Sample records for visually guided behavior

  1. Animal Preparations to Assess Neurophysiological Effects of Bio-Dynamic Environments.

    DTIC Science & Technology

    1980-07-17

    deprivation in preventing the acquisition of visually-guided behaviors. The next study examined acquisition of visually-guided behaviors in six animals...Maffei, L. and Bisti, S. Binocular interaction in strabismic kittens deprived of vision. Science, 191, 579-580, 1976. Matin, L. A possible hybrid...function in cat visual cortex following prolonged deprivation . Exp. Brain Res., 25 (1976) 139-156. Hein, A. Visually controlled components of movement

  2. Transient visual pathway critical for normal development of primate grasping behavior.

    PubMed

    Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A

    2018-02-06

    An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.

  3. Evaluation of a multi-component approach to cognitive-behavioral therapy (CBT) using guided visualizations, cranial electrotherapy stimulation, and vibroacoustic sound.

    PubMed

    Rogers, Donna R B; Ei, Sue; Rogers, Kim R; Cross, Chad L

    2007-05-01

    This pilot study examines the use of guided visualizations that incorporate both cognitive and behavioral techniques with vibroacoustic therapy and cranial electrotherapy stimulation to form a multi-component therapeutic approach. This multi-component approach to cognitive-behavioral therapy (CBT) was used to treat patients presenting with a range of symptoms including anxiety, depression, and relationship difficulties. Clients completed a pre- and post-session symptom severity scale and CBT skills practice survey. The program consisted of 16 guided visualizations incorporating CBT techniques that were accompanied by vibroacoustic therapy and cranial electrotherapy stimulation. Significant reduction in symptom severity was observed in pre- and post-session scores for anxiety symptoms, relationship difficulties, and depressive symptoms. The majority of the clients (88%) reported use of CBT techniques learned in the guided visualizations at least once per week outside of the sessions.

  4. Act quickly, decide later: long-latency visual processing underlies perceptual decisions but not reflexive behavior.

    PubMed

    Jolij, Jacob; Scholte, H Steven; van Gaal, Simon; Hodgson, Timothy L; Lamme, Victor A F

    2011-12-01

    Humans largely guide their behavior by their visual representation of the world. Recent studies have shown that visual information can trigger behavior within 150 msec, suggesting that visually guided responses to external events, in fact, precede conscious awareness of those events. However, is such a view correct? By using a texture discrimination task, we show that the brain relies on long-latency visual processing in order to guide perceptual decisions. Decreasing stimulus saliency leads to selective changes in long-latency visually evoked potential components reflecting scene segmentation. These latency changes are accompanied by almost equal changes in simple RTs and points of subjective simultaneity. Furthermore, we find a strong correlation between individual RTs and the latencies of scene segmentation related components in the visually evoked potentials, showing that the processes underlying these late brain potentials are critical in triggering a response. However, using the same texture stimuli in an antisaccade task, we found that reflexive, but erroneous, prosaccades, but not antisaccades, can be triggered by earlier visual processes. In other words: The brain can act quickly, but decides late. Differences between our study and earlier findings suggesting that action precedes conscious awareness can be explained by assuming that task demands determine whether a fast and unconscious, or a slower and conscious, representation is used to initiate a visually guided response.

  5. Vision drives accurate approach behavior during prey capture in laboratory mice

    PubMed Central

    Hoy, Jennifer L.; Yavorska, Iryna; Wehr, Michael; Niell, Cristopher M.

    2016-01-01

    Summary The ability to genetically identify and manipulate neural circuits in the mouse is rapidly advancing our understanding of visual processing in the mammalian brain [1,2]. However, studies investigating the circuitry that underlies complex ethologically-relevant visual behaviors in the mouse have been primarily restricted to fear responses [3–5]. Here, we show that a laboratory strain of mouse (Mus musculus, C57BL/6J) robustly pursues, captures and consumes live insect prey, and that vision is necessary for mice to perform the accurate orienting and approach behaviors leading to capture. Specifically, we differentially perturbed visual or auditory input in mice and determined that visual input is required for accurate approach, allowing maintenance of bearing to within 11 degrees of the target on average during pursuit. While mice were able to capture prey without vision, the accuracy of their approaches and capture rate dramatically declined. To better explore the contribution of vision to this behavior, we developed a simple assay that isolated visual cues and simplified analysis of the visually guided approach. Together, our results demonstrate that laboratory mice are capable of exhibiting dynamic and accurate visually-guided approach behaviors, and provide a means to estimate the visual features that drive behavior within an ethological context. PMID:27773567

  6. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    PubMed Central

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  7. Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.

    PubMed

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-15

    This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.

  8. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements

    PubMed Central

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.

    2004-01-01

    We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334

  9. Masked Visual Analysis: Minimizing Type I Error in Visually Guided Single-Case Design for Communication Disorders

    ERIC Educational Resources Information Center

    Byun, Tara McAllister; Hitchcock, Elaine R.; Ferron, John

    2017-01-01

    Purpose: Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of…

  10. [Visual input affects the expression of the early genes c-Fos and ZENK in auditory telencephalic centers of pied flycatcher nestlings during the acoustically-guided freezing].

    PubMed

    Korneeva, E V; Tiunova, A A; Aleksandrov, L I; Golubeva, T B; Anokhin, K V

    2014-01-01

    The present study analyzed expression of transcriptional factors c-Fos and ZENK in 9-day-old pied flycatcher nestlings' (Ficedula hypoleuca) telencephalic auditory centers (field L, caudomedial nidopallium and caudomedial mesopallium) involved in the acoustically-guided defense behavior. Species-typical alarm call was presented to the young in three groups: 1--intact group (sighted control), 2--nestlings visually deprived just before the experiment for a short time (unsighted control) 3--nestlings visually deprived right after hatching (experimental deprivation). Induction of c-Fos as well as ZENK in nestlings from the experimental deprivation group was decreased in both hemispheres as compared with intact group. In the group of unsighted control, only the decrease of c-Fos induction was observed exclusively in the right hemisphere. These findings suggest that limitation of visual input changes the population of neurons involved into the acoustically-guided behavior, the effect being dependant from the duration of deprivation.

  11. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  12. Using Visual Imagery in the Classroom.

    ERIC Educational Resources Information Center

    Grabow, Beverly

    1981-01-01

    The use of visual imagery, visualization, and guided and unguided fantasy has potential as a teaching tool for use with learning disabled children. Visualization utilized in a gamelike atmosphere can help the student learn new concepts, can positively effect social behaviors, and can help with emotional control. (SB)

  13. Visual short-term memory guides infants' visual attention.

    PubMed

    Mitsven, Samantha G; Cantrell, Lisa M; Luck, Steven J; Oakes, Lisa M

    2018-08-01

    Adults' visual attention is guided by the contents of visual short-term memory (VSTM). Here we asked whether 10-month-old infants' (N = 41) visual attention is also guided by the information stored in VSTM. In two experiments, we modified the one-shot change detection task (Oakes, Baumgartner, Barrett, Messenger, & Luck, 2013) to create a simplified cued visual search task to ask how information stored in VSTM influences where infants look. A single sample item (e.g., a colored circle) was presented at fixation for 500 ms, followed by a brief (300 ms) retention interval and then a test array consisting of two items, one on each side of fixation. One item in the test array matched the sample stimulus and the other did not. Infants were more likely to look at the non-matching item than at the matching item, demonstrating that the information stored rapidly in VSTM guided subsequent looking behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  16. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  17. Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data

    PubMed Central

    Zhaoping, Li; Zhe, Li

    2015-01-01

    It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341

  18. Task Demands Control Acquisition and Storage of Visual Information

    ERIC Educational Resources Information Center

    Droll, Jason A.; Hayhoe, Mary M.; Triesch, Jochen; Sullivan, Brian T.

    2005-01-01

    Attention and working memory limitations set strict limits on visual representations, yet researchers have little appreciation of how these limits constrain the acquisition of information in ongoing visually guided behavior. Subjects performed a brick sorting task in a virtual environment. A change was made to 1 of the features of the brick being…

  19. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.

    PubMed

    Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T

    2011-11-01

    The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.

  20. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    PubMed

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-08-04

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.

  1. Rapid steroid influences on visually guided sexual behavior in male goldfish

    PubMed Central

    Lord, Louis-David; Bond, Julia; Thompson, Richmond R.

    2013-01-01

    The ability of steroid hormones to rapidly influence cell physiology through nongenomic mechanisms raises the possibility that these molecules may play a role in the dynamic regulation of social behavior, particularly in species in which social stimuli can rapidly influence circulating steroid levels. We therefore tested if testosterone (T), which increases in male goldfish in response to sexual stimuli, can rapidly influence approach responses towards females. Injections of T stimulated approach responses towards the visual cues of females 30–45 min after the injection but did not stimulate approach responses towards stimulus males or affect general activity, indicating that the effect is stimulus-specific and not a secondary consequence of increased arousal. Estradiol produced the same effect 30–45 min and even 10–25 min after administration, and treatment with the aromatase inhibitor fadrozole blocked exogenous T’s behavioral effect, indicating that T’s rapid stimulation of visual approach responses depends on aromatization. We suggest that T surges induced by sexual stimuli, including preovulatory pheromones, rapidly prime males to mate by increasing sensitivity within visual pathways that guide approach responses towards females and/or by increasing the motivation to approach potential mates through actions within traditional limbic circuits. PMID:19751737

  2. Rapid steroid influences on visually guided sexual behavior in male goldfish.

    PubMed

    Lord, Louis-David; Bond, Julia; Thompson, Richmond R

    2009-11-01

    The ability of steroid hormones to rapidly influence cell physiology through nongenomic mechanisms raises the possibility that these molecules may play a role in the dynamic regulation of social behavior, particularly in species in which social stimuli can rapidly influence circulating steroid levels. We therefore tested if testosterone (T), which increases in male goldfish in response to sexual stimuli, can rapidly influence approach responses towards females. Injections of T stimulated approach responses towards the visual cues of females 30-45 min after the injection but did not stimulate approach responses towards stimulus males or affect general activity, indicating that the effect is stimulus-specific and not a secondary consequence of increased arousal. Estradiol produced the same effect 30-45 min and even 10-25 min after administration, and treatment with the aromatase inhibitor fadrozole blocked exogenous T's behavioral effect, indicating that T's rapid stimulation of visual approach responses depends on aromatization. We suggest that T surges induced by sexual stimuli, including preovulatory pheromones, rapidly prime males to mate by increasing sensitivity within visual pathways that guide approach responses towards females and/or by increasing the motivation to approach potential mates through actions within traditional limbic circuits.

  3. Real-world visual search is dominated by top-down guidance.

    PubMed

    Chen, Xin; Zelinsky, Gregory J

    2006-11-01

    How do bottom-up and top-down guidance signals combine to guide search behavior? Observers searched for a target either with or without a preview (top-down manipulation) or a color singleton (bottom-up manipulation) among the display objects. With a preview, reaction times were faster and more initial eye movements were guided to the target; the singleton failed to attract initial saccades under these conditions. Only in the absence of a preview did subjects preferentially fixate the color singleton. We conclude that the search for realistic objects is guided primarily by top-down control. Implications for saliency map models of visual search are discussed.

  4. Nonverbal Immediacy Behaviors and Online Student Engagement: Bringing Past Instructional Research into the Present Virtual Classroom

    ERIC Educational Resources Information Center

    Dixson, Marcia D.; Greenwell, Mackenzie R.; Rogers-Stacy, Christie; Weister, Tyson; Lauer, Sara

    2017-01-01

    Nonverbal immediacy behaviors are underresearched in the online teaching environment. Using social presence theory as a guiding framework, this study explores several online nonverbal immediacy behaviors: emoticons/figurative language, color, cohesion, visual imagery, and audio in course design; response latency, length, time of day, and message…

  5. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions

    PubMed Central

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-01-01

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. DOI: http://dx.doi.org/10.7554/eLife.13764.001 PMID:27490481

  6. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

    PubMed Central

    Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.

    2015-01-01

    Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  7. Gaze shifts and fixations dominate gaze behavior of walking cats

    PubMed Central

    Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.

    2014-01-01

    Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656

  8. Goal-directed action is automatically biased towards looming motion

    PubMed Central

    Moher, Jeff; Sit, Jonathan; Song, Joo-Hyun

    2014-01-01

    It is known that looming motion can capture attention regardless of an observer’s intentions. Real-world behavior, however, frequently involves not just attentional selection, but selection for action. Thus, it is important to understand the impact of looming motion on goal-directed action to gain a broader perspective on how stimulus properties bias human behavior. We presented participants with a visually-guided reaching task in which they pointed to a target letter presented among non-target distractors. On some trials, one of the pre-masks at the location of the upcoming search objects grew rapidly in size, creating the appearance of a “looming” target or distractor. Even though looming motion did not predict the target location, the time required to reach to the target was shorter when the target loomed compared to when a distractor loomed. Furthermore, reach movement trajectories were pulled towards the location of a looming distractor when one was present, a pull that was greater still when the looming motion was on a collision path with the participant. We also contrast reaching data with data from a similarly designed visual search task requiring keypress responses. This comparison underscores the sensitivity of visually-guided reaching data, as some experimental manipulations, such as looming motion path, affected reach trajectories but not keypress measures. Together, the results demonstrate that looming motion biases visually-guided action regardless of an observer’s current behavioral goals, affecting not only the time required to reach to targets but also the path of the observer’s hand movement itself. PMID:25159287

  9. Memory-guided force control in healthy younger and older adults.

    PubMed

    Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A

    2017-08-01

    Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.

  10. A closer look at visually guided saccades in autism and Asperger’s disorder

    PubMed Central

    Johnson, Beth P.; Rinehart, Nicole J.; Papadopoulos, Nicole; Tonge, Bruce; Millist, Lynette; White, Owen; Fielding, Joanne

    2012-01-01

    Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD) in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioral evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude, and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5°) and large (10°) target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA. PMID:23162442

  11. High contrast sensitivity for visually guided flight control in bumblebees.

    PubMed

    Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie

    2017-12-01

    Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

  12. Qualitative similarities in the visual short-term memory of pigeons and people.

    PubMed

    Gibson, Brett; Wasserman, Edward; Luck, Steven J

    2011-10-01

    Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.

  13. Memory-guided reaching in a patient with visual hemiagnosia.

    PubMed

    Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc

    2016-06-01

    The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  15. The predator and prey behaviors of crabs: from ecology to neural adaptations.

    PubMed

    Tomsic, Daniel; Sztarker, Julieta; Berón de Astrada, Martín; Oliva, Damián; Lanza, Estela

    2017-07-01

    Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge - acquired through both laboratory and field studies - on the visually guided escape behavior of the crab Neohelice granulata Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches. © 2017. Published by The Company of Biologists Ltd.

  16. Where to look? Automating attending behaviors of virtual human characters

    NASA Technical Reports Server (NTRS)

    Chopra Khullar, S.; Badler, N. I.

    2001-01-01

    This research proposes a computational framework for generating visual attending behavior in an embodied simulated human agent. Such behaviors directly control eye and head motions, and guide other actions such as locomotion and reach. The implementation of these concepts, referred to as the AVA, draws on empirical and qualitative observations known from psychology, human factors and computer vision. Deliberate behaviors, the analogs of scanpaths in visual psychology, compete with involuntary attention capture and lapses into idling or free viewing. Insights provided by implementing this framework are: a defined set of parameters that impact the observable effects of attention, a defined vocabulary of looking behaviors for certain motor and cognitive activity, a defined hierarchy of three levels of eye behavior (endogenous, exogenous and idling) and a proposed method of how these types interact.

  17. Preliminary study of ergonomic behavior during simulated ultrasound-guided regional anesthesia using a head-mounted display.

    PubMed

    Udani, Ankeet D; Harrison, T Kyle; Howard, Steven K; Kim, T Edward; Brock-Utne, John G; Gaba, David M; Mariano, Edward R

    2012-08-01

    A head-mounted display provides continuous real-time imaging within the practitioner's visual field. We evaluated the feasibility of using head-mounted display technology to improve ergonomics in ultrasound-guided regional anesthesia in a simulated environment. Two anesthesiologists performed an equal number of ultrasound-guided popliteal-sciatic nerve blocks using the head-mounted display on a porcine hindquarter, and an independent observer assessed each practitioner's ergonomics (eg, head turning, arching, eye movements, and needle manipulation) and the overall block quality based on the injectate spread around the target nerve for each procedure. Both practitioners performed their procedures without directly viewing the ultrasound monitor, and neither practitioner showed poor ergonomic behavior. Head-mounted display technology may offer potential advantages during ultrasound-guided regional anesthesia.

  18. Feature-based attentional modulations in the absence of direct visual stimulation.

    PubMed

    Serences, John T; Boynton, Geoffrey M

    2007-07-19

    When faced with a crowded visual scene, observers must selectively attend to behaviorally relevant objects to avoid sensory overload. Often this selection process is guided by prior knowledge of a target-defining feature (e.g., the color red when looking for an apple), which enhances the firing rate of visual neurons that are selective for the attended feature. Here, we used functional magnetic resonance imaging and a pattern classification algorithm to predict the attentional state of human observers as they monitored a visual feature (one of two directions of motion). We find that feature-specific attention effects spread across the visual field-even to regions of the scene that do not contain a stimulus. This spread of feature-based attention to empty regions of space may facilitate the perception of behaviorally relevant stimuli by increasing sensitivity to attended features at all locations in the visual field.

  19. Virally delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Mouse Models of Blindness

    PubMed Central

    Doroudchi, M Mehdi; Greenberg, Kenneth P; Liu, Jianwen; Silka, Kimberly A; Boyden, Edward S; Lockridge, Jennifer A; Arman, A Cyrus; Janani, Ramesh; Boye, Shannon E; Boye, Sanford L; Gordon, Gabriel M; Matteo, Benjamin C; Sampath, Alapakkam P; Hauswirth, William W; Horsager, Alan

    2011-01-01

    Previous work established retinal expression of channelrhodopsin-2 (ChR2), an algal cation channel gated by light, restored physiological and behavioral visual responses in otherwise blind rd1 mice. However, a viable ChR2-based human therapy must meet several key criteria: (i) ChR2 expression must be targeted, robust, and long-term, (ii) ChR2 must provide long-term and continuous therapeutic efficacy, and (iii) both viral vector delivery and ChR2 expression must be safe. Here, we demonstrate the development of a clinically relevant therapy for late stage retinal degeneration using ChR2. We achieved specific and stable expression of ChR2 in ON bipolar cells using a recombinant adeno-associated viral vector (rAAV) packaged in a tyrosine-mutated capsid. Targeted expression led to ChR2-driven electrophysiological ON responses in postsynaptic retinal ganglion cells and significant improvement in visually guided behavior for multiple models of blindness up to 10 months postinjection. Light levels to elicit visually guided behavioral responses were within the physiological range of cone photoreceptors. Finally, chronic ChR2 expression was nontoxic, with transgene biodistribution limited to the eye. No measurable immune or inflammatory response was observed following intraocular vector administration. Together, these data indicate that virally delivered ChR2 can provide a viable and efficacious clinical therapy for photoreceptor disease-related blindness. PMID:21505421

  20. The Theory-based Influence of Map Features on Risk Beliefs: Self-reports of What is Seen and Understood for Maps Depicting an Environmental Health Hazard

    PubMed Central

    Vatovec, Christine

    2013-01-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919

  1. The theory-based influence of map features on risk beliefs: self-reports of what is seen and understood for maps depicting an environmental health hazard.

    PubMed

    Severtson, Dolores J; Vatovec, Christine

    2012-08-01

    Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.

  2. The dorsal "action" pathway.

    PubMed

    Gallivan, Jason P; Goodale, Melvyn A

    2018-01-01

    In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Rise and fall of the two visual systems theory.

    PubMed

    Rossetti, Yves; Pisella, Laure; McIntosh, Robert D

    2017-06-01

    Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception

    PubMed Central

    Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.

    2017-01-01

    Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023

  6. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  7. Stimulus relevance modulates contrast adaptation in visual cortex

    PubMed Central

    Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof

    2017-01-01

    A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922

  8. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  9. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.

    PubMed

    Grubert, Anna; Eimer, Martin

    2013-10-01

    To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Attention, Intention, and Priority in the Parietal Lobe

    PubMed Central

    Bisley, James W.; Goldberg, Michael E.

    2013-01-01

    For many years there has been a debate about the role of the parietal lobe in the generation of behavior. Does it generate movement plans (intention) or choose objects in the environment for further processing? To answer this, we focus on the lateral intraparietal area (LIP), an area that has been shown to play independent roles in target selection for saccades and the generation of visual attention. Based on results from a variety of tasks, we propose that LIP acts as a priority map in which objects are represented by activity proportional to their behavioral priority. We present evidence to show that the priority map combines bottom-up inputs like a rapid visual response with an array of top-down signals like a saccade plan. The spatial location representing the peak of the map is used by the oculomotor system to target saccades and by the visual system to guide visual attention. PMID:20192813

  11. Visual Search Elicits the Electrophysiological Marker of Visual Working Memory

    PubMed Central

    Emrich, Stephen M.; Al-Aidroos, Naseem; Pratt, Jay; Ferber, Susanne

    2009-01-01

    Background Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. Methodology/Principal Findings The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. Conclusions/Significance We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors. PMID:19956663

  12. Multi-characteristic opsin enabled vision restoration

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay; Bhattacharya, Sulgana; Mahapatra, Vasu; Tripathy, Ashutosh; Gajjeraman, Sivakumar; Mohanty, Samarendra

    2017-02-01

    Photodegenerative retinal diseases such as retinitis pigmentosa (RP) and dry age related macular degeneration (dry- AMD) lead to loss of vision in millions of individuals. Currently, no surgical or medical treatment is available though optogenetic therapies are in clinical development. Here, we demonstrate vision restoration using Multi- Characteristics Opsin (MCO1) in animal models with photo-degenerated retina. MCO1 is reliably delivered to specific retinal cells via intravitreal injection of Adeno-Associated Virus, leading to significant improvement in visually guided behavior conducted using a radial-arm water maze. The time to reach platform significantly reduced after delivery of MCO1. Notably, the improvement in visually guided behavior was observed even at light intensity levels orders of magnitude lower than that required for Channelrhodopsin-2 opsin. Chronic light exposure study showed that chronic light exposure did not compromise viability of vMCO1-treated retina. Safe virus-mediated MCO1-delivery has potential for effective gene therapy of diverse retinal degenerations in patients.

  13. Retinotopic memory is more precise than spatiotopic memory.

    PubMed

    Golomb, Julie D; Kanwisher, Nancy

    2012-01-31

    Successful visually guided behavior requires information about spatiotopic (i.e., world-centered) locations, but how accurately is this information actually derived from initial retinotopic (i.e., eye-centered) visual input? We conducted a spatial working memory task in which subjects remembered a cued location in spatiotopic or retinotopic coordinates while making guided eye movements during the memory delay. Surprisingly, after a saccade, subjects were significantly more accurate and precise at reporting retinotopic locations than spatiotopic locations. This difference grew with each eye movement, such that spatiotopic memory continued to deteriorate, whereas retinotopic memory did not accumulate error. The loss in spatiotopic fidelity is therefore not a generic consequence of eye movements, but a direct result of converting visual information from native retinotopic coordinates. Thus, despite our conscious experience of an effortlessly stable spatiotopic world and our lifetime of practice with spatiotopic tasks, memory is actually more reliable in raw retinotopic coordinates than in ecologically relevant spatiotopic coordinates.

  14. Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects.

    PubMed

    Ambrosini, Ettore; Costantini, Marcello

    2017-02-01

    Viewed objects have been shown to afford suitable actions, even in the absence of any intention to act. However, little is known as to whether gaze behavior (i.e., the way we simply look at objects) is sensitive to action afforded by the seen object and how our actual motor possibilities affect this behavior. We recorded participants' eye movements during the observation of tools, graspable and ungraspable objects, while their hands were either freely resting on the table or tied behind their back. The effects of the observed object and hand posture on gaze behavior were measured by comparing the actual fixation distribution with that predicted by 2 widely supported models of visual attention, namely the Graph-Based Visual Saliency and the Adaptive Whitening Salience models. Results showed that saliency models did not accurately predict participants' fixation distributions for tools. Indeed, participants mostly fixated the action-related, functional part of the tools, regardless of its visual saliency. Critically, the restriction of the participants' action possibility led to a significant reduction of this effect and significantly improved the model prediction of the participants' gaze behavior. We suggest, first, that action-relevant object information at least in part guides gaze behavior. Second, postural information interacts with visual information to the generation of priority maps of fixation behavior. We support the view that the kind of information we access from the environment is constrained by our readiness to act. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. A bio-behavioral model of addiction treatment: applying dual representation theory to craving management and relapse prevention.

    PubMed

    Matto, Holly

    2005-01-01

    A bio-behavioral approach to drug addiction treatment is outlined. The presented treatment model uses dual representation theory as a guiding framework for understanding the bio-behavioral processes activated during the application of expressive therapeutic methods. Specifically, the treatment model explains how visual processing techniques can supplement traditional relapse prevention therapy protocols, to help clients better manage cravings and control triggers in hard-to-treat populations such as chronic substance-dependent persons.

  16. Spatial attention enhances the selective integration of activity from area MT.

    PubMed

    Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P

    2012-09-01

    Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.

  17. Neural basis of forward flight control and landing in honeybees.

    PubMed

    Ibbotson, M R; Hung, Y-S; Meffin, H; Boeddeker, N; Srinivasan, M V

    2017-11-06

    The impressive repertoire of honeybee visually guided behaviors, and their ability to learn has made them an important tool for elucidating the visual basis of behavior. Like other insects, bees perform optomotor course correction to optic flow, a response that is dependent on the spatial structure of the visual environment. However, bees can also distinguish the speed of image motion during forward flight and landing, as well as estimate flight distances (odometry), irrespective of the visual scene. The neural pathways underlying these abilities are unknown. Here we report on a cluster of descending neurons (DNIIIs) that are shown to have the directional tuning properties necessary for detecting image motion during forward flight and landing on vertical surfaces. They have stable firing rates during prolonged periods of stimulation and respond to a wide range of image speeds, making them suitable to detect image flow during flight behaviors. While their responses are not strictly speed tuned, the shape and amplitudes of their speed tuning functions are resistant to large changes in spatial frequency. These cells are prime candidates not only for the control of flight speed and landing, but also the basis of a neural 'front end' of the honeybee's visual odometer.

