Hwa, Hsiao-Lin; Wu, Lawrence Shih Hsin; Lin, Chun-Yen; Huang, Tsun-Ying; Yin, Hsiang-I; Tseng, Li-Hui; Lee, James Chun-I

    2016-01-01

    Single nucleotide polymorphism (SNP) typing offers promise to forensic genetics. Various strategies and panels for analyzing SNP markers for individual identification have been published. However, the best panels with fewer identity SNPs for all major population groups are still under discussion. This study aimed to find more autosomal SNPs with high heterozygosity for individual identification among Asian populations. Ninety-six autosomal SNPs of 502 DNA samples from unrelated individuals of five population groups (208 Taiwanese Han, 83 Filipinos, 62 Thais, 69 Indonesians, and 80 individuals with European, Near Eastern, or South Asian ancestry) were analyzed using arrays in an initial screening, and 75 SNPs (group A, 46 newly selected SNPs; groups B, 29 SNPs based on a previous SNP panel) were selected for further statistical analyses. Some SNPs with high heterozygosity from Asian populations were identified. The combined random match probability of the best 40 and 45 SNPs was between 3.16 × 10(-17) and 7.75 × 10(-17) and between 2.33 × 10(-19) and 7.00 × 10(-19), respectively, in all five populations. These loci offer comparable power to short tandem repeats (STRs) for routine forensic profiling. In this study, we demonstrated the population genetic characteristics and forensic parameters of 75 SNPs with high heterozygosity from five population groups. This SNPs panel can provide valuable genotypic information and can be helpful in forensic casework for individual identification among these populations.

  10. [Distribution of three polymorphisms of the TSLP gen in African-descendent population from San Basilio de Palenque, Colombia].

    PubMed

    Fang, Luis; Martínez, Beatriz; Marrugo, Javier

    2013-01-01

    Thymic stromal lymphopoietin (TSLP) has been linked as a susceptibility gene for the development of allergic diseases. It is known that the population of Cartagena is a triethnic mix, in which the component of African ancestry was significantly associated with risk of asthma and high total serum IgE levels. This component comes from African slaves brought into the continent and settled in "palenques", one of them is San Basilio de Palenque, in the Colombian Caribbean Coast. To analyze the distribution of single nucleotide polymorphisms (SNP) rs1837253, rs17551370 and rs2289276 located in TSLP gene, in the African-descendent population of San Basilio de Palenque. By real time-PCR and probes TaqMan SNP Genotyping™, we genotyped three polymorphisms in 80 individuals of African-descent aged 5 to 18 years of age. The frequency of the rs1837253 allele T was 41.9%, for the allele A, 14.3% for rs17551370, and 22.5% for the allele T of rs2289276. The rs17551370 and rs2289276 distribution remained in Hardy- Weinberg genetic equilibrium. The allele frequency of each SNP did not show statistically significant differences with those reported for other African and African-descendent populations. The three polymorphisms in the TSLP were present in the sample population of San Basilio de Palenque and its distribution is similar to that reported for African populations and African ancestry in America.

  11. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

    PubMed Central

    Ledda, Mirko; Kutalik, Zoltán; Souza Destito, Maria C.; Souza, Milena M.; Cirillo, Cintia A.; Zamboni, Amabilene; Martin, Nathalie; Morya, Edgard; Sameshima, Koichi; Beckmann, Jacques S.; le Coutre, Johannes; Bergmann, Sven; Genick, Ulrich K.

    2014-01-01

    Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation panel of 104 subjects from the general population of São Paulo in Brazil. Correction for general taste-sensitivity allowed us to identify a SNP in the cluster of bitter taste receptors on chr12 (10.88– 11.24 Mb, build 36.1) significantly associated (best SNP: rs2708377, P = 5.31 × 10−13, r2 = 8.9%, β = −0.12, s.e. = 0.016) with the perceived bitterness of caffeine. This association overlaps with—but is statistically distinct from—the previously identified SNP rs10772420 influencing the perception of quinine bitterness that falls in the same bitter taste cluster. We replicated this association to quinine perception (P = 4.97 × 10−37, r2 = 23.2%, β = 0.25, s.e. = 0.020) and additionally found the effect of this genetic locus to be concentration specific with a strong impact on the perception of low, but no impact on the perception of high concentrations of quinine. Our study, thus, furthers our understanding of the complex genetic architecture of bitter taste perception. PMID:23966204

  12. Two Novel SNPs of PPARγ Significantly Affect Weaning Growth Traits of Nanyang Cattle.

    PubMed

    Huang, Jieping; Chen, Ningbo; Li, Xin; An, Shanshan; Zhao, Minghui; Sun, Taihong; Hao, Ruijie; Ma, Yun

    2018-01-02

    Peroxisome-proliferator-activated receptor gamma (PPARγ) is a key transcription factor that controls adipocyte differentiation and energy in mammals. Therefore, PPARγ is a potential factor influencing animal growth traits. This study primarily evaluates PPARγ as candidate gene for growth traits of cattle and identifies potential molecular marker for cattle breeding. Per previous studies, PPARγ mRNA was mainly expressed at extremely high levels in adipose tissues as shown by quantitative real-time polymerase chain reaction analysis. Three novel SNPs of the bovine PPARγ gene were identified in 514 individuals from six Chinese cattle breeds: SNP1 (AC_000179.1 g.57386668 C > G) in intron 2 and SNP2 (AC_000179.1 g.57431964 C > T) and SNP3 (AC_000179.1 g.57431994 T > C) in exon 7. The present study also investigated genetic characteristics of these SNP loci in six populations. Association analysis showed that SNP1 and SNP3 loci significantly affect weaning growth traits, especially body weight of Nanyang cattle. These results revealed that SNP1 and SNP3 are potential molecular markers for cattle breeding.

  13. Exercise improves adiponectin concentrations irrespective of the adiponectin gene polymorphisms SNP45 and the SNP276 in obese Korean women.

    PubMed

    Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A

    2013-03-10

    The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  14. Acute and repeated exposure with the nitric oxide (NO) donor sodium nitroprusside (SNP) differentially modulate responses in a rat model of anxiety.

    PubMed

    Orfanidou, Martha A; Lafioniatis, Anastasios; Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2017-09-30

    The nitric oxide (NO) donor sodium nitroprusside (SNP) actually is under investigation for the treatment of schizophrenia. That anxiety disorders are noted to occur commonly in schizophrenia patients is known. Contradictory results were reported however, concerning the effects of SNP in animal models of anxiety disorders. The present study investigated the effects of acute and repeated administration of SNP on anxiety-like behaviour in rats assessed in the light/dark test. The effects of SNP on motility in a locomotor activity chamber were also investigated in rats. Acute administration of 1 mg/kg SNP 30 but not 60 min before testing induced anxiolytic-like behaviour which cannot be attributed to changes in locomotor activity. Conversely, a single injection of 3 mg/kg SNP at 30 min before testing depressed rats' general activity, while at 60 min this dose did not influence performance of animals either in the light/dark or in the motor activity test. Repeated application of SNP (1 and 3 mg/kg, for 5 consecutive days) did not alter rodents' performance in the above described behavioural paradigms. The present results suggest that the effects exerted by SNP in the light/dark test in rats are dose, time and treatment schedule-dependent. The current findings propose also a narrow therapeutic window for SNP in this animal model of anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne

    2016-12-01

    It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Perception of ensemble statistics requires attention.

    PubMed

    Jackson-Nielsen, Molly; Cohen, Michael A; Pitts, Michael A

    2017-02-01

    To overcome inherent limitations in perceptual bandwidth, many aspects of the visual world are represented as summary statistics (e.g., average size, orientation, or density of objects). Here, we investigated the relationship between summary (ensemble) statistics and visual attention. Recently, it was claimed that one ensemble statistic in particular, color diversity, can be perceived without focal attention. However, a broader debate exists over the attentional requirements of conscious perception, and it is possible that some form of attention is necessary for ensemble perception. To test this idea, we employed a modified inattentional blindness paradigm and found that multiple types of summary statistics (color and size) often go unnoticed without attention. In addition, we found attentional costs in dual-task situations, further implicating a role for attention in statistical perception. Overall, we conclude that while visual ensembles may be processed efficiently, some amount of attention is necessary for conscious perception of ensemble statistics. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    PubMed

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.

  18. Single variant and multi-variant trend tests for genetic association with next generation sequencing that are robust to sequencing error

    PubMed Central

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek

    2013-01-01

    As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495

  19. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    PubMed

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  20. Familial Analysis of Epistatic and Sex-Dependent Association of Genes of the Renin-Angiotensin-Aldosterone System and Blood Pressure.

    PubMed

    Scurrah, Katrina J; Lamantia, Angela; Ellis, Justine A; Harrap, Stephen B

    2017-06-01

    Renin-angiotensin-aldosterone system genes have been inconsistently associated with blood pressure, possibly because of unrecognized influences of sex-dependent genetic effects or gene-gene interactions (epistasis). We tested association of systolic blood pressure with single-nucleotide polymorphisms (SNPs) at renin ( REN ), angiotensinogen ( AGT ), angiotensin-converting enzyme ( ACE ), angiotensin II type 1 receptor ( AGTR1 ), and aldosterone synthase ( CYP11B2 ), including sex-SNP or SNP-SNP interactions. Eighty-eight tagSNPs were tested in 2872 white individuals in 809 pedigrees from the Victorian Family Heart Study using variance components models. Three SNPs (rs8075924 and rs4277404 at ACE and rs12721297 at AGTR1 ) were individually associated with lower systolic blood pressure with significant ( P <0.00076) effect sizes ≈1.7 to 2.5 mm Hg. Sex-specific associations were seen for 3 SNPs in men (rs2468523 and rs2478544 at AGT and rs11658531 at ACE ) and 1 SNP in women (rs12451328 at ACE ). SNP-SNP interaction was suggested ( P <0.005) for 14 SNP pairs, none of which had shown individual association with systolic blood pressure. Four SNP pairs were at the same gene (2 for REN , 1 for AGT , and 1 for AGTR1 ). The SNP rs3097 at CYP11B2 was represented in 5 separate pairs. SNPs at key renin-angiotensin-aldosterone system genes associate with systolic blood pressure individually in both sexes, individually in one sex only and only when combined with another SNP. Analyses that incorporate sex-dependent and epistatic effects could reconcile past inconsistencies and account for some of the missing heritability of blood pressure and are generally relevant to SNP association studies for any phenotype. © 2017 American Heart Association, Inc.

  1. WISARD: workbench for integrated superfast association studies for related datasets.

    PubMed

    Lee, Sungyoung; Choi, Sungkyoung; Qiao, Dandi; Cho, Michael; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2018-04-20

    A Mendelian transmission produces phenotypic and genetic relatedness between family members, giving family-based analytical methods an important role in genetic epidemiological studies-from heritability estimations to genetic association analyses. With the advance in genotyping technologies, whole-genome sequence data can be utilized for genetic epidemiological studies, and family-based samples may become more useful for detecting de novo mutations. However, genetic analyses employing family-based samples usually suffer from the complexity of the computational/statistical algorithms, and certain types of family designs, such as incorporating data from extended families, have rarely been used. We present a Workbench for Integrated Superfast Association studies for Related Data (WISARD) programmed in C/C++. WISARD enables the fast and a comprehensive analysis of SNP-chip and next-generation sequencing data on extended families, with applications from designing genetic studies to summarizing analysis results. In addition, WISARD can automatically be run in a fully multithreaded manner, and the integration of R software for visualization makes it more accessible to non-experts. Comparison with existing toolsets showed that WISARD is computationally suitable for integrated analysis of related subjects, and demonstrated that WISARD outperforms existing toolsets. WISARD has also been successfully utilized to analyze the large-scale massive sequencing dataset of chronic obstructive pulmonary disease data (COPD), and we identified multiple genes associated with COPD, which demonstrates its practical value.

  2. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that the SNP-string method is more accurate across the entire region. Conclusions/Significance Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby improving a GWAS’s power, even for those published previously. PMID:24727690

  3. Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies

    PubMed Central

    2013-01-01

    Background The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. Methods Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. Results Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. Conclusions The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. PMID:24168700

  4. Electrophysiological Evidence of Heterogeneity in Visual Statistical Learning in Young Children with ASD

    ERIC Educational Resources Information Center

    Jeste, Shafali S.; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J.; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F. N.; Johnson, Scott P.

    2015-01-01

    Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism…

  5. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    PubMed

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister.

  6. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family

    PubMed Central

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta

    2014-01-01

    Purpose: Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. Methods: We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. Results: The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. Conclusion: We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister. PMID:24520187

  7. Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table

    NASA Astrophysics Data System (ADS)

    Medyńska-Gulij, Beata; Cybulski, Paweł

    2016-06-01

    This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.

  8. A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design

    PubMed Central

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809

  9. A PLSPM-based test statistic for detecting gene-gene co-association in genome-wide association study with case-control design.

    PubMed

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.

  10. MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: effects of acute sodium nitroprusside.

    PubMed

    Hurtubise, Jessica L; Marks, Wendie N; Davies, Don A; Catton, Jillian K; Baker, Glen B; Howland, John G

    2017-01-01

    The cognitive symptoms observed in schizophrenia are not consistently alleviated by conventional antipsychotics. Following a recent pilot study, sodium nitroprusside (SNP) has been identified as a promising adjunct treatment to reduce the working memory impairments experienced by schizophrenia patients. The present experiments were designed to explore the effects of SNP on the highly translatable trial-unique, delayed nonmatching-to-location (TUNL) task in rats with and without acute MK-801 treatment. SNP (0.5, 1.0, 2.0, 4.0, and 5.0 mg/kg) and MK-801 (0.05, 0.075, and 0.1 mg/kg) were acutely administered to rats trained on the TUNL task. Acute MK-801 treatment impaired TUNL task accuracy. Administration of SNP (2.0 mg/kg) with MK-801 (0.1 mg/kg) failed to rescue performance on TUNL. SNP (5.0 mg/kg) administration nearly 4 h prior to MK-801 (0.05 mg/kg) treatment had no preventative effect on performance impairments. SNP (2.0 mg/kg) improved performance on a subset of trials. These results suggest that SNP may possess intrinsic cognitive-enhancing properties but is unable to block the effects of acute MK-801 treatment on the TUNL task. These results are inconsistent with the effectiveness of SNP as an adjunct therapy for working memory impairments in schizophrenia patients. Future studies in rodents that assess SNP as an adjunct therapy will be valuable in understanding the mechanisms underlying the effectiveness of SNP as a treatment for schizophrenia.

  11. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    PubMed

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  12. Increasing the number of single nucleotide polymorphisms used in genomic evaluations of dairy cattle

    USDA-ARS?s Scientific Manuscript database

    A small increase in the accuracy of genomic evaluations of dairy cattle was achieved by increasing the number of SNP used to 61,013. All the 45,195 SNP used previously were retained, and 15,818 SNP were selected from higher density genotyping chips if the magnitude of the SNP effect was among the to...

  13. Rice SNP-seek database update: new SNPs, indels, and queries.

    PubMed

    Mansueto, Locedie; Fuentes, Roven Rommel; Borja, Frances Nikki; Detras, Jeffery; Abriol-Santos, Juan Miguel; Chebotarov, Dmytro; Sanciangco, Millicent; Palis, Kevin; Copetti, Dario; Poliakov, Alexandre; Dubchak, Inna; Solovyev, Victor; Wing, Rod A; Hamilton, Ruaraidh Sackville; Mauleon, Ramil; McNally, Kenneth L; Alexandrov, Nickolai

    2017-01-04

    We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. SNPHunter: a bioinformatic software for single nucleotide polymorphism data acquisition and management.

    PubMed

    Wang, Lin; Liu, Simin; Niu, Tianhua; Xu, Xin

    2005-03-18

    Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at http://www.hsph.harvard.edu/ppg/software.htm

  15. Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats

    PubMed Central

    Rothermund, Lars; Friebe, Andreas; Paul, Martin; Koesling, Doris; Kreutz, Reinhold

    2000-01-01

    We used YC-1 as a pharmacological tool to investigate the short-term blood pressure effects of NO-independent activation of sGC in normotensive and hypertensive rats. Four groups of normotensive Wistar-Kyoto rats were treated by i.v. injection with vehicle (V), YC-1 (YC-1), sodium nitroprusside (SNP), or YC-1 and SNP (YC-1+SNP). Hypertension was induced in four additional groups of WKY rats by 3 weeks of oral treatment with L-NAME. These animals were investigated with the same protocol as the normotensive animals: L-NAME/V, L-NAME/YC-1, L-NAME/SNP, L-NAME/YC-1+SNP. YC-1 lowered mean arterial blood pressure (MAP) in normotensive and hypertensive animals similarly to SNP alone (P<0.05, respectively). The combination of YC-1 with SNP caused a strong decrease of MAP in both the hypertensive and normotensive animals (P<0.05, respectively). SNP with YC-1 also induced a pronounced cyclic GMP increase in the aorta. This study shows for the first time the blood pressure lowering potential of bimodal targeting of the NO-sGC-system. PMID:10807655

  16. PBOOST: a GPU-based tool for parallel permutation tests in genome-wide association studies.

    PubMed

    Yang, Guangyuan; Jiang, Wei; Yang, Qiang; Yu, Weichuan

    2015-05-01

    The importance of testing associations allowing for interactions has been demonstrated by Marchini et al. (2005). A fast method detecting associations allowing for interactions has been proposed by Wan et al. (2010a). The method is based on likelihood ratio test with the assumption that the statistic follows the χ(2) distribution. Many single nucleotide polymorphism (SNP) pairs with significant associations allowing for interactions have been detected using their method. However, the assumption of χ(2) test requires the expected values in each cell of the contingency table to be at least five. This assumption is violated in some identified SNP pairs. In this case, likelihood ratio test may not be applicable any more. Permutation test is an ideal approach to checking the P-values calculated in likelihood ratio test because of its non-parametric nature. The P-values of SNP pairs having significant associations with disease are always extremely small. Thus, we need a huge number of permutations to achieve correspondingly high resolution for the P-values. In order to investigate whether the P-values from likelihood ratio tests are reliable, a fast permutation tool to accomplish large number of permutations is desirable. We developed a permutation tool named PBOOST. It is based on GPU with highly reliable P-value estimation. By using simulation data, we found that the P-values from likelihood ratio tests will have relative error of >100% when 50% cells in the contingency table have expected count less than five or when there is zero expected count in any of the contingency table cells. In terms of speed, PBOOST completed 10(7) permutations for a single SNP pair from the Wellcome Trust Case Control Consortium (WTCCC) genome data (Wellcome Trust Case Control Consortium, 2007) within 1 min on a single Nvidia Tesla M2090 device, while it took 60 min in a single CPU Intel Xeon E5-2650 to finish the same task. More importantly, when simultaneously testing 256 SNP pairs for 10(7) permutations, our tool took only 5 min, while the CPU program took 10 h. By permuting on a GPU cluster consisting of 40 nodes, we completed 10(12) permutations for all 280 SNP pairs reported with P-values smaller than 1.6 × 10⁻¹² in the WTCCC datasets in 1 week. The source code and sample data are available at http://bioinformatics.ust.hk/PBOOST.zip. gyang@ust.hk; eeyu@ust.hk Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    PubMed

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99% (low call rate) as well as a genotype with a call rate of >99% (high call rate) were calculated by dividing the number of identical SNP genotype calls by the number of SNP that were called for both genotypes. Mean concordance between low- and high-call genotypes was >99% for a low call rate of >90% but decreased to 97% for a call rate of 86 to 90% and to 58% for a call rate of <60%. Edits on call rate reduce the use of incorrect SNP genotypes to calculate genomic evaluations. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Genome-wide SNP data unveils the globalization of domesticated pigs.

    PubMed

    Yang, Bin; Cui, Leilei; Perez-Enciso, Miguel; Traspov, Aleksei; Crooijmans, Richard P M A; Zinovieva, Natalia; Schook, Lawrence B; Archibald, Alan; Gatphayak, Kesinee; Knorr, Christophe; Triantafyllidis, Alex; Alexandri, Panoraia; Semiadi, Gono; Hanotte, Olivier; Dias, Deodália; Dovč, Peter; Uimari, Pekka; Iacolina, Laura; Scandura, Massimo; Groenen, Martien A M; Huang, Lusheng; Megens, Hendrik-Jan

    2017-09-21

    Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past decades started selecting Western breeds to improve local Chinese pigs. Furthermore, signatures of ongoing and past selection, acting at different times and on different genetic backgrounds, enhance our insight in the mechanism of domestication and selection. The global diversity statistics presented here highlight concerns for maintaining agrodiversity, but also provide a necessary framework for directing genetic conservation.

  19. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing.

    PubMed

    Gruber, Bernd; Unmack, Peter J; Berry, Oliver F; Georges, Arthur

    2018-05-01

    Although vast technological advances have been made and genetic software packages are growing in number, it is not a trivial task to analyse SNP data. We announce a new r package, dartr, enabling the analysis of single nucleotide polymorphism data for population genomic and phylogenomic applications. dartr provides user-friendly functions for data quality control and marker selection, and permits rigorous evaluations of conformation to Hardy-Weinberg equilibrium, gametic-phase disequilibrium and neutrality. The package reports standard descriptive statistics, permits exploration of patterns in the data through principal components analysis and conducts standard F-statistics, as well as basic phylogenetic analyses, population assignment, isolation by distance and exports data to a variety of commonly used downstream applications (e.g., newhybrids, faststructure and phylogeny applications) outside of the r environment. The package serves two main purposes: first, a user-friendly approach to lower the hurdle to analyse such data-therefore, the package comes with a detailed tutorial targeted to the r beginner to allow data analysis without requiring deep knowledge of r. Second, we use a single, well-established format-genlight from the adegenet package-as input for all our functions to avoid data reformatting. By strictly using the genlight format, we hope to facilitate this format as the de facto standard of future software developments and hence reduce the format jungle of genetic data sets. The dartr package is available via the r CRAN network and GitHub. © 2017 John Wiley & Sons Ltd.

  20. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes.

    PubMed

    Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa

    2011-01-01

    The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. RareVariantVis: new tool for visualization of causative variants in rare monogenic disorders using whole genome sequencing data.

    PubMed

    Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M

    2016-10-01

    The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes

    PubMed Central

    Gardner, Shea N.; Hall, Barry G.

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125

  3. Design and characterization of a 52K SNP chip for goats.

    PubMed

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C M; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T; McEwan, John; Martin, Patrice; Moreno, Carole R; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.

  4. Design and Characterization of a 52K SNP Chip for Goats

    PubMed Central

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C. M.; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T.; McEwan, John; Martin, Patrice; Moreno, Carole R.; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L.; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years. PMID:24465974

  5. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.

    PubMed

    Gardner, Shea N; Hall, Barry G

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.

  6. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor.

    PubMed

    Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv

    2018-06-05

    Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  7. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  8. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping.

    PubMed

    vonHoldt, Bridgett M; Pollinger, John P; Earl, Dent A; Parker, Heidi G; Ostrander, Elaine A; Wayne, Robert K

    2013-02-01

    The ability to detect recent hybridization between dogs and wolves is important for conservation and legal actions, which often require accurate and rapid resolution of ancestry. The availability of a genetic test for dog-wolf hybrids would greatly support federal and legal enforcement efforts, particularly when the individual in question lacks prior ancestry information. We have developed a panel of 100 unlinked ancestry-informative SNP markers that can detect mixed ancestry within up to four generations of dog-wolf hybridization based on simulations of seven genealogical classes constructed following the rules of Mendelian inheritance. We establish 95 % confidence regions around the spatial clustering of each genealogical class using a tertiary plot of allele dosage and heterozygosity. The first- and second-backcrossed-generation hybrids were the most distinct from parental populations, with >90 % correctly assigned to genealogical class. In this article we provide a tool kit with population-level statistical quantification that can detect recent dog-wolf hybridization using a panel of dog-wolf ancestry-informative SNPs with divergent allele frequency distributions.

  9. Filaggrin gene polymorphism associated with Epstein-Barr virus-associated tumors in China.

    PubMed

    Yang, Yang; Liu, Wen; Zhao, Zhenzhen; Zhang, Yan; Xiao, Hua; Luo, Bing

    2017-08-01

    Mutations of filaggrin gene (FLG) have been identified as the cause of ichthyosis vulgaris, while recently FLG mutations were found to be associated with gastric cancer. This study aimed to investigate the association of filaggrin polymorphism with Epstein-Barr virus-associated tumors in China. A total of 200 patients with three types of tumors and 117 normal control samples were genotyped at three common FLG mutation loci (rs3126085, K4671X, R501X) by using Sequenom MassARRAY technique. The χ 2 test was used to evaluate the relationship between the mutation and the three kinds of tumors. A two-sided P value of <0.05 was considered statistically significant. The results showed that two single-nucleotide polymorphism (SNP) loci (rs3126085, K4671X) were significantly associated with nasopharyngeal carcinoma in genetic model. In addition, the two SNPs K4671X and rs3126085 were related to Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) and EBV-negative gastric carcinoma (EBVnGC), respectively. Furthermore, allele distributions in EBVaGC and EBVnGC were verified to be different in both SNP loci.

  10. Maximum-likelihood estimation of recent shared ancestry (ERSA).

    PubMed

    Huff, Chad D; Witherspoon, David J; Simonson, Tatum S; Xing, Jinchuan; Watkins, W Scott; Zhang, Yuhua; Tuohy, Therese M; Neklason, Deborah W; Burt, Randall W; Guthery, Stephen L; Woodward, Scott R; Jorde, Lynn B

    2011-05-01

    Accurate estimation of recent shared ancestry is important for genetics, evolution, medicine, conservation biology, and forensics. Established methods estimate kinship accurately for first-degree through third-degree relatives. We demonstrate that chromosomal segments shared by two individuals due to identity by descent (IBD) provide much additional information about shared ancestry. We developed a maximum-likelihood method for the estimation of recent shared ancestry (ERSA) from the number and lengths of IBD segments derived from high-density SNP or whole-genome sequence data. We used ERSA to estimate relationships from SNP genotypes in 169 individuals from three large, well-defined human pedigrees. ERSA is accurate to within one degree of relationship for 97% of first-degree through fifth-degree relatives and 80% of sixth-degree and seventh-degree relatives. We demonstrate that ERSA's statistical power approaches the maximum theoretical limit imposed by the fact that distant relatives frequently share no DNA through a common ancestor. ERSA greatly expands the range of relationships that can be estimated from genetic data and is implemented in a freely available software package.

  11. Chronic family stress moderates the association between a TOMM40 variant and triglyceride levels in two independent Caucasian samples.

    PubMed

    Jiang, Rong; Brummett, Beverly H; Hauser, Elizabeth R; Babyak, Michael A; Siegler, Ilene C; Singh, Abanish; Astrup, Arne; Pedersen, Oluf; Hansen, Torben; Holst, Claus; Sørensen, Thorkild I A; Williams, Redford B

    2013-04-01

    TOMM40 SNP rs157580 has been associated with triglyceride levels in genome-wide association studies (GWAS). Chronic caregiving stress moderates the association between triglyceride levels and a nearby SNP rs439401 that is associated with triglyceride levels in GWAS. Here, we report data from two independent Caucasian samples (242 U.S. women and men; 466 Danish men) testing the hypothesis that chronic family stress also moderates the association between rs157580 and triglyceride levels. The interaction of rs157580 and family stress in predicting triglyceride levels was statistically significant in the U.S. sample (p=0.004) and marginally significant (p=0.075) in the Danish sample. The G allele of rs157580 was associated with increased triglyceride levels among family stressed cases in both samples compared with A/A cases, but not among controls. Chronic family stress moderates the association of rs157580 variants with triglyceride levels and should be taken into account for disease risk assessment and potential intervention. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Association of methionine synthase gene polymorphisms with wool production and quality traits in Chinese Merino population.

    PubMed

    Rong, E G; Yang, H; Zhang, Z W; Wang, Z P; Yan, X H; Li, H; Wang, N

    2015-10-01

    Methionine synthase (MTR) plays a crucial role in maintaining homeostasis of intracellular methionine, folate, and homocysteine, and its activity correlates with DNA methylation in many mammalian tissues. Our previous genomewide association study identified that 1 SNP located in the gene was associated with several wool production and quality traits in Chinese Merino. To confirm the potential involvement of the gene in sheep wool production and quality traits, we performed sheep tissue expression profiling, SNP detection, and association analysis with sheep wool production and quality traits. The semiquantitative reverse transcription PCR analysis showed that the gene was differentially expressed in skin from Merino and Kazak sheep. The sequencing analysis identified a total of 13 SNP in the gene from Chinese Merino sheep. Comparison of the allele frequencies revealed that these 13 identified SNP were significantly different among the 6 tested Chinese Merino strains ( < 0.001). Linkage disequilibrium analysis showed that SNP 3 to 11 were strongly linked in a single haplotype block in the tested population. Association analysis showed that SNP 2 to 11 were significantly associated with the average wool fiber diameter and the fineness SD and that SNP 4 to 11 were significantly associated with the CV of fiber diameter trait ( < 0.05). Single nucleotide polymorphism 2 and SNP 5 to 12 were weakly associated with wool crimp. Similarly, the haplotypes derived from these 13 identified SNP were also significantly associated with the average wool fiber diameter, fineness SD, and the CV of fiber diameter ( < 0.05). Our results suggest that is a candidate gene for sheep wool production and quality traits, and the identified SNP might be used in sheep breeding.

  13. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  14. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    PubMed

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Germline Mutation of the CCK Receptor: A Novel Biomarker for Pancreas Cancer.

    PubMed

    Alsubai, Jelal; Matters, Gail L; McGovern, Christopher O; Liao, Jiangang; Gilius, Evan L; Smith, Jill P

    2016-01-07

    Today, genetic biomarkers have been demonstrated to play an important role in identifying at-risk subjects for familial or inherited cancers. We have identified a single-nucleotide polymorphism (SNP) that results in missplicing of the cholecystokinin (CCK) receptor gene and expressing a larger mutated receptor in pancreatic cancer. The purpose of this study was to evaluate the significance and specificity of this SNP as a potential biomarker in patients with pancreatic cancer compared with other gastrointestinal (GI) cancers that also have CCK receptors. DNA was isolated and genotyped for the CCK receptor SNP from frozen tumor tissue from banked specimens of patients with pancreas, gastric, or colon cancer and from human cancer cell lines. Genotype and allelic frequencies were compared between the cancer cohort and two normal control databases using Fisher's exact test and odds ratio (OR). The Kaplan-Meier method was used to estimate the survival for patients with the CCK-B receptor SNP compared with those with the wild-type genotype. Immunohistochemical staining of cancer cells was done to detect the mutated receptor. Colon and gastric cancer patients had similar genotype frequencies for the CCK receptor SNP as that reported in the normal population. In contrast, the prevalence of the SNP in subjects with pancreatic cancer was twice that of controls and other GI cancers. Survival was adversely affected by the presence of the SNP only in those with pancreatic cancer. Immunoreactivity for the mutated receptor was positive in pancreatic cancer tissues with the SNP but absent in other GI cancers. A SNP of the CCK receptor is significantly increased in patients with pancreatic cancer but not in those with other GI malignancies. Therefore, this SNP may be a potential biomarker for pancreatic cancer.

  16. SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations

    PubMed Central

    van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.

    2011-01-01

    To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370

  17. Using Pooled Data and Data Visualization to Introduce Statistical Concepts in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.

    2008-01-01

    I describe how data pooling and data visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set. The pooled data are plotted as a 1-D scatterplot, a purpose-designed number line through which statistical features of the data are…

  18. SEURAT: visual analytics for the integrated analysis of microarray data.

    PubMed

    Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony

    2010-06-03

    In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.

  19. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    PubMed

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  1. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  2. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  3. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics.

    PubMed

    Mikkelsen, Martin; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels

    2014-09-01

    of sequencing of whole mitochondrial genome, HV1 and HV2 DNA with the second generation system (SGS) Roche 454 GS Junior were compared with results of Sanger sequencing and SNP typing with SNaPshot single base extension detected with MALDI-TOF and capillary electrophoresis. We investigated the performance of the software analysis of the data, reproducibility, ability to sequence homopolymeric regions, detection of mixtures and heteroplasmy as well as the implications of the depth of coverage. We found full reproducibility between samples sequenced twice with SGS. We found close to full concordance between the mtDNA sequences of 26 samples obtained with (1) the 454 SGS method using a depth of coverage above 100 and (2) Sanger sequencing and SNP typing. The discrepancies were primarily observed in homopolymeric regions. The 454 SGS method was able to sequence 95% of the reads correctly in homopolymers up to 4 bases, and up to 6 bases could be sequenced with similar success if the results were carefully, visually inspected. The 454 technology was able to detect mixtures or heteroplasmy of approximately 10%. We detected previously unreported heteroplasmy in the GM9947A component of the NIST human mitochondrial DNA SRM-2392 standard reference material. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    PubMed Central

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  6. Evidence for a Global Sampling Process in Extraction of Summary Statistics of Item Sizes in a Set.

    PubMed

    Tokita, Midori; Ueda, Sachiyo; Ishiguchi, Akira

    2016-01-01

    Several studies have shown that our visual system may construct a "summary statistical representation" over groups of visual objects. Although there is a general understanding that human observers can accurately represent sets of a variety of features, many questions on how summary statistics, such as an average, are computed remain unanswered. This study investigated sampling properties of visual information used by human observers to extract two types of summary statistics of item sets, average and variance. We presented three models of ideal observers to extract the summary statistics: a global sampling model without sampling noise, global sampling model with sampling noise, and limited sampling model. We compared the performance of an ideal observer of each model with that of human observers using statistical efficiency analysis. Results suggest that summary statistics of items in a set may be computed without representing individual items, which makes it possible to discard the limited sampling account. Moreover, the extraction of summary statistics may not necessarily require the representation of individual objects with focused attention when the sets of items are larger than 4.

  7. Variable approaches to genetic counseling for microarray regions of homozygosity associated with parental relatedness.

    PubMed

    Grote, Lauren; Myers, Melanie; Lovell, Anne; Saal, Howard; Sund, Kristen Lipscomb

    2014-01-01

    SNP microarrays are capable of detecting regions of homozygosity (ROH) which can suggest parental relatedness. This study was designed to describe pre- and post-test counseling practices of genetics professionals regarding ROH, explore perceived comfort and ethical concerns in the follow-up of such results, demonstrate awareness of laws surrounding duty to report consanguinity and incest, and allow respondents to share their personal experiences with results suggesting a parental relationship. A 35 question survey was administered to 240 genetic counselors and geneticists who had ordered or counseled for SNP microarray. The results are presented using descriptive statistics. There was variation in both pre- and post-test counseling practices of genetics professionals. Twenty-five percent of respondents reported pre-test counseling that ROH can indicate parental relatedness. The most commonly reported ethical concern was disclosure of findings suggesting parental relatedness to parents of the patient; only 48.4% reported disclosing parental relatedness when indicated. Fifty-seven percent felt comfortable receiving results suggesting parental consanguinity while 17% felt comfortable receiving results suggesting parental incest. Twenty percent of respondents were extremely/moderately familiar with the laws about duty to report incest. Personal experiences in post-test counseling included both parental acknowledgement and denial of relatedness. This study highlights the differences in genetics professionals' pre- and post-test counseling practices, comfort, and experiences surrounding parental relatedness suggested by SNP microarray results. It identifies a need for professional organizations to offer guidance to genetics professionals about how to respond to and counsel for molecular results suggesting parental consanguinity or incest. © 2013 Wiley Periodicals, Inc.

  8. Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene.

    PubMed

    Martínez-Herrero, Sonia; Martínez, Alfredo

    2013-04-01

    The risk of developing cancer is regulated by genetic variants, including polymorphisms. Characterizing such variants may help in developing protocols for personalized medicine. Adrenomedullin is a regulatory peptide involved in cancer promotion and progression. Carriers of a single nucleotide polymorphism (SNP) in the proximity of the adrenomedullin gene have lower levels of circulating peptide. The aim of the present work was to investigate whether carriers of this SNP (rs4910118) are protected against cancer. This was a retrospective study. DNA samples were obtained from the Carlos III DNA National Bank (University of Salamanca, Salamanca, Spain). Samples represent a variety of donors and patients from Spain. DNA from patients with breast cancer (n = 238), patients with lung cancer (n = 348), patients with cardiac insufficiency (n = 474), and healthy donors of advanced age (n = 500) was used. All samples were genotyped using double-mismatch PCR, and confirmation was achieved by direct sequencing. The minor allele frequency was calculated in all groups. The Pearson χ(2) was used to compare SNP frequencies. Of 1560 samples, 14 had the minor allele, with a minor allele frequency in healthy donors of 0.90%. Patients with cancer had a statistically significantly lower frequency than healthy donors (odds ratio = 0.216, 95% confidence interval = 0.048-0.967, P = .028). Carriers of the minor allele have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele. Knowledge of the rs4910118 genotype may be useful for stratifying patients in clinical trials and for designing prevention strategies.

  9. Association Study of ITGAM, ITGAX, and CD58 Autoimmune Risk Loci in Systemic Sclerosis: Results from 2 Large European Caucasian Cohorts

    PubMed Central

    COUSTET, BAPTISTE; AGARWAL, SANDEEP K.; GOURH, PRAVITT; GUEDJ, MICKAEL; MAYES, MAUREEN D.; DIEUDE, PHILIPPE; WIPFF, JULIEN; AVOUAC, JEROME; HACHULLA, ERIC; DIOT, ELISABETH; CRACOWSKI, JEAN LUC; TIEV, KIET; SIBILIA, JEAN; MOUTHON, LUC; FRANCES, CAMILLE; AMOURA, ZAHIR; CARPENTIER, PATRICK; MEYER, OLIVIER; KAHAN, ANDRE; BOILEAU, CATHERINE; ARNETT, FRANK C.; ALLANORE, YANNICK

    2012-01-01

    Objective Accumulating evidence shows that shared autoimmunity is critical for the pathogenesis of many autoimmune diseases. Systemic sclerosis (SSc) belongs to the connective tissue disorders, and recent data have highlighted strong associations with autoimmunity genes shared with other autoimmune diseases. To determine whether novel risk loci associated with systemic lupus erythematosus or multiple sclerosis may confer susceptibility to SSc, we tested single-nucleotide polymorphisms (SNP) from ITGAM, ITGAX, and CD58 for associations. Methods SNP harboring associations with autoimmune diseases, ITGAM rs9937837, ITGAX rs11574637, and CD58 rs12044852, were genotyped in 2 independent cohorts of European Caucasian ancestry: 1031 SSc patients and 1014 controls from France and 1038 SSc patients and 691 controls from the USA, providing a combined study population of 3774 individuals. ITGAM rs1143679 was additionally genotyped in the French cohort. Results The 4 polymorphisms were in Hardy-Weinberg equilibrium in the 2 control populations, and allelic frequencies were similar to those expected in European Caucasian populations. Allelic and genotypic frequencies for these 3 SNP were found to be statistically similar in SSc patients and controls. Subphenotype analyses for subgroups having diffuse cutaneous subtype disease, specific autoantibodies, or fibrosing alveolitis did not reveal any difference between SSc patients and controls. Conclusion These results obtained through 2 large cohorts of SSc patients of European Caucasian ancestry do not support the implication of ITGAM, ITGAX, and CD58 genes in the genetic susceptibility of SSc, although they were recently identified as autoimmune disease risk genes. PMID:21362770

  10. Genetic effects influencing risk for major depressive disorder in China and Europe.

    PubMed

    Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S

    2017-03-28

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log 10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies.

  11. Genetic effects influencing risk for major depressive disorder in China and Europe

    PubMed Central

    Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S

    2017-01-01

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30–40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies. PMID:28350396

  12. Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions

    PubMed Central

    Luan, Jian'an; Mihailov, Evelin; Metspalu, Andres; Forouhi, Nita G.; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Hallmans, Göran; Chu, Audrey Y.; Justice, Anne E.; Graff, Mariaelisa; Rose, Lynda M.; Langenberg, Claudia; Cupples, L. Adrienne; Ridker, Paul M.; Ong, Ken K.; Loos, Ruth J. F.; Chasman, Daniel I.; Ingelsson, Erik; Kilpeläinen, Tuomas O.; Scott, Robert A.; Mägi, Reedik

    2017-01-01

    Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman’s ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman’s ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann–Whitney = 1.46×10−5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10−9 and 8.52×10−7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them. PMID:28614350

  13. Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Bowles, R. L.