  18. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    PubMed Central

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2014-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants’ event-related potentials (ERPs) to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1–3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants’ goal involved attending to memory-matching items that these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  19. Masked Visual Analysis: Minimizing Type I Error in Visually Guided Single-Case Design for Communication Disorders

    PubMed Central

    Hitchcock, Elaine R.; Ferron, John

    2017-01-01

    Purpose Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of Type I error. In masked visual analysis (MVA), response-guided decisions are made by a researcher who is blinded to participants' identities and treatment assignments. MVA also makes it possible to conduct a hypothesis test assessing the significance of treatment effects. Method This tutorial describes the principles of MVA, including both how experiments can be set up and how results can be used for hypothesis testing. We then report a case study showing how MVA was deployed in a multiple-baseline across-subjects study investigating treatment for residual errors affecting rhotics. Strengths and weaknesses of MVA are discussed. Conclusions Given their important role in the evidence base that informs clinical decision making, it is critical for single-case experimental studies to be conducted in a way that allows researchers to draw valid inferences. As a method that can increase the rigor of single-case studies while preserving the benefits of a response-guided approach, MVA warrants expanded attention from researchers in communication disorders. PMID:28595354

  20. Masked Visual Analysis: Minimizing Type I Error in Visually Guided Single-Case Design for Communication Disorders.

    PubMed

    Byun, Tara McAllister; Hitchcock, Elaine R; Ferron, John

    2017-06-10

    Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of Type I error. In masked visual analysis (MVA), response-guided decisions are made by a researcher who is blinded to participants' identities and treatment assignments. MVA also makes it possible to conduct a hypothesis test assessing the significance of treatment effects. This tutorial describes the principles of MVA, including both how experiments can be set up and how results can be used for hypothesis testing. We then report a case study showing how MVA was deployed in a multiple-baseline across-subjects study investigating treatment for residual errors affecting rhotics. Strengths and weaknesses of MVA are discussed. Given their important role in the evidence base that informs clinical decision making, it is critical for single-case experimental studies to be conducted in a way that allows researchers to draw valid inferences. As a method that can increase the rigor of single-case studies while preserving the benefits of a response-guided approach, MVA warrants expanded attention from researchers in communication disorders.

  1. An Environmental Experience. Man: Steward of His Environment.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    Environmental awareness experiences described in this guide are designed to serve as models or suggestions for teachers conducting activities directed toward environmental improvement. "Man: Steward of His Environment" is the theme of the 14 experiences utilizing behavior profiles, audio-visual exhibits, area studies, service projects, mass…

  2. Normalization is a general neural mechanism for context-dependent decision making

    PubMed Central

    Louie, Kenway; Khaw, Mel W.; Glimcher, Paul W.

    2013-01-01

    Understanding the neural code is critical to linking brain and behavior. In sensory systems, divisive normalization seems to be a canonical neural computation, observed in areas ranging from retina to cortex and mediating processes including contrast adaptation, surround suppression, visual attention, and multisensory integration. Recent electrophysiological studies have extended these insights beyond the sensory domain, demonstrating an analogous algorithm for the value signals that guide decision making, but the effects of normalization on choice behavior are unknown. Here, we show that choice models using normalization generate significant (and classically irrational) choice phenomena driven by either the value or number of alternative options. In value-guided choice experiments, both monkey and human choosers show novel context-dependent behavior consistent with normalization. These findings suggest that the neural mechanism of value coding critically influences stochastic choice behavior and provide a generalizable quantitative framework for examining context effects in decision making. PMID:23530203

  3. Dynamics of memory-guided choice behavior in Drosophila

    PubMed Central

    ICHINOSE, Toshiharu; TANIMOTO, Hiromu

    2016-01-01

    Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain. PMID:27725473

  4. Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    PubMed Central

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923

  5. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  6. A Gesture Inventory for the Teaching of Spanish.

    ERIC Educational Resources Information Center

    Green, Jerald R.

    Intended for the nonnative, audiolingual-oriented Spanish teacher, this guide discusses the role of nonverbal behavior in foreign language learning with major emphasis given to an inventory of peninsular Spanish gesture. Gestures are described in narrative with line drawings to provide visual cues, and are accompanied by illustrative selections…

  7. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    PubMed Central

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  8. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2014-06-01

    demonstrated the capacity to rescue the decreased FMRP expression by gene delivery. We characterized an innate visually-guided avoidance behavior in tadpoles ... tadpole is a unique model system that allows easy access to the nervous system at early stages of development, is amenable to in vivo gene...established quantitative in vivo imaging methods to knockdown and assay synthesis of FMRP in Xenopus tadpole brains. We also established 2 behavioral

  9. Integration for navigation on the UMASS mobile perception lab

    NASA Technical Reports Server (NTRS)

    Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen

    1994-01-01

    Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.

  10. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  11. Vision in the natural world.

    PubMed

    Hayhoe, Mary M; Rothkopf, Constantin A

    2011-03-01

    Historically, the study of visual perception has followed a reductionist strategy, with the goal of understanding complex visually guided behavior by separate analysis of its elemental components. Recent developments in monitoring behavior, such as measurement of eye movements in unconstrained observers, have allowed investigation of the use of vision in the natural world. This has led to a variety of insights that would be difficult to achieve in more constrained experimental contexts. In general, it shifts the focus of vision away from the properties of the stimulus toward a consideration of the behavioral goals of the observer. It appears that behavioral goals are a critical factor in controlling the acquisition of visual information from the world. This insight has been accompanied by a growing understanding of the importance of reward in modulating the underlying neural mechanisms and by theoretical developments using reinforcement learning models of complex behavior. These developments provide us with the tools to understanding how tasks are represented in the brain, and how they control acquisition of information through use of gaze. WIREs Cogni Sci 2011 2 158-166 DOI: 10.1002/wcs.113 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Memory and visual search in naturalistic 2D and 3D environments

    PubMed Central

    Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.

    2016-01-01

    The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769

  13. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons

    PubMed Central

    Fetsch, Christopher R.

    2013-01-01

    The richness of perceptual experience, as well as its usefulness for guiding behavior, depends upon the synthesis of information across multiple senses. Recent decades have witnessed a surge in our understanding of how the brain combines sensory signals, or cues. Much of this research has been guided by one of two distinct approaches, one driven primarily by neurophysiological observations, the other guided by principles of mathematical psychology and psychophysics. Conflicting results and interpretations have contributed to a conceptual gap between psychophysical and physiological accounts of cue integration, but recent studies of visual-vestibular cue integration have narrowed this gap considerably. PMID:23686172

  14. Functional neural substrates of posterior cortical atrophy patients.

    PubMed

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  15. Structural and functional changes across the visual cortex of a patient with visual form agnosia.

    PubMed

    Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J

    2013-07-31

    Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.

  16. Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses.

    PubMed

    Lee, Hie Rin; O'Brien, Keely M Bumsted

    2011-07-01

    Seahorses are visually guided feeders that prey upon small fast-moving crustaceans. Seahorse habitats range from clear tropical to turbid temperate waters. How are seahorse retinae specialized to mediate vision in these diverse environments? Most species of seahorse have a specialization in their retina associated with acute vision, the fovea. The purpose of this study was to characterize the fovea of temperate Hippocampus abdominalis and tropical H. taeniopterus seahorses and to investigate their theoretical and behavioral limits of visual resolution. Their foveae were identified and photoreceptor (PR) and ganglion cell (GC) densities determined throughout the retina and topographically mapped. The theoretical limit of visual resolution was calculated using formulas taking into account lens radius and either cone PR or GC densities. Visual resolution was determined behaviorally using reactive distance. Both species possess a rod-free convexiclivate fovea. PR and GC densities were highest along the foveal slope, with a density decrease within the foveal center. Outside the fovea, there was a gradual density decrease towards the periphery. The theoretically calculated visual resolution on the foveal slope was poorer for H. abdominalis (5.25 min of arc) compared with H. taeniopterus (4.63 min of arc) based on PR density. Using GC density, H. abdominalis (9.81 min of arc) had a lower resolution compared with H. taeniopterus (9.04 min of arc). Behaviorally, H. abdominalis had a resolution limit of 1090.64 min of arc, while H. taeniopterus was much smaller, 692.86 min of arc. Although both species possess a fovea and the distribution of PR and GC is similar, H. taeniopterus has higher PR and GC densities on the foveal slope and better theoretical and behaviorally measured visual resolution compared to H. abdominalis. These data indicate that seahorses have a well-developed acute visual system, and tropical seahorses have higher visual resolution compared to temperate seahorses.

  17. Unit: Micro-Organisms and Man, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This unit, intended for students in grades eight or nine, is a revised version of ED 053 990. The teacher's guide lists the aims of the unit, behavioral objectives, suitable references and audio-visual aids, required apparatus and materials, and provides teaching notes for each activity, including comments concerning microbiological techniques.…

  18. Orientation selectivity sharpens motion detection in Drosophila

    PubMed Central

    Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.

    2015-01-01

    SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048

  19. Electromagnetic articulography treatment for an adult with Broca's aphasia and apraxia of speech.

    PubMed

    Katz, W F; Bharadwaj, S V; Carstens, B

    1999-12-01

    Electromagnetic articulography (EMA) was explored as a means of remediating [s]/[symbol in text] articulation deficits in the speech of an adult with Broca's aphasia and apraxia of speech. Over a 1-month period, the subject was provided with 2 different treatments in a counterbalanced procedure: (1) visually guided biofeedback concerning tongue-tip position and (2) a foil treatment in which a computer program delivered voicing-contrast stimuli for simple repetition. Kinematic and perceptual data suggest improvement resulting from visually guided biofeedback, both for nonspeech oral and, to a lesser extent, speech motor tasks. In contrast, the phonetic contrast treated in the foil condition showed only marginal improvement during the therapy session, with performance dropping back to baseline 10 weeks post-treatment. Although preliminary, the findings suggest that visual biofeedback concerning tongue-tip position can be used to treat nonspeech oral and (to a lesser extent) speech motor behavior in adults with Broca's aphasia and apraxia of speech.

  20. Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control

    PubMed Central

    Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.

    2012-01-01

    It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535

  1. Learning where to look: electrophysiological and behavioral indices of visual search in young and old subjects.

    PubMed

    Looren de Jong, H; Kok, A; Woestenburg, J C; Logman, C J; Van Rooy, J C

    1988-06-01

    The present investigation explores the way young and elderly subjects use regularities in target location in a visual display to guide search for targets. Although both young and old subjects show efficient use of search strategies, slight but reliable differences in reaction times suggest decreased ability in the elderly to use complex cues. Event-related potentials were very different for the young and the old. In the young, P3 amplitudes were larger on trials where the rule that governed the location of the target became evident; this was interpreted as an effect of memory updating. Enhanced positive Slow Wave amplitude indicated uncertainty in random search conditions. Elderly subjects' P3 and SW, however, seemed unrelated to behavioral performance, and they showed a large negative Slow Wave at central and parietal sites to randomly located targets. The latter finding was tentatively interpreted as a sign of increased effort in the elderly to allocate attention in visual space. This pattern of behavioral and ERP results suggests that age-related differences in search tasks can be understood in terms of changes in the strategy of allocating visual attention.

  2. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  3. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    PubMed

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  4. Explicit awareness supports conditional visual search in the retrieval guidance paradigm.

    PubMed

    Buttaccio, Daniel R; Lange, Nicholas D; Hahn, Sowon; Thomas, Rick P

    2014-01-01

    In four experiments we explored whether participants would be able to use probabilistic prompts to simplify perceptually demanding visual search in a task we call the retrieval guidance paradigm. On each trial a memory prompt appeared prior to (and during) the search task and the diagnosticity of the prompt(s) was manipulated to provide complete, partial, or non-diagnostic information regarding the target's color on each trial (Experiments 1-3). In Experiment 1 we found that the more diagnostic prompts was associated with faster visual search performance. However, similar visual search behavior was observed in Experiment 2 when the diagnosticity of the prompts was eliminated, suggesting that participants in Experiment 1 were merely relying on base rate information to guide search and were not utilizing the prompts. In Experiment 3 participants were informed of the relationship between the prompts and the color of the target and this was associated with faster search performance relative to Experiment 1, suggesting that the participants were using the prompts to guide search. Additionally, in Experiment 3 a knowledge test was implemented and performance in this task was associated with qualitative differences in search behavior such that participants that were able to name the color(s) most associated with the prompts were faster to find the target than participants who were unable to do so. However, in Experiments 1-3 diagnosticity of the memory prompt was manipulated via base rate information, making it possible that participants were merely relying on base rate information to inform search in Experiment 3. In Experiment 4 we manipulated diagnosticity of the prompts without manipulating base rate information and found a similar pattern of results as Experiment 3. Together, the results emphasize the importance of base rate and diagnosticity information in visual search behavior. In the General discussion section we explore how a recent computational model of hypothesis generation (HyGene; Thomas, Dougherty, Sprenger, & Harbison, 2008), linking attention with long-term and working memory, accounts for the present results and provides a useful framework of cued recall visual search. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. English Department Midi Course Curriculum for Juniors and Seniors at Norton High School.

    ERIC Educational Resources Information Center

    Zwicker, Lucille; And Others

    This curriculum guide presents syllabi for seventeen ten-week "midi-courses" for juniors and seniors in high school. For each course, the syllabi contain a course description, goals, subject matter, materials, an annotated list of audio-visual aids, a list of behavioral objectives, some suggested activities, a glossary of terms, and a selection of…

  6. The Organization of Exploratory Behaviors in Infant Locomotor Planning

    ERIC Educational Resources Information Center

    Kretch, Kari S.; Adolph, Karen E.

    2017-01-01

    How do infants plan and guide locomotion under challenging conditions? This experiment investigated the real-time process of visual and haptic exploration in 14-month-old infants as they decided whether and how to walk over challenging terrain--a series of bridges varying in width. Infants' direction of gaze was recorded with a head-mounted eye…

  7. Dynamic Echo Information Guides Flight in the Big Brown Bat

    PubMed Central

    Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.

    2016-01-01

    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690

  8. Consequences of Beauty: Effects of Rater Sex and Sexual Orientation on the Visual Exploration and Evaluation of Attractiveness in Real World Scenes

    PubMed Central

    Mitrovic, Aleksandra; Tinio, Pablo P. L.; Leder, Helmut

    2016-01-01

    One of the key behavioral effects of attractiveness is increased visual attention to attractive people. This effect is often explained in terms of evolutionary adaptations, such as attractiveness being an indicator of good health. Other factors could influence this effect. In the present study, we explored the modulating role of sexual orientation on the effects of attractiveness on exploratory visual behavior. Heterosexual and homosexual men and women viewed natural-looking scenes that depicted either two women or two men who varied systematically in levels of attractiveness (based on a pre-study). Participants’ eye movements and attractiveness ratings toward the faces of the depicted people were recorded. The results showed that although attractiveness had the largest influence on participants’ behaviors, participants’ sexual orientations strongly modulated the effects. With the exception of homosexual women, all participant groups looked longer and more often at attractive faces that corresponded with their sexual orientations. Interestingly, heterosexual and homosexual men and homosexual women looked longer and more often at the less attractive face of their non-preferred sex than the less attractive face of their preferred sex, evidence that less attractive faces of the preferred sex might have an aversive character. These findings provide evidence for the important role that sexual orientation plays in guiding visual exploratory behavior and evaluations of the attractiveness of others. PMID:27047365

  9. Consequences of Beauty: Effects of Rater Sex and Sexual Orientation on the Visual Exploration and Evaluation of Attractiveness in Real World Scenes.

    PubMed

    Mitrovic, Aleksandra; Tinio, Pablo P L; Leder, Helmut

    2016-01-01

    One of the key behavioral effects of attractiveness is increased visual attention to attractive people. This effect is often explained in terms of evolutionary adaptations, such as attractiveness being an indicator of good health. Other factors could influence this effect. In the present study, we explored the modulating role of sexual orientation on the effects of attractiveness on exploratory visual behavior. Heterosexual and homosexual men and women viewed natural-looking scenes that depicted either two women or two men who varied systematically in levels of attractiveness (based on a pre-study). Participants' eye movements and attractiveness ratings toward the faces of the depicted people were recorded. The results showed that although attractiveness had the largest influence on participants' behaviors, participants' sexual orientations strongly modulated the effects. With the exception of homosexual women, all participant groups looked longer and more often at attractive faces that corresponded with their sexual orientations. Interestingly, heterosexual and homosexual men and homosexual women looked longer and more often at the less attractive face of their non-preferred sex than the less attractive face of their preferred sex, evidence that less attractive faces of the preferred sex might have an aversive character. These findings provide evidence for the important role that sexual orientation plays in guiding visual exploratory behavior and evaluations of the attractiveness of others.

  10. Walking Drosophila align with the e-vector of linearly polarized light through directed modulation of angular acceleration

    PubMed Central

    Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.

    2014-01-01

    Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784

  11. The development of organized visual search

    PubMed Central

    Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.

    2013-01-01

    Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560

  12. Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching

    PubMed Central

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.

    2016-01-01

    Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723

  13. An Investigation of the Complexities of Successful and Unsuccessful Guide Dog Matching and Partnerships

    PubMed Central

    Lloyd, Janice; Budge, Claire; La Grow, Steve; Stafford, Kevin

    2016-01-01

    Matching a person who is blind or visually impaired with a guide dog is a process of finding the most suitable guide dog available for that individual. Not all guide dog partnerships are successful, and the consequences of an unsuccessful partnership may result in reduced mobility and quality of life for the handler (owner), and are costly in time and resources for guide dog training establishments. This study examined 50 peoples’ partnerships with one or more dogs (118 pairings) to ascertain the outcome of the relationship. Forty-three of the 118 dogs were returned to the guide dog training establishment before reaching retirement age, with the majority (n = 40) being categorized as having dog-related issues. Most (n = 26) of these dogs’ issues were classified as being behavioral in character, including work-related and non-work-related behavior, and 14 were due to physical causes (mainly poor health). Three dogs were returned due to matters relating to the handlers’ behavior. More second dogs were returned than the handlers’ first or third dogs, and dogs that had been previously used as a guide could be rematched successfully. Defining matching success is not clear-cut. Not all dogs that were returned were considered by their handlers to have been mismatched, and not all dogs retained until retirement were thought to have been good matches, suggesting that some handlers were retaining what they considered to be a poorly matched dog. Almost all the handlers who regarded a dog as being mismatched conceded that some aspects of the match were good. For example, a dog deemed mismatched for poor working behavior may have shown good home and/or other social behaviors. The same principle was true for successful matches, where few handlers claimed to have had a perfect dog. It is hoped that these results may help the guide dog industry identify important aspects of the matching process, and/or be used to identify areas where a matching problem exists. PMID:28018910

  14. Neural Mechanisms of Information Storage in Visual Short-Term Memory

    PubMed Central

    Serences, John T.

    2016-01-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990

  15. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  16. Neural mechanisms of information storage in visual short-term memory.

    PubMed

    Serences, John T

    2016-11-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Low-Resolution Vision-at the Hub of Eye Evolution.

    PubMed

    Nilsson, Dan-E; Bok, Michael J

    2017-11-01

    Simple roles for photoreception are likely to have preceded more demanding ones such as vision. The driving force behind this evolution is the improvement and elaboration of animal behaviors using photoreceptor input. Because the basic role for all senses aimed at the external world is to guide behavior, we argue here that understanding this "behavioral drive" is essential for unraveling the evolutionary past of the senses. Photoreception serves many different types of behavior, from simple shadow responses to visual communication. Based on minimum performance requirements for different types of tasks, photoreceptors have been argued to have evolved from non-directional receptors, via directional receptors, to low-resolution vision, and finally to high-resolution vision. Through this sequence, the performance requirements on the photoreceptors have gradually changed from broad to narrow angular sensitivity, from slow to fast response, and from low to high contrast sensitivity during the evolution from simple to more advanced and demanding behaviors. New behaviors would only evolve if their sensory performance requirements to some degree overlap with the requirements of already existing behaviors. This need for sensory "performance continuity" must have determined the order by which behaviors have evolved and thus been an important factor guiding animal evolution. Naturally, new behaviors are most likely to evolve from already existing behaviors with similar neural processing needs and similar motor responses, pointing to "neural continuity" as another guiding factor in sensory evolution. Here we use these principles to derive an evolutionary tree for behaviors driven by photoreceptor input. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. 'Who is the ideal candidate?': decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity

    NASA Astrophysics Data System (ADS)

    Merabet, Lotfi B.; Rizzo, Joseph F., III; Pascual-Leone, Alvaro; Fernandez, Eduardo

    2007-03-01

    Appropriate delivery of electrical stimulation to intact visual structures can evoke patterned sensations of light in individuals who have been blind for many years. This pivotal finding has lent credibility to the concept of restoring functional vision by artificial means. As numerous groups worldwide pursue human clinical testing with visual prosthetic devices, it is becoming increasingly clear that there remains a considerable gap between the challenges of prosthetic device development and the rehabilitative strategies needed to implement this new technology in patients. An important area of future work will be the development of appropriate pre- and post-implantation measures of performance and establishing candidate selection criteria in order to quantify technical advances, guide future device design and optimize therapeutic success. We propose that the selection of an 'ideal' candidate should also be considered within the context of the variable neuroplastic changes that follow vision loss. Specifically, an understanding of the adaptive and compensatory changes that occur within the brain could assist in guiding the development of post-implantation rehabilitative strategies and optimize behavioral outcomes.

  19. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus.

    PubMed

    Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A

    2004-01-01

    The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.

  20. Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.

    PubMed

    Fetsch, Christopher R; Deangelis, Gregory C; Angelaki, Dora E

    2010-05-01

    The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.

  1. Shade determination using camouflaged visual shade guides and an electronic spectrophotometer.

    PubMed

    Kvalheim, S F; Øilo, M

    2014-03-01

    The aim of the present study was to compare a camouflaged visual shade guide to a spectrophotometer designed for restorative dentistry. Two operators performed analyses of 66 subjects. One central upper incisor was measured four times by each operator; twice with a camouflaged visual shade guide and twice with a spectrophotometer Both methods had acceptable repeatability rates, but the electronic shade determination showed higher repeatability. In general, the electronically determined shades were darker than the visually determined shades. The use of a camouflaged visual shade guide seems to be an adequate method to reduce operator bias.

  2. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  3. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems.

    PubMed

    Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek

    2016-01-01

    This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.

  4. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.).

    PubMed

    Verspui, Remko; Gray, John R

    2009-10-01

    Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.

  5. Plastic Bags and Environmental Pollution

    ERIC Educational Resources Information Center

    Sang, Anita Ng Heung

    2010-01-01

    The "Hong Kong Visual Arts Curriculum Guide," covering Primary 1 to Secondary 3 grades (Curriculum Development Committee, 2003), points to three domains of learning in visual arts: (1) visual arts knowledge; (2) visual arts appreciation and criticism; and (3) visual arts making. The "Guide" suggests learning should develop…

  6. Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain.

    PubMed

    Wang, Shuo; Mamelak, Adam N; Adolphs, Ralph; Rutishauser, Ueli

    2018-06-08

    Neurons in the primate medial temporal lobe (MTL) respond selectively to visual categories such as faces, contributing to how the brain represents stimulus meaning. However, it remains unknown whether MTL neurons continue to encode stimulus meaning when it changes flexibly as a function of variable task demands imposed by goal-directed behavior. While classically associated with long-term memory, recent lesion and neuroimaging studies show that the MTL also contributes critically to the online guidance of goal-directed behaviors such as visual search. Do such tasks modulate responses of neurons in the MTL, and if so, do their responses mirror bottom-up input from visual cortices or do they reflect more abstract goal-directed properties? To answer these questions, we performed concurrent recordings of eye movements and single neurons in the MTL and medial frontal cortex (MFC) in human neurosurgical patients performing a memory-guided visual search task. We identified a distinct population of target-selective neurons in both the MTL and MFC whose response signaled whether the currently fixated stimulus was a target or distractor. This target-selective response was invariant to visual category and predicted whether a target was detected or missed behaviorally during a given fixation. The response latencies, relative to fixation onset, of MFC target-selective neurons preceded those in the MTL by ∼200 ms, suggesting a frontal origin for the target signal. The human MTL thus represents not only fixed stimulus identity, but also task-specified stimulus relevance due to top-down goal relevance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.

    ERIC Educational Resources Information Center

    Chun, Marvin M.; Jiang, Yuhong

    1998-01-01

    Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)

  8. Analyzing Two-Phase Single-Case Data with Non-overlap and Mean Difference Indices: Illustration, Software Tools, and Alternatives.

    PubMed

    Manolov, Rumen; Losada, José L; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2016-01-01

    Two-phase single-case designs, including baseline evaluation followed by an intervention, represent the most clinically straightforward option for combining professional practice and research. However, unless they are part of a multiple-baseline schedule, such designs do not allow demonstrating a causal relation between the intervention and the behavior. Although the statistical options reviewed here cannot help overcoming this methodological limitation, we aim to make practitioners and applied researchers aware of the available appropriate options for extracting maximum information from the data. In the current paper, we suggest that the evaluation of behavioral change should include visual and quantitative analyses, complementing the substantive criteria regarding the practical importance of the behavioral change. Specifically, we emphasize the need to use structured criteria for visual analysis, such as the ones summarized in the What Works Clearinghouse Standards, especially if such criteria are complemented by visual aids, as illustrated here. For quantitative analysis, we focus on the non-overlap of all pairs and the slope and level change procedure, as they offer straightforward information and have shown reasonable performance. An illustration is provided of the use of these three pieces of information: visual, quantitative, and substantive. To make the use of visual and quantitative analysis feasible, open source software is referred to and demonstrated. In order to provide practitioners and applied researchers with a more complete guide, several analytical alternatives are commented on pointing out the situations (aims, data patterns) for which these are potentially useful.

  9. Analyzing Two-Phase Single-Case Data with Non-overlap and Mean Difference Indices: Illustration, Software Tools, and Alternatives

    PubMed Central

    Manolov, Rumen; Losada, José L.; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2016-01-01

    Two-phase single-case designs, including baseline evaluation followed by an intervention, represent the most clinically straightforward option for combining professional practice and research. However, unless they are part of a multiple-baseline schedule, such designs do not allow demonstrating a causal relation between the intervention and the behavior. Although the statistical options reviewed here cannot help overcoming this methodological limitation, we aim to make practitioners and applied researchers aware of the available appropriate options for extracting maximum information from the data. In the current paper, we suggest that the evaluation of behavioral change should include visual and quantitative analyses, complementing the substantive criteria regarding the practical importance of the behavioral change. Specifically, we emphasize the need to use structured criteria for visual analysis, such as the ones summarized in the What Works Clearinghouse Standards, especially if such criteria are complemented by visual aids, as illustrated here. For quantitative analysis, we focus on the non-overlap of all pairs and the slope and level change procedure, as they offer straightforward information and have shown reasonable performance. An illustration is provided of the use of these three pieces of information: visual, quantitative, and substantive. To make the use of visual and quantitative analysis feasible, open source software is referred to and demonstrated. In order to provide practitioners and applied researchers with a more complete guide, several analytical alternatives are commented on pointing out the situations (aims, data patterns) for which these are potentially useful. PMID:26834691

  10. Threat captures attention but does not affect learning of contextual regularities.

    PubMed

    Yamaguchi, Motonori; Harwood, Sarah L

    2017-04-01

    Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.