    1983-01-01

    This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.

  14. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  15. Association of apolipoprotein E gene polymorphisms with blood lipids and their interaction with dietary factors.

    PubMed

    Shatwan, Israa M; Winther, Kristian Hillert; Ellahi, Basma; Elwood, Peter; Ben-Shlomo, Yoav; Givens, Ian; Rayman, Margaret P; Lovegrove, Julie A; Vimaleswaran, Karani S

    2018-04-30

    Several candidate genes have been identified in relation to lipid metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically determined variation in lipid concentrations. This study investigated the association of two single nucleotide polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these SNPs with dietary factors. The population studied for this investigation included 660 individuals from the Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed using a validated food-frequency questionnaire (FFQ) in PRECISE and a validated semi-quantitative FFQ in the CaPS. Interaction analyses were performed by including the interaction term in the linear regression model adjusted for age, body mass index, sex and country. There was no association between dietary factors and blood lipids after Bonferroni correction and adjustment for confounding factors in either cohort. In the PRECISE study, after correction for multiple testing, there was a statistically significant association of the APOE haplotype (rs7412 and rs429358; E2, E3, and E4) and APOE tagSNP rs445925 with total cholesterol (P = 4 × 10 - 4 and P = 0.003, respectively). Carriers of the E2 allele had lower total cholesterol concentration (5.54 ± 0.97 mmol/L) than those with the E3 (5.98 ± 1.05 mmol/L) (P = 0.001) and E4 (6.09 ± 1.06 mmol/L) (P = 2 × 10 - 4 ) alleles. The association of APOE haplotype (E2, E3, and E4) and APOE SNP rs445925 with total cholesterol (P = 2 × 10 - 6 and P = 3 × 10 - 4 , respectively) was further replicated in the CaPS. Additionally, significant association was found between APOE haplotype and APOE SNP rs445925 with low density lipoprotein cholesterol in CaPS (P = 4 × 10 - 4 and P = 0.001, respectively). After Bonferroni correction, none of the cohorts showed a statistically significant SNP-diet interaction on lipid outcomes. In summary, our findings from the two cohorts confirm that genetic variations at the APOE locus influence plasma total cholesterol concentrations, however, the gene-diet interactions on lipids require further investigation in larger cohorts.

  16. Crossmodal Statistical Binding of Temporal Information and Stimuli Properties Recalibrates Perception of Visual Apparent Motion

    PubMed Central

    Zhang, Yi; Chen, Lihan

    2016-01-01

    Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910

  17. Fine Mapping of a Clubroot Resistance Gene in Chinese Cabbage Using SNP Markers Identified from Bulked Segregant RNA Sequencing

    PubMed Central

    Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun

    2017-01-01

    Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454

  18. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle.

    PubMed

    Liu, X; Guo, X Y; Xu, X Z; Wu, M; Zhang, X; Li, Q; Ma, P P; Zhang, Y; Wang, C Y; Geng, F J; Qin, C H; Liu, L; Shi, W H; Wang, Y C; Yu, Y

    2012-08-16

    DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.

  19. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.

  20. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing

    PubMed Central

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279

  1. The Impact of Supplemental Antioxidants on Visual Function in Nonadvanced Age-Related Macular Degeneration: A Head-to-Head Randomized Clinical Trial.

    PubMed

    Akuffo, Kwadwo Owusu; Beatty, Stephen; Peto, Tunde; Stack, Jim; Stringham, Jim; Kelly, David; Leung, Irene; Corcoran, Laura; Nolan, John M

    2017-10-01

    The purpose of this study was to evaluate the impact of supplemental macular carotenoids (including versus not including meso-zeaxanthin) in combination with coantioxidants on visual function in patients with nonadvanced age-related macular degeneration. In this study, 121 participants were randomly assigned to group 1 (Age-Related Eye Disease Study 2 formulation with a low dose [25 mg] of zinc and an addition of 10 mg meso-zeaxanthin; n = 60) or group 2 (Age-Related Eye Disease Study 2 formulation with a low dose [25 mg] of zinc; n = 61). Visual function was assessed using best-corrected visual acuity, contrast sensitivity (CS), glare disability, retinal straylight, photostress recovery time, reading performance, and the National Eye Institute Visual Function Questionnaire-25. Macular pigment was measured using customized heterochromatic flicker photometry. There was a statistically significant improvement in the primary outcome measure (letter CS at 6 cycles per degree [6 cpd]) over time (P = 0.013), and this observed improvement was statistically comparable between interventions (P = 0.881). Statistically significant improvements in several secondary outcome visual function measures (letter CS at 1.2 and 2.4 cpd; mesopic and photopic CS at all spatial frequencies; mesopic glare disability at 1.5, 3, and 6 cpd; photopic glare disability at 1.5, 3, 6, and 12 cpd; photostress recovery time; retinal straylight; mean and maximum reading speed) were also observed over time (P < 0.05, for all), and were statistically comparable between interventions (P > 0.05, for all). Statistically significant increases in macular pigment at all eccentricities were observed over time (P < 0.0005, for all), and the degree of augmentation was statistically comparable between interventions (P > 0.05). Antioxidant supplementation in patients with nonadvanced age-related macular degeneration results in significant increases in macular pigment and improvements in CS and other measures of visual function. (Clinical trial, http://www.isrctn.com/ISRCTN13894787).

  2. Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo

    2015-03-01

    In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, 'Iwainodaichi' (Kyushu), 'Junreikomugi' (Kinki-Chugoku-Shikoku), 'Kinuhime' (Kanto-Tokai), 'Nebarigoshi' (Tohoku-Hokuriku), and 'Kitamoe' (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for 'Kitamoe', were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.

  3. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry.

    PubMed

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin

    2012-01-01

    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  4. Isolation, characterization, and radiation protection of Sipunculus nudus L. polysaccharide.

    PubMed

    Li, Na; Shen, Xianrong; Liu, Yuming; Zhang, Junling; He, Ying; Liu, Qiong; Jiang, Dingwen; Zong, Jie; Li, Jiamei; Hou, Dengyong; Chen, Wei; Wang, Qingrong; Luo, Qun; Li, Kexian

    2016-02-01

    Sipunculus nudus Linnaeus polysaccharide (SNP) was purified from S. nudus L. via NaOH extraction, trichloroacetic acid deproteination, DEAE-cellulose 52 and Sephacryl S-300 chromatography. The monosaccharide analysis and molecular weight was detected with HPLC. FT-IR, 1H spectrum and 13C NMR spectrum were performed to detect the chemical characteristics. The antioxidant activity was assayed in vitro. The radiation protection effects were detected on mice. The results showed that SNP was composed of mannose, rhamnose, galacturonic acid, glucose, arabinose and fucose, and the average molecular weight was 680 kDa. Above the concentration of 10 mg/mL, SNP showed powerful scavenging activity on hydroxyl radical. In the animals irradiated with a 7.5 Gy γ-rays, the 90 mg/kg and the 270 mg/kg SNP groups survived significantly longer than the radiation control group. In the animals irradiated with a 4.0 Gy γ-rays, SNP showed significant protection effect. The contents of DNA in bone marrow cells were significantly increased by SNP treatment, and the micronucleus rates of 30 mg/kg and 270 mg/kg SNP groups were decrease significantly compared to the radiation control group. These findings suggest that SNP possesses marked antioxidant and bone marrow damage protection capacity which play important roles in the prevention of radiation damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification of an Interaction between VWF rs7965413 and Platelet Count as a Novel Risk Marker for Metabolic Syndrome: An Extensive Search of Candidate Polymorphisms in a Case-Control Study

    PubMed Central

    Nakatochi, Masahiro; Ushida, Yasunori; Yasuda, Yoshinari; Yoshida, Yasuko; Kawai, Shun; Kato, Ryuji; Nakashima, Toru; Iwata, Masamitsu; Kuwatsuka, Yachiyo; Ando, Masahiko; Hamajima, Nobuyuki; Kondo, Takaaki; Oda, Hiroaki; Hayashi, Mutsuharu; Kato, Sawako; Yamaguchi, Makoto; Maruyama, Shoichi; Matsuo, Seiichi; Honda, Hiroyuki

    2015-01-01

    Although many single nucleotide polymorphisms (SNPs) have been identified to be associated with metabolic syndrome (MetS), there was only a slight improvement in the ability to predict future MetS by the simply addition of SNPs to clinical risk markers. To improve the ability to predict future MetS, combinational effects, such as SNP—SNP interaction, SNP—environment interaction, and SNP—clinical parameter (SNP × CP) interaction should be also considered. We performed a case-control study to explore novel SNP × CP interactions as risk markers for MetS based on health check-up data of Japanese male employees. We selected 99 SNPs that were previously reported to be associated with MetS and components of MetS; subsequently, we genotyped these SNPs from 360 cases and 1983 control subjects. First, we performed logistic regression analyses to assess the association of each SNP with MetS. Of these SNPs, five SNPs were significantly associated with MetS (P < 0.05): LRP2 rs2544390, rs1800592 between UCP1 and TBC1D9, APOA5 rs662799, VWF rs7965413, and rs1411766 between MYO16 and IRS2. Furthermore, we performed multiple logistic regression analyses, including an SNP term, a CP term, and an SNP × CP interaction term for each CP and SNP that was significantly associated with MetS. We identified a novel SNP × CP interaction between rs7965413 and platelet count that was significantly associated with MetS [SNP term: odds ratio (OR) = 0.78, P = 0.004; SNP × CP interaction term: OR = 1.33, P = 0.001]. This association of the SNP × CP interaction with MetS remained nominally significant in multiple logistic regression analysis after adjustment for either the number of MetS components or MetS components excluding obesity. Our results reveal new insight into platelet count as a risk marker for MetS. PMID:25646961

  6. Stable statistical representations facilitate visual search.

    PubMed

    Corbett, Jennifer E; Melcher, David

    2014-10-01

    Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.

  7. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean.

    PubMed

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function.

  8. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean

    PubMed Central

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function. PMID:27540381

  9. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Treatment with sodium nitroprusside improves the endothelial function in aortic rings with endothelial dysfunction.

    PubMed

    Buzinari, Tereza Cristina; Oishi, Jorge Camargo; De Moraes, Thiago Francisco; Vatanabe, Izabela Pereira; Selistre-de-Araújo, Heloisa Sobreiro; Pestana, Cezar Rangel; Rodrigues, Gerson Jhonatan

    2017-07-15

    Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound. Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.1nM; 1nM or 10nM during 30min. Cumulative concentration-effect curves for acetylcholine (Ach) were realized to measure the relaxing capacity. Intracellular NO were measured (by DAF-2DA probe) in HUVEC treated with SNP 0.1nM or DETA/NO 0.1μM. The detection of intracellular superoxide radical (O 2 •- ) was obtained by using DHE probe. Treatment of 2K-1C aortic rings with SNP (0.1; 1.0 and 10nM) improved endothelium dependent relaxation induced by acetylcholine. This improvement induced by SNP was verified at the concentration of 0.1nM, which does not release NO, suggesting that this effect was not induced due to NO release by SNP compound. Besides, we show that the cell treatment with 0.1nM of SNP decreased the fluorescence intensity to DHE in cells stimulated with angiotensin II. These results indicate that SNP decreases the concentration of O 2 •- in HUVEC cells. The SNP at a concentration that does not release NO inside the cells is able to attenuate endothelial dysfunction. Acetylcholine (Ach) (PubChem CID:6060); angiotensin II human (Ang II) (PubChem CID: 16211177); diethylenetriamine/nitric oxide (DETA-NO) (PubChem CID 4518); dihydroethidium (DHE) (PubChem CID: 128682); phenylephrine (Phe) (PubChem CID: 5284443); sodium nitroprusside (SNP) (PubChem CID: 11963579); Thiazolyl Blue Tetrazolium Bromide (MTT) (PubChem CID: 64965); 4,5-diaminofluorescein diacetate (DAF-2DA); 4-hidroxy-Tempo (Tempol) (PubChem CID: 137994), were purchased from Sigma-Aldrich (St. Louis, MO, USA). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  12. Linkage disequilibrium between STRPs and SNPs across the human genome.

    PubMed

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  13. The effect of iconicity of visual displays on statistical reasoning: evidence in favor of the null hypothesis.

    PubMed

    Sirota, Miroslav; Kostovičová, Lenka; Juanchich, Marie

    2014-08-01

    Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays - iconicity (i.e., the resemblance of a visual sign to its referent) - on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure-the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = -0.13, 95% CI [-0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis-the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.

  14. Statistical learning and auditory processing in children with music training: An ERP study.

    PubMed

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Pupil Influence on the Visual Outcomes of a New-Generation Multifocal Toric Intraocular Lens With a Surface-Embedded Near Segment.

    PubMed

    Wang, Mengmeng; Corpuz, Christine Carole C; Huseynova, Tukezban; Tomita, Minoru

    2016-02-01

    To evaluate the influences of preoperative pupil parameters on the visual outcomes of a new-generation multifocal toric intraocular lens (IOL) model with a surface-embedded near segment. In this prospective study, patients with cataract had phacoemulsification and implantation of Lentis Mplus toric LU-313 30TY IOLs (Oculentis GmbH, Berlin, Germany). The visual and optical outcomes were measured and compared preoperatively and postoperatively. The correlations between preoperative pupil parameters (diameter and decentration) and 3-month postoperative visual outcomes were evaluated using the Spearman's rank-order correlation coefficient (Rs) for the nonparametric data. A total of 27 eyes (16 patients) were enrolled into the current study. Statistically significant improvements in visual and refractive performances were found after the implantation of Lentis Mplus toric LU-313 30TY IOLs (P < .05). Statistically significant correlations were present between preoperative pupil diameters and postoperative visual acuities (Rs > 0; P < .05). Patients with a larger pupil always have better postoperative visual acuities. Meanwhile, there was no statistically significant correlation between pupil decentration and visual acuities (P > .05). Lentis Mplus toric LU-313 30TY IOLs provided excellent visual and optical performances during the 3-month follow-up. The preoperative pupil size is an important parameter when this toric multifocal IOL model is contemplated for surgery. Copyright 2016, SLACK Incorporated.

  16. Association analysis of the vitamin D receptor gene, the type I collagen gene COL1A1, and the estrogen receptor gene in idiopathic osteoarthritis.

    PubMed

    Loughlin, J; Sinsheimer, J S; Mustafa, Z; Carr, A J; Clipsham, K; Bloomfield, V A; Chitnavis, J; Bailey, A; Sykes, B; Chapman, K

    2000-03-01

    Evidence has accumulated supporting a role for genes in the etiology of osteoarthritis (OA). Several candidates have been targeted as potential susceptibility loci including genes that are involved in the regulation of bone density. Genetic association analysis has suggested a role for the vitamin D receptor gene (VDR) and the estrogen receptor gene (ER) in susceptibility. Such findings must be tested in additional independent cohorts. We tested for association of these 2 genes, plus a third gene implicated in bone density, COL1A1, with idiopathic OA. A case-control cohort of 371 affected probands and 369 unaffected spouses was used. Association was tested using 4 intragenic single nucleotide polymorphisms (SNP), one each for the VDR and COL1A1 genes, and 2 for the ER gene. The VDR and ER SNP are the same SNP that have been associated with OA. All 4 SNP affect restriction enzyme sites and were genotyped using polymerase chain reaction and enzyme digestion. Allele and genotype distributions for each SNP were compared between cases and controls and analyzed using Fisher's exact test. There was no evidence of association of the VDR or the ER gene SNP to OA. There was weak evidence of association of the COL1A1 SNP in female cases (p = 0.017), reflected by a difference in the distribution of genotypes at this SNP between female cases and controls (p = 0.027). However, when corrected for multiple testing, these results were not significant. If the VDR, ER, or COL1A1 genes do encode predisposition to OA then the 4 SNP tested are not associated with major susceptibility alleles at these 3 loci.

  17. Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus×domestica) pedigree-connected SNP data set

    PubMed Central

    Howard, Nicholas P; van de Weg, Eric; Bedford, David S; Peace, Cameron P; Vanderzande, Stijn; Clark, Matthew D; Teh, Soon Li; Cai, Lichun; Luby, James J

    2017-01-01

    The apple (Malus×domestica) cultivar Honeycrisp has become important economically and as a breeding parent. An earlier study with SSR markers indicated the original recorded pedigree of ‘Honeycrisp’ was incorrect and ‘Keepsake’ was identified as one putative parent, the other being unknown. The objective of this study was to verify ‘Keepsake’ as a parent and identify and genetically describe the unknown parent and its grandparents. A multi-family based dense and high-quality integrated SNP map was created using the apple 8 K Illumina Infinium SNP array. This map was used alongside a large pedigree-connected data set from the RosBREED project to build extended SNP haplotypes and to identify pedigree relationships. ‘Keepsake’ was verified as one parent of ‘Honeycrisp’ and ‘Duchess of Oldenburg’ and ‘Golden Delicious’ were identified as grandparents through the unknown parent. Following this finding, siblings of ‘Honeycrisp’ were identified using the SNP data. Breeding records from several of these siblings suggested that the previously unreported parent is a University of Minnesota selection, MN1627. This selection is no longer available, but now is genetically described through imputed SNP haplotypes. We also present the mosaic grandparental composition of ‘Honeycrisp’ for each of its 17 chromosome pairs. This new pedigree and genetic information will be useful in future pedigree-based genetic studies to connect ‘Honeycrisp’ with other cultivars used widely in apple breeding programs. The created SNP linkage map will benefit future research using the data from the Illumina apple 8 and 20 K and Affymetrix 480 K SNP arrays. PMID:28243452

  18. Association between SLC11A1 (NRAMP1) polymorphisms and susceptibility to tuberculosis in Chinese Holstein cattle.

    PubMed

    Liu, Kaihua; Zhang, Bin; Teng, Zhaochun; Wang, Youtao; Dong, Guodong; Xu, Cong; Qin, Bo; Song, Chunlian; Chai, Jun; Li, Yang; Shi, Xianwei; Shu, Xianghua; Zhang, Yifang

    2017-03-01

    We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genome-wide association study for milking speed in French Holstein cows.

    PubMed

    Marete, Andrew; Sahana, Goutam; Fritz, Sébastien; Lefebvre, Rachel; Barbat, Anne; Lund, Mogens Sandø; Guldbrandtsen, Bernt; Boichard, Didier

    2018-04-25

    Using a combination of data from the BovineSNP50 BeadChip SNP array (Illumina, San Diego, CA) and a EuroGenomics (Amsterdam, the Netherlands) custom single nucleotide polymorphism (SNP) chip with SNP pre-selected from whole genome sequence data, we carried out an association study of milking speed in 32,491 French Holstein dairy cows. Milking speed was measured by a score given by the farmer. Phenotypes were yield deviations as obtained from the French evaluation system. They were analyzed with a linear mixed model for association studies. We identified SNP on 22 chromosomes significantly associated with milking speed. As clinical mastitis and somatic cell score have an unfavorable genetic correlation with milking speed, we tested whether the most significant SNP on these 22 chromosomes associated with milking speed were also associated with clinical mastitis or somatic cell score. Nine hundred seventy-one genome-wide significant SNP were associated with milking speed. Of these, 86 were associated with clinical mastitis and 198 with somatic cell score. The most significant association signals for milking speed were observed on chromosomes 7, 8, 10, 14, and 18. The most significant signal was located on chromosome 14 (ZFAT gene). Eleven novel milking speed quantitative trait loci (QTL) were observed on chromosomes 7, 10, 11, 14, 18, 25, and 26. Twelve candidate SNP for milking speed mapped directly within genes. Of these 10 were QTL lead SNP, which mapped within the genes HMHA1, POLR2E, GNB5, KLHL29, ZFAT, KCNB2, CEACAM18, CCL24, and LHPP. Limited pleiotropy was observed between milking speed QTL and clinical mastitis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Genetic dissection of the pre-eclampsia susceptibility locus on chromosome 2q22 reveals shared novel risk factors for cardiovascular disease

    PubMed Central

    Johnson, Matthew P.; Brennecke, Shaun P.; East, Christine E.; Dyer, Thomas D.; Roten, Linda T.; Proffitt, J. Michael; Melton, Phillip E.; Fenstad, Mona H.; Aalto-Viljakainen, Tia; Mäkikallio, Kaarin; Heinonen, Seppo; Kajantie, Eero; Kere, Juha; Laivuori, Hannele; Austgulen, Rigmor; Blangero, John; Moses, Eric K.; Pouta, Anneli; Kivinen, Katja; Ekholm, Eeva; Hietala, Reija; Sainio, Susanna; Saisto, Terhi; Uotila, Jukka; Klemetti, Miira; Inkeri Lokki, Anna; Georgiadis, Leena; Huovari, Elina; Kortelainen, Eija; Leminen, Satu; Lähdesmäki, Aija; Mehtälä, Susanna; Salmen, Christina

    2013-01-01

    Pre-eclampsia is an idiopathic pregnancy disorder promoting morbidity and mortality to both mother and child. Delivery of the fetus is the only means to resolve severe symptoms. Women with pre-eclamptic pregnancies demonstrate increased risk for later life cardiovascular disease (CVD) and good evidence suggests these two syndromes share several risk factors and pathophysiological mechanisms. To elucidate the genetic architecture of pre-eclampsia we have dissected our chromosome 2q22 susceptibility locus in an extended Australian and New Zealand familial cohort. Positional candidate genes were prioritized for exon-centric sequencing using bioinformatics, SNPing, transcriptional profiling and QTL-walking. In total, we interrogated 1598 variants from 52 genes. Four independent SNP associations satisfied our gene-centric multiple testing correction criteria: a missense LCT SNP (rs2322659, P = 0.0027), a synonymous LRP1B SNP (rs35821928, P = 0.0001), an UTR-3 RND3 SNP (rs115015150, P = 0.0024) and a missense GCA SNP (rs17783344, P = 0.0020). We replicated the LCT SNP association (P = 0.02) and observed a borderline association for the GCA SNP (P = 0.07) in an independent Australian case–control population. The LRP1B and RND3 SNP associations were not replicated in this same Australian singleton cohort. Moreover, these four SNP associations could not be replicated in two additional case–control populations from Norway and Finland. These four SNPs, however, exhibit pleiotropic effects with several quantitative CVD-related traits. Our results underscore the genetic complexity of pre-eclampsia and present novel empirical evidence of possible shared genetic mechanisms underlying both pre-eclampsia and other CVD-related risk factors. PMID:23420841

  1. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  2. A novel approach to exploring potential interactions among single-nucleotide polymorphisms of inflammation genes in gliomagenesis: an exploratory case-only study.

    PubMed

    Amirian, E Susan; Scheurer, Michael E; Liu, Yanhong; D'Amelio, Anthony M; Houlston, Richard S; Etzel, Carol J; Shete, Sanjay; Swerdlow, Anthony J; Schoemaker, Minouk J; McKinney, Patricia A; Fleming, Sarah J; Muir, Kenneth R; Lophatananon, Artitaya; Bondy, Melissa L

    2011-08-01

    Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology. ©2011 AACR.

  3. Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants.

    PubMed

    Liu, Shiliang; Yang, Rongjie; Pan, Yuanzhi; Ma, Mingdong; Pan, Jiang; Zhao, Yan; Cheng, Qingsu; Wu, Mengxi; Wang, Maohua; Zhang, Lin

    2015-09-01

    Nitric oxide (NO) is a stress-signaling molecule in plants that mediates a wide range of physiological processes and responses to metal toxicity. In this work, various NO modulators (NO donor: SNP; NO scavenger: cPTIO; NO synthase inhibitor: l-NAME; and SNP analogs: sodium nitrite/nitrate and sodium ferrocyanide) were investigated to determine the role of NO in Trifolium repens L. plants exposed to Cd. Cd (100μM) markedly reduced biomass, NO production and chlorophyll (Chl a, Chl b and total Chl) concentration but stimulated reactive oxygen species (ROS) and Cd accumulation in plants. SNP (50μM) substantially attenuated growth inhibition, reduced hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels, stimulated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in proton pumps. Interestingly, SNP considerably up-regulated the levels of jasmonic acid (JA) and proline in plant tissues but down-regulated the levels of ethylene (ET) in both shoots and roots and the level of salicylic acid (SA) in roots only, which might be related to the elevated NO synthesis. Additionally, SNP (25-200μM) regulated mineral absorption and, particularly at 50μM, significantly enhanced the uptake of shoot magnesium (Mg) and copper (Cu) and of root calcium (Ca), Mg and iron (Fe). Nevertheless, the effects of SNP on plant growth were reversed by cPTIO and l-NAME, suggesting that the protective effect of SNP might be associated with NO synthesis in vivo. Moreover, SNP analogs did not display roles similar to that of SNP. These results indicated that NO depleted Cd toxicity by eliminating oxidative damage, enhancing minerals absorption, regulating proton pumps, and maintaining hormone equilibrium. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers

    PubMed Central

    2010-01-01

    Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788

  5. TMC-SNPdb: an Indian germline variant database derived from whole exome sequences.

    PubMed

    Upadhyay, Pawan; Gardi, Nilesh; Desai, Sanket; Sahoo, Bikram; Singh, Ankita; Togar, Trupti; Iyer, Prajish; Prasad, Ratnam; Chandrani, Pratik; Gupta, Sudeep; Dutt, Amit

    2016-01-01

    Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html. © The Author(s) 2016. Published by Oxford University Press.

  6. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    PubMed

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  7. Lack of effect of sodium nitroprusside on insulin-mediated blood flow and glucose disposal in the elderly.

    PubMed

    Meneilly, G S; Battistini, B; Floras, J S

    2000-03-01

    Insulin increases skeletal muscle blood flow in healthy young subjects by a nitric oxide (NO)-dependent mechanism. Impairment of this mechanism may contribute to the insulin resistance of normal aging, a state characterized by reduced endothelial production of NO, an attenuated effect of insulin on skeletal muscle blood flow, and resistance to insulin-mediated glucose uptake (IMGU). We tested the hypothesis that the NO donor sodium nitroprusside (SNP) would augment insulin-mediated vasodilation and thus increase IMGU in healthy elderly subjects. Experiments were performed with young (n = 9; age, 25 +/- 1 years; body mass index [BMI], 24 +/- 1 kg/m2) and old (n = 10; age, 78 +/- 2 years; BMI, 25 +/- 1 kg/m2) healthy subjects. Each group underwent two studies in random order. In one study (control), insulin was infused using the euglycemic clamp protocol for 240 minutes at a rate of 40 mU/m2/min (young) and 34 mU/m2/min (old). In the other study (SNP), SNP was coinfused with insulin from 120 to 240 minutes. At regular intervals in each study, blood samples were obtained and calf blood flow was measured using venous occlusion plethysmography. Glucose and insulin values were similar in control and SNP studies in both age groups. In the young, SNP had no effect on blood flow to the calf, but its action in calf resistance vessels augmented insulin-mediated vasodilation, since incremental calf vascular conductance was greater during SNP infusion (control v SNP, 0.027 +/- 0.002 v 0.040 +/- 0.008 mL/100 mL/min/mm Hg, P< .0001). However, SNP had no effect on insulin-mediated glucose disposal. In the elderly, SNP reduced the blood flow to the calf, but this was countered by its effect on calf resistance vessels such that vascular conductance was unaffected (control v SNP, 0.012 +/- 0.003 v 0.011 +/- 0.003 mL/100 mL/min/mm Hg, P = nonsignificant [NS]). Steady-state (180 to 240 minutes) glucose disposal (control v SNP, 7.47 +/- 0.47 v 6.54 +/- 0.56 mg/kg/min, P < .01) rates were significantly lower during SNP infusion. In summary, systemic infusion of SNP did not increase insulin-mediated glucose disposal in either young or old subjects. Thus, the present findings do not support the concept that increasing NO availability will enhance glucose disposal in either age group. However, because the incremental increases in IMGU during SNP infusion paralleled the changes in blood supply to the calf rather than calf vascular conductance, any potential benefits on NO delivery in elderly subjects may have been offset by the direct or reflex effects of systemic hypotension. Other stimuli to NO production that do not cause hypotension must be tested before this therapeutic strategy can be considered as a potential means for enhancing the metabolic actions of insulin in the elderly.

  8. Visualizing Statistical Mix Effects and Simpson's Paradox.

    PubMed

    Armstrong, Zan; Wattenberg, Martin

    2014-12-01

    We discuss how "mix effects" can surprise users of visualizations and potentially lead them to incorrect conclusions. This statistical issue (also known as "omitted variable bias" or, in extreme cases, as "Simpson's paradox") is widespread and can affect any visualization in which the quantity of interest is an aggregated value such as a weighted sum or average. Our first contribution is to document how mix effects can be a serious issue for visualizations, and we analyze how mix effects can cause problems in a variety of popular visualization techniques, from bar charts to treemaps. Our second contribution is a new technique, the "comet chart," that is meant to ameliorate some of these issues.

  9. Spiking neural P systems with multiple channels.

    PubMed

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol

    PubMed Central

    Bodhini, Dhanasekaran; Gaal, Szilvia; Shatwan, Israa; Ramya, Kandaswamy; Ellahi, Basma; Surendran, Shelini; Sudha, Vasudevan; Anjana, Mohan R.; Mohan, Viswanathan; Lovegrove, Julie A.; Radha, Venkatesan

    2017-01-01

    Recent evidence suggests that lifestyle factors influence the association between the Melanocortin 4 receptor (MC4R) and Transcription Factor 7-Like 2 (TCF7L2) gene variants and cardio-metabolic traits in several populations; however, the available research is limited among the Asian Indian population. Hence, the present study examined whether the association between the MC4R single nucleotide polymorphism (SNP) (rs17782313) and two SNPs of the TCF7L2 gene (rs12255372 and rs7903146) and cardio-metabolic traits is modified by dietary factors and physical activity. This cross sectional study included a random sample of normal glucose tolerant (NGT) (n = 821) and participants with type 2 diabetes (T2D) (n = 861) recruited from the urban part of the Chennai Urban Rural Epidemiology Study (CURES). A validated food frequency questionnaire (FFQ) was used for dietary assessment and self-reported physical activity measures were collected. The threshold for significance was set at P = 0.00023 based on Bonferroni correction for multiple testing [(0.05/210 (3 SNPs x 14 outcomes x 5 lifestyle factors)]. After Bonferroni correction, there was a significant interaction between the TCF7L2 rs12255372 SNP and fat intake (g/day) (Pinteraction = 0.0001) on high-density lipoprotein cholesterol (HDL-C), where the ‘T’ allele carriers in the lowest tertile of total fat intake had higher HDL-C (P = 0.008) and those in the highest tertile (P = 0.017) had lower HDL-C compared to the GG homozygotes. In a secondary analysis of SNPs with the subtypes of fat, there was also a significant interaction between the SNP rs12255372 and polyunsaturated fatty acids (PUFA, g/day) (Pinteraction<0.0001) on HDL-C, where the minor allele carriers had higher HDL-C in the lowest PUFA tertile (P = 0.024) and those in the highest PUFA tertile had lower HDL-C (P = 0.028) than GG homozygotes. In addition, a significant interaction was also seen between TCF7L2 SNP rs12255372 and fibre intake (g/day) on HDL-C (Pinteraction<0.0001). None of the other interactions between the SNPs and lifestyle factors were statistically significant after correction for multiple testing. Our findings indicate that the association between TCF7L2 SNP rs12255372 and HDL-C may be modified by dietary fat intake in this Asian Indian population. PMID:29182660

  11. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    PubMed Central

    Johansen, Morten Bo; Izarzugaza, Jose M. G.; Brunak, Søren; Petersen, Thomas Nordahl; Gupta, Ramneek

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP PMID:23935863

  12. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    PubMed Central

    Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung

    2014-01-01

    There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172

  13. GenomeGraphs: integrated genomic data visualization with R.

    PubMed

    Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine

    2009-01-06

    Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.

  14. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test.

    PubMed

    Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M

    2015-11-11

    The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.

  15. Application of whole genome sequence data in analyzing the molecular epidemiology of Shiga toxin-producing Escherichia coli O157:H7/H.

    PubMed

    Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi

    2018-01-02

    Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all the strains included in one complex on an MST or one cluster on a UPGMA were designated as the same genotype, the values of the Hunter-Gaston Discriminatory Power Index for the backbone SNP set of the mapping derived and common SNPs were higher than those of other SNP sets. In contrast, the mobile element SNP set could not robustly subdivide lineage I strains of tested O157 strains using both the mapping derived and common SNPs. These results suggested that the backbone SNP set were the most effective for analysis of WGS data for O157 in enabling an appropriation of its molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Redefining "Learning" in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities?

    PubMed

    Siegelman, Noam; Bogaerts, Louisa; Kronenfeld, Ofer; Frost, Ram

    2017-10-07

    From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL. © 2017 Cognitive Science Society, Inc.

  17. Three Strategies for the Critical Use of Statistical Methods in Psychological Research

    ERIC Educational Resources Information Center

    Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando

    2017-01-01

    We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…

  18. Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry.

    PubMed

    Irvin, Marguerite R; Sitlani, Colleen M; Noordam, Raymond; Avery, Christie L; Bis, Joshua C; Floyd, James S; Li, Jin; Limdi, Nita A; Srinivasasainagendra, Vinodh; Stewart, James; de Mutsert, Renée; Mook-Kanamori, Dennis O; Lipovich, Leonard; Kleinbrink, Erica L; Smith, Albert; Bartz, Traci M; Whitsel, Eric A; Uitterlinden, Andre G; Wiggins, Kerri L; Wilson, James G; Zhi, Degui; Stricker, Bruno H; Rotter, Jerome I; Arnett, Donna K; Psaty, Bruce M; Lange, Leslie A

    2018-06-01

    We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10 -8 ) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10 -8 ; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.

  19. Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A

    PubMed Central

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo

    2015-01-01

    In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region. PMID:25931984

  20. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  1. Polymorphism in ovine ANXA9 gene and physic-chemical properties and the fraction of protein in milk.

    PubMed

    Pecka-Kiełb, Ewa; Czerniawska-Piątkowska, Ewa; Kowalewska-Łuczak, Inga; Vasil, Milan

    2018-04-16

    Annexin A9 (ANXA9) is a specific fatty acid transport protein. ANXA9 gene is expressed in various tissues, including secretory tissue and mammary glands. The association between three SNPs of the ANXA9 gene and sheep's milk compositions was assessed. Genotype analysis was performed with the use of PCR-RFLP method. The studied ANXA9 polymorphisms had the following MAF (Major Allele Frequency): SNP1: allele G 0,66; SNP2: allele G 0,54; SNP3: allele C 0,57. The study found the most desired profile of protein fractions, namely an increased kappa-casein fractions and a decreased level of whey protein in sheep's milk for SNP1 and SNP3 polymorphisms. Sheep with the SNP1 GA genotype had the highest (P <0.05) content of fat and dry matter in milk. AXNA9 gene polymorphism did not influence the levels of protein, lactose or urea in sheep's milk. The information contained in this study may be useful for determining the impact of the ANXA9 gene on sheep's milk. The ANXA9 SNP1 and SNP3 polymorphisms results could be included in the breeding programs to select the sheep with the genotypes ensuring the highest kappa-casein levels in milk. However, it is worth conducting further research on ANXA9 and milk composition in larger herds of animals and various breeds of sheep. This article is protected by copyright. All rights reserved.

  2. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.

    PubMed

    Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L

    2018-04-24

    The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.

  3. Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry.

    PubMed

    Scheffold, Thomas; Kullmann, Silke; Huge, Andreas; Binner, Priska; Ochs, Hermann R; Schöls, Wolfgang; Thale, Joachim; Motz, Wolfgang; Hegge, Franz Josef; Stellbrink, Christoph; Dorsel, Thomas; Gülker, Hartmut; Heuer, Hubertus; Dinh, Wilfried; Stoll, Monika; Haltern, Georg

    2011-03-07

    Recent genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) and myocardial infarction (MI). The 9p21.3 locus was verified by numerous replication studies to be the first common locus for CAD and MI. In the present study, we investigated whether six single nucleotide polymorphisms (SNP) rs1333049, rs1333040, rs10757274, rs2383206, rs10757278, and rs2383207 representing the 9p21.3 locus were associated with the incidence of an acute MI in patients with the main focus on the familial aggregation of the disease. The overall cohort consisted of 976 unrelated male patients presenting with an acute coronary syndrome (ACS) with ST-elevated (STEMI) as well as non-ST-elevated myocardial infarction (NSTEMI). Genotyping data of the investigated SNPs were generated and statistically analyzed in comparison to previously published findings of matchable control cohorts. Statistical evaluation confirmed a highly significant association of all analyzed SNP's with the occurrence of MI (p<0.0001; OR: 1.621-2.039). When only MI patients with a positive family disposition were comprised in the analysis a much stronger association of the accordant risk alleles with incident disease was found with odds ratios up to 2.769. The findings in the present study confirmed a strong association of the 9p21.3 locus with MI particularly in patients with a positive family history thereby, emphasizing the pathogenic relevance of this locus as a common genetic cardiovascular risk factor.

  4. efficient association study design via power-optimized tag SNP selection

    PubMed Central

    HAN, BUHM; KANG, HYUN MIN; SEO, MYEONG SEONG; ZAITLEN, NOAH; ESKIN, ELEAZAR

    2008-01-01

    Discovering statistical correlation between causal genetic variation and clinical traits through association studies is an important method for identifying the genetic basis of human diseases. Since fully resequencing a cohort is prohibitively costly, genetic association studies take advantage of local correlation structure (or linkage disequilibrium) between single nucleotide polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many current association studies are performed using commercially available high-throughput genotyping products that define a set of tag SNPs, choosing tag SNPs remains an important problem for both custom follow-up studies as well as designing the high-throughput genotyping products themselves. The most widely used tag SNP selection method optimizes over the correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not necessarily maximize the statistical power of an association study. We propose a study design framework that chooses SNPs to maximize power and efficiently measures the power through empirical simulation. Empirical results based on the HapMap data show that our method gains considerable power over a widely used r2-based method, or equivalently reduces the number of tag SNPs required to attain the desired power of a study. Our power-optimized 100k whole genome tag set provides equivalent power to the Affymetrix 500k chip for the CEU population. For the design of custom follow-up studies, our method provides up to twice the power increase using the same number of tag SNPs as r2-based methods. Our method is publicly available via web server at http://design.cs.ucla.edu. PMID:18702637

  5. Development and Applications of a Bovine 50,000 SNP Chip

    USDA-ARS?s Scientific Manuscript database

    To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...

  6. Genomic selection in dairy cattle: the USDA experience

    USDA-ARS?s Scientific Manuscript database

    Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single nucleotide polymorphisms (SNP) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNP in December 2007. Over 15,000 ...

  7. Genome-wide association analyses for carcass quality in crossbred beef cattle

    PubMed Central

    2013-01-01

    Background Genetic improvement of beef quality will benefit both producers and consumers, and can be achieved by selecting animals that carry desired quantitative trait nucleotides (QTN), which result from intensive searches using genetic markers. This paper presents a genome-wide association approach utilizing single nucleotide polymorphisms (SNP) in the Illumina BovineSNP50 BeadChip to seek genomic regions that potentially harbor genes or QTN underlying variation in carcass quality of beef cattle. This study used 747 genotyped animals, mainly crossbred, with phenotypes on twelve carcass quality traits, including hot carcass weight (HCW), back fat thickness (BF), Longissimus dorsi muscle area or ribeye area (REA), marbling scores (MRB), lean yield grade by Beef Improvement Federation formulae (BIFYLD), steak tenderness by Warner-Bratzler shear force 7-day post-mortem (LM7D) as well as body composition as determined by partial rib (IMPS 103) dissection presented as a percentage of total rib weight including body cavity fat (BDFR), lean (LNR), bone (BNR), intermuscular fat (INFR), subcutaneous fat (SQFR), and total fat (TLFR). Results At the genome wide level false discovery rate (FDR < 10%), eight SNP were found significantly associated with HCW. Seven of these SNP were located on Bos taurus autosome (BTA) 6. At a less stringent significance level (P < 0.001), 520 SNP were found significantly associated with mostly individual traits (473 SNP), and multiple traits (47 SNP). Of these significant SNP, 48 were located on BTA6, and 22 of them were in association with hot carcass weight. There were 53 SNP associated with percentage of rib bone, and 12 of them were on BTA20. The rest of the significant SNP were scattered over other chromosomes. They accounted for 1.90 - 5.89% of the phenotypic variance of the traits. A region of approximately 4 Mbp long on BTA6 was found to be a potential area to harbor candidate genes influencing growth. One marker on BTA25 accounting for 2.67% of the variation in LM7D may be worth further investigation for the improvement of beef tenderness. Conclusion This study provides useful information to further assist the identification of chromosome regions and subsequently genes affecting carcass quality traits in beef cattle. It also revealed many SNP that acted pleiotropically to affect carcass quality. This knowledge is important in selecting subsets of SNP to improve the performance of beef cattle. PMID:24024930

  8. Visualization of the variability of 3D statistical shape models by animation.

    PubMed

    Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter

    2004-01-01

    Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.