  11. Ultrasound visual feedback in articulation therapy following partial glossectomy.

    PubMed

    Blyth, Katrina M; Mccabe, Patricia; Madill, Catherine; Ballard, Kirrie J

    2016-01-01

    Disordered speech is common following treatment for tongue cancer, however there is insufficient high quality evidence to guide clinical decision making about treatment. This study investigated use of ultrasound tongue imaging as a visual feedback tool to guide tongue placement during articulation therapy with two participants following partial glossectomy. A Phase I multiple baseline design across behaviors was used to investigate therapeutic effect of ultrasound visual feedback during speech rehabilitation. Percent consonants correct and speech intelligibility at sentence level were used to measure acquisition, generalization and maintenance of speech skills for treated and untreated related phonemes, while unrelated phonemes were tested to demonstrate experimental control. Swallowing and oromotor measures were also taken to monitor change. Sentence intelligibility was not a sensitive measure of speech change, but both participants demonstrated significant change in percent consonants correct for treated phonemes. One participant also demonstrated generalization to non-treated phonemes. Control phonemes along with swallow and oromotor measures remained stable throughout the study. This study establishes therapeutic benefit of ultrasound visual feedback in speech rehabilitation following partial glossectomy. Readers will be able to explain why and how tongue cancer surgery impacts on articulation precision. Readers will also be able to explain the acquisition, generalization and maintenance effects in the study. Copyright © 2016. Published by Elsevier Inc.

  12. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    PubMed Central

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  13. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  14. Visualization of cortical, subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses

    PubMed Central

    Resendez, Shanna L.; Jennings, Josh H.; Ung, Randall L.; Namboodiri, Vijay Mohan K.; Zhou, Zhe Charles; Otis, James M.; Nomura, Hiroshi; McHenry, Jenna A.; Kosyk, Oksana; Stuber, Garret D.

    2016-01-01

    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, due to light scattering properties of the brain as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head fixed behavioral tasks. This limitation can now be circumvented by utilizing miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here, we describe procedural steps to conduct such imaging studies using mice. However, we anticipate the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state, and other aspects of complex behavioral tasks. This protocol takes 6–11 weeks to complete. PMID:26914316

  15. Experientally guided robots. [for planet exploration

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1974-01-01

    This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.

  16. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems

    PubMed Central

    Parameswaran, Vidhya; Anilkumar, S.; Lylajam, S.; Rajesh, C.; Narayan, Vivek

    2016-01-01

    Background and Objectives: This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. Methods: In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results: Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. Conclusion: This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome. PMID:27746599

  17. Gesture helps learners learn, but not merely by guiding their visual attention.

    PubMed

    Wakefield, Elizabeth; Novack, Miriam A; Congdon, Eliza L; Franconeri, Steven; Goldin-Meadow, Susan

    2018-04-16

    Teaching a new concept through gestures-hand movements that accompany speech-facilitates learning above-and-beyond instruction through speech alone (e.g., Singer & Goldin-Meadow, ). However, the mechanisms underlying this phenomenon are still under investigation. Here, we use eye tracking to explore one often proposed mechanism-gesture's ability to direct visual attention. Behaviorally, we replicate previous findings: Children perform significantly better on a posttest after learning through Speech+Gesture instruction than through Speech Alone instruction. Using eye tracking measures, we show that children who watch a math lesson with gesture do allocate their visual attention differently from children who watch a math lesson without gesture-they look more to the problem being explained, less to the instructor, and are more likely to synchronize their visual attention with information presented in the instructor's speech (i.e., follow along with speech) than children who watch the no-gesture lesson. The striking finding is that, even though these looking patterns positively predict learning outcomes, the patterns do not mediate the effects of training condition (Speech Alone vs. Speech+Gesture) on posttest success. We find instead a complex relation between gesture and visual attention in which gesture moderates the impact of visual looking patterns on learning-following along with speech predicts learning for children in the Speech+Gesture condition, but not for children in the Speech Alone condition. Gesture's beneficial effects on learning thus come not merely from its ability to guide visual attention, but also from its ability to synchronize with speech and affect what learners glean from that speech. © 2018 John Wiley & Sons Ltd.

  18. A probabilistic model of overt visual attention for cognitive robots.

    PubMed

    Begum, Momotaz; Karray, Fakhri; Mann, George K I; Gosine, Raymond G

    2010-10-01

    Visual attention is one of the major requirements for a robot to serve as a cognitive companion for human. The robotic visual attention is mostly concerned with overt attention which accompanies head and eye movements of a robot. In this case, each movement of the camera head triggers a number of events, namely transformation of the camera and the image coordinate systems, change of content of the visual field, and partial appearance of the stimuli. All of these events contribute to the reduction in probability of meaningful identification of the next focus of attention. These events are specific to overt attention with head movement and, therefore, their effects are not addressed in the classical models of covert visual attention. This paper proposes a Bayesian model as a robot-centric solution for the overt visual attention problem. The proposed model, while taking inspiration from the primates visual attention mechanism, guides a robot to direct its camera toward behaviorally relevant and/or visually demanding stimuli. A particle filter implementation of this model addresses the challenges involved in overt attention with head movement. Experimental results demonstrate the performance of the proposed model.

  19. Understanding the function of visual short-term memory: transsaccadic memory, object correspondence, and gaze correction.

    PubMed

    Hollingworth, Andrew; Richard, Ashleigh M; Luck, Steven J

    2008-02-01

    Visual short-term memory (VSTM) has received intensive study over the past decade, with research focused on VSTM capacity and representational format. Yet, the function of VSTM in human cognition is not well understood. Here, the authors demonstrate that VSTM plays an important role in the control of saccadic eye movements. Intelligent human behavior depends on directing the eyes to goal-relevant objects in the world, yet saccades are very often inaccurate and require correction. The authors hypothesized that VSTM is used to remember the features of the current saccade target so that it can be rapidly reacquired after an errant saccade, a task faced by the visual system thousands of times each day. In 4 experiments, memory-based gaze correction was accurate, fast, automatic, and largely unconscious. In addition, a concurrent VSTM load interfered with memory-based gaze correction, but a verbal short-term memory load did not. These findings demonstrate that VSTM plays a direct role in a fundamentally important aspect of visually guided behavior, and they suggest the existence of previously unknown links between VSTM representations and the occulomotor system. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  20. Cognitive Control Network Contributions to Memory-Guided Visual Attention

    PubMed Central

    Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.

    2016-01-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253

  1. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli

    PubMed Central

    Chan, R. WM.; Gabbiani, F.

    2013-01-01

    SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572

  2. A systematic review of visual image theory, assessment, and use in skin cancer and tanning research.

    PubMed

    McWhirter, Jennifer E; Hoffman-Goetz, Laurie

    2014-01-01

    Visual images increase attention, comprehension, and recall of health information and influence health behaviors. Health communication campaigns on skin cancer and tanning often use visual images, but little is known about how such images are selected or evaluated. A systematic review of peer-reviewed, published literature on skin cancer and tanning was conducted to determine (a) what visual communication theories were used, (b) how visual images were evaluated, and (c) how visual images were used in the research studies. Seven databases were searched (PubMed/MEDLINE, EMBASE, PsycINFO, Sociological Abstracts, Social Sciences Full Text, ERIC, and ABI/INFORM) resulting in 5,330 citations. Of those, 47 met the inclusion criteria. Only one study specifically identified a visual communication theory guiding the research. No standard instruments for assessing visual images were reported. Most studies lacked, to varying degrees, comprehensive image description, image pretesting, full reporting of image source details, adequate explanation of image selection or development, and example images. The results highlight the need for greater theoretical and methodological attention to visual images in health communication research in the future. To this end, the authors propose a working definition of visual health communication.

  3. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  4. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    PubMed

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  5. Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: evidence from eye movements.

    PubMed

    Hout, Michael C; Goldinger, Stephen D

    2012-02-01

    When observers search for a target object, they incidentally learn the identities and locations of "background" objects in the same display. This learning can facilitate search performance, eliciting faster reaction times for repeated displays. Despite these findings, visual search has been successfully modeled using architectures that maintain no history of attentional deployments; they are amnesic (e.g., Guided Search Theory). In the current study, we asked two questions: 1) under what conditions does such incidental learning occur? And 2) what does viewing behavior reveal about the efficiency of attentional deployments over time? In two experiments, we tracked eye movements during repeated visual search, and we tested incidental memory for repeated nontarget objects. Across conditions, the consistency of search sets and spatial layouts were manipulated to assess their respective contributions to learning. Using viewing behavior, we contrasted three potential accounts for faster searching with experience. The results indicate that learning does not result in faster object identification or greater search efficiency. Instead, familiar search arrays appear to allow faster resolution of search decisions, whether targets are present or absent.

  6. Visual Arts: A Guide to Curriculum Development in the Arts.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Public Instruction, Des Moines.

    This visual arts curriculum guide was developed as a subset of a model curriculum for the arts as mandated by the Iowa legislature. It is designed to be used in conjunction with the Visual Arts in Iowa Schools (VAIS). The guide is divided into six sections: Sections one and two contain the preface, acknowledgements, and a list of members of the…

  7. The Role of Target-Distractor Relationships in Guiding Attention and the Eyes in Visual Search

    ERIC Educational Resources Information Center

    Becker, Stefanie I.

    2010-01-01

    Current models of visual search assume that visual attention can be guided by tuning attention toward specific feature values (e.g., particular size, color) or by inhibiting the features of the irrelevant nontargets. The present study demonstrates that attention and eye movements can also be guided by a relational specification of how the target…

  8. A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates

    PubMed Central

    Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker

    2016-01-01

    The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043

  9. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades.

    PubMed

    Ameqrane, Ilhame; Ilhame, Ameqrane; Wattiez, Nicolas; Nicolas, Wattiez; Pouget, Pierre; Pierre, Pouget; Missal, Marcus; Marcus, Missal

    2015-10-01

    It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.

  10. Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo

    2016-11-01

    To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.

  11. The primary visual cortex in the neural circuit for visual orienting

    NASA Astrophysics Data System (ADS)

    Zhaoping, Li

    The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.

  12. Multisensory guidance of orienting behavior.

    PubMed

    Maier, Joost X; Groh, Jennifer M

    2009-12-01

    We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.

  13. Combined Electrophysiological and Behavioral Evidence for the Suppression of Salient Distractors.

    PubMed

    Gaspelin, Nicholas; Luck, Steven J

    2018-05-15

    Researchers have long debated how salient-but-irrelevant features guide visual attention. Pure stimulus-driven theories claim that salient stimuli automatically capture attention irrespective of goals, whereas pure goal-driven theories propose that an individual's attentional control settings determine whether salient stimuli capture attention. However, recent studies have suggested a hybrid model in which salient stimuli attract visual attention but can be actively suppressed by top-down attentional mechanisms. Support for this hybrid model has primarily come from ERP studies demonstrating that salient stimuli, which fail to capture attention, also elicit a distractor positivity (P D ) component, a putative neural index of suppression. Other support comes from a handful of behavioral studies showing that processing at the salient locations is inhibited compared with other locations. The current study was designed to link the behavioral and neural evidence by combining ERP recordings with an experimental paradigm that provides a behavioral measure of suppression. We found that, when a salient distractor item elicited the P D component, processing at the location of this distractor was suppressed below baseline levels. Furthermore, the magnitude of behavioral suppression and the magnitude of the P D component covaried across participants. These findings provide a crucial connection between the behavioral and neural measures of suppression, which opens the door to using the P D component to assess the timing and neural substrates of the behaviorally observed suppression.

  14. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A model of attention-guided visual perception and recognition.

    PubMed

    Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A

    1998-08-01

    A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.

  16. Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months.

    PubMed

    Thomas, Brittany L; Karl, Jenni M; Whishaw, Ian Q

    2014-01-01

    The Dual Visuomotor Channel Theory proposes that visually guided reaching is a composite of two movements, a Reach that advances the hand to contact the target and a Grasp that shapes the digits for target purchase. The theory is supported by biometric analyses of adult reaching, evolutionary contrasts, and differential developmental patterns for the Reach and the Grasp in visually guided reaching in human infants. The present ethological study asked whether there is evidence for a dissociated development for the Reach and the Grasp in nonvisual hand use in very early infancy. The study documents a rich array of spontaneous self-touching behavior in infants during the first 6 months of life and subjected the Reach movements to an analysis in relation to body target, contact type, and Grasp. Video recordings were made of resting alert infants biweekly from birth to 6 months. In younger infants, self-touching targets included the head and trunk. As infants aged, targets became more caudal and included the hips, then legs, and eventually the feet. In younger infants hand contact was mainly made with the dorsum of the hand, but as infants aged, contacts included palmar contacts and eventually grasp and manipulation contacts with the body and clothes. The relative incidence of caudal contacts and palmar contacts increased concurrently and were significantly correlated throughout the period of study. Developmental increases in self-grasping contacts occurred a few weeks after the increase in caudal and palmar contacts. The behavioral and temporal pattern of these spontaneous self-touching movements suggest that the Reach, in which the hand extends to make a palmar self-contact, and the Grasp, in which the digits close and make manipulatory movements, have partially independent developmental profiles. The results additionally suggest that self-touching behavior is an important developmental phase that allows the coordination of the Reach and the Grasp prior to and concurrent with their use under visual guidance.

  17. Haltere mechanosensory influence on tethered flight behavior in Drosophila.

    PubMed

    Mureli, Shwetha; Fox, Jessica L

    2015-08-01

    In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.

  18. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    PubMed

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cognitive Control Network Contributions to Memory-Guided Visual Attention.

    PubMed

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2016-05-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    PubMed Central

    Kress, Daniel; Egelhaaf, Martin

    2014-01-01

    During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed. PMID:25309362

  1. An application of interactive computer graphics technology to the design of dispersal mechanisms

    NASA Technical Reports Server (NTRS)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  2. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana).

    PubMed

    Horowitz, Seth S; Simmons, Andrea Megela

    2010-01-01

    In the bullfrog (Rana catesbeiana), the process of metamorphosis culminates in the appearance of new visual and visuomotor behaviors reflective of the emergence of binocular vision and visually-guided prey capture behaviors as the animal transitions to life on land. Using several different neuroanatomical tracers, we examined the substrates that may underlie these behavioral changes by tracing the afferent and efferent connectivity of the midbrain optic tectum across metamorphic development. Intratectal, tectotoral, tectotegmental, tectobulbar, and tecto-thalamic tracts exhibit similar trajectories of neurobiotin fiber label across the developmental span from early larval tadpoles to adults. Developmental variability was apparent primarily in intensity and distribution of cell and puncta label in target nuclei. Combined injections of cholera toxin subunit β and Phaseolus vulgaris leucoagglutinin consistently label cell bodies, puncta, or fiber segments bilaterally in midbrain targets including the pretectal gray, laminar nucleus of the torus semicircularis, and the nucleus of the medial longitudinal fasciculus. Developmentally stable label was observed bilaterally in medullary targets including the medial vestibular nucleus, lateral vestibular nucleus, and reticular gray, and in forebrain targets including the posterior and ventromedial nuclei of the thalamus. The nucleus isthmi, cerebellum, lateral line nuclei, medial septum, ventral striatum, and medial pallium show more developmentally variable patterns of connectivity. Our results suggest that even during larval development, the optic tectum contains substrates for integration of visual with auditory, vestibular, and somatosensory cues, as well as for guidance of motivated behaviors. Copyright © 2011 S. Karger AG, Basel.

  3. The influence of stimulus format on drawing—a functional imaging study of decision making in portrait drawing

    PubMed Central

    Miall, R.C.; Nam, Se-Ho; Tchalenko, J.

    2014-01-01

    To copy a natural visual image as a line drawing, visual identification and extraction of features in the image must be guided by top-down decisions, and is usually influenced by prior knowledge. In parallel with other behavioral studies testing the relationship between eye and hand movements when drawing, we report here a functional brain imaging study in which we compared drawing of faces and abstract objects: the former can be strongly guided by prior knowledge, the latter less so. To manipulate the difficulty in extracting features to be drawn, each original image was presented in four formats including high contrast line drawings and silhouettes, and as high and low contrast photographic images. We confirmed the detailed eye–hand interaction measures reported in our other behavioral studies by using in-scanner eye-tracking and recording of pen movements with a touch screen. We also show that the brain activation pattern reflects the changes in presentation formats. In particular, by identifying the ventral and lateral occipital areas that were more highly activated during drawing of faces than abstract objects, we found a systematic increase in differential activation for the face-drawing condition, as the presentation format made the decisions more challenging. This study therefore supports theoretical models of how prior knowledge may influence perception in untrained participants, and lead to experience-driven perceptual modulation by trained artists. PMID:25128710

  4. Molecular Characterization of Copepod Photoreception.

    PubMed

    Porter, Megan L; Steck, Mireille; Roncalli, Vittoria; Lenz, Petra H

    2017-08-01

    Copepod crustaceans are an abundant and ecologically significant group whose basic biology is guided by numerous visually guided behaviors. These behaviors are driven by copepod eyes, including naupliar eyes and Gicklhorn's organs, which vary widely in structure and function among species. Yet little is known about the molecular aspects of copepod vision. In this study we present a general overview of the molecular aspects of copepod vision by identifying phototransduction genes from newly generated and publicly available RNA-sequencing data and assemblies from 12 taxonomically diverse copepod species. We identify a set of 10 expressed transcripts that serve as a set of target genes for future studies of copepod phototransduction. Our more detailed evolutionary analyses of the opsin gene responsible for forming visual pigments found that all of the copepod species investigated express two main groups of opsins: middle-wavelength-sensitive (MWS) opsins and pteropsins. Additionally, there is evidence from a few species (e.g., Calanus finmarchicus, Eurytemora affinis, Paracyclopina nana, and Lernaea cyprinacea) for the expression of two additional groups of opsins-the peropsins and rhodopsin 7 (Rh7) opsins-at low levels or distinct developmental stages. An ontogenetic analysis of opsin expression in Calanus finmarchicus found the expression of a single dominant MWS opsin, as well as evidence for differences in expression across development in some MWS, pteropsin, and Rh7 opsins, with expression peaking in early naupliar through early copepodite stages.

  5. Impaired Oculomotor Behavior of Children with Developmental Dyslexia in Antisaccades and Predictive Saccades Tasks

    PubMed Central

    Lukasova, Katerina; Silva, Isadora P.; Macedo, Elizeu C.

    2016-01-01

    Analysis of eye movement patterns during tracking tasks represents a potential way to identify differences in the cognitive processing and motor mechanisms underlying reading in dyslexic children before the occurrence of school failure. The current study aimed to evaluate the pattern of eye movements in antisaccades, predictive saccades and visually guided saccades in typical readers and readers with developmental dyslexia. The study included 30 children (age M = 11; SD = 1.67), 15 diagnosed with developmental dyslexia (DG) and 15 regular readers (CG), matched by age, gender and school grade. Cognitive assessment was performed prior to the eye-tracking task during which both eyes were registered using the Tobii® 1750 eye-tracking device. The results demonstrated a lower correct antisaccades rate in dyslexic children compared to the controls (p < 0.001, DG = 25%, CC = 37%). Dyslexic children also made fewer saccades in predictive latency (p < 0.001, DG = 34%, CG = 46%, predictive latency within −300–120 ms with target as 0 point). No between-group difference was found for visually guided saccades. In this task, both groups showed shorter latency for right-side targets. The results indicated altered oculomotor behavior in dyslexic children, which has been reported in previous studies. We extend these findings by demonstrating impaired implicit learning of target's time/position patterns in dyslexic children. PMID:27445945

  6. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  7. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Visuomotor signals for reaching movements in the rostro-dorsal sector of the monkey thalamic reticular nucleus.

    PubMed

    Saga, Yosuke; Nakayama, Yoshihisa; Inoue, Ken-Ichi; Yamagata, Tomoko; Hashimoto, Masashi; Tremblay, Léon; Takada, Masahiko; Hoshi, Eiji

    2017-05-01

    The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

    PubMed

    Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-08-11

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.

  10. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma

    PubMed Central

    Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  11. Music interventions and group participation skills of preschoolers with visual impairments: raising questions about music, arousal, and attention.

    PubMed

    Robb, Sheri L

    2003-01-01

    The purposes of this pilot study were two-fold: First, to document and compare attentive behavior during music and play-based group instructional sessions and second, to document and compare 4 group participation behaviors during music and play-based sessions. The 4 group participation behaviors included facing a central speaker, following onestep directions, manipulating objects according to their function, and remaining seated. Six of the 12 children enrolled completed the study, with all participants enrolled in an early intervention program due to visual impairments. Study participants were between the ages of 4 and 6 years inclusively. Children participated in 4, 30-minute instructional sessions. Two instructional sessions were music-based and two were play-based with the 4 sessions equally distributed across a 2-week period. An ABBA design was used to control for possible order effects. Each session was videotaped to facilitate collection of behavioral data. Statistical analysis of these data revealed that attentive behavior was significantly higher during music based-sessions (t(5) = 5.81; p =.002). Mean scores for the remaining group participation behaviors were higher in the music condition, but these differences were not statistically significant. Discussion regarding differential outcomes among participants, as well as an exploration of theories related to music, arousal, and attention are discussed in an effort to guide future research.

  12. Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.

    PubMed

    Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P

    2016-04-01

    Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.

  13. Impairments in Tactile Search Following Superior Parietal Damage

    ERIC Educational Resources Information Center

    Skakoon-Sparling, Shayna P.; Vasquez, Brandon P.; Hano, Kate; Danckert, James

    2011-01-01

    The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior…

  14. Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: Evidence from eye movements

    PubMed Central

    Hout, Michael C.; Goldinger, Stephen D.

    2011-01-01

    When observers search for a target object, they incidentally learn the identities and locations of “background” objects in the same display. This learning can facilitate search performance, eliciting faster reaction times for repeated displays (Hout & Goldinger, 2010). Despite these findings, visual search has been successfully modeled using architectures that maintain no history of attentional deployments; they are amnesic (e.g., Guided Search Theory; Wolfe, 2007). In the current study, we asked two questions: 1) under what conditions does such incidental learning occur? And 2) what does viewing behavior reveal about the efficiency of attentional deployments over time? In two experiments, we tracked eye movements during repeated visual search, and we tested incidental memory for repeated non-target objects. Across conditions, the consistency of search sets and spatial layouts were manipulated to assess their respective contributions to learning. Using viewing behavior, we contrasted three potential accounts for faster searching with experience. The results indicate that learning does not result in faster object identification or greater search efficiency. Instead, familiar search arrays appear to allow faster resolution of search decisions, whether targets are present or absent. PMID:21574743

  15. Scene perception and the visual control of travel direction in navigating wood ants

    PubMed Central

    Collett, Thomas S.; Lent, David D.; Graham, Paul

    2014-01-01

    This review reflects a few of Mike Land's many and varied contributions to visual science. In it, we show for wood ants, as Mike has done for a variety of animals, including readers of this piece, what can be learnt from a detailed analysis of an animal's visually guided eye, head or body movements. In the case of wood ants, close examination of their body movements, as they follow visually guided routes, is starting to reveal how they perceive and respond to their visual world and negotiate a path within it. We describe first some of the mechanisms that underlie the visual control of their paths, emphasizing that vision is not the ant's only sense. In the second part, we discuss how remembered local shape-dependent and global shape-independent features of a visual scene may interact in guiding the ant's path. PMID:24395962

  16. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  17. Comparing visual search and eye movements in bilinguals and monolinguals

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Azuma, Tamiko; Goldinger, Stephen D.

    2017-01-01

    Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands. PMID:28508116

  18. Flight performance in night-flying sweat bees suffers at low light levels.

    PubMed

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  19. A solution to the online guidance problem for targeted reaches: proportional rate control using relative disparity tau.

    PubMed

    Anderson, Joe; Bingham, Geoffrey P

    2010-09-01

    We provide a solution to a major problem in visually guided reaching. Research has shown that binocular vision plays an important role in the online visual guidance of reaching, but the visual information and strategy used to guide a reach remains unknown. We propose a new theory of visual guidance of reaching including a new information variable, tau(alpha) (relative disparity tau), and a novel control strategy that allows actors to guide their reach trajectories visually by maintaining a constant proportion between tau(alpha) and its rate of change. The dynamical model couples the information to the reaching movement to generate trajectories characteristic of human reaching. We tested the theory in two experiments in which participants reached under conditions of darkness to guide a visible point either on a sliding apparatus or on their finger to a point-light target in depth. Slider apparatus controlled for a simple mapping from visual to proprioceptive space. When reaching with their finger, participants were forced, by perturbation of visual information used for feedforward control, to use online control with only binocular disparity-based information for guidance. Statistical analyses of trajectories strongly supported the theory. Simulations of the model were compared statistically to actual reaching trajectories. The results supported the theory, showing that tau(alpha) provides a source of information for the control of visually guided reaching and that participants use this information in a proportional rate control strategy.

  20. Driver Behavior and Performance with Augmented Reality Pedestrian Collision Warning: An Outdoor User Study.

    PubMed

    Kim, Hyungil; Gabbard, Joseph L; Anon, Alexandre Miranda; Misu, Teruhisa

    2018-04-01

    This article investigates the effects of visual warning presentation methods on human performance in augmented reality (AR) driving. An experimental user study was conducted in a parking lot where participants drove a test vehicle while braking for any cross traffic with assistance from AR visual warnings presented on a monoscopic and volumetric head-up display (HUD). Results showed that monoscopic displays can be as effective as volumetric displays for human performance in AR braking tasks. The experiment also demonstrated the benefits of conformal graphics, which are tightly integrated into the real world, such as their ability to guide drivers' attention and their positive consequences on driver behavior and performance. These findings suggest that conformal graphics presented via monoscopic HUDs can enhance driver performance by leveraging the effectiveness of monocular depth cues. The proposed approaches and methods can be used and further developed by future researchers and practitioners to better understand driver performance in AR as well as inform usability evaluation of future automotive AR applications.