  9. Genomic association for sexual precocity in beef heifers using pre-selection of genes and haplotype reconstruction

    PubMed Central

    Barbero, Marina M. D.; Oliveira, Henrique N.; de Camargo, Gregório M. F.; Fernandes Júnior, Gerardo A.; Aspilcueta-Borquis, Rusbel R.; Souza, Fabio R. P.; Boligon, Arione A.; Melo, Thaise P.; Regatieri, Inaê C.; Feitosa, Fabieli L. B.; Fonseca, Larissa F. S.; Magalhães, Ana F. B.; Costa, Raphael B.; Albuquerque, Lucia G.

    2018-01-01

    Reproductive traits are of the utmost importance for any livestock farming, but are difficult to measure and to interpret since they are influenced by various factors. The objective of this study was to detect associations between known polymorphisms in candidate genes related to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of 1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP) located in the region of the candidate genes at a distance of up to 5 kb from the boundaries of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer pregnancy, relating the trait with isolated SNPs or with haplotype groups. The model included the contemporary group (year and month of birth) as fixed effect and parent of the animal (sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for reconstruction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect (p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-associated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A, XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further studies are needed to evaluate their possible use in breeding programs. PMID:29293544

  10. Genomic association for sexual precocity in beef heifers using pre-selection of genes and haplotype reconstruction.

    PubMed

    Takada, Luciana; Barbero, Marina M D; Oliveira, Henrique N; de Camargo, Gregório M F; Fernandes Júnior, Gerardo A; Aspilcueta-Borquis, Rusbel R; Souza, Fabio R P; Boligon, Arione A; Melo, Thaise P; Regatieri, Inaê C; Feitosa, Fabieli L B; Fonseca, Larissa F S; Magalhães, Ana F B; Costa, Raphael B; Albuquerque, Lucia G

    2018-01-01

    Reproductive traits are of the utmost importance for any livestock farming, but are difficult to measure and to interpret since they are influenced by various factors. The objective of this study was to detect associations between known polymorphisms in candidate genes related to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of 1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP) located in the region of the candidate genes at a distance of up to 5 kb from the boundaries of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer pregnancy, relating the trait with isolated SNPs or with haplotype groups. The model included the contemporary group (year and month of birth) as fixed effect and parent of the animal (sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for reconstruction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect (p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-associated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A, XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further studies are needed to evaluate their possible use in breeding programs.

  11. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  12. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less

  13. Interest in genomic SNP testing for prostate cancer risk: a pilot survey.

    PubMed

    Hall, Michael J; Ruth, Karen J; Chen, David Yt; Gross, Laura M; Giri, Veda N

    2015-01-01

    Advancements in genomic testing have led to the identification of single nucleotide polymorphisms (SNPs) associated with prostate cancer. The clinical utility of SNP tests to evaluate prostate cancer risk is unclear. Studies have not examined predictors of interest in novel genomic SNP tests for prostate cancer risk in a diverse population. Consecutive participants in the Fox Chase Prostate Cancer Risk Assessment Program (PRAP) (n = 40) and unselected men from surgical urology clinics (n = 40) completed a one-time survey. Items examined interest in genomic SNP testing for prostate cancer risk, knowledge, impact of unsolicited findings, and psychosocial factors including health literacy. Knowledge of genomic SNP tests was low in both groups, but interest was higher among PRAP men (p < 0.001). The prospect of receiving unsolicited results about ancestral genomic markers increased interest in testing in both groups. Multivariable modeling identified several predictors of higher interest in a genomic SNP test including higher perceived risk (p = 0.025), indicating zero reasons for not wanting testing (vs ≥1 reason) (p = 0.013), and higher health literacy (p = 0.016). Knowledge of genomic SNP testing was low in this sample, but higher among high-risk men. High-risk status may increase interest in novel genomic tests, while low literacy may lessen interest.

  14. Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies

    NASA Astrophysics Data System (ADS)

    Naganathan, Kiruthika; Thirunavukkarasu, Somanathan

    2017-04-01

    Green synthesis of silver nanoparticles (SNP) opens a new path to kill and prevent various infectious diseases and also tumor. In this study, we have synthesized silver nanoparticles using multiple fruit peel waste (pomegranate, orange, banana and apple (POBA)). The primarily nanoparticles formation has been confirmed by the color change. The synthesized SNP were analyzed by various physicochemical techniques such as UV- Visible spectroscopy, x-ray diffraction (XRD), fourier transform infra red (FT-IR) spectroscopy and transmission electron microscope (TEM). The formation of SNP was confirmed by its absorbance peak observed at 430 nm in UV-Visible spectrum. Further, the obtained SNP were identified by XRD and TEM, respectively to know the crystalline nature and size and shape of the particles. The activities of SNP were checked with human pathogens (Salmonella, E.coli and Pseudomonas), plant pathogen (Fusarium) and marine pathogen (Aeromonas hydrophila) and also studied the scavenging effect and anticancer properties against MCF-7 cell lines. This studies proves that the SNP prepared from fruit waste peel extract approach appears extremely fast, cost efficient, eco-friendly and alternative for conventional methods of SNP synthesis to promote the usage of these nanoparticles in medicinal application.

  15. The role of silver nano-particles and silver thiosulfate on the longevity of cut carnation (Dianthus caryophyllus) flowers.

    PubMed

    Hashemabadi, Davood

    2014-07-01

    The purpose of this study was to evaluate the efficacy of silver nano-particles (SNP) and silver thiosulfate (STS) in extending the vase life of cut carnation (Dianthus caryophyllus L. cv. 'Tempo') flowers. Pulse treatments of SNP @ 0, 5, 10 and 15 mg l(-1) and STS @ 0, 0.1, 0.2 and 0.3 mM were administered to carnation flowers for 24 hr. The longest vase life (16.1 days) was observed in flowers treated with 15 mg l(-1) of SNP + 0.2 mM STS. The least chlorophyll was destroyed in flowers treated with 15 mg I(-1) of SNP + 0.3 mM STS. Our findings showed that the 15 mg l(-1) SNP treatment inhibited bacterial growth in the preservative solution. The control flowers bloomed faster than the treated flowers. The maximum peroxidase activity and the minimum lipid peroxidation were obtained in cut flowers that were treated with 15 mg l(-1) of SNP and 0.3 mM STS. Overall, results of the study revealed that SNP and STS treatment extended the longevity of cut carnation 'Tempo' flowers by reducing oxidative stress, improving anti-oxidant system, reducing bacterial populations and delaying flowering.

  16. KinSNP software for homozygosity mapping of disease genes using SNP microarrays

    PubMed Central

    2010-01-01

    Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from http://bioinfo.bgu.ac.il/bsu/software/kinSNP. PMID:20846928

  17. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene.

    PubMed

    Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M

    2016-07-01

    It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  18. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal.

  19. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal. PMID:27583971

  20. Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers.

    PubMed

    Weigel, K A; de los Campos, G; González-Recio, O; Naya, H; Wu, X L; Long, N; Rosa, G J M; Gianola, D

    2009-10-01

    The objective of the present study was to assess the predictive ability of subsets of single nucleotide polymorphism (SNP) markers for development of low-cost, low-density genotyping assays in dairy cattle. Dense SNP genotypes of 4,703 Holstein bulls were provided by the USDA Agricultural Research Service. A subset of 3,305 bulls born from 1952 to 1998 was used to fit various models (training set), and a subset of 1,398 bulls born from 1999 to 2002 was used to evaluate their predictive ability (testing set). After editing, data included genotypes for 32,518 SNP and August 2003 and April 2008 predicted transmitting abilities (PTA) for lifetime net merit (LNM$), the latter resulting from progeny testing. The Bayesian least absolute shrinkage and selection operator method was used to regress August 2003 PTA on marker covariates in the training set to arrive at estimates of marker effects and direct genomic PTA. The coefficient of determination (R(2)) from regressing the April 2008 progeny test PTA of bulls in the testing set on their August 2003 direct genomic PTA was 0.375. Subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP were created by choosing equally spaced and highly ranked SNP, with the latter based on the absolute value of their estimated effects obtained from the training set. The SNP effects were re-estimated from the training set for each subset of SNP, and the 2008 progeny test PTA of bulls in the testing set were regressed on corresponding direct genomic PTA. The R(2) values for subsets of 300, 500, 750, 1,000, 1,250, 1,500, and 2,000 SNP with largest effects (evenly spaced SNP) were 0.184 (0.064), 0.236 (0.111), 0.269 (0.190), 0.289 (0.179), 0.307 (0.228), 0.313 (0.268), and 0.322 (0.291), respectively. These results indicate that a low-density assay comprising selected SNP could be a cost-effective alternative for selection decisions and that significant gains in predictive ability may be achieved by increasing the number of SNP allocated to such an assay from 300 or fewer to 1,000 or more.

  1. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  2. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  3. Evaluation of Parkinson Disease Risk Variants as Expression-QTLs

    PubMed Central

    Latourelle, Jeanne C.; Dumitriu, Alexandra; Hadzi, Tiffany C.; Beach, Thomas G.; Myers, Richard H.

    2012-01-01

    The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci SNCA, MAPT, GAK/DGKQ, and HLA and identified a novel risk locus at RIT2. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26) and controls (N = 24) by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for cis-acting effects on all probes within 250 kb of each locus. Trans-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of cis-acting SNP effects, several SNPs in the MAPT region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene LOC644246 and the duplicated genes LRRC37A and LRRC37A2, and a third uncorrelated probe targeting the gene DCAKD. Significant cis-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine trans effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8×10−8) including SNPs from the SNCA, MAPT and RIT2 regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations. PMID:23071545

  4. Polymorphisms in IL12A and cockroach allergy in children with asthma.

    PubMed

    Pistiner, Michael; Hunninghake, Gary M; Soto-Quiros, Manuel E; Avila, Lydiana; Murphy, Amy; Lasky-Su, Jessica; Schuemann, Brooke; Klanderman, Barbara J; Raby, Benjamin A; Celedón, Juan C

    2008-07-31

    IL12A has been implicated in T-cell development and may thus influence the development of atopy and allergic diseases. We tested for association between four linkage disequilibrium (LD)-tagging SNPs (rs2243123, rs2243151, rs668998, and rs17826053) in IL12A and asthma and allergy-related (serum total and allergen-specific IgE, and skin test reactivity [STR] to two common allergens) phenotypes in two samples: 417 Costa Rican children with asthma and their parents, and 470 families of 503 white children in the Childhood Asthma Management Program (CAMP). The analysis was conducted using the family-based association test (FBAT) statistic implemented in the PBAT program. Among Costa Rican children with asthma, homozygosity for the minor allele of each of two SNPs in IL12A (rs2243123 and rs2243151) was associated with increased risks of STR to American cockroach (P

  5. Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer.

    PubMed

    Coates, James; Jeyaseelan, Asha K; Ybarra, Norma; David, Marc; Faria, Sergio; Souhami, Luis; Cury, Fabio; Duclos, Marie; El Naqa, Issam

    2015-04-01

    We explore analytical and data-driven approaches to investigate the integration of genetic variations (single nucleotide polymorphisms [SNPs] and copy number variations [CNVs]) with dosimetric and clinical variables in modeling radiation-induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients. Sixty-two patients who underwent curative hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 and 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Fifty-four patients had full dosimetric profiles. Two parallel modeling approaches were compared to assess the risk of severe RB (Grade⩾3) and ED (Grade⩾1); Maximum likelihood estimated generalized Lyman-Kutcher-Burman (LKB) and logistic regression. Statistical resampling based on cross-validation was used to evaluate model predictive power and generalizability to unseen data. Integration of biological variables xrcc1 CNV and SNP improved the fit of the RB and ED analytical and data-driven models. Cross-validation of the generalized LKB models yielded increases in classification performance of 27.4% for RB and 14.6% for ED when xrcc1 CNV and SNP were included, respectively. Biological variables added to logistic regression modeling improved classification performance over standard dosimetric models by 33.5% for RB and 21.2% for ED models. As a proof-of-concept, we demonstrated that the combination of genetic and dosimetric variables can provide significant improvement in NTCP prediction using analytical and data-driven approaches. The improvement in prediction performance was more pronounced in the data driven approaches. Moreover, we have shown that CNVs, in addition to SNPs, may be useful structural genetic variants in predicting radiation toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Association Analysis of FOXO3 Longevity Variants With Blood Pressure and Essential Hypertension

    PubMed Central

    Chen, Randi; Donlon, Timothy A.; Evans, Daniel S.; Tranah, Gregory J.; Parimi, Neeta; Ehret, Georg B.; Newton-Cheh, Christopher; Seto, Todd; Willcox, D. Craig; Masaki, Kamal H.; Kamide, Kei; Ryuno, Hirochika; Oguro, Ryosuke; Nakama, Chikako; Kabayama, Mai; Yamamoto, Koichi; Sugimoto, Ken; Ikebe, Kazunori; Masui, Yukie; Arai, Yasumichi; Ishizaki, Tatsuro; Gondo, Yasuyuki; Rakugi, Hiromi; Willcox, Bradley J.

    2016-01-01

    BACKGROUND The minor alleles of 3 FOXO3 single nucleotide polymorphisms (SNPs)—rs2802292, rs2253310, and rs2802288—are associated with human longevity. The aim of the present study was to test these SNPs for association with blood pressure (BP) and essential hypertension (EHT). METHODS In a primary study involving Americans of Japanese ancestry drawn from the Family Blood Pressure Program II we genotyped 411 female and 432 male subjects aged 40–79 years and tested for statistical association by contingency table analysis and generalized linear models that included logistic regression adjusting for sibling correlation in the data set. Replication of rs2802292 with EHT was attempted in Japanese SONIC study subjects and of each SNP in a meta-analysis of genome-wide association studies of BP in individuals of European ancestry. RESULTS In Americans of Japanese ancestry, women homozygous for the longevity-associated (minor) allele of each FOXO3 SNP had 6mm Hg lower systolic BP and 3mm Hg lower diastolic BP compared with major allele homozygotes (Bonferroni corrected P < 0.05 and >0.05, respectively). Frequencies of minor allele homozygotes were 3.3–3.9% in women with EHT compared with 9.5–9.6% in normotensive women (P = 0.03–0.04; haplotype analysis P = 0.0002). No association with BP or EHT was evident in males. An association with EHT was seen for the minor allele of rs2802292 in the Japanese SONIC cohort (P = 0.03), while in European subjects the minor allele of each SNP was associated with higher systolic and diastolic BP. CONCLUSION Longevity-associated FOXO3 variants may be associated with lower BP and EHT in Japanese women. PMID:26476085

  7. Association Analysis of FOXO3 Longevity Variants With Blood Pressure and Essential Hypertension.

    PubMed

    Morris, Brian J; Chen, Randi; Donlon, Timothy A; Evans, Daniel S; Tranah, Gregory J; Parimi, Neeta; Ehret, Georg B; Newton-Cheh, Christopher; Seto, Todd; Willcox, D Craig; Masaki, Kamal H; Kamide, Kei; Ryuno, Hirochika; Oguro, Ryosuke; Nakama, Chikako; Kabayama, Mai; Yamamoto, Koichi; Sugimoto, Ken; Ikebe, Kazunori; Masui, Yukie; Arai, Yasumichi; Ishizaki, Tatsuro; Gondo, Yasuyuki; Rakugi, Hiromi; Willcox, Bradley J

    2016-11-01

    The minor alleles of 3 FOXO3 single nucleotide polymorphisms (SNPs)- rs2802292 , rs2253310 , and rs2802288 -are associated with human longevity. The aim of the present study was to test these SNPs for association with blood pressure (BP) and essential hypertension (EHT). In a primary study involving Americans of Japanese ancestry drawn from the Family Blood Pressure Program II we genotyped 411 female and 432 male subjects aged 40-79 years and tested for statistical association by contingency table analysis and generalized linear models that included logistic regression adjusting for sibling correlation in the data set. Replication of rs2802292 with EHT was attempted in Japanese SONIC study subjects and of each SNP in a meta-analysis of genome-wide association studies of BP in individuals of European ancestry. In Americans of Japanese ancestry, women homozygous for the longevity-associated (minor) allele of each FOXO3 SNP had 6mm Hg lower systolic BP and 3mm Hg lower diastolic BP compared with major allele homozygotes (Bonferroni corrected P < 0.05 and >0.05, respectively). Frequencies of minor allele homozygotes were 3.3-3.9% in women with EHT compared with 9.5-9.6% in normotensive women ( P = 0.03-0.04; haplotype analysis P = 0.0002). No association with BP or EHT was evident in males. An association with EHT was seen for the minor allele of rs2802292 in the Japanese SONIC cohort ( P = 0.03), while in European subjects the minor allele of each SNP was associated with higher systolic and diastolic BP. Longevity-associated FOXO3 variants may be associated with lower BP and EHT in Japanese women.

  8. Common genetic variants in the 9p21 region and their associations with multiple tumours.

    PubMed

    Gu, F; Pfeiffer, R M; Bhattacharjee, S; Han, S S; Taylor, P R; Berndt, S; Yang, H; Sigurdson, A J; Toro, J; Mirabello, L; Greene, M H; Freedman, N D; Abnet, C C; Dawsey, S M; Hu, N; Qiao, Y-L; Ding, T; Brenner, A V; Garcia-Closas, M; Hayes, R; Brinton, L A; Lissowska, J; Wentzensen, N; Kratz, C; Moore, L E; Ziegler, R G; Chow, W-H; Savage, S A; Burdette, L; Yeager, M; Chanock, S J; Chatterjee, N; Tucker, M A; Goldstein, A M; Yang, X R

    2013-04-02

    The chromosome 9p21.3 region has been implicated in the pathogenesis of multiple cancers. We systematically examined up to 203 tagging SNPs of 22 genes on 9p21.3 (19.9-32.8 Mb) in eight case-control studies: thyroid cancer, endometrial cancer (EC), renal cell carcinoma, colorectal cancer (CRC), colorectal adenoma (CA), oesophageal squamous cell carcinoma (ESCC), gastric cardia adenocarcinoma and osteosarcoma (OS). We used logistic regression to perform single SNP analyses for each study separately, adjusting for study-specific covariates. We combined SNP results across studies by fixed-effect meta-analyses and a newly developed subset-based statistical approach (ASSET). Gene-based P-values were obtained by the minP method using the Adaptive Rank Truncated Product program. We adjusted for multiple comparisons by Bonferroni correction. Rs3731239 in cyclin-dependent kinase inhibitors 2A (CDKN2A) was significantly associated with ESCC (P=7 × 10(-6)). The CDKN2A-ESCC association was further supported by gene-based analyses (Pgene=0.0001). In the meta-analyses by ASSET, four SNPs (rs3731239 in CDKN2A, rs615552 and rs573687 in CDKN2B and rs564398 in CDKN2BAS) showed significant associations with ESCC and EC (P<2.46 × 10(-4)). One SNP in MTAP (methylthioadenosine phosphorylase) (rs7023329) that was previously associated with melanoma and nevi in multiple genome-wide association studies was associated with CRC, CA and OS by ASSET (P=0.007). Our data indicate that genetic variants in CDKN2A, and possibly nearby genes, may be associated with ESCC and several other tumours, further highlighting the importance of 9p21.3 genetic variants in carcinogenesis.