  1. A unified science of concussion

    PubMed Central

    Maruta, Jun; Lee, Stephanie W; Jacobs, Emily F; Ghajar, Jamshid

    2010-01-01

    The etiology, imaging, and behavioral assessment of mild traumatic brain injury (mTBI) are daunting fields, given the lack of a cohesive neurobiological explanation for the observed cognitive deficits seen following mTBI. Although subjective patient self-report is the leading method of diagnosing mTBI, current scientific evidence suggests that quantitative measures of predictive timing, such as visual tracking, could be a useful adjunct to guide the assessment of attention and to screen for advanced brain imaging. Magnetic resonance diffusion tensor imaging (DTI) has demonstrated that mTBI is associated with widespread microstructural changes that include those in the frontal white matter tracts. Deficits observed during predictive visual tracking correlate with DTI findings that show lesions localized in neural pathways subserving the cognitive functions often disrupted in mTBI. Unifying the anatomical and behavioral approaches, the emerging evidence supports an explanation for mTBI that the observed cognitive impairments are a result of predictive timing deficits caused by shearing injuries in the frontal white matter tracts. PMID:20955326

  2. Attention, automaticity, and awareness in synesthesia.

    PubMed

    Mattingley, Jason B

    2009-03-01

    The phenomenon of synesthesia has occupied the thoughts of philosophers and artists for decades. With the advent modern behavioral and brain imaging techniques, scientific research on synesthesia has also moved into the mainstream of thought. Here I provide a cognitive neuroscience perspective on the condition, with a particular emphasis on grapheme-color synesthesia, the most common variant, in which individuals report vivid and consistent experiences of color in association with numerals, letters, and words. Behavioral studies have revealed several fundamental properties of induced synesthetic colors. First, although they seem to arise automatically, without the need for voluntary control, they are strongly modulated by selective attention. Second, they attain salience relatively early in visual processing, and so can influence perceptual judgments and guide focal attention in cluttered, achromatic displays. Third, brain activity during synesthetic color experiences arises from within the ventral temporal lobe, including color-selective area V4. It has been speculated that grapheme-color synesthesia arises from disinhibited feedback or abnormal cross-wiring between brain regions involved in extracting visual form and color.

  3. From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2012-01-01

    Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737

  4. Subliminally presented and stored objects capture spatial attention.

    PubMed

    Astle, Duncan E; Nobre, Anna C; Scerif, Gaia

    2010-03-10

    When objects disappear from view, we can still bring them to mind, at least for brief periods of time, because we can represent those objects in visual short-term memory (VSTM) (Sperling, 1960; Cowan, 2001). A defining characteristic of this representation is that it is topographic, that is, it preserves a spatial organization based on the original visual percept (Vogel and Machizawa, 2004; Astle et al., 2009; Kuo et al., 2009). Recent research has also shown that features or locations of visual items that match those being maintained in conscious VSTM automatically capture our attention (Awh and Jonides, 2001; Olivers et al., 2006; Soto et al., 2008). But do objects leave some trace that can guide spatial attention, even without participants intentionally remembering them? Furthermore, could subliminally presented objects leave a topographically arranged representation that can capture attention? We presented objects either supraliminally or subliminally and then 1 s later re-presented one of those objects in a new location, as a "probe" shape. As participants made an arbitrary perceptual judgment on the probe shape, their covert spatial attention was drawn to the original location of that shape, regardless of whether its initial presentation had been supraliminal or subliminal. We demonstrate this with neural and behavioral measures of memory-driven attentional capture. These findings reveal the existence of a topographically arranged store of "visual" objects, the content of which is beyond our explicit awareness but which nonetheless guides spatial attention.

  5. Moving Stimuli Facilitate Synchronization But Not Temporal Perception

    PubMed Central

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419

  6. Moving Stimuli Facilitate Synchronization But Not Temporal Perception.

    PubMed

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.

  7. AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING.

    ERIC Educational Resources Information Center

    Illuminating Engineering Society, New York, NY.

    THIS IS A GUIDE FOR SCHOOL LIGHTING, DESIGNED FOR EDUCATORS AS WELL AS ARCHITECTS. IT MAKES USE OF RECENT RESEARCH, NOTABLY THE BLACKWELL REPORT ON EVALUATION OF VISUAL TASKS. THE GUIDE BEGINS WITH AN OVERVIEW OF CHANGING GOALS AND NEEDS OF SCHOOL LIGHTING, AND A TABULATION OF COMMON CLASSROOM VISUAL TASKS THAT REQUIRE VARIATIONS IN LIGHTING.…

  8. The display of spatial information and visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas

    1991-01-01

    The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained.

  9. Top-down contextual knowledge guides visual attention in infancy.

    PubMed

    Tummeltshammer, Kristen; Amso, Dima

    2017-10-26

    The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.

  10. Memory-guided saccade processing in visual form agnosia (patient DF).

    PubMed

    Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika

    2010-01-01

    According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.

  11. Stimulation of the substantia nigra influences the specification of memory-guided saccades

    PubMed Central

    Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel

    2013-01-01

    In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential. PMID:24259551

  12. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  13. The effect of different brightness conditions on visually and memory guided saccades.

    PubMed

    Felßberg, Anna-Maria; Dombrowe, Isabel

    2018-01-01

    It is commonly assumed that saccades in the dark are slower than saccades in a lit room. Early studies that investigated this issue using electrooculography (EOG) often compared memory guided saccades in darkness to visually guided saccades in an illuminated room. However, later studies showed that memory guided saccades are generally slower than visually guided saccades. Research on this topic is further complicated by the fact that the different existing eyetracking methods do not necessarily lead to consistent measurements. In the present study, we independently manipulated task (memory guided/visually guided) and screen brightness (dark, medium and light) in an otherwise completely dark room, and measured the peak velocity and the duration of the participant's saccades using a popular pupil-cornea reflection (p-cr) eyetracker (Eyelink 1000). Based on a critical reading of the literature, including a recent study using cornea-reflection (cr) eye tracking, we did not expect any velocity or duration differences between the three brightness conditions. We found that memory guided saccades were generally slower than visually guided saccades. In both tasks, eye movements on a medium and light background were equally fast and had similar durations. However, saccades on the dark background were slower and had shorter durations, even after we corrected for the effect of pupil size changes. This means that this is most likely an artifact of current pupil-based eye tracking. We conclude that the common assumption that saccades in the dark are slower than in the light is probably not true, however pupil-based eyetrackers tend to underestimate the peak velocity of saccades on very dark backgrounds, creating the impression that this might be the case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system

    PubMed Central

    2010-01-01

    Background Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Results Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-α on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-α resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-α treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-α-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures. Conclusions Taken together our data are consistent with a model in which TNF-α causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders. PMID:20067608

  15. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system.

    PubMed

    Lee, Ryan H; Mills, Elizabeth A; Schwartz, Neil; Bell, Mark R; Deeg, Katherine E; Ruthazer, Edward S; Marsh-Armstrong, Nicholas; Aizenman, Carlos D

    2010-01-12

    Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-alpha on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-alpha resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-alpha treatment also enhanced the overall growth of tectal cell dendrites. Finally, we found that TNF-alpha-reared tadpoles had increased susceptibility to pentylenetetrazol-induced seizures. Taken together our data are consistent with a model in which TNF-alpha causes premature stabilization of developing synapses within the tectum, therefore preventing normal refinement and synapse elimination that occurs during development, leading to increased local connectivity and epilepsy. This experimental model also provides an integrative approach to understanding the effects of cytokines on the development of neural circuits and may provide novel insights into the etiology underlying some neurodevelopmental disorders.

  16. Focus on Hinduism: Audio-Visual Resources for Teaching Religion. Occasional Publication No. 23.

    ERIC Educational Resources Information Center

    Dell, David; And Others

    The guide presents annotated lists of audio and visual materials about the Hindu religion. The authors point out that Hinduism cannot be comprehended totally by reading books; thus the resources identified in this guide will enhance understanding based on reading. The guide is intended for use by high school and college students, teachers,…

  17. Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.

    PubMed

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele

    2015-10-01

    Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.

  18. Modeling the role of parallel processing in visual search.

    PubMed

    Cave, K R; Wolfe, J M

    1990-04-01

    Treisman's Feature Integration Theory and Julesz's Texton Theory explain many aspects of visual search. However, these theories require that parallel processing mechanisms not be used in many visual searches for which they would be useful, and they imply that visual processing should be much slower than it is. Most importantly, they cannot account for recent data showing that some subjects can perform some conjunction searches very efficiently. Feature Integration Theory can be modified so that it accounts for these data and helps to answer these questions. In this new theory, which we call Guided Search, the parallel stage guides the serial stage as it chooses display elements to process. A computer simulation of Guided Search produces the same general patterns as human subjects in a number of different types of visual search.

  19. Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.

    ERIC Educational Resources Information Center

    Schiffman, Carole B.

    Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…

  20. Colorado Multicultural Resources for Arts Education: Dance, Music, Theatre, and Visual Art.

    ERIC Educational Resources Information Center

    Cassio, Charles J., Ed.

    This Colorado resource guide is based on the premise that the arts (dance, music, theatre, and visual art) provide a natural arena for teaching multiculturalism to students of all ages. The guide provides information to Colorado schools about printed, disc, video, and audio tape visual prints, as well as about individuals and organizations that…

  1. Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes.

    PubMed

    Whiteley, Louise; Sahani, Maneesh

    2008-03-06

    Perception is an "inverse problem," in which the state of the world must be inferred from the sensory neural activity that results. However, this inference is both ill-posed (Helmholtz, 1856; Marr, 1982) and corrupted by noise (Green & Swets, 1989), requiring the brain to compute perceptual beliefs under conditions of uncertainty. Here we show that human observers performing a simple visual choice task under an externally imposed loss function approach the optimal strategy, as defined by Bayesian probability and decision theory (Berger, 1985; Cox, 1961). In concert with earlier work, this suggests that observers possess a model of their internal uncertainty and can utilize this model in the neural computations that underlie their behavior (Knill & Pouget, 2004). In our experiment, optimal behavior requires that observers integrate the loss function with an estimate of their internal uncertainty rather than simply requiring that they use a modal estimate of the uncertain stimulus. Crucially, they approach optimal behavior even when denied the opportunity to learn adaptive decision strategies based on immediate feedback. Our data thus support the idea that flexible representations of uncertainty are pre-existing, widespread, and can be propagated to decision-making areas of the brain.

  2. Visual Attention during Spatial Language Comprehension

    PubMed Central

    Burigo, Michele; Knoeferle, Pia

    2015-01-01

    Spatial terms such as “above”, “in front of”, and “on the left of” are all essential for describing the location of one object relative to another object in everyday communication. Apprehending such spatial relations involves relating linguistic to object representations by means of attention. This requires at least one attentional shift, and models such as the Attentional Vector Sum (AVS) predict the direction of that attention shift, from the sausage to the box for spatial utterances such as “The box is above the sausage”. To the extent that this prediction generalizes to overt gaze shifts, a listener’s visual attention should shift from the sausage to the box. However, listeners tend to rapidly look at referents in their order of mention and even anticipate them based on linguistic cues, a behavior that predicts a converse attentional shift from the box to the sausage. Four eye-tracking experiments assessed the role of overt attention in spatial language comprehension by examining to which extent visual attention is guided by words in the utterance and to which extent it also shifts “against the grain” of the unfolding sentence. The outcome suggests that comprehenders’ visual attention is predominantly guided by their interpretation of the spatial description. Visual shifts against the grain occurred only when comprehenders had some extra time, and their absence did not affect comprehension accuracy. However, the timing of this reverse gaze shift on a trial correlated with that trial’s verification time. Thus, while the timing of these gaze shifts is subtly related to the verification time, their presence is not necessary for successful verification of spatial relations. PMID:25607540

  3. Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay

    PubMed Central

    Barbeau, Elise B.; Meilleur, Andrée‐Anne S.; Zeffiro, Thomas A.

    2015-01-01

    Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM‐IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand‐eye coordination; the Annett Peg Moving Task, which measures unimanual goal‐directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. Autism Res 2015, 8: 682–693. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:25820662

  4. The influence of stimulus format on drawing--a functional imaging study of decision making in portrait drawing.

    PubMed

    Miall, R C; Nam, Se-Ho; Tchalenko, J

    2014-11-15

    To copy a natural visual image as a line drawing, visual identification and extraction of features in the image must be guided by top-down decisions, and is usually influenced by prior knowledge. In parallel with other behavioral studies testing the relationship between eye and hand movements when drawing, we report here a functional brain imaging study in which we compared drawing of faces and abstract objects: the former can be strongly guided by prior knowledge, the latter less so. To manipulate the difficulty in extracting features to be drawn, each original image was presented in four formats including high contrast line drawings and silhouettes, and as high and low contrast photographic images. We confirmed the detailed eye-hand interaction measures reported in our other behavioral studies by using in-scanner eye-tracking and recording of pen movements with a touch screen. We also show that the brain activation pattern reflects the changes in presentation formats. In particular, by identifying the ventral and lateral occipital areas that were more highly activated during drawing of faces than abstract objects, we found a systematic increase in differential activation for the face-drawing condition, as the presentation format made the decisions more challenging. This study therefore supports theoretical models of how prior knowledge may influence perception in untrained participants, and lead to experience-driven perceptual modulation by trained artists. Copyright © 2014. Published by Elsevier Inc.

  5. Assess to Public Meetings [and] Assistive Listening Devices (ALD'S) [and] Access to Printed Information by Visually-Impaired Persons. Technical Assistance Guides.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC. Civil Rights Div.

    This item consists of three separate "Technical Assistance Guides" combined into one document because they all are concerned with improving access to information for handicapped people. Specifically, the three guides provide: (1) information to enable hearing impaired, visually impaired, and mobility impaired persons to have access to public…

  6. A functional hierarchy within the parietofrontal network in stimulus selection and attention control.

    PubMed

    Ibos, Guilhem; Duhamel, Jean-René; Ben Hamed, Suliann

    2013-05-08

    Although we are confronted with an ever-changing environment, we do not have the capacity to analyze all incoming sensory information. Perception is selective and is guided both by salient events occurring in our visual field and by cognitive premises about what needs our attention. Although the lateral intraparietal area (LIP) and frontal eye field (FEF) are known to represent the position of visual attention, their respective contributions to its control are still unclear. Here, we report LIP and FEF neuronal activities recorded while monkeys performed a voluntary attention-orientation target-detection task. We show that both encode behaviorally significant events, but that the FEF plays a specific role in mapping abstract cue instructions onto a spatial priority map to voluntarily guide attention. On the basis of a latency analysis, we show that the coding of stimulus identity and position precedes the emergence of an explicit attentional signal within the FEF. We also describe dynamic temporal hierarchies between LIP and FEF: stimuli carrying the highest intrinsic saliency are signaled by LIP before FEF, whereas stimuli carrying the highest extrinsic saliency are signaled in FEF before LIP. This suggests that whereas the parietofrontal attentional network most probably processes visual information in a recurrent way, exogenous processing predominates in the parietal cortex and the endogenous control of attention takes place in the FEF.

  7. Zebras and Biting Flies: Quantitative Analysis of Reflected Light from Zebra Coats in Their Natural Habitat

    PubMed Central

    Britten, Kenneth H.; Thatcher, Timothy D.; Caro, Tim

    2016-01-01

    Experimental and comparative evidence suggests that the striped coats of zebras deter biting fly attack, but the mechanisms by which flies fail to target black-and-white mammals are still opaque. Two hypotheses have been proposed: stripes might serve either to defeat polarotaxis or to obscure the form of the animal. To test these hypotheses, we systematically photographed free-living plains zebras in Africa. We found that black and white stripes both have moderate polarization signatures with a similar angle, though the degree (magnitude) of polarization in white stripes is lower. When we modeled the visibility of these signals from different distances, we found that polarization differences between stripes are invisible to flies more than 10 m away because they are averaged out by the flies’ low visual resolution. At any distance, however, a positively polarotactic insect would have a distinct signal to guide its visual approach to a zebra because we found that polarization of light reflecting from zebras is higher than from surrounding dry grasses. We also found that the stripes themselves are visible to flies at somewhat greater distances (up to 20 m) than the polarization contrast between stripes. Together, these observations support hypotheses in which zebra stripes defeat visually guided orienting behavior in flies by a mechanism independent of polarotaxis. PMID:27223616

  8. A Cross-Modal Perspective on the Relationships between Imagery and Working Memory

    PubMed Central

    Likova, Lora T.

    2013-01-01

    Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus ’cutting-off’ any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated. PMID:23346061

  9. Contextual cueing: implicit learning and memory of visual context guides spatial attention.

    PubMed

    Chun, M M; Jiang, Y

    1998-06-01

    Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.

  10. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    PubMed Central

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  11. Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner

    PubMed Central

    2017-01-01

    The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects. PMID:28119401

  12. A new neural framework for visuospatial processing.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  13. Visually Impaired: Curriculum Guide.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The curriculum guide provides guidelines for developing academic and living vocational skills in visually handicapped students from preschool to adolescence. The document, divided into two sections, outlines objectives, teaching strategies, and materials for each skill area. Section 1 covers the following academic skills: communication,…

  14. Operational Support for Instrument Stability through ODI-PPA Metadata Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Hayashi, S.; Gopu, A.; Kotulla, R.; Harbeck, D.; Liu, W.

    2015-09-01

    Over long time scales, quality assurance metrics taken from calibration and calibrated data products can aid observatory operations in quantifying the performance and stability of the instrument, and identify potential areas of concern or guide troubleshooting and engineering efforts. Such methods traditionally require manual SQL entries, assuming the requisite metadata has even been ingested into a database. With the ODI-PPA system, QA metadata has been harvested and indexed for all data products produced over the life of the instrument. In this paper we will describe how, utilizing the industry standard Highcharts Javascript charting package with a customized AngularJS-driven user interface, we have made the process of visualizing the long-term behavior of these QA metadata simple and easily replicated. Operators can easily craft a custom query using the powerful and flexible ODI-PPA search interface and visualize the associated metadata in a variety of ways. These customized visualizations can be bookmarked, shared, or embedded externally, and will be dynamically updated as new data products enter the system, enabling operators to monitor the long-term health of their instrument with ease.

  15. Visually-guided attention enhances target identification in a complex auditory scene.

    PubMed

    Best, Virginia; Ozmeral, Erol J; Shinn-Cunningham, Barbara G

    2007-06-01

    In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors.

  16. Visually-guided Attention Enhances Target Identification in a Complex Auditory Scene

    PubMed Central

    Ozmeral, Erol J.; Shinn-Cunningham, Barbara G.

    2007-01-01

    In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors. PMID:17453308

  17. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.

    PubMed

    Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe

    2015-07-01

    Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Sensory signals and neuronal groups involved in guiding the sea-ward motor behavior in turtle hatchlings of Chelonia agassizi

    NASA Astrophysics Data System (ADS)

    Fuentes, A. L.; Camarena, V.; Ochoa, G.; Urrutia, J.; Gutierrez, G.

    2007-05-01

    Turtle hatchlings orient display sea-ward oriented movements as soon as they emerge from the nest. Although most studies have emphasized the role of the visual information in this process, less attention has been paid to other sensory modalities. Here, we evaluated the nature of sensory cues used by turtle hatchlings of Chelonia agassizi to orient their movements towards the ocean. We recorded the time they took to crawl from the nest to the beach front (120m long) in control conditions and in visually, olfactory and magnetically deprived circumstances. Visually-deprived hatchlings displayed a high degree of disorientation. Olfactory deprivation and magnetic field distortion impaired, but not abolished, sea-ward oriented movements. With regard to the neuronal mapping experiments, visual deprivation reduced dramatically c-fos expression in the whole brain. Hatchlings with their nares blocked revealed neurons with c-fos expression above control levels principally in the c and d areas, while those subjected to magnetic field distortion had a wide spread activation of neurons throughout the brain predominantly in the dorsal ventricular ridge The present results support that Chelonia agassizi hatchlings use predominantly visual cues to orient their movements towards the sea. Olfactory and magnetic cues may also be use but their influence on hatchlings oriented motor behavior is not as clear as it is for vision. This conclusion is supported by the fact that in the absence of olfactory and magnetic cues, the brain turns on the expression of c- fos in neuronal groups that, in the intact hatchling, are not normally involved in accomplishing the task.

  19. Figure-ground activity in V1 and guidance of saccadic eye movements.

    PubMed

    Supèr, Hans

    2006-01-01

    Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.

  20. Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion

    PubMed Central

    2017-01-01

    The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858

  1. Grasping with the eyes of your hands: hapsis and vision modulate hand preference.

    PubMed

    Stone, Kayla D; Gonzalez, Claudia L R

    2014-02-01

    Right-hand preference has been demonstrated for visually guided reaching and grasping. Grasping, however, requires the integration of both visual and haptic cues. To what extent does vision influence hand preference for grasping? Is there a hand preference for haptically guided grasping? Two experiments were designed to address these questions. In Experiment 1, individuals were tested in a reaching-to-grasp task with vision (sighted condition) and with hapsis (blindfolded condition). Participants were asked to put together 3D models using building blocks scattered on a tabletop. The models were simple, composed of ten blocks of three different shapes. Starting condition (Vision-First or Hapsis-First) was counterbalanced among participants. Right-hand preference was greater in visually guided grasping but only in the Vision-First group. Participants who initially built the models while blindfolded (Hapsis-First group) used their right hand significantly less for the visually guided portion of the task. To investigate whether grasping using hapsis modifies subsequent hand preference, participants received an additional haptic experience in a follow-up experiment. While blindfolded, participants manipulated the blocks in a container for 5 min prior to the task. This additional experience did not affect right-hand use on visually guided grasping but had a robust effect on haptically guided grasping. Together, the results demonstrate first that hand preference for grasping is influenced by both vision and hapsis, and second, they highlight how flexible this preference could be when modulated by hapsis.

  2. Manneristic behaviors of visually impaired children.

    PubMed

    Molloy, Alysha; Rowe, Fiona J

    2011-09-01

    To review the literature on visual impairment in children in order to determine which manneristic behaviors are associated with visual impairment, and to establish why these behaviors occur and whether severity of visual impairment influences these behaviors. A literature search utilizing PubMed, OVID, Google Scholar, and Web of Knowledge databases was performed. The University of Liverpool ( www.liv.ac.uk/orthoptics/research ) and local library facilities were also searched. The main manneristic or stereotypic behaviors associated with visual impairment are eye-manipulatory behaviors, such as eye poking and rocking. The degree of visual impairment influences the type of behavior exhibited by visually impaired children. Totally blind children are more likely to adopt body and head movements whereas sight-impaired children tend to adopt eye-manipulatory behaviors and rocking. The mannerisms exhibited most frequently are those that provide a specific stimulation to the child. Theories to explain these behaviors include behavioral, developmental, functional, and neurobiological approaches. Although the precise etiology of these behaviors is unknown, it is recognized that each of the theories is useful in providing some explanation of why certain behaviors may occur. The age at which the frequency of these behaviors decreases is associated with the child's increasing development, thus those visually impaired children with additional disabilities, whose development is impaired, are at an increased risk of developing and maintaining these behaviors. Certain manneristic behaviors of the visually impaired child may also help indicate the cause of visual impairment. There is a wide range of manneristic behaviors exhibited by visually impaired children. Some of these behaviors appear to be particularly associated with certain causes of visual impairment or severity of visual impairment, thus they may supply the practitioner with useful information. Further research into the prevalence of these behaviors in the visually impaired child is required in order to provide effective management.

  3. Tracking with the mind's eye

    NASA Technical Reports Server (NTRS)

    Krauzlis, R. J.; Stone, L. S.

    1999-01-01

    The two components of voluntary tracking eye-movements in primates, pursuit and saccades, are generally viewed as relatively independent oculomotor subsystems that move the eyes in different ways using independent visual information. Although saccades have long been known to be guided by visual processes related to perception and cognition, only recently have psychophysical and physiological studies provided compelling evidence that pursuit is also guided by such higher-order visual processes, rather than by the raw retinal stimulus. Pursuit and saccades also do not appear to be entirely independent anatomical systems, but involve overlapping neural mechanisms that might be important for coordinating these two types of eye movement during the tracking of a selected visual object. Given that the recovery of objects from real-world images is inherently ambiguous, guiding both pursuit and saccades with perception could represent an explicit strategy for ensuring that these two motor actions are driven by a single visual interpretation.

  4. Shade matching assisted by digital photography and computer software.

    PubMed

    Schropp, Lars

    2009-04-01

    To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.

  5. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space

    PubMed Central

    Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil

    2011-01-01

    Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934

  6. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.

    PubMed

    Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman

    2017-05-17

    Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt excitatory responsiveness to visual stimuli. Moreover, these oscillations occurred when animals were in high and low arousal states as measured by animal speed and pupillometry. These findings show, for the first time, that low-frequency V m oscillations can significantly modulate sensory signal processing, even in awake active animals. Copyright © 2017 the authors 0270-6474/17/375084-15$15.00/0.

  7. Visuo-motor coordination and internal models for object interception.

    PubMed

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2009-02-01

    Intercepting and avoiding collisions with moving objects are fundamental skills in daily life. Anticipatory behavior is required because of significant delays in transforming sensory information about target and body motion into a timed motor response. The ability to predict the kinematics and kinetics of interception or avoidance hundreds of milliseconds before the event may depend on several different sources of information and on different strategies of sensory-motor coordination. What are exactly the sources of spatio-temporal information and what are the control strategies remain controversial issues. Indeed, these topics have been the battlefield of contrasting views on how the brain interprets visual information to guide movement. Here we attempt a synthetic overview of the vast literature on interception. We discuss in detail the behavioral and neurophysiological aspects of interception of targets falling under gravity, as this topic has received special attention in recent years. We show that visual cues alone are insufficient to predict the time and place of interception or avoidance, and they need to be supplemented by prior knowledge (or internal models) about several features of the dynamic interaction with the moving object.

  8. Are vision-specific quality of life questionnaires important in assessing rehabilitation for patients with hemianopia post stroke?

    PubMed

    George, Stacey; Hayes, Allison; Chen, Celia; Crotty, Maria

    2011-01-01

    To explore the relationship between disability and functional measures with vision-specific quality of life (QoL) measures for people with hemianopia and stroke. The Behavioral Inattention Test (BIT) and the Mayo-Portland Adaptability Inventory (MPAI) were compared with scores on 2 vision-specific QoL measures, the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) and Veteran Low Vision Visual Function Questionnaire (VA LV VFQ-48). Rehabilitation hospitals in Adelaide, South Australia. Stroke patients (n = 24) with homonymous hemianopia. Most of the BIT and MPAI scores were significantly associated with the NEI VFQ-25 and VA LV VFQ-48 scores. Behavioral test scores of the BIT and the MPAI total score correlated with more aspects of the QoL measures than the other components of the BIT and the MPAI. BIT and MPAI measure constructs associated with QoL for people with hemianopia following stroke. Vision-specific QoL questionnaires can complement the functional instruments by identifying the domains of difficulty, based on the instrument's subscale, that can guide rehabilitation therapists to address the person's deficit.

  9. Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum).

    PubMed

    Graeber, R C; Schroeder, D M; Jane, J A; Ebbesson, S O

    1978-07-15

    An instrumental conditioning task was used to examine the role of the nurse shark telencephalon in black-white (BW) and horizontal-vertical stripes (HV) discrimination performance. In the first experiment, subjects initially received either bilateral anterior telencephalic control lesions or bilateral posterior telencephalic lesions aimed at destroying the central telencephalic nuclei (CN), which are known to receive direct input from the thalamic visual area. Postoperatively, the sharks were trained first on BW and then on HV. Those with anterior lesions learned both tasks as rapidly as unoperated subjects. Those with posterior lesions exhibited visual discrimination deficits related to the amount of damage to the CN and its connecting pathways. Severe damage resulted in an inability to learn either task but caused no impairments in motivation or general learning ability. In the second experiment, the sharks were first trained on BW and HV and then operated. Suction ablations were used to remove various portions of the CN. Sharks with 10% or less damage to the CN retained the preoperatively acquired discriminations almost perfectly. Those with 11-50% damage had to be retrained on both tasks. Almost total removal of the CN produced behavioral indications of blindness along with an inability to perform above the chance level on BW despite excellent retention of both discriminations over a 28-day period before surgery. It appears, however, that such sharks can still detect light. These results implicate the central telencephalic nuclei in the control of visually guided behavior in sharks.

  10. Visual ecology and potassium conductances of insect photoreceptors.

    PubMed

    Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti

    2016-04-01

    Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance. Copyright © 2016 the American Physiological Society.

  11. Visual control of foot placement when walking over complex terrain.

    PubMed

    Matthis, Jonathan S; Fajen, Brett R

    2014-02-01

    The aim of this study was to investigate the role of visual information in the control of walking over complex terrain with irregularly spaced obstacles. We developed an experimental paradigm to measure how far along the future path people need to see in order to maintain forward progress and avoid stepping on obstacles. Participants walked over an array of randomly distributed virtual obstacles that were projected onto the floor by an LCD projector while their movements were tracked by a full-body motion capture system. Walking behavior in a full-vision control condition was compared with behavior in a number of other visibility conditions in which obstacles did not appear until they fell within a window of visibility centered on the moving observer. Collisions with obstacles were more frequent and, for some participants, walking speed was slower when the visibility window constrained vision to less than two step lengths ahead. When window sizes were greater than two step lengths, the frequency of collisions and walking speed were weakly affected or unaffected. We conclude that visual information from at least two step lengths ahead is needed to guide foot placement when walking over complex terrain. When placed in the context of recent research on the biomechanics of walking, the findings suggest that two step lengths of visual information may be needed because it allows walkers to exploit the passive mechanical forces inherent to bipedal locomotion, thereby avoiding obstacles while maximizing energetic efficiency. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. A new neural framework for visuospatial processing

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer

    2012-01-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848

  13. Commercial Art I and Commercial Art II: An Instructional Guide.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    A teacher's guide for two sequential one-year commercial art courses for high school students is presented. Commercial Art I contains three units: visual communication, product design, and environmental design. Students study visual communication by analyzing advertising techniques, practicing fundamental drawing and layout techniques, creating…

  14. Visual landmarks facilitate rodent spatial navigation in virtual reality environments

    PubMed Central

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484

  15. The activity in the anterior insulae is modulated by perceptual decision-making difficulty.

    PubMed

    Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh

    2016-07-07

    Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Visualization and minimization of clustering of micro-pillars and walls due to liquid film evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young

    2013-11-01

    The spin drying, in which a rinsing liquid deposited on a wafer is rapidly dried by wafer spinning, is an essential step in the semiconductor manufacturing process. While the liquid evaporates, its meniscus straddles neighboring submicron-size patterns such as pillars and walls. Then the capillary effects that pull the patterns together may lead to direct contact of the patterns, which is often referred to as pattern leaning. This poses a problem becoming more and more serious as the pattern size shrinks and the aspect ratio of the patterns increases. While the clustering behavior of high-aspect-ratio micro- and nanopillars was investigated before, a technical strategy to prevent such clustering has been pursed in industrial practices without being supported by the recently established theory of elastocapillarity. Here we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the leaning of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern leaning in semiconductor manufacturing. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  17. Air-Track: a real-world floating environment for active sensing in head-fixed mice.

    PubMed

    Nashaat, Mostafa A; Oraby, Hatem; Sachdev, Robert N S; Winter, York; Larkum, Matthew E

    2016-10-01

    Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present "Air-Track," an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the "real" world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity. Copyright © 2016 the American Physiological Society.

  18. Air-Track: a real-world floating environment for active sensing in head-fixed mice

    PubMed Central

    Oraby, Hatem; Sachdev, Robert N. S.; Winter, York

    2016-01-01

    Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present “Air-Track,” an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the “real” world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity. PMID:27486102

  19. Telencephalic Neuronal Activation Associated with Spatial Memory in the Terrestrial Toad Rhinella arenarum: Participation of the Medial Pallium during Navigation by Geometry.

    PubMed

    Sotelo, María Inés; Daneri, M Florencia; Bingman, Verner Peter; Muzio, Rubén N

    2016-01-01

    Amphibians are central to discussions of vertebrate evolution because they represent the transition from aquatic to terrestrial life, a transition with profound consequences for the selective pressures shaping brain evolution. Spatial navigation is one class of behavior that has attracted the interest of comparative neurobiologists because of the relevance of the medial pallium/hippocampus, yet, surprisingly, in this regard amphibians have been sparsely investigated. In the current study, we trained toads to locate a water goal relying on the boundary geometry of a test environment (Geometry-Only) or boundary geometry coupled with a prominent, visual feature cue (Geometry-Feature). Once learning had been achieved, the animals were given one last training session and their telencephali were processed for c-Fos activation. Compared to control toads exposed to the test environment for the first time, geometry-only toads were found to have increased neuronal labeling in the medial pallium, the presumptive hippocampal homologue, while geometry-feature toads were found to have increased neuronal labeling in the medial, dorsal, and lateral pallia. The data indicate medial pallial participation in guiding navigation by environmental geometry and lateral, and to a lesser extent dorsal, pallial participation in guiding navigation by a prominent visual feature. As such, participation of the medial pallium/hippocampus in spatial cognition appears to be a conserved feature of terrestrial vertebrates even if their life history is still tied to water, a brain-behavior feature seemingly at least as ancient as the evolutionary transition to life on land. © 2016 S. Karger AG, Basel.

  20. Creating Visuals for TV; A Guide for Educators.

    ERIC Educational Resources Information Center

    Spear, James

    There are countless ways educators can improve the quality of their educational television offerings. The Guide, planned especially for the television teacher or audiovisual director, particularly those approaching the television medium for the first time, is designed to acquaint the reader with production techniques for effective visuals to…

  1. City: Images of America. Elementary Version.

    ERIC Educational Resources Information Center

    Franklin, Edward; And Others

    Designed to accompany an audiovisual filmstrip series devoted to presenting a visual history of life in America, this guide contains an elementary social studies (grades 2-6) unit on the American city over the last century. Using authentic visuals including paintings, posters, advertising, documentary photography, and cartoons, the guide offers…

  2. Learning to Verbally & Visually Communicate the Metalworking Way.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Div. of Vocational Education.

    This curriculum guide, one of 15 volumes written for field test use with educationally disadvantaged industrial education students needing additional instruction in the basic skill areas, deals with helping students develop basic verbal and visual communication skills while studying metalworking. Addressed in the individual units of the guide are…

  3. Coronary angioscopy: a monorail angioscope with movable guide wire.

    PubMed

    Nanto, S; Ohara, T; Mishima, M; Hirayama, A; Komamura, K; Matsumura, Y; Kodama, K

    1991-03-01

    A new angioscope was devised for easier visualization of the coronary artery. In its tip, the angioscope (Olympus) with an outer diameter of 0.8 mm had a metal lumen, through which a 0.014-in steerable guide wire passed. Using a 8F guiding catheter and a guide wire, it was introduced into the distal coronary artery. With injection of warmed saline through the guiding catheter, the coronary segments were visualized. In the attempted 70 vessels (32 left anterior descending [LAD], 10 right coronary [RCA], 28 left circumflex [LCX]) from 48 patients, 60 vessels (86%) were successfully examined. Twenty-two patients who underwent attempted examination of both LAD and LCX; both coronary arteries were visualized in 19 patients (86%). In the proximal site of the lesion, 40 patients have the diagonal branch or the obtuse marginal branch. In 34 patients (85%) the angioscope was inserted beyond these branches. In 12 very tortuous vessels, eight vessels (67%) were examined. In conclusion, the new monorail coronary angioscope with movable guide wire is useful to examine the stenotic lesions of the coronary artery.

  4. Intraoperative positioning of the hindfoot with the hindfoot alignment guide: a pilot study.

    PubMed

    Frigg, Arno; Jud, Lukas; Valderrabano, Victor

    2014-01-01

    In a previous study, intraoperative positioning of the hindfoot by visual means resulted in the wrong varus/valgus position by 8 degrees and a relatively large standard deviation of 8 degrees. Thus, new intraoperative means are needed to improve the precision of hindfoot surgery. We therefore sought a hindfoot alignment guide that would be as simple as the alignment guides used in total knee arthroplasty. A novel hindfoot alignment guide (HA guide) has been developed that projects the mechanical axis from the tibia down to the heel. The HA guide enables the positioning of the hindfoot in the desired varus/valgus position and in plantigrade position in the lateral plane. The HA guide was used intraoperatively from May through November 2011 in 11 complex patients with simultaneous correction of the supramalleolar, tibiotalar, and inframalleolar alignment. Pre- and postoperative Saltzman views were taken and the position was measured. The HA guide significantly improved the intraoperative positioning compared with visual means: The accuracy with the HA guide was 4.5 ± 5.1 degrees (mean ± standard deviation) and without the HA guide 9.4 ± 5.5 degrees (P < .05). In 7 of 11 patients, the preoperative plan was changed because of the HA guide (2 avoided osteotomies, 5 additional osteotomies). The HA guide helped to position the hindfoot intraoperatively with greater precision than visual means. The HA guide was especially useful for multilevel corrections in which the need for and the amount of a simultaneous osteotomy had to be evaluated intraoperatively. Level IV, case series.

  5. Optimizing wavefront-guided corrections for highly aberrated eyes in the presence of registration uncertainty

    PubMed Central

    Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.

    2013-01-01

    Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512

  6. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Comparative Study on Java Technologies for Focus and Cursor Handling in Accessible Dynamic Interactions.

    PubMed

    Jitngernmadan, Prajaks; Miesenberger, Klaus

    2015-01-01

    For an interactive application, supporting and guiding the user in fulfilling tasks is most important. The behavior of the application that will guide users through the procedures until they finish the task has to be designed intuitively and well guiding, especially if the users has only restricted or no access to the visual and spatial arrangement on the screen. Therefore, the focus/cursor management plays an important role for orientation and navigating through the interaction. In the frame of ongoing research on a software tool supporting blind people in more efficiently doing mathematical calculations, we researched how Java technologies support implementing an accessible Graphical User Interface (GUI) with an additional focus on usable accessibility in terms of guiding blind users through the process of solving mathematical calculations. We used Java Swing [1] and Eclipse SWT [2] APIs for creating a series of prototypes. We tested a) accessibility and usability of the prototypes for blind people when using screen reader software and refreshable Braille display and b) the implementation support to developers provided by both technologies. It turned out that Eclipse SWT API delivered best results under Windows operating system.

  8. Visual cortex activation in kinesthetic guidance of reaching.

    PubMed

    Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J

    2007-06-01

    The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.

  9. Narcissism and consumer behaviour: a review and preliminary findings

    PubMed Central

    Cisek, Sylwia Z.; Sedikides, Constantine; Hart, Claire M.; Godwin, Hayward J.; Benson, Valerie; Liversedge, Simon P.

    2014-01-01

    We review the literature on the relation between narcissism and consumer behavior. Consumer behavior is sometimes guided by self-related motives (e.g., self-enhancement) rather than by rational economic considerations. Narcissism is a case in point. This personality trait reflects a self-centered, self-aggrandizing, dominant, and manipulative orientation. Narcissists are characterized by exhibitionism and vanity, and they see themselves as superior and entitled. To validate their grandiose self-image, narcissists purchase high-prestige products (i.e., luxurious, exclusive, flashy), show greater interest in the symbolic than utilitarian value of products, and distinguish themselves positively from others via their materialistic possessions. Our review lays the foundation for a novel methodological approach in which we explore how narcissism influences eye movement behavior during consumer decision-making. We conclude with a description of our experimental paradigm and report preliminary results. Our findings will provide insight into the mechanisms underlying narcissists’ conspicuous purchases. They will also likely have implications for theories of personality, consumer behavior, marketing, advertising, and visual cognition. PMID:24711797

  10. Narcissism and consumer behaviour: a review and preliminary findings.

    PubMed

    Cisek, Sylwia Z; Sedikides, Constantine; Hart, Claire M; Godwin, Hayward J; Benson, Valerie; Liversedge, Simon P

    2014-01-01

    We review the literature on the relation between narcissism and consumer behavior. Consumer behavior is sometimes guided by self-related motives (e.g., self-enhancement) rather than by rational economic considerations. Narcissism is a case in point. This personality trait reflects a self-centered, self-aggrandizing, dominant, and manipulative orientation. Narcissists are characterized by exhibitionism and vanity, and they see themselves as superior and entitled. To validate their grandiose self-image, narcissists purchase high-prestige products (i.e., luxurious, exclusive, flashy), show greater interest in the symbolic than utilitarian value of products, and distinguish themselves positively from others via their materialistic possessions. Our review lays the foundation for a novel methodological approach in which we explore how narcissism influences eye movement behavior during consumer decision-making. We conclude with a description of our experimental paradigm and report preliminary results. Our findings will provide insight into the mechanisms underlying narcissists' conspicuous purchases. They will also likely have implications for theories of personality, consumer behavior, marketing, advertising, and visual cognition.

  11. Temporal dynamics of attention during encoding vs. maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations

    PubMed Central

    Myers, Nicholas E.; Walther, Lena; Wallis, George; Stokes, Mark G.; Nobre, Anna C.

    2015-01-01

    Working memory (WM) is strongly influenced by attention. In visual working-memory tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar fronto-parietal control network, the two are likely to exhibit some processing differences, since precues invite anticipation of upcoming information, while retrocues may guide prioritisation, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual working-memory task designed to permit a direct comparison between cueing conditions. We found marked differences in event-related potential (ERP) profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information. PMID:25244118

  12. How does visual manipulation affect obstacle avoidance strategies used by athletes?

    PubMed

    Bijman, M P; Fisher, J J; Vallis, L A

    2016-01-01

    Research examining our ability to avoid obstacles in our path has stressed the importance of visual input. The aim of this study was to determine if athletes playing varsity-level field sports, who rely on visual input to guide motor behaviour, are more able to guide their foot over obstacles compared to recreational individuals. While wearing kinematic markers, eight varsity athletes and eight age-matched controls (aged 18-25) walked along a walkway and stepped over stationary obstacles (180° motion arc). Visual input was manipulated using PLATO visual goggles three or two steps pre-obstacle crossing and compared to trials where vision was given throughout. A main effect between groups for peak trail toe elevation was shown with greater values generated by the controls for all crossing conditions during full vision trials only. This may be interpreted as athletes not perceiving this obstacle as an increased threat to their postural stability. Collectively, findings suggest the athletic group is able to transfer their abilities to non-specific conditions during full vision trials; however, varsity-level athletes were equally reliant on visual cues for these visually guided stepping tasks as their performance was similar to the controls when vision is removed.

  13. Cue reliability and a landmark stability heuristic determine relative weighting between egocentric and allocentric visual information in memory-guided reach.

    PubMed

    Byrne, Patrick A; Crawford, J Douglas

    2010-06-01

    It is not known how egocentric visual information (location of a target relative to the self) and allocentric visual information (location of a target relative to external landmarks) are integrated to form reach plans. Based on behavioral data from rodents and humans we hypothesized that the degree of stability in visual landmarks would influence the relative weighting. Furthermore, based on numerous cue-combination studies we hypothesized that the reach system would act like a maximum-likelihood estimator (MLE), where the reliability of both cues determines their relative weighting. To predict how these factors might interact we developed an MLE model that weighs egocentric and allocentric information based on their respective reliabilities, and also on an additional stability heuristic. We tested the predictions of this model in 10 human subjects by manipulating landmark stability and reliability (via variable amplitude vibration of the landmarks and variable amplitude gaze shifts) in three reach-to-touch tasks: an egocentric control (reaching without landmarks), an allocentric control (reaching relative to landmarks), and a cue-conflict task (involving a subtle landmark "shift" during the memory interval). Variability from all three experiments was used to derive parameters for the MLE model, which was then used to simulate egocentric-allocentric weighting in the cue-conflict experiment. As predicted by the model, landmark vibration--despite its lack of influence on pointing variability (and thus allocentric reliability) in the control experiment--had a strong influence on egocentric-allocentric weighting. A reduced model without the stability heuristic was unable to reproduce this effect. These results suggest heuristics for extrinsic cue stability are at least as important as reliability for determining cue weighting in memory-guided reaching.

  14. What and where information in the caudate tail guides saccades to visual objects

    PubMed Central

    Yamamoto, Shinya; Monosov, Ilya E.; Yasuda, Masaharu; Hikosaka, Okihide

    2012-01-01

    We understand the world by making saccadic eye movements to various objects. However, it is unclear how a saccade can be aimed at a particular object, because two kinds of visual information, what the object is and where it is, are processed separately in the dorsal and ventral visual cortical pathways. Here we provide evidence suggesting that a basal ganglia circuit through the tail of the monkey caudate nucleus (CDt) guides such object-directed saccades. First, many CDt neurons responded to visual objects depending on where and what the objects were. Second, electrical stimulation in the CDt induced saccades whose directions matched the preferred directions of neurons at the stimulation site. Third, many CDt neurons increased their activity before saccades directed to the neurons’ preferred objects and directions in a free-viewing condition. Our results suggest that CDt neurons receive both ‘what’ and ‘where’ information and guide saccades to visual objects. PMID:22875934

  15. "Visual Learning Is the Best Learning--It Lets You Be Creative while Learning": Exploring Ways to Begin Guided Writing in Second Language Learning through the Use of Comics

    ERIC Educational Resources Information Center

    Rossetto, Marietta; Chiera-Macchia, Antonella

    2011-01-01

    This study investigated the use of comics (Cary, 2004) in a guided writing experience in secondary school Italian language learning. The main focus of the peer group interaction task included the exploration of visual sequencing and visual integration (Bailey, O'Grady-Jones, & McGown, 1995) using image and text to create a comic strip narrative in…

  16. Fast Detector/First Responder: Interactions between the Superior Colliculus-Pulvinar Pathway and Stimuli Relevant to Primates

    PubMed Central

    Soares, Sandra C.; Maior, Rafael S.; Isbell, Lynne A.; Tomaz, Carlos; Nishijo, Hisao

    2017-01-01

    Primates are distinguished from other mammals by their heavy reliance on the visual sense, which occurred as a result of natural selection continually favoring those individuals whose visual systems were more responsive to challenges in the natural world. Here we describe two independent but also interrelated visual systems, one cortical and the other subcortical, both of which have been modified and expanded in primates for different functions. Available evidence suggests that while the cortical visual system mainly functions to give primates the ability to assess and adjust to fluid social and ecological environments, the subcortical visual system appears to function as a rapid detector and first responder when time is of the essence, i.e., when survival requires very quick action. We focus here on the subcortical visual system with a review of behavioral and neurophysiological evidence that demonstrates its sensitivity to particular, often emotionally charged, ecological and social stimuli, i.e., snakes and fearful and aggressive facial expressions in conspecifics. We also review the literature on subcortical involvement during another, less emotional, situation that requires rapid detection and response—visually guided reaching and grasping during locomotion—to further emphasize our argument that the subcortical visual system evolved as a rapid detector/first responder, a function that remains in place today. Finally, we argue that investigating deficits in this subcortical system may provide greater understanding of Parkinson's disease and Autism Spectrum disorders (ASD). PMID:28261046

  17. A novel visual hardware behavioral language

    NASA Technical Reports Server (NTRS)

    Li, Xueqin; Cheng, H. D.

    1992-01-01

    Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.

  18. The Dawn of Development: A Guide for Educating Visually Impaired Young Children. Volume I: Assessment.

    ERIC Educational Resources Information Center

    Umansky, Warren; And Others

    The guide offers a means for evaluating specific learning characteristics of visually impaired children at three levels: prereadiness (prekindergarten), readiness (kindergarten), and academic (primary grades). Items are designed to be administered by informal observation and structured testing. Score sheets contain space for reporting two testing…

  19. Food: Images of America. Social Studies Unit, Elementary Grades 2-6.

    ERIC Educational Resources Information Center

    Franklin, Edward; And Others

    Designed to accompany an audiovisual filmstrip series devoted to presenting a visual history of life in America, this guide contains an elementary school (grades 2-6) unit on American food over the last century. Using authentic visuals including paintings, advertising, label art, documentary photography, and a movie still, the guide offers…

  20. An Annotated Guide to Audio-Visual Materials for Teaching Shakespeare.

    ERIC Educational Resources Information Center

    Albert, Richard N.

    Audio-visual materials, found in a variety of periodicals, catalogs, and reference works, are listed in this guide to expedite the process of finding appropriate classroom materials for a study of William Shakespeare in the classroom. Separate listings of films, filmstrips, and recordings are provided, with subdivisions for "The Plays"…

  1. The Computer: An Art Tool for the Visually Gifted. A Curriculum Guide.

    ERIC Educational Resources Information Center

    Suter, Thomas E.; Bibbey, Melissa R.

    This curriculum guide, developed and used in Wheelersburg (Ohio) with visually talented students, shows how such students can be taught to utilize computers as an art medium and tool. An initial section covers program implementation including setup, class structure and scheduling, teaching strategies, and housecleaning and maintenance. Seventeen…

  2. One-year eye-to-eye comparison of wavefront-guided versus wavefront-optimized laser in situ keratomileusis in hyperopes

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2014-01-01

    Background To compare wavefront (WF)-guided and WF-optimized laser in situ keratomileusis (LASIK) in hyperopes with respect to the parameters of safety, efficacy, predictability, refractive error, uncorrected distance visual acuity, corrected distance visual acuity, contrast sensitivity, and higher order aberrations. Methods Twenty-two eyes of eleven participants with hyperopia with or without astigmatism were prospectively randomized to receive WF-guided LASIK with the VISX CustomVue S4 IR or WF-optimized LASIK with the WaveLight Allegretto Eye-Q 400 Hz. LASIK flaps were created using the 150-kHz IntraLase iFS. Evaluations included measurement of uncorrected distance visual acuity, corrected distance visual acuity, <5% and <25% contrast sensitivity, and WF aberrometry. Patients also completed a questionnaire detailing symptoms on a quantitative grading scale. Results There were no statistically significant differences between the groups for any of the variables studied after 12 months of follow-up (all P>0.05). Conclusion This comparative case series of 11 subjects with hyperopia showed that WF-guided and WF-optimized LASIK had similar clinical outcomes at 12 months. PMID:25419115

  3. Consolidation of visuomotor adaptation memory with consistent and noisy environments

    PubMed Central

    Maeda, Rodrigo S.; McGee, Steven E.

    2016-01-01

    Our understanding of how we learn and retain motor behaviors is still limited. For instance, there is conflicting evidence as to whether the memory of a learned visuomotor perturbation consolidates; i.e., the motor memory becomes resistant to interference from learning a competing perturbation over time. Here, we sought to determine the factors that influence consolidation during visually guided walking. Subjects learned a novel mapping relationship, created by prism lenses, between the perceived location of two targets and the motor commands necessary to direct the feet to their positions. Subjects relearned this mapping 1 wk later. Different groups experienced protocols with or without a competing mapping (and with and without washout trials), presented either on the same day as initial learning or before relearning on day 2. We tested identical protocols under constant and noisy mapping structures. In the latter, we varied, on a trial-by-trial basis, the strength of prism lenses around a non-zero mean. We found that a novel visuomotor mapping is retained at least 1 wk after initial learning. We also found reduced foot-placement error with relearning in constant and noisy mapping groups, despite learning a competing mapping beforehand, and with the exception of one protocol, with and without washout trials. Exposure to noisy mappings led to similar performance on relearning compared with the equivalent constant mapping groups for most protocols. Overall, our results support the idea of motor memory consolidation during visually guided walking and suggest that constant and noisy practices are effective for motor learning. NEW & NOTEWORTHY The adaptation of movement is essential for many daily activities. To interact with targets, this often requires learning the mapping to produce appropriate motor commands based on visual input. Here, we show that a novel visuomotor mapping is retained 1 wk after initial learning in a visually guided walking task. Furthermore, we find that this motor memory consolidates (i.e., becomes more resistant to interference from learning a competing mapping) when learning in constant and noisy mapping environments. PMID:27784800

  4. Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans.

    PubMed

    Vaidya, Avinash R; Fellows, Lesley K

    2015-09-16

    Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage sparing the VMF showed normal reward priming, but VMF-damaged patients did not. This work sheds light on a potential mechanism through which this region influences behavior. We suggest that the VMF is necessary for directing attention to reward-predictive visual features based on feedback, facilitating future learning and decision-making. Copyright © 2015 the authors 0270-6474/15/3512813-11$15.00/0.

  5. Looking and touching: What extant approaches reveal about the structure of early word knowledge

    PubMed Central

    Hendrickson, Kristi; Mitsven, Samantha; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2014-01-01

    The goal of the current study is to assess the temporal dynamics of vision and action to evaluate the underlying word representations that guide infants’ responses. Sixteen-month-old infants participated in a two-alternative forced-choice word-picture matching task. We conducted a moment-by-moment analysis of looking and reaching behaviors as they occurred in tandem to assess the speed with which a prompted word was processed (visual reaction time) as a function of the type of haptic response: Target, Distractor, or No Touch. Visual reaction times (visual RTs) were significantly slower during No Touches compared to Distractor and Target Touches, which were statistically indistinguishable. The finding that visual RTs were significantly faster during Distractor Touches compared to No Touches suggests that incorrect and absent haptic responses appear to index distinct knowledge states: incorrect responses are associated with partial knowledge whereas absent responses appear to reflect a true failure to map lexical items to their target referents. Further, we found that those children who were faster at processing words were also those children who exhibited better haptic performance. This research provides a methodological clarification on knowledge measured by the visual and haptic modalities and new evidence for a continuum of word knowledge in the second year of life. PMID:25444711

  6. Visually Guided Control of Movement

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W. (Editor); Kaiser, Mary K. (Editor)

    1991-01-01

    The papers given at an intensive, three-week workshop on visually guided control of movement are presented. The participants were researchers from academia, industry, and government, with backgrounds in visual perception, control theory, and rotorcraft operations. The papers included invited lectures and preliminary reports of research initiated during the workshop. Three major topics are addressed: extraction of environmental structure from motion; perception and control of self motion; and spatial orientation. Each topic is considered from both theoretical and applied perspectives. Implications for control and display are suggested.

  7. Comparative evaluation of toric intraocular lens alignment and visual quality with image-guided surgery and conventional three-step manual marking.