  9. Impact of a cis-associated gene expression SNP in 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance

    PubMed Central

    Li, Ming; Luo, Xiong-jian; Landén, Mikael; Bergen, Sarah E.; Hultman, Christina M.; Li, Xiao; Zhang, Wen; Yao, Yong-Gang; Zhang, Chen; Liu, Jiewei; Mattheisen, Manuel; Cichon, Sven; Mühleisen, Thomas W.; Degenhardt, Franziska A.; Nöthen, Markus M.; Schulze, Thomas G.; Grigoroiu-Serbanescu, Maria; Li, Hao; Fuller, Chris K.; Chen, Chunhui; Dong, Qi; Chen, Chuansheng; Jamain, Stéphane; Leboyer, Marion; Bellivier, Frank; Etain, Bruno; Kahn, Jean-Pierre; Henry, Chantal; Preisig, Martin; Kutalik, Zoltán; Castelao, Enrique; Wright, Adam; Mitchell, Philip B.; Fullerton, Janice M.; Schofield, Peter R.; Montgomery, Grant W.; Medland, Sarah E.; Gordon, Scott D.; Martin, Nicholas G.; Rietschel, Marcella; Liu, Chunyu; Kleinman, Joel E.; Hyde, Thomas M.; Weinberger, Daniel R.; Su, Bing

    2016-01-01

    Summary Bipolar disorder (BPD) is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for BPD among the expression quantitative trait loci (eQTL) in the brain. Aims We sought to assess the impact of eQTL variants on BPD risk by combining data from both BPD genome-wide association study (GWAS) and brain eQTL. Method To detect single-nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with BPD, we jointly analyzed data from a BPD GWAS (7,481 cases and 9,250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (N=5,775) and cognitive performance (N=342) among healthy subjects. Results Integrative analysis revealed a significant association between a brain eQTL rs6088662 in 20q11.22 and BPD (Log Bayes Factor=5.48; BPD p-val=5.85×10−5). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and BPD susceptibility (p-val=3.54×10−8). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy subjects. Conclusions Our findings suggest that 20q11.22 is likely a risk region for BPD, highlighting the informativeness of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex diseases such as BPD. PMID:26338991

  10. Association of SNP and STR polymorphisms of insulin-like growth factor 2 receptor (IGF2R) gene with milk traits in Holstein-Friesian cows.

    PubMed

    Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech

    2018-05-01

    The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.

  11. Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP-brain network associations.

    PubMed

    Kim, Junghi; Pan, Wei

    2017-04-01

    There has been increasing interest in developing more powerful and flexible statistical tests to detect genetic associations with multiple traits, as arising from neuroimaging genetic studies. Most of existing methods treat a single trait or multiple traits as response while treating an SNP as a predictor coded under an additive inheritance mode. In this paper, we follow an earlier approach in treating an SNP as an ordinal response while treating traits as predictors in a proportional odds model (POM). In this way, it is not only easier to handle mixed types of traits, e.g., some quantitative and some binary, but it is also potentially more robust to the commonly adopted additive inheritance mode. More importantly, we develop an adaptive test in a POM so that it can maintain high power across many possible situations. Compared to the existing methods treating multiple traits as responses, e.g., in a generalized estimating equation (GEE) approach, the proposed method can be applied to a high dimensional setting where the number of phenotypes (p) can be larger than the sample size (n), in addition to a usual small P setting. The promising performance of the proposed method was demonstrated with applications to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, in which either structural MRI driven phenotypes or resting-state functional MRI (rs-fMRI) derived brain functional connectivity measures were used as phenotypes. The applications led to the identification of several top SNPs of biological interest. Furthermore, simulation studies showed competitive performance of the new method, especially for p>n. © 2017 WILEY PERIODICALS, INC.

  12. Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children.

    PubMed

    Butte, Nancy F; Voruganti, V Saroja; Cole, Shelley A; Haack, Karin; Comuzzie, Anthony G; Muzny, Donna M; Wheeler, David A; Chang, Kyle; Hawes, Alicia; Gibbs, Richard A

    2011-09-22

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3'-UTR, and 2 in the 5'-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001-0.009) were associated with obesity-related traits (P = 0.01-0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77-0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children.

  13. Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance.

    PubMed

    Li, Ming; Luo, Xiong-jian; Landén, Mikael; Bergen, Sarah E; Hultman, Christina M; Li, Xiao; Zhang, Wen; Yao, Yong-Gang; Zhang, Chen; Liu, Jiewei; Mattheisen, Manuel; Cichon, Sven; Mühleisen, Thomas W; Degenhardt, Franziska A; Nöthen, Markus M; Schulze, Thomas G; Grigoroiu-Serbanescu, Maria; Li, Hao; Fuller, Chris K; Chen, Chunhui; Dong, Qi; Chen, Chuansheng; Jamain, Stéphane; Leboyer, Marion; Bellivier, Frank; Etain, Bruno; Kahn, Jean-Pierre; Henry, Chantal; Preisig, Martin; Kutalik, Zoltán; Castelao, Enrique; Wright, Adam; Mitchell, Philip B; Fullerton, Janice M; Schofield, Peter R; Montgomery, Grant W; Medland, Sarah E; Gordon, Scott D; Martin, Nicholas G; Rietschel, Marcella; Liu, Chunyu; Kleinman, Joel E; Hyde, Thomas M; Weinberger, Daniel R; Su, Bing

    2016-02-01

    Bipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain. We sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL. To detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals. Integrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85 × 10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54 × 10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals. Our findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder. © The Royal College of Psychiatrists 2016.

  14. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan.

    PubMed

    Bilal, Erhan; Rabadan, Raul; Alexe, Gabriela; Fuku, Noriyuki; Ueno, Hitomi; Nishigaki, Yutaka; Fujita, Yasunori; Ito, Masafumi; Arai, Yasumichi; Hirose, Nobuyoshi; Ruckenstein, Andrei; Bhanot, Gyan; Tanaka, Masashi

    2008-06-11

    We report results from the analysis of complete mitochondrial DNA (mtDNA) sequences from 112 Japanese semi-supercentenarians (aged above 105 years) combined with previously published data from 96 patients in each of three non-disease phenotypes: centenarians (99-105 years of age), healthy non-obese males, obese young males and four disease phenotypes, diabetics with and without angiopathy, and Alzheimer's and Parkinson's disease patients. We analyze the correlation between mitochondrial polymorphisms and the longevity phenotype using two different methods. We first use an exhaustive algorithm to identify all maximal patterns of polymorphisms shared by at least five individuals and define a significance score for enrichment of the patterns in each phenotype relative to healthy normals. Our study confirms the correlations observed in a previous study showing enrichment of a hierarchy of haplogroups in the D clade for longevity. For the extreme longevity phenotype we see a single statistically significant signal: a progressive enrichment of certain "beneficial" patterns in centenarians and semi-supercentenarians in the D4a haplogroup. We then use Principal Component Spectral Analysis of the SNP-SNP Covariance Matrix to compare the measured eigenvalues to a Null distribution of eigenvalues on Gaussian datasets to determine whether the correlations in the data (due to longevity) arises from some property of the mutations themselves or whether they are due to population structure. The conclusion is that the correlations are entirely due to population structure (phylogenetic tree). We find no signal for a functional mtDNA SNP correlated with longevity. The fact that the correlations are from the population structure suggests that hitch-hiking on autosomal events is a possible explanation for the observed correlations.

  15. Mitochondrial DNA Haplogroup D4a Is a Marker for Extreme Longevity in Japan

    PubMed Central

    Bilal, Erhan; Rabadan, Raul; Alexe, Gabriela; Fuku, Noriyuki; Ueno, Hitomi; Nishigaki, Yutaka; Fujita, Yasunori; Ito, Masafumi; Arai, Yasumichi; Hirose, Nobuyoshi; Ruckenstein, Andrei; Bhanot, Gyan; Tanaka, Masashi

    2008-01-01

    We report results from the analysis of complete mitochondrial DNA (mtDNA) sequences from 112 Japanese semi-supercentenarians (aged above 105 years) combined with previously published data from 96 patients in each of three non-disease phenotypes: centenarians (99–105 years of age), healthy non-obese males, obese young males and four disease phenotypes, diabetics with and without angiopathy, and Alzheimer's and Parkinson's disease patients. We analyze the correlation between mitochondrial polymorphisms and the longevity phenotype using two different methods. We first use an exhaustive algorithm to identify all maximal patterns of polymorphisms shared by at least five individuals and define a significance score for enrichment of the patterns in each phenotype relative to healthy normals. Our study confirms the correlations observed in a previous study showing enrichment of a hierarchy of haplogroups in the D clade for longevity. For the extreme longevity phenotype we see a single statistically significant signal: a progressive enrichment of certain “beneficial” patterns in centenarians and semi-supercentenarians in the D4a haplogroup. We then use Principal Component Spectral Analysis of the SNP-SNP Covariance Matrix to compare the measured eigenvalues to a Null distribution of eigenvalues on Gaussian datasets to determine whether the correlations in the data (due to longevity) arises from some property of the mutations themselves or whether they are due to population structure. The conclusion is that the correlations are entirely due to population structure (phylogenetic tree). We find no signal for a functional mtDNA SNP correlated with longevity. The fact that the correlations are from the population structure suggests that hitch-hiking on autosomal events is a possible explanation for the observed correlations. PMID:18545700

  16. Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken.

    PubMed

    Ye, M H; Chen, J L; Zhao, G P; Zheng, M Q; Wen, J

    2010-01-01

    This study has assessed the association of single nucleotide polymorphisms (SNP) identified in the adipocyte fatty acid binding protein (A-FABP) and heart-type fatty acid binding protein (H-FABP) genes with the content of intramuscular fat (IMF) in a population of male Beijing-You chickens. A previously described SNP in the chicken A-FABP gene had a significant (P < 0.05) effect on IMF content. Chickens inheriting the homozygous BB genotype at A-FABP had a significantly higher content of IMF in thigh muscles and breast muscles than did those inheriting the AA and AB genotypes. A novel SNP, identified here, in the H-FABP gene was also significantly (P < 0.05) associated with IMF content in thigh and breast muscle. Chickens inheriting the genotypes of DD and CD had much higher content of IMF than those inheriting the homozygous genotype of CC. Markers at the A-FABP and H-FABP genes were associated with IMF content in the studied population. Chickens inheriting the BB genotype at A-FABP, along with the CD genotype at H-FABP, produced muscles with a much higher content of IMF when compared with all other genotypes. A weak interaction between A-FABP and H-FABP was detected (P < 0.09) for IMF content in the tested population. The statistical significance of interaction is tentative because of the limited number of observations for some genotypic combinations. Markers identified within the A-FABP and H-FABP genes are suitable for future use in identifying chickens with the genetic potential to produce more desirable muscle with higher IMF content, at least in the population of Beijing-You male chickens.

  17. Probabilistic Modeling and Visualization of the Flexibility in Morphable Models

    NASA Astrophysics Data System (ADS)

    Lüthi, M.; Albrecht, T.; Vetter, T.

    Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.

  18. A computational visual saliency model based on statistics and machine learning.

    PubMed

    Lin, Ru-Je; Lin, Wei-Song

    2014-08-01

    Identifying the type of stimuli that attracts human visual attention has been an appealing topic for scientists for many years. In particular, marking the salient regions in images is useful for both psychologists and many computer vision applications. In this paper, we propose a computational approach for producing saliency maps using statistics and machine learning methods. Based on four assumptions, three properties (Feature-Prior, Position-Prior, and Feature-Distribution) can be derived and combined by a simple intersection operation to obtain a saliency map. These properties are implemented by a similarity computation, support vector regression (SVR) technique, statistical analysis of training samples, and information theory using low-level features. This technique is able to learn the preferences of human visual behavior while simultaneously considering feature uniqueness. Experimental results show that our approach performs better in predicting human visual attention regions than 12 other models in two test databases. © 2014 ARVO.

  19. Single-case research design in pediatric psychology: considerations regarding data analysis.

    PubMed

    Cohen, Lindsey L; Feinstein, Amanda; Masuda, Akihiko; Vowles, Kevin E

    2014-03-01

    Single-case research allows for an examination of behavior and can demonstrate the functional relation between intervention and outcome in pediatric psychology. This review highlights key assumptions, methodological and design considerations, and options for data analysis. Single-case methodology and guidelines are reviewed with an in-depth focus on visual and statistical analyses. Guidelines allow for the careful evaluation of design quality and visual analysis. A number of statistical techniques have been introduced to supplement visual analysis, but to date, there is no consensus on their recommended use in single-case research design. Single-case methodology is invaluable for advancing pediatric psychology science and practice, and guidelines have been introduced to enhance the consistency, validity, and reliability of these studies. Experts generally agree that visual inspection is the optimal method of analysis in single-case design; however, statistical approaches are becoming increasingly evaluated and used to augment data interpretation.

  20. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  1. Learning of Grammar-Like Visual Sequences by Adults with and without Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Aguilar, Jessica M.; Plante, Elena

    2014-01-01

    Purpose: Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. Method: In Study 1,…

  2. Integrating Statistical Visualization Research into the Political Science Classroom

    ERIC Educational Resources Information Center

    Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.

    2011-01-01

    The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…

  3. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample.

    PubMed

    Zhao, Lan-Juan; Guo, Yan-Fang; Xiong, Dong-Hai; Xiao, Peng; Recker, Robert R; Deng, Hong-Wen

    2006-11-01

    In light of findings that osteoporosis and obesity may share some common genetic determination and previous reports that RANK (receptor activator of nuclear factor-kappaB) is expressed in skeletal muscles which are important for energy metabolism, we hypothesize that RANK, a gene essential for osteoclastogenesis, is also important for obesity. In order to test the hypothesis with solid data we first performed a linkage analysis around the RANK gene in 4,102 Caucasian subjects from 434 pedigrees, then we genotyped 19 SNPs in or around the RANK gene. A family-based association test (FBAT) was performed with both a quantitative measure of obesity [fat mass, lean mass, body mass index (BMI), and percentage fat mass (PFM)] and a dichotomously defined obesity phenotype-OB (OB if BMI > or = 30 kg/m(2)). In the linkage analysis, an empirical P = 0.004 was achieved at the location of the RANK gene for BMI. Family-based association analysis revealed significant associations of eight SNPs with at least one obesity-related phenotype (P < 0.05). Evidence of association was obtained at SNP10 (P = 0.002) and SNP16 (P = 0.001) with OB; SNP1 with fat mass (P = 0.003); SNP1 (P = 0.003) and SNP7 (P = 0.003) with lean mass; SNP1 (P = 0.002) and SNP7 (P = 0.002) with BMI; SNP1 (P = 0.003), SNP4 (P = 0.007), and SNP7 (P = 0.002) with PFM. In order to deal with the complex multiple testing issues, we performed FBAT multi-marker test (FBAT-MM) to evaluate the association between all the 18 SNPs and each obesity phenotype. The P value is 0.126 for OB, 0.033 for fat mass, 0.021 for lean mass, 0.016 for BMI, and 0.006 for PFM. The haplotype data analyses provide further association evidence. In conclusion, for the first time, our results suggest that RANK is a novel candidate for determination of obesity.

  4. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    PubMed Central

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus. PMID:21492434

  5. A proline-to-histidine mutation in POU1F1 is associated with production traits in dairy cattle.

    PubMed

    Huang, W; Maltecca, C; Khatib, H

    2008-10-01

    POU class 1 homeobox 1 (POU1F1) is a member of the tissue-specific POU-containing transcription factor family. The expression of POU1F1 in mammalian pituitary gland controls the transcription of the genes encoding growth hormone, prolactin (PRL) and the subunits of thyroid-stimulating hormone. In addition, some genes in the JAK/STAT signalling pathway downstream of POU1F1 have been shown to be associated with different production traits in dairy cattle. To investigate whether the POU1F1 gene is associated with economically important traits in dairy cattle, a pooled DNA sequencing approach was used to identify single nucleotide polymorphisms (SNPs) in the gene. An SNP in exon 3 of POU1F1 that changes a proline to a histidine was identified. A total of 2141 individuals from two North American Holstein cattle resource populations were genotyped for this SNP using a modified PCR-RFLP method. Statistical analyses revealed significant association of POU1F1 variants with milk yield and productive life, which makes POU1F1 a possible candidate for marker-assisted selection in dairy cattle breeding programmes.

  6. Pervasive sharing of genetic effects in autoimmune disease.

    PubMed

    Cotsapas, Chris; Voight, Benjamin F; Rossin, Elizabeth; Lage, Kasper; Neale, Benjamin M; Wallace, Chris; Abecasis, Gonçalo R; Barrett, Jeffrey C; Behrens, Timothy; Cho, Judy; De Jager, Philip L; Elder, James T; Graham, Robert R; Gregersen, Peter; Klareskog, Lars; Siminovitch, Katherine A; van Heel, David A; Wijmenga, Cisca; Worthington, Jane; Todd, John A; Hafler, David A; Rich, Stephen S; Daly, Mark J

    2011-08-01

    Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some genetic risk factors may be shared across diseases-as is the case with alleles in the Major Histocompatibility Locus. In this work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohn's disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are associated to multiple-but not all-immune-mediated diseases (SNP-wise P(CPMA)<0.01). We also show that distinct groups of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological hypotheses about the underlying mechanism of pathogenesis.

  7. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity

    PubMed Central

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185

  8. Polymorphisms in the bovine CIDEC gene are associated with body measurement traits and meat quality traits in Qinchuan cattle.

    PubMed

    Mei, C G; Gui, L S; Fu, C Z; Wang, H C; Wang, J L; Cheng, G; Zan, L S

    2015-08-07

    Previous studies have shown that the cell death-inducing DFF45-like effector-C (CIDEC) gene is involved in lipid storage and energy metabolism, suggesting that it is a potential candidate gene that affects body measurement traits (BMTs) and meat quality traits (MQTs). The aim of this study was to identify polymorphisms of the bovine CIDEC gene and analyze their possible associations with BMTs and MQTs in 531 randomly selected Qinchuan cattle aged between 18 and 24 months. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism were employed to detect CIDEC single nucleotide polymorphisms (SNPs). We found five SNPs: two in exon 5 (SNP1, g.9815G>A and SNP2, g.9924C>T) and three in the 3'-untranslated region (SNP3, g.13281C>T; SNP4, g.13297A>G; and SNP5, g.13307G>A). SNP1 was a missense mutation that resulted in an arginine to glutamine amino acid change, and exhibited two genotypes (GG and AG). SNP2 was a synonymous mutation that exhibited three genotypes (CC, CT, and TT). SNP3, 4, and 5 were completely linked, and only exhibited two genotypes (CC-AA-GG and CT-AG-GA). We found significant associations between these polymorphisms and BMTs and MQTs (P < 0.05); GG, CT, and CT-AG-GA appeared to be the most beneficial genotypes. Therefore, CIDEC may affect BMTs and MQTs in Qinchuan cattle, and could be used in marker-assisted selection.

  9. Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

    PubMed Central

    Park, Min Young; Jeong, Yeon Jin; Kang, Gi Chang; Kim, Mi-Hwa; Kim, Sun Hun; Chung, Hyun-Ju

    2014-01-01

    Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway. PMID:24634593

  10. Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.

    PubMed

    Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-10-17

    The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Diffusion-Based Density-Equalizing Maps: an Interdisciplinary Approach to Visualizing Homicide Rates and Other Georeferenced Statistical Data

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián

    2012-12-01

    In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.

  12. Learning of grammar-like visual sequences by adults with and without language-learning disabilities.

    PubMed

    Aguilar, Jessica M; Plante, Elena

    2014-08-01

    Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. In Study 1, adults with normal language (NL) or language-learning disability (LLD) were familiarized with the visual artificial grammar and then tested using items that conformed or deviated from the grammar. In Study 2, a 2nd sample of adults with NL and LLD were presented auditory word pairs with weak semantic associations (e.g., groom + clean) along with the visual learning task. Participants were instructed to attend to visual sequences and to ignore the auditory stimuli. Incidental encoding of these words would indicate reduced attention to the primary task. In Studies 1 and 2, both groups demonstrated learning and generalization of the artificial grammar. In Study 2, neither the NL nor the LLD group appeared to encode the words presented during the learning phase. The results argue against a general deficit in statistical learning for individuals with LLD and demonstrate that both NL and LLD learners can ignore extraneous auditory stimuli during visual learning.

  13. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    PubMed

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.

  14. Selection and Management of DNA Markers for Use in Genomic Evaluation

    USDA-ARS?s Scientific Manuscript database

    A database was constructed to store genotypes for 50,972 single-nucleotide polymorphisms (SNP) from the Illumina BovineSNP50 BeadChip for over 30,000 animals. The database allows storage of multiple samples per animal and stores all SNP genotypes for a sample in a single row. An indicator specifies ...

  15. A Coordinated Approach to Peach SNP Discovery in RosBREED

    USDA-ARS?s Scientific Manuscript database

    In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...

  16. Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.

    PubMed

    Aleryani, S; Milo, E; Kostka, P

    1999-10-18

    Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.

  17. ENGINES: exploring single nucleotide variation in entire human genomes.

    PubMed

    Amigo, Jorge; Salas, Antonio; Phillips, Christopher

    2011-04-19

    Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to the web interface is granted from http://spsmart.cesga.es/engines.php. © 2011 Amigo et al; licensee BioMed Central Ltd.

  18. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  19. Toll-like receptor 3 polymorphism rs3775291 is not associated with choroidal neovascularization or polypoidal choroidal vasculopathy in Chinese subjects.

    PubMed

    Sng, Chelvin C A; Cackett, Peter D; Yeo, Ian Y; Thalamuthu, Anbupalam; Venkatraman, Anandalakshmi; Venkataraman, Divya; Koh, Adrian H; Tai, E-Shyong; Wong, Tien Y; Aung, Tin; Vithana, Eranga N

    2011-01-01

    Age-related macular degeneration (AMD) is a leading cause of visual impairment. A single-nucleotide polymorphism (SNP; rs3775291) in the Toll-like receptor 3 (TLR3) gene has recently been implicated in the pathogenesis of AMD in Caucasian populations. The aim of this study was to examine this association in Chinese persons with choroidal neovascularization (CNV) secondary to AMD and polypoidal choroidal vasculopathy (PCV). This was an observational cross-sectional study in Singapore. Study subjects were of Chinese ethnicity and included patients with exudative maculopathy and normal control subjects. The diagnoses of CNV and PCV were made based on fundus examination, fluorescein angiography and indocyanine green angiography findings. Genomic DNA was extracted, and genotypes were determined by bidirectional DNA sequencing. We compared the allele and genotype frequencies between subjects with CNV and PCV with controls using the software PLINK. A total of 246 subjects with exudative maculopathy (consisting of 126 with CNV and 120 with PCV) and 274 normal control subjects were recruited. The distribution of rs3775291 SNP genotypes for CNV and PCV was not significantly different from that for normal controls. This study indicates that the TLR3 rs3775291 gene polymorphism is not associated with CNV and PCV in Singaporean Chinese patients. Copyright © 2010 S. Karger AG, Basel.

  20. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    PubMed Central

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  1. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform.

    PubMed

    Trembizki, Ella; Smith, Helen; Lahra, Monica M; Chen, Marcus; Donovan, Basil; Fairley, Christopher K; Guy, Rebecca; Kaldor, John; Regan, David; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M

    2014-06-01

    Neisseria gonorrhoeae antimicrobial resistance (AMR) is a global problem heightened by emerging resistance to ceftriaxone. Appropriate molecular typing methods are important for understanding the emergence and spread of N. gonorrhoeae AMR. We report on the development, validation and testing of a Sequenom MassARRAY iPLEX method for multilocus sequence typing (MLST)-style genotyping of N. gonorrhoeae isolates. An iPLEX MassARRAY method (iPLEX14SNP) was developed targeting 14 informative gonococcal single nucleotide polymorphisms (SNPs) previously shown to predict MLST types. The method was initially validated using 24 N. gonorrhoeae control isolates and was then applied to 397 test isolates collected throughout Queensland, Australia in the first half of 2012. The iPLEX14SNP method provided 100% accuracy for the control isolates, correctly identifying all 14 SNPs for all 24 isolates (336/336). For the 397 test isolates, the iPLEX14SNP assigned results for 5461 of the possible 5558 SNPs (SNP call rate 98.25%), with complete 14 SNP profiles obtained for 364 isolates. Based on the complete SNP profile data, there were 49 different sequence types identified in Queensland, with 11 of the 49 SNP profiles accounting for the majority (n = 280; 77%) of isolates. AMR was dominated by several geographically clustered sequence types. Using the iPLEX14SNP method, up to 384 isolates could be tested within 1 working day for less than Aus$10 per isolate. The iPLEX14SNP offers an accurate and high-throughput method for the MLST-style genotyping of N. gonorrhoeae and may prove particularly useful for large-scale studies investigating the emergence and spread of gonococcal AMR. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Comparison of SSR and SNP Markers in Estimation of Genetic Diversity and Population Structure of Indian Rice Varieties

    PubMed Central

    Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635

  3. Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy.

    PubMed

    Yang, Zhe; Zhou, Lin; Wu, Li-Ming; Xie, Hai-Yang; Zhang, Feng; Zheng, Shu-Sen

    2010-12-01

    Histone deacetylases (HDACs) have been reported to be poor prognostic indicators in patients with cancer. However, no data are available for the role of single nucleotide polymorphism (SNP) of class I HDAC in hepato-cellular carcinoma (HCC). Therefore, we investigated the association of class I HDAC isoforms genomic polymorphisms with risk of HCC and tumor recurrence following liver transplantation (LT). One hundred and ninety-six Chinese subjects consisting of 97 HCC patients and 99 controls were enrolled in this study. Nine polymorphisms of the HDAC1, HDAC2, and HDAC3 gene (rs2530223, rs1741981, rs2547547, rs13204445, rs6568819, rs10499080, rs11741808, rs2475631, rs11391) were examined using Applied Biosystems SNaP-Shot and TaqMan technology. We found no significant difference in genotype frequencies between the HCC cases and controls. In terms of tumor recurrence following LT, patients carrying the T allele of HDAC1 SNP rs1741981 showed a favorable outcome for recurrence free survival when compared with patients homozygous for CC. In addition, the same significant trend was observed in HDAC3 SNP rs2547547. Kaplan-Meier analysis showed that the combination of the T variant allele (CT+TT) of HDAC1 SNP rs1741981 and the homozygous TT variant allele of HDAC3 SNP rs2547547 was the most favorable prognostic factor. The risk for postoperative tumor recurrence was about 2.2-fold lower for patients with this genotype combination compared with carriers of the HDAC1 SNP rs1741981 CC and HDAC3 SNP rs2547547 CT genotype combination (hazard ratio: 2.235, p=0.003). Our data suggest that combined analysis of HDAC1 SNP rs1741981 and HDAC3 SNP rs2547547 may be a potential genetic marker for HCC recurrence in LT patients.

  4. In Vitro and In Vivo Toxicity Evaluation of Colloidal Silver Nanoparticles Used in Endodontic Treatments.

    PubMed

    Takamiya, Aline Satie; Monteiro, Douglas Roberto; Bernabé, Daniel Galera; Gorup, Luiz Fernando; Camargo, Emerson Rodrigues; Gomes-Filho, João Eduardo; Oliveira, Sandra Helena Penha; Barbosa, Debora Barros

    2016-06-01

    Silver nanoparticles have been used for different purposes in dentistry, including endodontic treatments. The aim of this study was to determine the cytotoxicity of different types of silver nanoparticles on mouse fibroblast cell line L929 and the reaction of subcutaneous connective tissue of Wistar rats to these nanoparticles. Silver nanoparticles of an average size of 5 nm were synthesized with ammonia (SNA) or polyvinylpyrrolidone (SNP). L929 was exposed to SNA and SNP (0.1-100 μg/mL), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assays were performed after 6, 24, and 48 hours. Culture medium was used as the control. Sixteen rats received, individually, 3 polyethylene tubes filled with a fibrin sponge embedded in 100 μL SNA or SNP (1 μg/mL). A fibrin sponge with no embedding was the control. Tissue reaction was performed qualitatively and quantitatively after 7, 15, 30, and 90 days of implantation in the dorsal connective tissue of Wistar rats. SNA and SNP were cytotoxic to L929 in higher concentrations, with SNA significantly more toxic than SNP. SNA and SNP did not induce significant interleukin-1β and interleukin-6 production. The release of stem cell factor by L929 increased 48 hours after the treatment with SNP at 5 μg/mL. Histologic examination showed that the inflammatory responses caused by SNA and SNP at 1 μg/mL were similar to the control in all experimental periods. It was concluded that SNA and SNP were not cytotoxic at 25 μg/mL or lower concentrations. However, for safe clinical use, further studies establishing others points of its toxicologic profile are recommended. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.

    PubMed

    Karim, Sajjad; NourEldin, Hend Fakhri; Abusamra, Heba; Salem, Nada; Alhathli, Elham; Dudley, Joel; Sanderford, Max; Scheinfeldt, Laura B; Chaudhary, Adeel G; Al-Qahtani, Mohammed H; Kumar, Sudhir

    2016-10-17

    Genome-wide association studies (GWAS) have become a mainstay of biological research concerned with discovering genetic variation linked to phenotypic traits and diseases. Both discrete and continuous traits can be analyzed in GWAS to discover associations between single nucleotide polymorphisms (SNPs) and traits of interest. Associations are typically determined by estimating the significance of the statistical relationship between genetic loci and the given trait. However, the prioritization of bona fide, reproducible genetic associations from GWAS results remains a central challenge in identifying genomic loci underlying common complex diseases. Evolutionary-aware meta-analysis of the growing GWAS literature is one way to address this challenge and to advance from association to causation in the discovery of genotype-phenotype relationships. We have created an evolutionary GWAS resource to enable in-depth query and exploration of published GWAS results. This resource uses the publically available GWAS results annotated in the GRASP2 database. The GRASP2 database includes results from 2082 studies, 177 broad phenotype categories, and ~8.87 million SNP-phenotype associations. For each SNP in e-GRASP, we present information from the GRASP2 database for convenience as well as evolutionary information (e.g., rate and timespan). Users can, therefore, identify not only SNPs with highly significant phenotype-association P-values, but also SNPs that are highly replicated and/or occur at evolutionarily conserved sites that are likely to be functionally important. Additionally, we provide an evolutionary-adjusted SNP association ranking (E-rank) that uses cross-species evolutionary conservation scores and population allele frequencies to transform P-values in an effort to enhance the discovery of SNPs with a greater probability of biologically meaningful disease associations. By adding an evolutionary dimension to the GWAS results available in the GRASP2 database, our e-GRASP resource will enable a more effective exploration of SNPs not only by the statistical significance of trait associations, but also by the number of studies in which associations have been replicated, and the evolutionary context of the associated mutations. Therefore, e-GRASP will be a valuable resource for aiding researchers in the identification of bona fide, reproducible genetic associations from GWAS results. This resource is freely available at http://www.mypeg.info/egrasp .

  6. Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis

    PubMed Central

    Alain, Karin; Karrow, Niel A; Thibault, Catherine; St-Pierre, Jessika; Lessard, Martin; Bissonnette, Nathalie

    2009-01-01

    Background Mastitis is the most important disease in dairy cows and it causes significant lost of profit to producers. Identification of the genes, and their variants, involved in innate immune responses is essential for the understanding of this inflammatory disease and to identify potential genetic markers for resistance to mastitis. The progeny of dairy cows would benefit from receiving favourable alleles that support greater resistance to infection, thus reducing antibiotic use. This study aims to identify a key gene in the innate immune response to mastitis, led us to evaluate its genetic association with somatic cell score (SCS), which is an indicator of clinical mastitis, and to evaluate its impact on other traits related to milk production. Results The osteopontin transcript (SPP1) was identified in the somatic cells from cows experimentally infected with Escherichia coli. By selecting bulls with extreme estimated breeding values (EBVs) for SCS, which is an indicator of mammary gland health, four DNA polymorphisms in the SPP1 genomic sequence were found. Statistical analysis revealed that the SNP SPP1c.-1301G>A has an impact on EBV for SCS (P < 0.001) Using an allele substitution model, SPP1c.-1251C>T, SPP1c.-430G>A, and SPP1c.*40A>C have an impact on SCS whereas SPP1c.-1301G>A has an effect on the EBVs for milk yield (second and third lactations), fat and protein percentages (all three lactations). Analysis revealed statistically significant differences between haplotype groups at a comparison-wise level with sire EBVS for SCS for the first (P = 0.012), second (P < 0.001), and third (P < 0.001) lactations. Conclusion This study reports the link between DNA polymorphisms of SPP1, the number of milk immune cells and, potentially, the susceptibility to mastitis. These SNPs were identified by in silico search to be located in transcription factor recognition sites which factors are presumably involved in the Th1 immune response and in the Th2 regulation pathway. Indeed, one SNP abolished the SP1 recognition site, whereas another SNP affected the transcription binding factor IKAROS. All together, these findings support the genetic potential of these variants in terms of selection for the improvement of mastitis resistance in dairy cows. PMID:19765294

  7. Screening of Two ADH4 Variations in a Swedish Cluster Headache Case–Control Material

    PubMed Central

    Fourier, Carmen; Ran, Caroline; Steinberg, Anna; Sjöstrand, Christina; Waldenlind, Elisabet

    2016-01-01

    Background Cluster headache (CH) is a severe neurovascular disorder and an increasing amount of evidence points to a genetic contribution to this disease. When CH was first described, it was observed that alcohol may precipitate an attack during the active phase of the disease. The alcohol dehydrogenase 4 (ADH4) gene encodes an enzyme which contributes to the metabolization of alcohol and is, therefore, an interesting candidate gene for CH. Two Italian groups have reported association of the single nucleotide polymorphism (SNP) rs1126671 located in the ADH4 gene with an increased risk of CH in Italy. In addition, one of the groups found an association between the ADH4 SNP rs1800759 and CH. Objective To perform a replication study on the ADH4 SNPs rs1126671 and rs1800759 in a large homogeneous Swedish case–control cohort in order to further investigate the possible contribution of ADH4 to CH. Methods A total of 390 unrelated patients diagnosed with CH and 389 controls representing a general Swedish population were recruited to the study. DNA samples from patients and controls were genotyped for the two ADH4 SNPs rs1126671 and rs1800759 using quantitative real‐time polymerase chain reaction. Statistical analyses of genotype, allele and haplotype frequencies for the two SNPs were performed and compared between patients and controls. Results For rs1126671, the minor allele frequency (A allele) was 32.8% (n = 254) in controls compared with 31.9% (n = 249) in CH patients. The minor allele frequency (A allele) of rs1800759 was 42.3% (n = 324) in controls and 41.9% (n = 327) in CH patients. Statistical analysis showed no significant differences in allele as well as in genotype or haplotype frequencies between the patient and control group for either SNP. This was also seen after stratifying the patient group for experiencing alcohol as a trigger factor. Conclusions The data did not support an association of the ADH4 SNPs rs1126671 and rs1800759 with CH. A comparison with previous studies revealed variance in genotype, allele, and haplotype frequencies among the different populations which might contribute to the contradictory results. Although a significant association with CH in Swedish case–control group was not found, ADH4 as a candidate gene for CH could not be excluded. PMID:27041676

  8. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds.

    PubMed

    Larmer, S G; Sargolzaei, M; Schenkel, F S

    2014-05-01

    Genomic selection requires a large reference population to accurately estimate single nucleotide polymorphism (SNP) effects. In some Canadian dairy breeds, the available reference populations are not large enough for accurate estimation of SNP effects for traits of interest. If marker phase is highly consistent across multiple breeds, it is theoretically possible to increase the accuracy of genomic prediction for one or all breeds by pooling several breeds into a common reference population. This study investigated the extent of linkage disequilibrium (LD) in 5 major dairy breeds using a 50,000 (50K) SNP panel and 3 of the same breeds using the 777,000 (777K) SNP panel. Correlation of pair-wise SNP phase was also investigated on both panels. The level of LD was measured using the squared correlation of alleles at 2 loci (r(2)), and the consistency of SNP gametic phases was correlated using the signed square root of these values. Because of the high cost of the 777K panel, the accuracy of imputation from lower density marker panels [6,000 (6K) or 50K] was examined both within breed and using a multi-breed reference population in Holstein, Ayrshire, and Guernsey. Imputation was carried out using FImpute V2.2 and Beagle 3.3.2 software. Imputation accuracies were then calculated as both the proportion of correct SNP filled in (concordance rate) and allelic R(2). Computation time was also explored to determine the efficiency of the different algorithms for imputation. Analysis showed that LD values >0.2 were found in all breeds at distances at or shorter than the average adjacent pair-wise distance between SNP on the 50K panel. Correlations of r-values, however, did not reach high levels (<0.9) at these distances. High correlation values of SNP phase between breeds were observed (>0.94) when the average pair-wise distances using the 777K SNP panel were examined. High concordance rate (0.968-0.995) and allelic R(2) (0.946-0.991) were found for all breeds when imputation was carried out with FImpute from 50K to 777K. Imputation accuracy for Guernsey and Ayrshire was slightly lower when using the imputation method in Beagle. Computing time was significantly greater when using Beagle software, with all comparable procedures being 9 to 13 times less efficient, in terms of time, compared with FImpute. These findings suggest that use of a multi-breed reference population might increase prediction accuracy using the 777K SNP panel and that 777K genotypes can be efficiently and effectively imputed using the lower density 50K SNP panel. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Insights Into Upland Cotton (Gossypium hirsutum L.) Genetic Recombination Based on 3 High-Density Single-Nucleotide Polymorphism and a Consensus Map Developed Independently With Common Parents.

    PubMed

    Ulloa, Mauricio; Hulse-Kemp, Amanda M; De Santiago, Luis M; Stelly, David M; Burke, John J

    2017-01-01

    High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, eg, upland cotton ( Gossypium hirsutum L., "2n = 52"). Three independently developed intraspecific upland mapping populations were analyzed to generate 3 high-density genetic linkage single-nucleotide polymorphism (SNP) maps and a consensus map using the CottonSNP63K array. The populations consisted of a previously reported F 2 , a recombinant inbred line (RIL), and reciprocal RIL population, from "Phytogen 72" and "Stoneville 474" cultivars. The cluster file provided 7417 genotyped SNP markers, resulting in 26 linkage groups corresponding to the 26 chromosomes (c) of the allotetraploid upland cotton (AD) 1 arisen from the merging of 2 genomes ("A" Old World and "D" New World). Patterns of chromosome-specific recombination were largely consistent across mapping populations. The high-density genetic consensus map included 7244 SNP markers that spanned 3538 cM and comprised 3824 SNP bins, of which 1783 and 2041 were in the A t and D t subgenomes with 1825 and 1713 cM map lengths, respectively. Subgenome average distances were nearly identical, indicating that subgenomic differences in bin number arose due to the high numbers of SNPs on the D t subgenome. Examination of expected recombination frequency or crossovers (COs) on the chromosomes within each population of the 2 subgenomes revealed that COs were also not affected by the SNPs or SNP bin number in these subgenomes. Comparative alignment analyses identified historical ancestral A t -subgenomic translocations of c02 and c03, as well as of c04 and c05. The consensus map SNP sequences aligned with high congruency to the NBI assembly of Gossypium hirsutum . However, the genomic comparisons revealed evidence of additional unconfirmed possible duplications, inversions and translocations, and unbalance SNP sequence homology or SNP sequence/loci genomic dominance, or homeolog loci bias of the upland tetraploid A t and D t subgenomes. The alignments indicated that 364 SNP-associated previously unintegrated scaffolds can be placed in pseudochromosomes of the NBI G hirsutum assembly. This is the first intraspecific SNP genetic linkage consensus map assembled in G hirsutum with a core of reproducible mendelian SNP markers assayed on different populations and it provides further knowledge of chromosome arrangement of genic and nongenic SNPs. Together, the consensus map and RIL populations provide a synergistically useful platform for localizing and identifying agronomically important loci for improvement of the cotton crop.

  10. Toward statistical modeling of saccadic eye-movement and visual saliency.

    PubMed

    Sun, Xiaoshuai; Yao, Hongxun; Ji, Rongrong; Liu, Xian-Ming

    2014-11-01

    In this paper, we present a unified statistical framework for modeling both saccadic eye movements and visual saliency. By analyzing the statistical properties of human eye fixations on natural images, we found that human attention is sparsely distributed and usually deployed to locations with abundant structural information. This observations inspired us to model saccadic behavior and visual saliency based on super-Gaussian component (SGC) analysis. Our model sequentially obtains SGC using projection pursuit, and generates eye movements by selecting the location with maximum SGC response. Besides human saccadic behavior simulation, we also demonstrated our superior effectiveness and robustness over state-of-the-arts by carrying out dense experiments on synthetic patterns and human eye fixation benchmarks. Multiple key issues in saliency modeling research, such as individual differences, the effects of scale and blur, are explored in this paper. Based on extensive qualitative and quantitative experimental results, we show promising potentials of statistical approaches for human behavior research.