    PubMed

    Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit Ms

    2018-01-01

    To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p =0.005). Postoperative refractive cylinder was -0.89±0.35 D in group I and -0.64±0.36 D in group II ( p =0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio ( p <0.05) and modulation transfer function (MTF) ( p <0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) ( p <0.05). Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment.

  8. Comparative evaluation of toric intraocular lens alignment and visual quality with image-guided surgery and conventional three-step manual marking

    PubMed Central

    Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit MS

    2018-01-01

    Purpose To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. Patients and methods This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Results Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p=0.005). Postoperative refractive cylinder was −0.89±0.35 D in group I and −0.64±0.36 D in group II (p=0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio (p<0.05) and modulation transfer function (MTF) (p<0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) (p<0.05). Conclusion Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment. PMID:29731603

  9. Magnetic stimulation of the dorsolateral prefrontal cortex dissociates fragile visual short-term memory from visual working memory.

    PubMed

    Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F

    2011-05-01

    To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  10. The angular gyrus and visuospatial attention in decision-making under risk.

    PubMed

    Studer, Bettina; Cen, Danlu; Walsh, Vincent

    2014-12-01

    Recent neuroimaging studies on decision-making under risk indicate that the angular gyrus (AG) is sensitive to the probability and variance of outcomes during choice. A separate body of research has established the AG as a key area in visual attention. The current study used repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers to test whether the causal contribution of the AG to decision-making is independent of or linked to the guidance of visuospatial attention. A within-subject design compared decision making on a laboratory gambling task under three conditions: following rTMS to the AG, following rTMS to the premotor cortex (PMC, as an active control condition) and without TMS. The task presented two different trial types, 'visual' and 'auditory' trials, which entailed a high versus minimal demand for visuospatial attention, respectively. Our results showed a systematic effect of rTMS to the AG upon decision-making behavior in visual trials. Without TMS and following rTMS to the control region, decision latencies reflected the odds of winning; this relationship was disrupted by rTMS to the AG. In contrast, no significant effects of rTMS to the AG (or to the PMC) upon choice behavior in auditory trials were found. Thus, rTMS to the AG affected decision-making only in the task condition requiring visuospatial attention. The current findings suggest that the AG contributes to decision-making by guiding attention to relevant information about reward and punishment in the visual environment. Copyright © 2014. Published by Elsevier Inc.

  11. Effects of Chronic Active Cannabis Use on Visuomotor Integration, in Relation to Brain Activation and Cortisol Levels

    PubMed Central

    King, G.R.; Ernst, T.; Deng, W.; Stenger, A.; Gonzales, R.M.K; Nakama, H.; Chang, L.

    2012-01-01

    Cannabis is the most abused illegal substance in the United States. Alterations in brain function and motor behavior have been reported in chronic cannabis users, but the results have been variable. The current study aimed to determine whether chronic active cannabis use in humans may alter psychomotor function, brain activation, and hypothalamic-pituitary-axis (HPA) function in men and women. 30 cannabis users (16 men and 14 women, 18 to 45 years old) and 30 non-drug user controls (16 men and 14 women, 19 to 44 years old) were evaluated with neuropsychological tests designed to assess motor behavior and functional MRI (fMRI), using a 3 Tesla scanner, during a visually paced finger-sequencing task, cued by a flashing checkerboard (at 2 or 4 Hz). Salivary cortisol was measured to assess HPA function. Male, but not female, cannabis users had significantly slower performance on psychomotor speed tests. As a group, cannabis users had greater activation in BA 6 than controls, while controls had greater activation in the visual area BA 17 than cannabis users. Cannabis users also had higher salivary cortisol levels than controls (p = 0.002). Chronic active cannabis use is associated with slower and less efficient psychomotor function, especially in the male users, as indicated by a shift from regions involved with automated visually guided responses to more executive or attentional control areas. These brain activities may be attenuated by the higher cortisol levels in the cannabis users which in turn may lead to less efficient visual-motor function. PMID:22159107

  12. How perception guides action: Figure-ground segmentation modulates integration of context features into S-R episodes.

    PubMed

    Frings, Christian; Rothermund, Klaus

    2017-11-01

    Perception and action are closely related. Responses are assumed to be represented in terms of their perceptual effects, allowing direct links between action and perception. In this regard, the integration of features of stimuli (S) and responses (R) into S-R bindings is a key mechanism for action control. Previous research focused on the integration of object features with response features while neglecting the context in which an object is perceived. In 3 experiments, we analyzed whether contextual features can also become integrated into S-R episodes. The data showed that a fundamental principle of visual perception, figure-ground segmentation, modulates the binding of contextual features. Only features belonging to the figure region of a context but not features forming the background were integrated with responses into S-R episodes, retrieval of which later on had an impact upon behavior. Our findings suggest that perception guides the selection of context features for integration with responses into S-R episodes. Results of our study have wide-ranging implications for an understanding of context effects in learning and behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. ARTIFICIAL LIGHTING FOR MODERN SCHOOLS, A GUIDE FOR ADMINISTRATIVE USE.

    ERIC Educational Resources Information Center

    REIDA, GEORGE W.; AND OTHERS

    THE DEVELOPMENT OF GOOD VISUAL ENVIRONMENT AND ECONOMICALLY FEASIBLE LIGHTING INSTALLATIONS IN SCHOOLS IS DISCUSSED IN THIS GUIDE. EIGHTY PERCENT OF ALL SCHOOL LEARNING IS GAINED THROUGH THE EYES AS ESTIMATED BY THE U.S. OFFICE OF EDUCATION. GOOD SCHOOL LIGHTING IS COMFORTABLE, GLAREFREE AND ADEQUATE FOR THE VISUAL TASK. EYE STRAIN AND UNNECESSARY…

  14. The Role of Clarity and Blur in Guiding Visual Attention in Photographs

    ERIC Educational Resources Information Center

    Enns, James T.; MacDonald, Sarah C.

    2013-01-01

    Visual artists and photographers believe that a viewer's gaze can be guided by selective use of image clarity and blur, but there is little systematic research. In this study, participants performed several eye-tracking tasks with the same naturalistic photographs, including recognition memory for the entire photo, as well as recognition memory…

  15. Self-Study and Evaluation Guide/1979 Edition. Section D-16: Other Service Program.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    The self evaluation guide is explained to be designed for accreditation of services to blind and visually handicapped students in service programs for which the NAC (National Accreditation Council for Agencies Serving the Blind and Visually Handicapped) does not have specific program standards (such as radio reading services and library services).…

  16. Wisconsin School for the Visually Handicapped. A Curriculum Guide for Students. Bulletin No. 7393.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. for Handicapped Children and Pupil Services.

    The curriculum guide sets forth the course of study at the Wisconsin School for the Visually Handicapped. An initial section presents the school's philosophy regarding the need for specialty skills to be incorporated into regular academic instruction. The content of the primary and elementary programs (kindergarten through grade 6) is reviewed in…

  17. K9 Buddies: A Program of Guide Dogs for the Blind

    ERIC Educational Resources Information Center

    Ritter, Joanne

    2007-01-01

    Today, exceptional dogs that have been specially bred and socialized are paired with children who are blind or visually impaired. These dogs, called "K9 Buddies," are from Guide Dogs for the Blind, a national nonprofit organization with a mission to offer skilled mobility dogs and training free-of-charge to adults with visual impairments…

  18. Extrinsic Embryonic Sensory Stimulation Alters Multimodal Behavior and Cellular Activation

    PubMed Central

    Markham, Rebecca G.; Shimizu, Toru; Lickliter, Robert

    2009-01-01

    Embryonic vision is generated and maintained by spontaneous neuronal activation patterns, yet extrinsic stimulation also sculpts sensory development. Because the sensory and motor systems are interconnected in embryogenesis, how extrinsic sensory activation guides multimodal differentiation is an important topic. Further, it is unknown whether extrinsic stimulation experienced near sensory sensitivity onset contributes to persistent brain changes, ultimately affecting postnatal behavior. To determine the effects of extrinsic stimulation on multimodal development, we delivered auditory stimulation to bobwhite quail groups during early, middle, or late embryogenesis, and then tested postnatal behavioral responsiveness to auditory or visual cues. Auditory preference tendencies were more consistently toward the conspecific stimulus for animals stimulated during late embryogenesis. Groups stimulated during middle or late embryogenesis showed altered postnatal species-typical visual responsiveness, demonstrating a persistent multimodal effect. We also examined whether auditory-related brain regions are receptive to extrinsic input during middle embryogenesis by measuring postnatal cellular activation. Stimulated birds showed a greater number of ZENK-immunopositive cells per unit volume of brain tissue in deep optic tectum, a midbrain region strongly implicated in multimodal function. We observed similar results in the medial and caudomedial nidopallia in the telencephalon. There were no ZENK differences between groups in inferior colliculus or in caudolateral nidopallium, avian analog to prefrontal cortex. To our knowledge, these are the first results linking extrinsic stimulation delivered so early in embryogenesis to changes in postnatal multimodal behavior and cellular activation. The potential role of competitive interactions between the sensory and motor systems is discussed. PMID:18777564

  19. Social stories, written text cues, and video feedback: effects on social communication of children with autism.

    PubMed Central

    Thiemann, K S; Goldstein, H

    2001-01-01

    This study investigated the effects of written text and pictorial cuing with supplemental video feedback on the social communication of 5 students with autism and social deficits. Two peers without disabilities participated as social partners with each child with autism to form five triads. Treatment was implemented twice per week and consisted of 10 min of systematic instruction using visual stimuli, 10 min of social interaction, and 10 min of self-evaluation using video feedback. Results showed increases in targeted social communication skills when the treatment was implemented. Some generalized treatment effects were observed across untrained social behaviors, and 1 participant generalized improvements within the classroom. In addition, naive judges reported perceived improvements in the quality of reciprocal interactions. These findings support recommendations for using visually cued instruction to guide the social language development of young children with autism as they interact with peers without disabilities. PMID:11800183

  20. Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits

    PubMed Central

    Briggs, Farran; Mangun, George R.; Usrey, W. Martin

    2013-01-01

    Summary Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behavior are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by (1) increasing the efficacy of presynaptic input in driving postsynaptic responses, (2) increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and (3) decreasing redundant signals between postsynaptic neurons receiving common input. These results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory milieu. PMID:23803766

  1. Looking inward and back: Real-time monitoring of visual working memories.

    PubMed

    Suchow, Jordan W; Fougnie, Daryl; Alvarez, George A

    2017-04-01

    Confidence in our memories is influenced by many factors, including beliefs about the perceptibility or memorability of certain kinds of objects and events, as well as knowledge about our skill sets, habits, and experiences. Notoriously, our knowledge and beliefs about memory can lead us astray, causing us to be overly confident in eyewitness testimony or to overestimate the frequency of recent experiences. Here, using visual working memory as a case study, we stripped away all these potentially misleading cues, requiring observers to make confidence judgments by directly assessing the quality of their memory representations. We show that individuals can monitor the status of information in working memory as it degrades over time. Our findings suggest that people have access to information reflecting the existence and quality of their working memories, and furthermore, that they can use this information to guide their behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  3. Behavior Management Guide for Parents of Children with Dual Sensory Impairments. Bulletin No. 9129.

    ERIC Educational Resources Information Center

    Papineau, Andrew

    This guide describes methods to help parents and others reduce the unacceptable behaviors of children with multiple sensory impairments and replace those behaviors with acceptable ones. The guide recommends that the behavior change program begin with simple changes so that both the parents and the child gain experience in changing behavior. The…

  4. Ready, Set, Go! Low Anticipatory Response during a Dyadic Task in Infants at High Familial Risk for Autism

    PubMed Central

    Landa, Rebecca J.; Haworth, Joshua L.; Nebel, Mary Beth

    2016-01-01

    Children with autism spectrum disorder (ASD) demonstrate a host of motor impairments that may share a common developmental basis with ASD core symptoms. School-age children with ASD exhibit particular difficulty with hand-eye coordination and appear to be less sensitive to visual feedback during motor learning. Sensorimotor deficits are observable as early as 6 months of age in children who later develop ASD; yet the interplay of early motor, visual and social skill development in ASD is not well understood. Integration of visual input with motor output is vital for the formation of internal models of action. Such integration is necessary not only to master a wide range of motor skills, but also to imitate and interpret the actions of others. Thus, closer examination of the early development of visual-motor deficits is of critical importance to ASD. In the present study of infants at high risk (HR) and low risk (LR) for ASD, we examined visual-motor coupling, or action anticipation, during a dynamic, interactive ball-rolling activity. We hypothesized that, compared to LR infants, HR infants would display decreased anticipatory response (perception-guided predictive action) to the approaching ball. We also examined visual attention before and during ball rolling to determine whether attention engagement contributed to differences in anticipation. Results showed that LR and HR infants demonstrated context appropriate looking behavior, both before and during the ball’s trajectory toward them. However, HR infants were less likely to exhibit context appropriate anticipatory motor response to the approaching ball (moving their arm/hand to intercept the ball) than LR infants. This finding did not appear to be driven by differences in motor skill between risk groups at 6 months of age and was extended to show an atypical predictive relationship between anticipatory behavior at 6 months and preference for looking at faces compared to objects at age 14 months in the HR group. PMID:27252667

  5. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  6. Visual-auditory integration for visual search: a behavioral study in barn owls

    PubMed Central

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls’ heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam’s video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target. PMID:25762905

  7. Attention in natural scenes: Affective-motivational factors guide gaze independently of visual salience.

    PubMed

    Schomaker, Judith; Walper, Daniel; Wittmann, Bianca C; Einhäuser, Wolfgang

    2017-04-01

    In addition to low-level stimulus characteristics and current goals, our previous experience with stimuli can also guide attentional deployment. It remains unclear, however, if such effects act independently or whether they interact in guiding attention. In the current study, we presented natural scenes including every-day objects that differed in affective-motivational impact. In the first free-viewing experiment, we presented visually-matched triads of scenes in which one critical object was replaced that varied mainly in terms of motivational value, but also in terms of valence and arousal, as confirmed by ratings by a large set of observers. Treating motivation as a categorical factor, we found that it affected gaze. A linear-effect model showed that arousal, valence, and motivation predicted fixations above and beyond visual characteristics, like object size, eccentricity, or visual salience. In a second experiment, we experimentally investigated whether the effects of emotion and motivation could be modulated by visual salience. In a medium-salience condition, we presented the same unmodified scenes as in the first experiment. In a high-salience condition, we retained the saturation of the critical object in the scene, and decreased the saturation of the background, and in a low-salience condition, we desaturated the critical object while retaining the original saturation of the background. We found that highly salient objects guided gaze, but still found additional additive effects of arousal, valence and motivation, confirming that higher-level factors can also guide attention, as measured by fixations towards objects in natural scenes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Seeing through rose-colored glasses: How optimistic expectancies guide visual attention

    PubMed Central

    Bristle, Mirko; Aue, Tatjana

    2018-01-01

    Optimism bias and positive attention bias have important highly similar implications for mental health but have only been examined in isolation. Investigating the causal relationships between these biases can improve the understanding of their underlying cognitive mechanisms, leading to new directions in neurocognitive research and revealing important information about normal functioning as well as the development, maintenance, and treatment of psychological diseases. In the current project, we hypothesized that optimistic expectancies can exert causal influences on attention deployment. To test this causal relation, we conducted two experiments in which we manipulated optimistic and pessimistic expectancies regarding future rewards and punishments. In a subsequent visual search task, we examined participants’ attention to positive (i.e., rewarding) and negative (i.e., punishing) target stimuli, measuring their eye gaze behavior and reaction times. In both experiments, participants’ attention was guided toward reward compared with punishment when optimistic expectancies were induced. Additionally, in Experiment 2, participants’ attention was guided toward punishment compared with reward when pessimistic expectancies were induced. However, the effect of optimistic (rather than pessimistic) expectancies on attention deployment was stronger. A key characteristic of optimism bias is that people selectively update expectancies in an optimistic direction, not in a pessimistic direction, when receiving feedback. As revealed in our studies, selective attention to rewarding versus punishing evidence when people are optimistic might explain this updating asymmetry. Thus, the current data can help clarify why optimistic expectancies are difficult to overcome. Our findings elucidate the cognitive mechanisms underlying optimism and attention bias, which can yield a better understanding of their benefits for mental health. PMID:29466420

  9. Seeing through rose-colored glasses: How optimistic expectancies guide visual attention.

    PubMed

    Kress, Laura; Bristle, Mirko; Aue, Tatjana

    2018-01-01

    Optimism bias and positive attention bias have important highly similar implications for mental health but have only been examined in isolation. Investigating the causal relationships between these biases can improve the understanding of their underlying cognitive mechanisms, leading to new directions in neurocognitive research and revealing important information about normal functioning as well as the development, maintenance, and treatment of psychological diseases. In the current project, we hypothesized that optimistic expectancies can exert causal influences on attention deployment. To test this causal relation, we conducted two experiments in which we manipulated optimistic and pessimistic expectancies regarding future rewards and punishments. In a subsequent visual search task, we examined participants' attention to positive (i.e., rewarding) and negative (i.e., punishing) target stimuli, measuring their eye gaze behavior and reaction times. In both experiments, participants' attention was guided toward reward compared with punishment when optimistic expectancies were induced. Additionally, in Experiment 2, participants' attention was guided toward punishment compared with reward when pessimistic expectancies were induced. However, the effect of optimistic (rather than pessimistic) expectancies on attention deployment was stronger. A key characteristic of optimism bias is that people selectively update expectancies in an optimistic direction, not in a pessimistic direction, when receiving feedback. As revealed in our studies, selective attention to rewarding versus punishing evidence when people are optimistic might explain this updating asymmetry. Thus, the current data can help clarify why optimistic expectancies are difficult to overcome. Our findings elucidate the cognitive mechanisms underlying optimism and attention bias, which can yield a better understanding of their benefits for mental health.

  10. Woodworking Guide for Visually Handicapped Students. A Five County Vocational Skills Training Program for the Blind.

    ERIC Educational Resources Information Center

    Gaver, Wayne

    Presented is an industrial arts curriculum guide for woodworking which developed out of a 3 year program designed to meet the unmet vocational education needs of visually impaired students enrolled in junior high, secondary, and community colleges in a five county region of California, and to provide inservice training to regular vocational…

  11. Enhancing visual search abilities of people with intellectual disabilities.

    PubMed

    Li-Tsang, Cecilia W P; Wong, Jackson K K

    2009-01-01

    This study aimed to evaluate the effects of cueing in visual search paradigm for people with and without intellectual disabilities (ID). A total of 36 subjects (18 persons with ID and 18 persons with normal intelligence) were recruited using convenient sampling method. A series of experiments were conducted to compare guided cue strategies using either motion contrast or additional cue to basic search task. Repeated measure ANOVA and post hoc multiple comparison tests were used to compare each cue strategy. Results showed that the use of guided strategies was able to capture focal attention in an autonomic manner in the ID group (Pillai's Trace=5.99, p<0.0001). Both guided cue and guided motion search tasks demonstrated functionally similar effects that confirmed the non-specific character of salience. These findings suggested that the visual search efficiency of people with ID was greatly improved if the target was made salient using cueing effect when the complexity of the display increased (i.e. set size increased). This study could have an important implication for the design of the visual searching format of any computerized programs developed for people with ID in learning new tasks.

  12. Necessity of guides in pedestrian emergency evacuation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxia; Dong, Hairong; Yao, Xiuming; Sun, Xubin; Wang, Qianling; Zhou, Min

    2016-01-01

    The role of guide who is in charge of leading pedestrians to evacuate in the case of emergency plays a critical role for the uninformed people. This paper first investigates the influence of mass behavior on evacuation dynamics and mainly focuses on the guided evacuation dynamics. In the extended crowd model proposed in this paper, individualistic behavior, herding behavior and environment influence are all considered for pedestrians who are not informed by the guide. According to the simulation results, herding behavior makes more pedestrians evacuate from the room in the same period of time. Besides, guided crowd demonstrates the same behavior of group dynamics which is characterized by gathering, conflicts and balance. Moreover, simulation results indicate guides with appropriate initial positions and quantity are more conducive to evacuation under a moderate initial density of pedestrians.

  13. Memory guidance in distractor suppression is governed by the availability of cognitive control.

    PubMed

    Wen, Wen; Hou, Yin; Li, Sheng

    2018-03-26

    Information stored in the memory systems can affect visual search. Previous studies have shown that holding the to-be-ignored features of distractors in working memory (WM) could accelerate target selection. However, such facilitation effect was only observed when the cued to-be-ignored features remained unchanged within an experimental block (i.e., the fixed cue condition). No search benefit was obtained if the to-be-ignored features varied from trial to trial (i.e., the varied cue condition). In the present study, we conducted three behavioral experiments to investigate whether the WM and long-term memory (LTM) representations of the to-be-ignored features could facilitate visual search in the fixed cue (Experiment 1) and varied cue (Experiments 2 and 3) conditions. Given the importance of the processing time of cognitive control in distractor suppression, we divided visual search trials into five quintiles based on their reaction times (RTs) and examined the temporal characteristics of the suppression effect. Results showed that both the WM and LTM representations of the to-be-ignored features could facilitate distractor suppression in the fixed cue condition, and the facilitation effects were evident across the quintiles in the RT distribution. However, in the varied cue condition, the RT benefits of the WM-matched distractors occurred only in the trials with the longest RTs, whereas no advantage of the LTM-matched distractors was observed. These results suggest that the effective WM-guided distractor suppression depends on the availability of cognitive control and the LTM-guided suppression occurs only if sufficient WM resource is accessible by LTM reactivation.

  14. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  15. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  16. A Closer Look at Visual Manuals.

    ERIC Educational Resources Information Center

    van der Meij, Hans

    1996-01-01

    Examines the visual manual genre, discussing main forms and functions of step-by-step and guided tour manuals in detail. Examines whether a visual manual helps computer users realize tasks faster and more accurately than a non-visual manual. Finds no effects on accuracy, but speedier task execution by 35% for visual manuals. Concludes there is no…

  17. Teaching Students with Visual Impairments. Programming for Students with Special Needs. No. 5.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Special Education Branch.

    This resource guide offers suggestions and resources to help provide successful school experiences for students who are blind or visually impaired. Individual sections address: (1) the nature of visual impairment, the specific needs and expectations of students with visual impairment, and the educational implications of visual impairment; (2)…

  18. A novel computational model to probe visual search deficits during motor performance

    PubMed Central

    Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy

    2016-01-01

    Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596

  19. 50 Tactile and Visual Perception Games for Under $10: A Guide to Reading Readiness Games for Pre-School Teachers, Head Start Teachers, and First Grade Teachers.

    ERIC Educational Resources Information Center

    Cangemi, Sam

    This guide describes and illustrates 50 perceptual games for preschool children which may be constructed by teachers. Inexpensive, easily obtained game materials are suggested. The use of tactile and visual perceptual games gives children opportunities to make choices and discriminations, and provides reading readiness experiences. Games depicted…

  20. Creative Visualization Activities.

    ERIC Educational Resources Information Center

    Fugitt, Eva D.

    1986-01-01

    Presents a series of classroom exercises and activities that stimulate children's creativity through the use of visualization. Discusses procedures for guided imagery and offers some examples of "trips" to imaginary places. Proposes visualization as a warm-up exercise before art lessons. (DR)

  1. Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers?

    PubMed Central

    Ritzmann, Roy E.; Harley, Cynthia M.; Daltorio, Kathryn A.; Tietz, Brian R.; Pollack, Alan J.; Bender, John A.; Guo, Peiyuan; Horomanski, Audra L.; Kathman, Nicholas D.; Nieuwoudt, Claudia; Brown, Amy E.; Quinn, Roger D.

    2012-01-01

    Animals must routinely deal with barriers as they move through their natural environment. These challenges require directed changes in leg movements and posture performed in the context of ever changing internal and external conditions. In particular, cockroaches use a combination of tactile and visual information to evaluate objects in their path in order to effectively guide their movements in complex terrain. When encountering a large block, the insect uses its antennae to evaluate the object’s height then rears upward accordingly before climbing. A shelf presents a choice between climbing and tunneling that depends on how the antennae strike the shelf; tapping from above yields climbing, while tapping from below causes tunneling. However, ambient light conditions detected by the ocelli can bias that decision. Similarly, in a T-maze turning is determined by antennal contact but influenced by visual cues. These multi-sensory behaviors led us to look at the central complex as a center for sensori-motor integration within the insect brain. Visual and antennal tactile cues are processed within the central complex and, in tethered preparations, several central complex units changed firing rates in tandem with or prior to altered step frequency or turning, while stimulation through the implanted electrodes evoked these same behavioral changes. To further test for a central complex role in these decisions, we examined behavioral effects of brain lesions. Electrolytic lesions in restricted regions of the central complex generated site specific behavioral deficits. Similar changes were also found in reversible effects of procaine injections in the brain. Finally, we are examining these kinds of decisions made in a large arena that more closely matches the conditions under which cockroaches forage. Overall, our studies suggest that CC circuits may indeed influence the descending commands associated with navigational decisions, thereby making them more context dependent. PMID:22783160

  2. Steering by hearing: a bat's acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law.

    PubMed

    Ghose, Kaushik; Moss, Cynthia F

    2006-02-08

    Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.

  3. Acceptance of Dog Guides and Daily Stress Levels of Dog Guide Users and Nonusers

    ERIC Educational Resources Information Center

    Matsunaka, Kumiko; Koda, Naoko

    2008-01-01

    The degree of acceptance of dog guides at public facilities, which is required by law in Japan, was investigated, and evidence of rejection was found. Japanese people with visual impairments who used dog guides reported higher daily stress levels than did those who did not use dog guides. (Contains 3 tables and 1 figure.)

  4. Self-Study and Evaluation Guide/1968 Edition. Section D-2B: Orientation on Mobility Services. (Dog Guide Program Only).

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on orientation and mobility services (dog guide program emphasis) is one of 28 guides designed for organizations undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of…

  5. Neural representations of contextual guidance in visual search of real-world scenes.

    PubMed

    Preston, Tim J; Guo, Fei; Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P

    2013-05-01

    Exploiting scene context and object-object co-occurrence is critical in guiding eye movements and facilitating visual search, yet the mediating neural mechanisms are unknown. We used functional magnetic resonance imaging while observers searched for target objects in scenes and used multivariate pattern analyses (MVPA) to show that the lateral occipital complex (LOC) can predict the coarse spatial location of observers' expectations about the likely location of 213 different targets absent from the scenes. In addition, we found weaker but significant representations of context location in an area related to the orienting of attention (intraparietal sulcus, IPS) as well as a region related to scene processing (retrosplenial cortex, RSC). Importantly, the degree of agreement among 100 independent raters about the likely location to contain a target object in a scene correlated with LOC's ability to predict the contextual location while weaker but significant effects were found in IPS, RSC, the human motion area, and early visual areas (V1, V3v). When contextual information was made irrelevant to observers' behavioral task, the MVPA analysis of LOC and the other areas' activity ceased to predict the location of context. Thus, our findings suggest that the likely locations of targets in scenes are represented in various visual areas with LOC playing a key role in contextual guidance during visual search of objects in real scenes.

  6. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses.

    PubMed

    Kumpf, Alexander; Tost, Bianca; Baumgart, Marlene; Riemer, Michael; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.

  7. Looking and touching: what extant approaches reveal about the structure of early word knowledge.

    PubMed

    Hendrickson, Kristi; Mitsven, Samantha; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2015-09-01

    The goal of the current study is to assess the temporal dynamics of vision and action to evaluate the underlying word representations that guide infants' responses. Sixteen-month-old infants participated in a two-alternative forced-choice word-picture matching task. We conducted a moment-by-moment analysis of looking and reaching behaviors as they occurred in tandem to assess the speed with which a prompted word was processed (visual reaction time) as a function of the type of haptic response: Target, Distractor, or No Touch. Visual reaction times (visual RTs) were significantly slower during No Touches compared to Distractor and Target Touches, which were statistically indistinguishable. The finding that visual RTs were significantly faster during Distractor Touches compared to No Touches suggests that incorrect and absent haptic responses appear to index distinct knowledge states: incorrect responses are associated with partial knowledge whereas absent responses appear to reflect a true failure to map lexical items to their target referents. Further, we found that those children who were faster at processing words were also those children who exhibited better haptic performance. This research provides a methodological clarification on knowledge measured by the visual and haptic modalities and new evidence for a continuum of word knowledge in the second year of life. © 2014 The Authors Developmental Science Published by John Wiley & Sons Ltd.

  8. Residual attention guidance in blindsight monkeys watching complex natural scenes.

    PubMed

    Yoshida, Masatoshi; Itti, Laurent; Berg, David J; Ikeda, Takuro; Kato, Rikako; Takaura, Kana; White, Brian J; Munoz, Douglas P; Isa, Tadashi

    2012-08-07

    Patients with damage to primary visual cortex (V1) demonstrate residual performance on laboratory visual tasks despite denial of conscious seeing (blindsight) [1]. After a period of recovery, which suggests a role for plasticity [2], visual sensitivity higher than chance is observed in humans and monkeys for simple luminance-defined stimuli, grating stimuli, moving gratings, and other stimuli [3-7]. Some residual cognitive processes including bottom-up attention and spatial memory have also been demonstrated [8-10]. To date, little is known about blindsight with natural stimuli and spontaneous visual behavior. In particular, is orienting attention toward salient stimuli during free viewing still possible? We used a computational saliency map model to analyze spontaneous eye movements of monkeys with blindsight from unilateral ablation of V1. Despite general deficits in gaze allocation, monkeys were significantly attracted to salient stimuli. The contribution of orientation features to salience was nearly abolished, whereas contributions of motion, intensity, and color features were preserved. Control experiments employing laboratory stimuli confirmed the free-viewing finding that lesioned monkeys retained color sensitivity. Our results show that attention guidance over complex natural scenes is preserved in the absence of V1, thereby directly challenging theories and models that crucially depend on V1 to compute the low-level visual features that guide attention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Color-Change Detection Activity in the Primate Superior Colliculus.

    PubMed

    Herman, James P; Krauzlis, Richard J

    2017-01-01

    The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC's involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.

  10. Visual analytics of anomaly detection in large data streams

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay

    2009-01-01

    Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.

  11. Clothing Construction: An Instructional Package with Adaptations for Visually Impaired Individuals.

    ERIC Educational Resources Information Center

    Crawford, Glinda B.; And Others

    Developed for the home economics teacher of mainstreamed visually impaired students, this guide provides clothing instruction lesson plans for the junior high level. First, teacher guidelines are given, including characteristics of the visually impaired, orienting such students to the classroom, orienting class members to the visually impaired,…

  12. Focal damage to macaque photoreceptors produces persistent visual loss

    PubMed Central

    Strazzeri, Jennifer M.; Hunter, Jennifer J.; Masella, Benjamin D.; Yin, Lu; Fischer, William S.; DiLoreto, David A.; Libby, Richard T.; Williams, David R.; Merigan, William H.

    2014-01-01

    Insertion of light-gated channels into inner retina neurons restores neural light responses, light evoked potentials, visual optomotor responses and visually-guided maze behavior in mice blinded by retinal degeneration. This method of vision restoration bypasses damaged outer retina, providing stimulation directly to retinal ganglion cells in inner retina. The approach is similar to that of electronic visual protheses, but may offer some advantages, such as avoidance of complex surgery and direct targeting of many thousands of neurons. However, the promise of this technique for restoring human vision remains uncertain because rodent animal models, in which it has been largely developed, are not ideal for evaluating visual perception. On the other hand, psychophysical vision studies in macaque can be used to evaluate different approaches to vision restoration in humans. Furthermore, it has not been possible to test vision restoration in macaques, the optimal model for human-like vision, because there has been no macaque model of outer retina degeneration. In this study, we describe development of a macaque model of photoreceptor degeneration that can in future studies be used to test restoration of perception by visual prostheses. Our results show that perceptual deficits caused by focal light damage are restricted to locations at which photoreceptors are damaged, that optical coherence tomography (OCT) can be used to track such lesions, and that adaptive optics retinal imaging, which we recently used for in vivo recording of ganglion cell function, can be used in future studies to examine these lesions. PMID:24316158

  13. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    PubMed

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Competition between Visual Events Modulates the Influence of Salience during Free-Viewing of Naturalistic Videos

    PubMed Central

    Nardo, Davide; Console, Paola; Reverberi, Carlo; Macaluso, Emiliano

    2016-01-01

    In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of naturalistic videos. Nineteen healthy subjects underwent functional magnetic resonance imaging (fMRI) while viewing short video-clips of everyday life situations, without any explicit goal-directed task. Each video contained either a single semantically-relevant event on the left or right side (Lat-trials), or multiple distinctive events in both hemifields (Multi-trials). For each video, we computed a salience index to quantify the lateralization bias due to stimulus-driven signals, and a gaze index (based on eye-tracking data) to quantify the efficacy of the stimuli in capturing attention to either side. Behaviorally, our results showed that stimulus-driven salience influenced spatial orienting only in presence of multiple competing events (Multi-trials). fMRI results showed that the processing of competing events engaged the ventral attention network, including the right temporoparietal junction (R TPJ) and the right inferior frontal cortex. Salience was found to modulate activity in the visual cortex, but only in the presence of competing events; while the orienting efficacy of Multi-trials affected activity in both the visual cortex and posterior parietal cortex (PPC). We conclude that in presence of multiple competing events, the ventral attention system detects semantically-relevant events, while regions of the dorsal system make use of saliency signals to select relevant locations and guide spatial orienting. PMID:27445760

  15. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. PMID:27383604

  16. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    PubMed

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo. Copyright © 2016 the authors 0270-6474/16/367325-15$15.00/0.

  17. Simple Smartphone-Based Guiding System for Visually Impaired People

    PubMed Central

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-01-01

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811

  18. Simple Smartphone-Based Guiding System for Visually Impaired People.

    PubMed

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-06-13

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.

  19. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  20. Usefulness of real-time three-dimensional ultrasonography in percutaneous nephrostomy: an animal study.

    PubMed

    Hongzhang, Hong; Xiaojuan, Qin; Shengwei, Zhang; Feixiang, Xiang; Yujie, Xu; Haibing, Xiao; Gallina, Kazobinka; Wen, Ju; Fuqing, Zeng; Xiaoping, Zhang; Mingyue, Ding; Huageng, Liang; Xuming, Zhang

    2018-05-17

    To evaluate the effect of real-time three-dimensional (3D) ultrasonography (US) in guiding percutaneous nephrostomy (PCN). A hydronephrosis model was devised in which the ureters of 16 beagles were obstructed. The beagles were divided equally into groups 1 and 2. In group 1, the PCN was performed using real-time 3D US guidance, while in group 2 the PCN was guided using two-dimensional (2D) US. Visualization of the needle tract, length of puncture time and number of puncture times were recorded for the two groups. In group 1, score for visualization of the needle tract, length of puncture time and number of puncture times were 3, 7.3 ± 3.1 s and one time, respectively. In group 2, the respective results were 1.4 ± 0.5, 21.4 ± 5.8 s and 2.1 ± 0.6 times. The visualization of needle tract in group 1 was superior to that in group 2, and length of puncture time and number of puncture times were both lower in group 1 than in group 2. Real-time 3D US-guided PCN is superior to 2D US-guided PCN in terms of visualization of needle tract and the targeted pelvicalyceal system, leading to quick puncture. Real-time 3D US-guided puncture of the kidney holds great promise for clinical implementation in PCN. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  1. GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin.

    PubMed

    Mangiamele, Lisa A; Gomez, Julia R; Curtis, Nancy J; Thompson, Richmond R

    2017-02-01

    Estradiol rapidly (within 30 minutes) influences a variety of sociosexual behaviors in both mammalian and nonmammalian vertebrates, including goldfish, in which it rapidly stimulates approach responses to the visual cues of females. Such rapid neuromodulatory effects are likely mediated via membrane-associated estrogen receptors; however, the localization and distribution of such receptors within the nervous system is not well described. To begin to address this gap, we identified GPER/GPR30, a G-protein-coupled estrogen receptor, in goldfish (Carassius auratus) neural tissue and used reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to test if GPR30 is expressed in the brain regions that might mediate visually guided social behaviors in males. We then used immunohistochemistry to determine whether GPR30 colocalizes with isotocin-producing cells in the preoptic area, a critical node in the highly conserved vertebrate social behavior network. We used quantitative (q)PCR to test whether GPR30 mRNA levels differ in males in breeding vs. nonbreeding condition and in males that were socially interacting with a female vs. a rival male. Our results show that GPR30 is expressed in the retina and in many brain regions that receive input from the retina and/or optic tectum, as well as in a few nodes in the social behavior network, including cell populations that produce isotocin. J. Comp. Neurol. 525:252-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Enhanced Lesion Visualization in Image-Guided Noninvasive Surgery With Ultrasound Phased Arrays

    DTIC Science & Technology

    2001-10-25

    81, 1995. [4] N. Sanghvi et al., “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound ,” IEEE Trans. UFFC, vol. 43, no. 6, pp...ENHANCED LESION VISUALIZATION IN IMAGE-GUIDED NONINVASIVE SURGERY WITH ULTRASOUND PHASED ARRAYS Hui Yao, Pornchai Phukpattaranont and Emad S. Ebbini...Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 Abstract- We describe dual-mode ultrasound phased

  3. Hand Path Priming in Manual Obstacle Avoidance: Evidence that the Dorsal Stream Does Not Only Control Visually Guided Actions in Real Time

    ERIC Educational Resources Information Center

    Jax, Steven A.; Rosenbaum, David A.

    2007-01-01

    According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…

  4. Supervised guiding long-short term memory for image caption generation based on object classes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  5. Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus.

    PubMed

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2015-08-12

    Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.

  6. Visual-motor recalibration in geographical slant perception

    NASA Technical Reports Server (NTRS)

    Bhalla, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.

  7. Latin Curriculum Guide.

    ERIC Educational Resources Information Center

    Lee, Agnes; Stevens, Patrick

    This guide delineates the scope and sequence of Latin instruction in levels 1-3 in terms of behavioral objectives. Following a review of the Bloomington, Minnesota, school philosophy and a discussion of the design of foreign language behavioral objectives on which the guide is based, the manual discusses expected terminal behavior in the level 1…

  8. Forum Guide to Data Visualization: A Resource for Education Agencies. NFES 2017-016

    ERIC Educational Resources Information Center

    National Forum on Education Statistics, 2016

    2016-01-01

    The purpose of this document is to recommend data visualization practices that will help education agencies communicate data meaning in visual formats that are accessible, accurate, and actionable for a wide range of education stakeholders. Although this resource is designed for staff in education agencies, many of the visualization principles…

  9. Comparing Learning Performance of Students Using Algorithm Visualizations Collaboratively on Different Engagement Levels

    ERIC Educational Resources Information Center

    Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari

    2009-01-01

    In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…

  10. Embodied neurofeedback with an anthropomorphic robotic hand

    PubMed Central

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan

    2016-01-01

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190

  11. Bullying 101: The Club Crew's Guide to Bullying Prevention

    ERIC Educational Resources Information Center

    PACER Center, 2013

    2013-01-01

    "Bullying 101" is the Club Crew's Guide to Bullying Prevention. A visually-friendly, age-appropriate, 16-page colorful guide for students to read or for parents to use when talking with children, this guide describes and explains what bullying is and is not, the roles of other students, and tips on what each student can do to prevent…

  12. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    PubMed

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.

  13. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    PubMed

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    PubMed

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Can human amblyopia be treated in adulthood?

    PubMed

    Astle, Andrew T; McGraw, Paul V; Webb, Ben S

    2011-09-01

    Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function, etc) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (more than 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programs, there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognized levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological, and behavioral interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning--the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system, learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group.

  16. Visualization of risk structures for interactive planning of image guided radiofrequency ablation of liver tumors

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto

    2009-02-01

    Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.

  17. Beyond the cockpit: The visual world as a flight instrument

    NASA Technical Reports Server (NTRS)

    Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.

    1992-01-01

    The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).

  18. Parietal neurons encode expected gains in instrumental information

    PubMed Central

    Foley, Nicholas C.; Kelly, Simon P.; Mhatre, Himanshu; Gottlieb, Jacqueline

    2017-01-01

    In natural behavior, animals have access to multiple sources of information, but only a few of these sources are relevant for learning and actions. Beyond choosing an appropriate action, making good decisions entails the ability to choose the relevant information, but fundamental questions remain about the brain’s information sampling policies. Recent studies described the neural correlates of seeking information about a reward, but it remains unknown whether, and how, neurons encode choices of instrumental information, in contexts in which the information guides subsequent actions. Here we show that parietal cortical neurons involved in oculomotor decisions encode, before an information sampling saccade, the reduction in uncertainty that the saccade is expected to bring for a subsequent action. These responses were distinct from the neurons’ visual and saccadic modulations and from signals of expected reward or reward prediction errors. Therefore, even in an instrumental context when information and reward gains are closely correlated, individual cells encode decision variables that are based on informational factors and can guide the active sampling of action-relevant cues. PMID:28373569

  19. What you fear will appear: detection of schematic spiders in spider fear.

    PubMed

    Peira, Nathalie; Golkar, Armita; Larsson, Maria; Wiens, Stefan

    2010-01-01

    Various experimental tasks suggest that fear guides attention. However, because these tasks often lack ecological validity, it is unclear to what extent results from these tasks can be generalized to real-life situations. In change detection tasks, a brief interruption of the visual input (i.e., a blank interval or a scene cut) often results in undetected changes in the scene. This setup resembles real-life viewing behavior and is used here to increase ecological validity of the attentional task without compromising control over the stimuli presented. Spider-fearful and nonfearful women detected schematic spiders and flowers that were added to one of two identical background pictures that alternated with a brief blank in between them (i.e., flicker paradigm). Results showed that spider-fearful women detected spiders (but not flowers) faster than did nonfearful women. Because spiders and flowers had similar low-level features, these findings suggest that fear guides attention on the basis of object features rather than simple low-level features.

  20. Orbitofrontal cortex and basolateral amygdala lesions result in suboptimal and dissociable reward choices on cue-guided effort in rats

    PubMed Central

    Ostrander, Serena; Cazares, Victor A.; Kim, Charissa; Cheung, Shauna; Gonzalez, Isabel; Izquierdo, Alicia

    2011-01-01

    The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In two t-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on 1) effortful choices where rats could climb a barrier for a high reward or select a low reward with no effort and 2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. PMID:21639604

  1. Simulators for training in ultrasound guided procedures.

    PubMed

    Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle

    2013-06-01

    The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.

  2. Behavioral Prescription Guide. Manual IIb: Motor. Parent/Child Home Stimulation 'The Marshalltown Project.'

    ERIC Educational Resources Information Center

    Keiser, Arlene F.; And Others

    Presented is the Marshalltown Behavioral Prescription Guide for motor development which consists of incremental behavioral objectives and strategies to aid parents in the prescriptive teaching of handicapped and culturally deprived infants and preschool children. The guide is intended for use prior to a weekly home visit resulting in a weekly…

  3. Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus

    PubMed Central

    Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung

    2016-01-01

    Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630

  4. Skating down a steeper slope: Fear influences the perception of geographical slant

    PubMed Central

    Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish

    2008-01-01

    Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594

  5. Visually guided locomotion and computation of time-to-collision in the mongolian gerbil (Meriones unguiculatus): the effects of frontal and visual cortical lesions.

    PubMed

    Shankar, S; Ellard, C

    2000-02-01

    Past research has indicated that many species use the time-to-collision variable but little is known about its neural underpinnings in rodents. In a set of three experiments we set out to replicate and extend the findings of Sun et al. (Sun H-J, Carey DP, Goodale MA. Exp Brain Res 1992;91:171-175) in a visually guided task in Mongolian gerbils, and then investigated the effects of lesions to different cortical areas. We trained Mongolian gerbils to run in the dark toward a target on a computer screen. In some trials the target changed in size as the animal ran toward it in such a way as to produce 'virtual targets' if the animals were using time-to-collision or contact information. In experiment 1 we confirmed that gerbils use time-to-contact information to modulate their speed of running toward a target. In experiment 2 we established that visual cortex lesions attenuate the ability of lesioned animals to use information from the visual target to guide their run, while frontal cortex lesioned animals are not as severely affected. In experiment 3 we found that small radio-frequency lesions, of either area VI or of the lateral extrastriate regions of the visual cortex also affected the use of information from the target to modulate locomotion.

  6. The behavioral context of visual displays in common marmosets (Callithrix jacchus).

    PubMed

    de Boer, Raïssa A; Overduin-de Vries, Anne M; Louwerse, Annet L; Sterck, Elisabeth H M

    2013-11-01

    Communication is important in social species, and may occur with the use of visual, olfactory or auditory signals. However, visual communication may be hampered in species that are arboreal have elaborate facial coloring and live in small groups. The common marmoset fits these criteria and may have limited visual communication. Nonetheless, some (contradictive) propositions concerning visual displays in the common marmoset have been made, yet quantitative data are lacking. The aim of this study was to assign a behavioral context to different visual displays using pre-post-event-analyses. Focal observations were conducted on 16 captive adult and sub-adult marmosets in three different family groups. Based on behavioral elements with an unambiguous meaning, four different behavioral contexts were distinguished: aggression, fear, affiliation, and play behavior. Visual displays concerned behavior that included facial expressions, body postures, and pilo-erection of the fur. Visual displays related to aggression, fear, and play/affiliation were consistent with the literature. We propose that the visual display "pilo-erection tip of tail" is related to fear. Individuals receiving these fear signals showed a higher rate of affiliative behavior. This study indicates that several visual displays may provide cues or signals of particular social contexts. Since the three displays of fear elicited an affiliative response, they may communicate a request of anxiety reduction or signal an external referent. Concluding, common marmosets, despite being arboreal and living in small groups, use several visual displays to communicate with conspecifics and their facial coloration may not hamper, but actually promote the visibility of visual displays. © 2013 Wiley Periodicals, Inc.

  7. Mechnical Drawing/Drafting Curriculum Guide.

    ERIC Educational Resources Information Center

    Gregory, Margaret R.; Benson, Robert T.

    This curriculum guide consists of materials for teaching a course in mechanical drawing and drafting. Addressed in the individual units of the guide are the following topics: the nature and scope of drawing and drafting, visualization and spatial relationships, drafting tools and materials, linework, freehand lettering, geometric construction,…

  8. Aviation & Space Education: A Teacher's Resource Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Aviation, Austin.

    This resource guide contains information on curriculum guides, resources for teachers, computer software and computer related programs, audio/visual presentations, model aircraft and demonstration aids, training seminars and career education, and an aerospace bibliography for primary grades. Each entry includes all or some of the following items:…

  9. Assessment of atherosclerotic luminal narrowing of coronary arteries based on morphometrically generated visual guides.

    PubMed

    Barth, Rolf F; Kellough, David A; Allenby, Patricia; Blower, Luke E; Hammond, Scott H; Allenby, Greg M; Buja, L Maximilian

    Determination of the degree of stenosis of atherosclerotic coronary arteries is an important part of postmortem examination of the heart, but, unfortunately, estimation of the degree of luminal narrowing can be imprecise and tends to be approximations. Visual guides can be useful to assess this, but earlier attempts to develop such guides did not employ digital technology. Using this approach, we have developed two computer-generated morphometric guides to estimate the degree of luminal narrowing of atherosclerotic coronary arteries. The first is based on symmetric or eccentric circular or crescentic narrowing of the vessel lumen and the second on either slit-like or irregularly shaped narrowing of the vessel lumens. Using the Aperio ScanScope XT at a magnification of 20× we created digital whole-slide images of 20 representative microscopic cross sections of the left anterior descending (LAD) coronary artery, stained with either hematoxylin and eosin (H&E) or Movat's pentachrome stain. These cross sections illustrated a variety of luminal profiles and degrees of stenosis. Three representative types of images were selected and a visual guide was constructed with Adobe Photoshop CS5. Using the "Scale" and "Measurement" tools, we created a series of representations of stenosis with luminal cross sections depicting 20%, 40%, 60%, 70%, 80%, and 90% occlusion of the LAD branch. Four pathologists independently reviewed and scored the degree of atherosclerotic luminal narrowing based on our visual guides. In addition, digital technology was employed to determine the degree of narrowing by measuring the cross-sectional area of the 20 microscopic sections of the vessels, first assuming no narrowing and then comparing this to the percent of narrowing determined by precise measurement. Two of the observers were very experienced general autopsy pathologists, one was a first-year pathology resident on his first rotation on the autopsy service, and the fourth observer was a highly experienced cardiovascular pathologist. Interobserver reliability was assessed by determination of the intraclass correlation coefficient. The degrees of agreement for two H&E- and Movat-stained sections of the LADs from each of 10 decedents were 0.874 and 0.899, respectively, indicating strong interobserver agreement. On the average, the mean visual scores were ~8% less than the morphometric assessment (52.7 vs. 60.2), respectively. The visual guides that we have generated for scoring atherosclerotic luminal narrowing of coronary arteries should be helpful for a broad group of pathologists, from beginning pathology residents to experienced cardiovascular pathologists. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Review of fluorescence guided surgery visualization and overlay techniques

    PubMed Central

    Elliott, Jonathan T.; Dsouza, Alisha V.; Davis, Scott C.; Olson, Jonathan D.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2015-01-01

    In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check. PMID:26504628

  11. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  12. A guide to the visual analysis and communication of biomolecular structural data.

    PubMed

    Johnson, Graham T; Hertig, Samuel

    2014-10-01

    Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.

  13. Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: An in-vitro study.

    PubMed

    Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning

    2015-07-26

    To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.

  14. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    PubMed Central

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  15. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  16. The Effects of a Peer-Delivered Social Skills Intervention for Adults with Comorbid Down Syndrome and Autism Spectrum Disorder.

    PubMed

    Davis, Matthew A Cody; Spriggs, Amy; Rodgers, Alexis; Campbell, Jonathan

    2018-06-01

    Deficits in social skills are often exhibited in individuals with comorbid Down syndrome (DS) and autism spectrum disorder (ASD), and there is a paucity of research to help guide intervention for this population. In the present study, a multiple probe study across behaviors, replicated across participants, assessed the effectiveness of peer-delivered simultaneous prompting in teaching socials skills to adults with DS-ASD using visual analysis techniques and Tau-U statistics to measure effect. Peer-mediators with DS and intellectual disability (ID) delivered simultaneous prompting sessions reliably (i.e., > 80% reliability) to teach social skills to adults with ID and a dual-diagnoses of DS-ASD with small (Tau Weighted  = .55, 90% CI [.29, .82]) to medium effects (Tau Weighted  = .75, 90% CI [.44, 1]). Statistical and visual analysis findings suggest a promising social skills intervention for individuals with DS-ASD as well as reliable delivery of simultaneous prompting procedures by individuals with DS.

  17. Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan.

    PubMed

    Kimura, Takeshi; Shiomi, Hiroki; Kuribayashi, Sachio; Isshiki, Takaaki; Kanazawa, Susumu; Ito, Hiroshi; Ikeda, Shunya; Forrest, Ben; Zarins, Christopher K; Hlatky, Mark A; Norgaard, Bjarne L

    2015-01-01

    Percutaneous coronary intervention (PCI) based on fractional flow reserve (FFRcath) measurement during invasive coronary angiography (CAG) results in improved patient outcome and reduced healthcare costs. FFR can now be computed non-invasively from standard coronary CT angiography (cCTA) scans (FFRCT). The purpose of this study is to determine the potential impact of non-invasive FFRCT on costs and clinical outcomes of patients with suspected coronary artery disease in Japan. Clinical data from 254 patients in the HeartFlowNXT trial, costs of goods and services in Japan, and clinical outcome data from the literature were used to estimate the costs and outcomes of 4 clinical pathways: (1) CAG-visual guided PCI, (2) CAG-FFRcath guided PCI, (3) cCTA followed by CAG-visual guided PCI, (4) cCTA-FFRCT guided PCI. The CAG-visual strategy demonstrated the highest projected cost ($10,360) and highest projected 1-year death/myocardial infarction rate (2.4 %). An assumed price for FFRCT of US $2,000 produced equivalent clinical outcomes (death/MI rate: 1.9 %) and healthcare costs ($7,222) for the cCTA-FFRCT strategy and the CAG-FFRcath guided PCI strategy. Use of the cCTA-FFRCT strategy to select patients for PCI would result in 32 % lower costs and 19 % fewer cardiac events at 1 year compared to the most commonly used CAG-visual strategy. Use of cCTA-FFRCT to select patients for CAG and PCI may reduce costs and improve clinical outcome in patients with suspected coronary artery disease in Japan.

  18. Introduction to the MCS. Visual Media Learning Guide.

    ERIC Educational Resources Information Center

    Spokane Falls Community Coll., WA.

    This student learning guide is designed to introduce graphics arts students t the MCS (Modular Composition System) compugraphic typesetting system. Addressed in the individual units of the competency-based guide are the following tasks: programming the compugraphic typesetting system, creating a new file and editing a file, operating a…

  19. Graphic Design Career Guide 2. Revised Edition.

    ERIC Educational Resources Information Center

    Craig, James

    The graphic design field is diverse and includes many areas of specialization. This guide introduces students to career opportunities in graphic design. The guide is organized in four parts. "Part One: Careers in Graphic Design" identifies and discusses the various segments of the graphic design industry, including: Advertising, Audio-Visual, Book…

  20. Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke

    ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less

  1. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.