  11. Humans make efficient use of natural image statistics when performing spatial interpolation.

    PubMed

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  12. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Combined Activity of Colloid Nanosilver and Zataria Multiflora Boiss Essential Oil-Mechanism of Action and Biofilm Removal Activity.

    PubMed

    Shirdel, Maryam; Tajik, Hossein; Moradi, Mehran

    2017-12-01

    Purpose: The aim of this study was to investigate antimicrobial and biofilm removal potential of Zataria multiflora essential oil (ZEO) and silver nanoparticle (SNP) alone and in combination on Staphylococcus aureus and Salmonella Typhimurium and evaluate the mechanism of action. Methods: The minimum inhibitory concentration (MIC), and optimal inhibitory combination (OIC) of ZEO and SNP were determined according to fractional inhibitory concentration (FIC) method. Biofilm removal potential and leakage pattern of 260-nm absorbing material from the bacterial cell during exposure to the compounds were also investigated. Results: MICs of SNP for both bacteria were the same as 25 μg/ mL. The MICs and MBCs values of ZEO were 2500 and 1250 μg/mL, respectively. The most effective OIC value for SNP and ZEO against Salm. Typhimurium and Staph. aureus were 12.5, 625 and 0.78, 1250 μg/ mL, respectively. ZEO and SNP at MIC and OIC concentrations represented a strong removal ability (>70%) on biofilm. Moreover, ZEO at MIC and OIC concentrations did a 6-log reduction of primary inoculated bacteria during 15 min contact time. The effect of ZEO on the loss of 260-nm material from the cell was faster than SNP during 15 and 60 min. Conclusion: Combination of ZEO and SNP had significant sanitizing activity on examined bacteria which may be suitable for disinfecting the surfaces.

  14. Association of a novel polymorphism in the bovine PPARGC1A gene with growth, slaughter and meat quality traits in Brangus steers.

    PubMed

    Soria, L A; Corva, P M; Branda Sica, A; Villarreal, E L; Melucci, L M; Mezzadra, C A; Papaleo Mazzucco, J; Fernández Macedo, G; Silvestro, C; Schor, A; Miquel, M C

    2009-12-01

    The PPARGC1A gene (peroxysome proliferator-activated receptor-gamma coactivator 1alpha gene) controls muscle fiber type and brown adipocyte differentiation; therefore, it is a candidate gene for beef quality traits (tenderness and fat content). Two SNPs (Single Nucleotide Polymorphisms) were identified within exon 8 by multiple alignment of DNA sequences obtained from 24 bulls: a transition G/A (SNP 1181) and a transversion A/T (SNP 1299). The SNP 1181 is a novel SNP, corresponding to a non-conservative substitution (AGT/AAT) that could be the cause of amino acid substitution ((364)Serine/(364)Asparagine). A Mismatch PCR method was designed to determine genotypes of 73 bulls and 268 steers for SNP 1181. Growth, slaughter and meat quality information were available for the group of steers. Allele A of SNP 1181 was not found in Angus. In 243 steers, no significant differences (P > 0.05) were found for either final live body weight, gain in backfat thickness in Spring, kidney fat weight, kidney fat percentage, Warner-Bratzler shear force at 7 days postmortem, intramuscular fat percentage or meat colour between genotype GG and AG. This SNP could be included in breed composition and population admixture analyses because there are marked differences in allelic frequencies between Bos taurus and Bos indicus breeds.

  15. Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces.

    PubMed

    Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R

    2009-01-01

    We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.

  16. Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene

    PubMed Central

    Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen

    2008-01-01

    Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301

  17. Performance comparison of SNP detection tools with illumina exome sequencing data—an assessment using both family pedigree information and sample-matched SNP array data

    PubMed Central

    Yi, Ming; Zhao, Yongmei; Jia, Li; He, Mei; Kebebew, Electron; Stephens, Robert M.

    2014-01-01

    To apply exome-seq-derived variants in the clinical setting, there is an urgent need to identify the best variant caller(s) from a large collection of available options. We have used an Illumina exome-seq dataset as a benchmark, with two validation scenarios—family pedigree information and SNP array data for the same samples, permitting global high-throughput cross-validation, to evaluate the quality of SNP calls derived from several popular variant discovery tools from both the open-source and commercial communities using a set of designated quality metrics. To the best of our knowledge, this is the first large-scale performance comparison of exome-seq variant discovery tools using high-throughput validation with both Mendelian inheritance checking and SNP array data, which allows us to gain insights into the accuracy of SNP calling through such high-throughput validation in an unprecedented way, whereas the previously reported comparison studies have only assessed concordance of these tools without directly assessing the quality of the derived SNPs. More importantly, the main purpose of our study was to establish a reusable procedure that applies high-throughput validation to compare the quality of SNP discovery tools with a focus on exome-seq, which can be used to compare any forthcoming tool(s) of interest. PMID:24831545

  18. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain.

    PubMed

    Diana, Mariana C; Peres, Fernanda F; Justi, Veronica; Bressan, Rodrigo A; Lacerda, Acioly L T; Crippa, José Alexandre; Hallak, Jaime E C; Abilio, Vanesssa Costhek

    2018-04-14

    The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia. © 2018 John Wiley & Sons Ltd.

  19. Visual acuity in young elite motorsport athletes: a preliminary report.

    PubMed

    Schneiders, Anthony G; Sullivan, S John; Rathbone, Emma J; Louise Thayer, A; Wallis, Laura M; Wilson, Alexandra E

    2010-05-01

    To determine whether elite motorsport athletes demonstrate superior levels of Visual Acuity than age and sex-matched controls. A cross-sectional observational study. A University vision and balance laboratory. Young male motorsport athletes from the New Zealand Elite Motorsport Academy and healthy age and sex-matched controls. Vision performance tests comprising; Static Visual Acuity (SVA), Dynamic Visual Acuity (DVA), Gaze Stabilization Test (GST), and the Perception Time Test (PTT). Motorsport athletes demonstrated superior visual acuity compared to age and sex-matched controls for all measures, and while this was not statistically significant for SVA, GST and DVA, it reached statistical significance for the PTT (p

  20. Statistical dependency in visual scanning

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Stark, Lawrence

    1986-01-01

    A method to identify statistical dependencies in the positions of eye fixations is developed and applied to eye movement data from subjects who viewed dynamic displays of air traffic and judged future relative position of aircraft. Analysis of approximately 23,000 fixations on points of interest on the display identified statistical dependencies in scanning that were independent of the physical placement of the points of interest. Identification of these dependencies is inconsistent with random-sampling-based theories used to model visual search and information seeking.

  1. GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.

    PubMed

    Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King

    2018-05-18

    Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.

  2. SEURAT: Visual analytics for the integrated analysis of microarray data

    PubMed Central

    2010-01-01

    Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257

  3. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods

    PubMed Central

    2012-01-01

    Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net. PMID:22568821

  4. Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique.

    PubMed

    Jiang, Chao; Yuan, Yuan; Yang, Guang; Jin, Yan; Liu, Libing; Zhao, Yuyang; Huang, Luqi

    2016-10-21

    Inaccurate labeling of materials used in herbal products may compromise the therapeutic efficacy and may pose a threat to medicinal safety. In this paper, a rapid (within 3 h), sensitive and visual colorimetric method for identifying substitutions in terminal market products was developed using cationic conjugated polymer-based fluorescence resonance energy transfer (CCP-based FRET). Chinese medicinal materials with similar morphology and chemical composition were clearly distinguished by the single-nucleotide polymorphism (SNP) genotyping method. Assays using CCP-based FRET technology showed a high frequency of adulterants in Lu-Rong (52.83%) and Chuan-Bei-Mu (67.8%) decoction pieces, and patented Chinese drugs (71.4%, 5/7) containing Chuan-Bei-Mu ingredients were detected in the terminal herbal market. In comparison with DNA sequencing, this protocol simplifies procedures by eliminating the cumbersome workups and sophisticated instruments, and only a trace amount of DNA is required. The CCP-based method is particularly attractive because it can detect adulterants in admixture samples with high sensitivity. Therefore, the CCP-based detection system shows great potential for routine terminal market checks and drug safety controls.

  5. The Brightness of Colour

    PubMed Central

    Corney, David; Haynes, John-Dylan; Rees, Geraint; Lotto, R. Beau

    2009-01-01

    Background The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. Results Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI. Conclusions The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond. PMID:19333398

  6. Functional SNP associated with birth weight in independent populations identified with a permutation step added to GBLUP-GWAS

    USDA-ARS?s Scientific Manuscript database

    This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...

  7. Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants.

    PubMed

    Recalde, Laura; Vázquez, Analía; Groppa, María D; Benavides, María Patricia

    2018-03-06

    Polyamines (PAs) produce H 2 O 2 and nitric oxide (NO) during their normal catabolism and modulate plant growth and development. To explore the biochemical basis of PAs-induced growth inhibition in Triticum aestivum L seedlings, we examined the role of O 2 ·- , H 2 O 2 or NO in shoot and root development. Although all PA treatments resulted in a variable reduction of root and shoot elongation, spermine (Spm) caused the greater inhibition in a similar way to that observed with the NO donor, sodium nitroprusside (SNP). In both cases, O 2 ·- production was completely blocked whereas H 2 O 2 formation was high in the root apex under SNP or Spm treatments. Catalase recovered root and shoot growth in SNP but not in Spm-treated plants, revealing the involvement of H 2 O 2 in SNP-root length reduction. The addition of the NO scavenger, cPTIO, restored root length in SNP- or Spm-treated plants, respectively, and partially recovered O 2 ·- levels, compared to the plants exposed to PAs or SNP without cPTIO. A strong correlation was observed between root growth restoration and O 2 ·- accumulation after treating roots with SNP + aminoguanidine, a diamine oxidase inhibitor, and with SNP + 1,8-diaminoctane, a polyamine oxidase inhibitor, confirming the essential role of O 2 ·- formation for root growth and the importance of the origin and level of H 2 O 2 . The differential modulation of wheat growth by PAs through reactive oxygen species or NO is discussed. Graphical abstract Polyamines, nitric oxide and ROS interaction in plants during plant growth.

  8. Sample-to-SNP kit: a reliable, easy and fast tool for the detection of HFE p.H63D and p.C282Y variations associated to hereditary hemochromatosis.

    PubMed

    Nielsen, Peter B; Petersen, Maja S; Ystaas, Viviana; Andersen, Rolf V; Hansen, Karin M; Blaabjerg, Vibeke; Refstrup, Mette

    2012-10-01

    Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G>A; rs1800562) and HFE p.H63D (c.187C>G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G>A, Coagulation factor V-gene F5 p.R506Q (c.1517G>A; rs121917732), Mitochondria SNP: mt7028 G>A, Mitochondria SNP: mt12308 A>G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G>T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A>G; rs1695), LXR g.-171 A>G, ZNF202 g.-118 G>T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility. Copyright © 2012. Published by Elsevier B.V.

  9. Nitric Oxide Synthase-Mediated Phytoalexin Accumulation in Soybean Cotyledons in Response to the Diaporthe phaseolorum f. sp. meridionalis Elicitor1

    PubMed Central

    Modolo, Luzia Valentina; Cunha, Fernando Queiroz; Braga, Márcia Regina; Salgado, Ione

    2002-01-01

    Phytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease. The treatment of soybean cotyledons with Dpm elicitor or with sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in a high accumulation of phytoalexins. This response did not occur when SNP was replaced by ferricyanide, a structural analog of SNP devoid of the NO moiety. Phytoalexin accumulation induced by the fungal elicitor, but not by SNP, was prevented when cotyledons were pretreated with NO synthase (NOS) inhibitors. The Dpm elicitor also induced NOS activity in soybean tissues proximal to the site of inoculation. The induced NOS activity was Ca2+- and NADPH-dependent and was sensitive to the NOS inhibitors NG-nitro-l-arginine methyl ester, aminoguanidine, and l-N6-(iminoethyl) lysine. NOS activity was not observed in SNP-elicited tissues. An antibody to brain NOS labeled a 166-kD protein in elicited and nonelicited cotyledons. Isoflavones (daidzein and genistein), pterocarpans (glyceollins), and flavones (apigenin and luteolin) were identified after exposure to the elicitor or SNP, although the accumulation of glyceollins and apigenin was limited in SNP-elicited compared with fungal-elicited cotyledons. NOS activity preceded the accumulation of these flavonoids in tissues treated with the Dpm elicitor. The accumulation of these metabolites was faster in SNP-elicited than in fungal-elicited cotyledons. We conclude that the response of soybean cotyledons to Dpm elicitor involves NO formation via a constitutive NOS-like enzyme that triggers the biosynthesis of antimicrobial flavonoids. PMID:12427995

  10. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    PubMed Central

    Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.

    2009-01-01

    Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876

  11. The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction

    PubMed Central

    Hirai, Daniel M.; Copp, Steven W.; Ferguson, Scott K.; Holdsworth, Clark T.; Musch, Timothy I.; Poole, David C.

    2012-01-01

    The nitric oxide (NO) donor sodium nitroprusside (SNP) may promote cyanide-induced toxicity and systemic and/or local responses approaching maximal vasodilation. The hypotheses were tested that SNP superfusion of the rat spinotrapezius muscle exerts 1) residual impairments in resting and contracting blood flow, oxygen utilization (V̇O2) and microvascular O2 pressure (PO2mv); and 2) marked hypotension and elevation in resting PO2mv. Two superfusion protocols were performed: 1) Krebs-Henseleit (control 1), SNP (300 µM; a dose used commonly in superfusion studies) and Krebs-Henseleit (control 2), in this order; 2) 300 and 1200 µM SNP in random order. Spinotrapezius muscle blood flow (radiolabeled microspheres), V̇O2 (Fick calculation) and PO2mv (phosphorescence quenching) were determined at rest and during electrically-induced (1 Hz) contractions. There were no differences in spinotrapezius blood flow, V̇O2 or PO2mv at rest and during contractions pre- and post-SNP condition (control 1 and control 2; p>0.05 for all). With regard to dosing, SNP produced a graded elevation in resting PO2mv (p<0.05) with a reduction in mean arterial pressure only at the higher concentration (p<0.05). Contrary to our hypothesis, skeletal muscle superfusion with the NO donor SNP (300 µM) improved microvascular oxygenation during the transition from rest to contractions (PO2mv kinetics) without precipitating residual impairment of muscle hemodynamic or metabolic control or compromising systemic hemodynamics. These data suggest that SNP superfusion (300 µM) constitutes a valid and important tool for assessing the functional roles of NO in resting and contracting skeletal muscle function without incurring residual alterations consistent with cyanide accumulation and poisoning. PMID:23174313

  12. Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells.

    PubMed

    Pandareesh, M D; Anand, T

    2014-05-01

    Sodium nitroprusside (SNP) is a widely used nitric oxide (NO) donor, known to exert nitrative stress by up-regulation of inducible nitric oxide synthase (iNOS). Nω-nitro-L-arginine-methyl esther (L-NAME) is a NO inhibitor, which inhibits iNOS expression, is used as positive control. The present study was designed to assess neuroprotective propensity of Bacopa monniera extract (BME) in SNP-induced neuronal damage and oxido-nitrative stress in PC12 cells via modulation of iNOS, heat shock proteins and apoptotic markers. Our results elucidate that pre-treatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP (200 μM) as evidenced by MTT and LDH assays. BME pre-treatment inhibited NO generation by down regulating iNOS expression. BME replenished the depleted antioxidant status induced by SNP treatment. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic protein biomarkers such as Bax, Bcl-2, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. Q-PCR results further elucidated up-regulation of neuronal cell stress markers like HO-1 and iNOS and down-regulation of BDNF upon SNP exposure was attenuated by BME pre-treatment. By considering all these findings, we report that BME protects PC12 cells against SNP-induced toxicity via its free radical scavenging and neuroprotective mechanism.

  13. The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: implications for the bovine lactating mammary gland.

    PubMed

    Ordovás, Laura; Roy, Rosa; Pampín, Sandra; Zaragoza, Pilar; Osta, Rosario; Rodríguez-Rey, Jose Carlos; Rodellar, Clementina

    2008-07-15

    Fatty acid synthase (FASN) is an enzyme that catalyzes de novo synthesis of fatty acids in cells. The bovine FASN gene maps to BTA 19, where several quantitative trait loci for fat-related traits have been described. Our group recently reported the identification of a single nucleotide polymorphism (SNP), g.763G>C, in the bovine FASN 5' flanking region that was significantly associated with milk fat content in dairy cattle. The g.763G>C SNP was part of a GC-rich region that may constitute a cis element for members of the Sp transcription factor family. Thus the SNP could alter the transcription factor binding ability of the FASN promoter and consequently affect the promoter activity of the gene. However, the functional consequences of the SNP on FASN gene expression are unknown. The present study was therefore directed at elucidating the underlying molecular mechanism that could explain the association of the SNP with milk fat content. Three cellular lines (3T3L1, HepG2, and MCF-7) were used to test the promoter and the transcription factor binding activities by luciferase reporter assays and electrophoretic mobility shift assays, respectively. Band shift assays were also carried out with nuclear extracts from lactating mammary gland (LMG) to further investigate the role of the SNP in this tissue. Our results demonstrate that the SNP alters the bovine FASN promoter activity in vitro and the Sp1/Sp3 binding ability of the sequence. In bovine LMG, the specific binding of Sp3 may account for the association with milk fat content.

  14. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes.

    PubMed

    Boullerne, A I; Nedelkoska, L; Benjamins, J A

    2001-01-15

    Active nitrogen species are overproduced in inflammatory brain lesions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). NO has been shown to mediate the death of oligodendrocytes (OLs), a primary target of damage in MS. To develop strategies to protect OLs, we examined the mechanisms of cytotoxicity of two NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) on mature mouse OLs. Nitrosonium ion (NO+) rather than NO. mediates damage with both SNAP and SNP, as shown by significant protection with hemoglobin (HbO2), but not with the NO. scavenger PTIO. SNAP and SNP differ in time course and mechanisms of killing OLs. With SNAP, OL death is delayed for at least 6 hr, but with SNP, OL death is continuous over 18 hr with no delay. Relative to NO release, SNP is more toxic than SNAP, due to synergism of NO with cyanide released by SNP. SNAP elicits a Ca2+ influx in over half of the OLs within min. Further, OL death due to NO release from SNAP is Ca2+-dependent, because the Ca2+ chelator EGTA protects OLs from killing by SNAP, and also from killing by the NONOates NOC-9 and NOC-18, which spontaneously release NO. SNP does not elicit a Ca2+ influx, and EGTA is not protective. In comparison to the N20.1 OL cell line (Boullerne et al., [1999] J. Neurochem. 72:1050-1060), mature OLs are (1) more sensitive to SNAP, (2) much more resistant to SNP, (3) sensitive to cyanide, but not iron, and (4) exhibit a Ca2+ influx and EGTA protection in response to NO generated by SNAP. Copyright 2001 Wiley-Liss, Inc.

  15. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  16. The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability.

    PubMed

    Brown, C M; Rea, T J; Hamon, S C; Hixson, J E; Boerwinkle, E; Clark, A G; Sing, C F

    2006-07-01

    Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype-genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African-American (N=1,858) and European-American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race-gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.

  17. Polymorphisms within the prolactin and growth hormone/insulin-like growth factor-1 functional pathways associated with fertility traits in Holstein cows raised in a hot-humid climate.

    PubMed

    Leyva-Corona, Jose C; Reyna-Granados, Javier R; Zamorano-Algandar, Ricardo; Sanchez-Castro, Miguel A; Thomas, Milton G; Enns, R Mark; Speidel, Scott E; Medrano, Juan F; Rincon, Gonzalo; Luna-Nevarez, Pablo

    2018-06-20

    Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.

  18. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  19. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  20. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.

    PubMed

    Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra

    2015-04-10

    In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.

Top