  2. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390

  3. Non-topography-guided PRK combined with CXL for the correction of refractive errors in patients with early stage keratoconus.

    PubMed

    Fadlallah, Ali; Dirani, Ali; Chelala, Elias; Antonios, Rafic; Cherfan, George; Jarade, Elias

    2014-10-01

    To evaluate the safety and clinical outcome of combined non-topography-guided photorefractive keratectomy (PRK) and corneal collagen cross-linking (CXL) for the treatment of mild refractive errors in patients with early stage keratoconus. A retrospective, nonrandomized study of patients with early stage keratoconus (stage 1 or 2) who underwent simultaneous non-topography-guided PRK and CXL. All patients had at least 2 years of follow-up. Data were collected preoperatively and postoperatively at the 6-month, 1-year, and 2-year follow-up visit after combined non-topography-guided PRK and CXL. Seventy-nine patients (140 eyes) were included in the study. Combined non-topography-guided PRK and CXL induced a significant improvement in both visual acuity and refraction. Uncorrected distance visual acuity significantly improved from 0.39 ± 0.22 logMAR before combined non-topography-guided PRK and CXL to 0.12 ± 0.14 logMAR at the last follow-up visit (P <.001) and corrected distance visual acuity remained stable (0.035 ± 0.062 logMAR preoperatively vs 0.036 ± 0.058 logMAR postoperatively, P =.79). The mean spherical equivalent decreased from -1.78 ± 1.43 to -0.42 ± 0.60 diopters (D) (P <.001), and the mean cylinder decreased from 1.47 ± 1.10 to 0.83 ± 0.55 D (P <.001). At the last follow-up visit mean keratometry flat was 43.30 ± 1.75 vs 45.62 ± 1.72 D preoperatively (P = .03) and mean keratometry steep was 44.39 ± 3.14 vs 46.53 ± 2.13 D preoperatively (P = .02). Mean central corneal thickness decreased from 501.74 ± 13.11 to 475.93 ± 12.25 µm following combined non-topography-guided PRK and CXL (P < .001). No intraoperative complications occurred. Four eyes developed mild haze that responded well to a short course of topical steroids. No eye developed infectious keratitis. Combined non-topography-guided PRK and CXL is an effective and safe option for correcting mild refractive error and improving visual acuity in patients with early stable keratoconus. Copyright 2014, SLACK Incorporated.

  4. Oxidative Stress, Motor Abilities, and Behavioral Adjustment in Children Treated for Acute Lymphoblastic Leukemia.

    PubMed

    Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M

    2015-09-01

    To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL)
. A prospective, repeated-measures design
. Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment
. Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety
. Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms
. Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.

  5. Impaired visually guided weight-shifting ability in children with cerebral palsy.

    PubMed

    Ballaz, Laurent; Robert, Maxime; Parent, Audrey; Prince, François; Lemay, Martin

    2014-09-01

    The ability to control voluntary weight shifting is crucial in many functional tasks. To our knowledge, weight shifting ability in response to a visual stimulus has never been evaluated in children with cerebral palsy (CP). The aim of the study was (1) to propose a new method to assess visually guided medio-lateral (M/L) weight shifting ability and (2) to compare weight-shifting ability in children with CP and typically developing (TD) children. Ten children with spastic diplegic CP (Gross Motor Function Classification System level I and II; age 7-12 years) and 10 TD age-matched children were tested. Participants played with the skiing game on the Wii Fit game console. Center of pressure (COP) displacements, trunk and lower-limb movements were recorded during the last virtual slalom. Maximal isometric lower limb strength and postural control during quiet standing were also assessed. Lower-limb muscle strength was reduced in children with CP compared to TD children and postural control during quiet standing was impaired in children with CP. As expected, the skiing game mainly resulted in M/L COP displacements. Children with CP showed lower M/L COP range and velocity as compared to TD children but larger trunk movements. Trunk and lower extremity movements were less in phase in children with CP compared to TD children. Commercially available active video games can be used to assess visually guided weight shifting ability. Children with spastic diplegic CP showed impaired visually guided weight shifting which can be explained by non-optimal coordination of postural movement and reduced muscular strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  7. Correction of respiratory motion for IMRT using aperture adaptive technique and visual guidance: A feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi

    2007-07-01

    Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.

  8. Eye movements, visual search and scene memory, in an immersive virtual environment.

    PubMed

    Kit, Dmitry; Katz, Leor; Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary

    2014-01-01

    Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency.

  9. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer.

    PubMed

    Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per

    2017-04-01

    The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. BioNSi: A Discrete Biological Network Simulator Tool.

    PubMed

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-05

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.

  11. Adhesion design maps for bio-inspired attachment systems.

    PubMed

    Spolenak, Ralph; Gorb, Stanislav; Arzt, Eduard

    2005-01-01

    Fibrous surface structures can improve the adhesion of objects to other surfaces. Animals, such as flies and geckos, take advantage of this principle by developing "hairy" contact structures which ensure controlled and repeatable adhesion and detachment. Mathematical models for fiber adhesion predict pronounced dependencies of contact performance on the geometry and the elastic properties of the fibers. In this paper the limits of such contacts imposed by fiber strength, fiber condensation, compliance, and ideal contact strength are modeled for spherical contact tips. Based on this, we introduce the concept of "adhesion design maps" which visualize the predicted mechanical behavior. The maps are useful for understanding biological systems and for guiding experimentation to achieve optimum artificial contacts.

  12. Shaping Attention with Reward: Effects of Reward on Space- and Object-Based Selection

    PubMed Central

    Shomstein, Sarah; Johnson, Jacoba

    2014-01-01

    The contribution of rewarded actions to automatic attentional selection remains obscure. We hypothesized that some forms of automatic orienting, such as object-based selection, can be completely abandoned in lieu of reward maximizing strategy. While presenting identical visual stimuli to the observer, in a set of two experiments, we manipulate what is being rewarded (different object targets or random object locations) and the type of reward received (money or points). It was observed that reward alone guides attentional selection, entirely predicting behavior. These results suggest that guidance of selective attention, while automatic, is flexible and can be adjusted in accordance with external non-sensory reward-based factors. PMID:24121412

  13. Sensory signals during active versus passive movement.

    PubMed

    Cullen, Kathleen E

    2004-12-01

    Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.

  14. Learning and Behavior

    MedlinePlus

    ... Aggression Sensory Processing Disorder Social Interactions Book: The Psychology of Duchenne (download) Guide: Learning & Behavior (download) Home ❯ ... a teen and adult. Additional Resources Book: The Psychology of Duchenne (download) Education Matters Guide: Learning & Behavior ( ...

  15. Seeing Emotion with Your Ears: Emotional Prosody Implicitly Guides Visual Attention to Faces

    PubMed Central

    Rigoulot, Simon; Pell, Marc D.

    2012-01-01

    Interpersonal communication involves the processing of multimodal emotional cues, particularly facial expressions (visual modality) and emotional speech prosody (auditory modality) which can interact during information processing. Here, we investigated whether the implicit processing of emotional prosody systematically influences gaze behavior to facial expressions of emotion. We analyzed the eye movements of 31 participants as they scanned a visual array of four emotional faces portraying fear, anger, happiness, and neutrality, while listening to an emotionally-inflected pseudo-utterance (Someone migged the pazing) uttered in a congruent or incongruent tone. Participants heard the emotional utterance during the first 1250 milliseconds of a five-second visual array and then performed an immediate recall decision about the face they had just seen. The frequency and duration of first saccades and of total looks in three temporal windows ([0–1250 ms], [1250–2500 ms], [2500–5000 ms]) were analyzed according to the emotional content of faces and voices. Results showed that participants looked longer and more frequently at faces that matched the prosody in all three time windows (emotion congruency effect), although this effect was often emotion-specific (with greatest effects for fear). Effects of prosody on visual attention to faces persisted over time and could be detected long after the auditory information was no longer present. These data imply that emotional prosody is processed automatically during communication and that these cues play a critical role in how humans respond to related visual cues in the environment, such as facial expressions. PMID:22303454

  16. What the comprehensive economics of blindness and visual impairment can help us understand

    PubMed Central

    Frick, Kevin D

    2012-01-01

    Since the year 2000, the amount written about the economics of blindness and visual impairment has increased substantially. In some cases, the studies listed under this heading are calculations of the costs related to vision impairment and blindness at a national or global level; in other cases the studies examine the cost-effectiveness of strategies to prevent or modify visual impairment or blindness that are intended to be applied as a guide to treatment recommendations and coverage decisions. In each case the references are just examples of many that could be cited. These important studies have helped advocates, policy makers, practitioners, educators, and others interested in eye and vision health to understand the magnitude of the impact that visual impairment and blindness have on the world, regions, nations, and individuals and the tradeoffs that need to be made to limit the impact. However, these studies only begin to tap into the insights that economic logic might offer to those interested in this field. This paper presents multiple case studies that demonstrate that the economics of blindness and visual impairment encompasses much more than simply measures of the burden of the condition. Case studies demonstrating the usefulness of economic insight include analysis of the prevention of conditions that lead to impairment, decisions about refractive error and presbyopia, decisions about disease and injury treatment, decisions about behavior among those with uncorrectable impairment, and decisions about how to regulate the market all have important economic inputs. PMID:22944750

  17. Brain systems for visual perspective taking and action perception.

    PubMed

    Mazzarella, Elisabetta; Ramsey, Richard; Conson, Massimiliano; Hamilton, Antonia

    2013-01-01

    Taking another person's viewpoint and making sense of their actions are key processes that guide social behavior. Previous neuroimaging investigations have largely studied these processes separately. The current study used functional magnetic resonance imaging to examine how the brain incorporates another person's viewpoint and actions into visual perspective judgments. Participants made a left-right judgment about the location of a target object from their own (egocentric) or an actor's visual perspective (altercentric). Actor location varied around a table and the actor was either reaching or not reaching for the target object. Analyses examined brain regions engaged in the egocentric and altercentric tasks, brain regions where response magnitude tracked the orientation of the actor in the scene and brain regions sensitive to the action performed by the actor. The blood oxygen level-dependent (BOLD) response in dorsomedial prefrontal cortex (dmPFC) was sensitive to actor orientation in the altercentric task, whereas the response in right inferior frontal gyrus (IFG) was sensitive to actor orientation in the egocentric task. Thus, dmPFC and right IFG may play distinct but complementary roles in visual perspective taking (VPT). Observation of a reaching actor compared to a non-reaching actor yielded activation in lateral occipitotemporal cortex, regardless of task, showing that these regions are sensitive to body posture independent of social context. By considering how an observed actor's location and action influence the neural bases of visual perspective judgments, the current study supports the view that multiple neurocognitive "routes" operate during VPT.

  18. What the comprehensive economics of blindness and visual impairment can help us understand.

    PubMed

    Frick, Kevin D

    2012-01-01

    Since the year 2000, the amount written about the economics of blindness and visual impairment has increased substantially. In some cases, the studies listed under this heading are calculations of the costs related to vision impairment and blindness at a national or global level; in other cases the studies examine the cost-effectiveness of strategies to prevent or modify visual impairment or blindness that are intended to be applied as a guide to treatment recommendations and coverage decisions. In each case the references are just examples of many that could be cited. These important studies have helped advocates, policy makers, practitioners, educators, and others interested in eye and vision health to understand the magnitude of the impact that visual impairment and blindness have on the world, regions, nations, and individuals and the tradeoffs that need to be made to limit the impact. However, these studies only begin to tap into the insights that economic logic might offer to those interested in this field. This paper presents multiple case studies that demonstrate that the economics of blindness and visual impairment encompasses much more than simply measures of the burden of the condition. Case studies demonstrating the usefulness of economic insight include analysis of the prevention of conditions that lead to impairment, decisions about refractive error and presbyopia, decisions about disease and injury treatment, decisions about behavior among those with uncorrectable impairment, and decisions about how to regulate the market all have important economic inputs.

  19. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    PubMed

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.

  20. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series.

    PubMed

    Hilbert, Sebastian; Sommer, Philipp; Gutberlet, Matthias; Gaspar, Thomas; Foldyna, Borek; Piorkowski, Christopher; Weiss, Steffen; Lloyd, Thomas; Schnackenburg, Bernhard; Krueger, Sascha; Fleiter, Christian; Paetsch, Ingo; Jahnke, Cosima; Hindricks, Gerhard; Grothoff, Matthias

    2016-04-01

    Recently cardiac magnetic resonance (CMR) imaging has been found feasible for the visualization of the underlying substrate for cardiac arrhythmias as well as for the visualization of cardiac catheters for diagnostic and ablation procedures. Real-time CMR-guided cavotricuspid isthmus ablation was performed in a series of six patients using a combination of active catheter tracking and catheter visualization using real-time MR imaging. Cardiac magnetic resonance utilizing a 1.5 T system was performed in patients under deep propofol sedation. A three-dimensional-whole-heart sequence with navigator technique and a fast automated segmentation algorithm was used for online segmentation of all cardiac chambers, which were thereafter displayed on a dedicated image guidance platform. In three out of six patients complete isthmus block could be achieved in the MR scanner, two of these patients did not need any additional fluoroscopy. In the first patient technical issues called for a completion of the procedure in a conventional laboratory, in another two patients the isthmus was partially blocked by magnetic resonance imaging (MRI)-guided ablation. The mean procedural time for the MR procedure was 109 ± 58 min. The intubation of the CS was performed within a mean time of 2.75 ± 2.21 min. Total fluoroscopy time for completion of the isthmus block ranged from 0 to 7.5 min. The combination of active catheter tracking and passive real-time visualization in CMR-guided electrophysiologic (EP) studies using advanced interventional hardware and software was safe and enabled efficient navigation, mapping, and ablation. These cases demonstrate significant progress in the development of MR-guided EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.

    ERIC Educational Resources Information Center

    Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.

    1998-01-01

    A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…

  2. Visual Literacy for Libraries: A Practical, Standards­-Based Guide

    ERIC Educational Resources Information Center

    Brown, Nicole E.; Bussert, Kaila; Hattwig, Denise; Medaille, Ann

    2016-01-01

    The importance of images and visual media in today's culture is changing what it means to be literate in the 21st century. Digital technologies have made it possible for almost anyone to create and share visual media. Yet the pervasiveness of images and visual media does not necessarily mean that individuals are able to critically view, use, and…

  3. Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal

    ERIC Educational Resources Information Center

    Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim

    2016-01-01

    Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…

  4. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  5. Exploring Visual Arts and Crafts Careers. A Student Guidebook.

    ERIC Educational Resources Information Center

    Dubman, Shelia; And Others

    One of six student guidebooks in a series of 11 arts and humanities career exploration guides for grade 7-12 teachers, counselors, and students, this student book on exploration of visual arts and crafts careers presents information on specific occupations in seven different career areas: Visual communications, product design, environmental…

  6. Visually Guided Step Descent in Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Cowie, Dorothy; Braddick, Oliver; Atkinson, Janette

    2012-01-01

    Individuals with Williams syndrome (WS) have impairments in visuospatial tasks and in manual visuomotor control, consistent with parietal and cerebellar abnormalities. Here we examined whether individuals with WS also have difficulties in visually controlling whole-body movements. We investigated visual control of stepping down at a change of…

  7. Guiding Visual Attention in Decision Making--Verbal Instructions versus Flicker Cueing

    ERIC Educational Resources Information Center

    Canal-Bruland, Rouwen

    2009-01-01

    Perceptual-cognitive processes play an important role in open, fast-paced, interceptive sports such as tennis, basketball, and soccer. Visual information processing has been shown to distinguish skilled from less skilled athletes. Research on the perceptual demands of sports performance has raised questions regarding athletes' visual information…

  8. Learning from Chemical Visualizations: Comparing Generation and Selection

    ERIC Educational Resources Information Center

    Zhang, Zhihui Helen; Linn, Marcia C.

    2013-01-01

    Dynamic visualizations can make unseen phenomena such as chemical reactions visible but students need guidance to benefit from them. This study explores the value of generating drawings versus selecting among alternatives to guide students to learn chemical reactions from a dynamic visualization of hydrogen combustion as part of an online inquiry…

  9. Visual perceptual learning by operant conditioning training follows rules of contingency.

    PubMed

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning.

  10. Visual perceptual learning by operant conditioning training follows rules of contingency

    PubMed Central

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning. PMID:26028984

  11. Distributive Education Resource Supplement to the Consumer Education Curriculum Guide for Ohio.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    The activities contained in the guide are designed to supplement the distributive education curriculum with information that will prepare the student to become a more informed, skillful employee and help the marketing career oriented student better visualize his customer's buying problems. Four overall objectives are stated. The guide is organized…

  12. Fiscal Officer Training, 1999-2000. Participant's Guide.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This guide is intended for use by participants (college fiscal officers, business officers, bursars, loan managers, etc.) in a two-day workshop on Title IV of the reauthorized Higher Education Act. The guide includes copies of the visual displays used in the workshop, space for individual notes, sample forms, sample computer screens, quizzes, and…

  13. Techniques for Daily Living: Curriculum Guides.

    ERIC Educational Resources Information Center

    Wooldridge, Lillian; And Others

    Presented are specific guides concerning techniques for daily living which were developed by the child care staff at the Illinois Braille and Sight Saving School. The guides are designed for cottage parents of the children, who may have both visual and other handicaps, and show what daily living skills are necessary and appropriate for the…

  14. A Visual Arts Guide for Idaho Schools, Grades 7-12.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise.

    Approximately 50 art activities for students in junior and senior high school are presented in this curriculum guide. Introductory sections define the roles of school superintendents, principals, art supervisors, and art teachers in supporting art programs, and outline goals and objectives of an art curriculum. The bulk of the guide consists of…

  15. User's Guide for Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format. Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. This document is intended as an end user's guide.

  16. Navigation-guided optic canal decompression for traumatic optic neuropathy: Two case reports.

    PubMed

    Bhattacharjee, Kasturi; Serasiya, Samir; Kapoor, Deepika; Bhattacharjee, Harsha

    2018-06-01

    Two cases of traumatic optic neuropathy presented with profound loss of vision. Both cases received a course of intravenous corticosteroids elsewhere but did not improve. They underwent Navigation guided optic canal decompression via external transcaruncular approach, following which both cases showed visual improvement. Postoperative Visual Evoked Potential and optical coherence technology of Retinal nerve fibre layer showed improvement. These case reports emphasize on the role of stereotactic navigation technology for optic canal decompression in cases of traumatic optic neuropathy.

  17. Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.

    2000-01-01

    Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.

  18. Identification of non-visual photomotor response cells in the vertebrate hindbrain

    PubMed Central

    Kokel, David; Dunn, Timothy W.; Ahrens, Misha B.; Alshut, Rüdiger; Cheung, Chung Yan J.; Saint-Amant, Louis; Bruni, Giancarlo; Mateus, Rita; van Ham, Tjakko J.; Shiraki, Tomoya; Fukada, Yoshitaka; Kojima, Daisuke; Yeh, Jing-Ruey J.; Mikut, Ralf; von Lintig, Johannes; Engert, Florian; Peterson, Randall T.

    2013-01-01

    Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain. PMID:23447595

  19. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  20. The effects of task difficulty on visual search strategy in virtual 3D displays.

    PubMed

    Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa

    2013-08-28

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios.

  1. Foveal analysis and peripheral selection during active visual sampling

    PubMed Central

    Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.

    2014-01-01

    Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588

  2. Virtual reality method to analyze visual recognition in mice.

    PubMed

    Young, Brent Kevin; Brennan, Jayden Nicole; Wang, Ping; Tian, Ning

    2018-01-01

    Behavioral tests have been extensively used to measure the visual function of mice. To determine how precisely mice perceive certain visual cues, it is necessary to have a quantifiable measurement of their behavioral responses. Recently, virtual reality tests have been utilized for a variety of purposes, from analyzing hippocampal cell functionality to identifying visual acuity. Despite the widespread use of these tests, the training requirement for the recognition of a variety of different visual targets, and the performance of the behavioral tests has not been thoroughly characterized. We have developed a virtual reality behavior testing approach that can essay a variety of different aspects of visual perception, including color/luminance and motion detection. When tested for the ability to detect a color/luminance target or a moving target, mice were able to discern the designated target after 9 days of continuous training. However, the quality of their performance is significantly affected by the complexity of the visual target, and their ability to navigate on a spherical treadmill. Importantly, mice retained memory of their visual recognition for at least three weeks after the end of their behavioral training.

  3. Preoperative Navigated Transcranial Magnetic Stimulation and Tractography to Guide Endoscopic Cystoventriculostomy: A Technical Note and Case Report.

    PubMed

    Hendrix, Philipp; Senger, Sebastian; Griessenauer, Christoph J; Simgen, Andreas; Linsler, Stefan; Oertel, Joachim

    2018-01-01

    To report a technique for endoscopic cystoventriculostomy guided by preoperative navigated transcranial magnetic stimulation (nTMS) and tractography in a patient with a large speech eloquent arachnoid cyst. A 74-year old woman presented with a seizure and subsequent persistent anomic aphasia from a progressive left-sided parietal arachnoid cyst. An endoscopic cystoventriculostomy and endoscope-assisted ventricle catheter placement were performed. Surgery was guided by preoperative nTMS and tractography to avoid eloquent language, motor, and visual pathways. Preoperative nTMS motor and language mapping were used to guide tractography of motor and language white matter tracts. The ideal locations of entry point and cystoventriculostomy as well as trajectory for stent-placement were determined preoperatively with a pseudo-3-dimensional model visualizing eloquent language, motor, and visual cortical and subcortical information. The early postoperative course was uneventful. At her 3-month follow-up visit, her language impairments had completely recovered. Additionally, magnetic resonance imaging demonstrated complete collapse of the arachnoid cyst. The combination of nTMS and tractography supports the identification of a safe trajectory for cystoventriculostomy in eloquent arachnoid cysts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of visual and tactile feedback on kinematic synergies in the grasping hand.

    PubMed

    Patel, Vrajeshri; Burns, Martin; Vinjamuri, Ramana

    2016-08-01

    The human hand uses a combination of feedforward and feedback mechanisms to accomplish high degree of freedom in grasp control efficiently. In this study, we used a synergy-based control model to determine the effect of sensory feedback on kinematic synergies in the grasping hand. Ten subjects performed two types of grasps: one that included feedback (real) and one without feedback (memory-guided), at two different speeds (rapid and natural). Kinematic synergies were extracted from rapid real and rapid memory-guided grasps using principal component analysis. Synergies extracted from memory-guided grasps revealed greater preservation of natural inter-finger relationships than those found in corresponding synergies extracted from real grasps. Reconstruction of natural real and natural memory-guided grasps was used to test performance and generalizability of synergies. A temporal analysis of reconstruction patterns revealed the differing contribution of individual synergies in real grasps versus memory-guided grasps. Finally, the results showed that memory-guided synergies could not reconstruct real grasps as accurately as real synergies could reconstruct memory-guided grasps. These results demonstrate how visual and tactile feedback affects a closed-loop synergy-based motor control system.

  5. Transcatheter Arterial Embolization with a Mixture of Absolute Ethanol and Iodized Oil for Poorly Visualized Endophytic Renal Masses Prior to CT-Guided Percutaneous Cryoablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michimoto, Kenkichi, E-mail: michikoo@jikei.ac.jp; Shimizu, Kanichiro; Kameoka, Yoshihiko

    PurposeTo retrospectively evaluate the feasibility of transcatheter arterial embolization (TAE) using a mixture of absolute ethanol and iodized oil to improve localization of endophytic renal masses on unenhanced computed tomography (CT) prior to CT-guided percutaneous cryoablation (PCA).Materials and MethodsOur institutional review board approved this retrospective study. From September 2011 to June 2015, 17 patients (mean age, 66.8 years) with stage T1a endophytic renal masses (mean diameter, 26.5 mm) underwent TAE using a mixture of absolute ethanol and iodized oil to improve visualization of small and endophytic renal masses on unenhanced CT prior to CT-guided PCA. TAE was considered successful that accumulated iodizedmore » oil depicted whole of the tumor edge on CT. PCA was considered successful when the iceball covered the entire tumor with over a 5 mm margin. Oncological and renal functional outcomes and complications were also evaluated.ResultsTAE was successfully performed in 16 of 17 endophytic tumors. The 16 tumors were performed under CT-guided PCA with their distinct visualization of localization and safe ablated margin. During the mean follow-up period of 15.4 ± 5.1 months, one patient developed local recurrence. Estimated glomerular filtration rate declined by 8 % with statistical significance (P = 0.01). There was no procedure-related significant complication.ConclusionTAE using a mixture of absolute ethanol and iodized oil to improve visualization of endophytic renal masses facilitated tumor localization on unenhanced CT, permitting depiction of the tumor edge as well as a safe margin for ablation during CT-guided PCA, with an acceptable decline in renal function.« less

  6. Application of Survival Analysis and Multistate Modeling to Understand Animal Behavior: Examples from Guide Dogs

    PubMed Central

    Asher, Lucy; Harvey, Naomi D.; Green, Martin; England, Gary C. W.

    2017-01-01

    Epidemiology is the study of patterns of health-related states or events in populations. Statistical models developed for epidemiology could be usefully applied to behavioral states or events. The aim of this study is to present the application of epidemiological statistics to understand animal behavior where discrete outcomes are of interest, using data from guide dogs to illustrate. Specifically, survival analysis and multistate modeling are applied to data on guide dogs comparing dogs that completed training and qualified as a guide dog, to those that were withdrawn from the training program. Survival analysis allows the time to (or between) a binary event(s) and the probability of the event occurring at or beyond a specified time point. Survival analysis, using a Cox proportional hazards model, was used to examine the time taken to withdraw a dog from training. Sex, breed, and other factors affected time to withdrawal. Bitches were withdrawn faster than dogs, Labradors were withdrawn faster, and Labrador × Golden Retrievers slower, than Golden Retriever × Labradors; and dogs not bred by Guide Dogs were withdrawn faster than those bred by Guide Dogs. Multistate modeling (MSM) can be used as an extension of survival analysis to incorporate more than two discrete events or states. Multistate models were used to investigate transitions between states of training to qualification as a guide dog or behavioral withdrawal, and from qualification as a guide dog to behavioral withdrawal. Sex, breed (with purebred Labradors and Golden retrievers differing from F1 crosses), and bred by Guide Dogs or not, effected movements between states. We postulate that survival analysis and MSM could be applied to a wide range of behavioral data and key examples are provided. PMID:28804710

  7. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  8. Vision-guided ocular growth in a mutant chicken model with diminished visual acuity

    PubMed Central

    Ritchey, Eric R.; Zelinka, Christopher; Tang, Junhua; Liu, Jun; Code, Kimberly A.; Petersen-Jones, Simon; Fischer, Andy J.

    2012-01-01

    Visual experience is known to guide ocular growth. We tested the hypothesis that vision-guided ocular growth is disrupted in a model system with diminished visual acuity. We examine whether ocular elongation is influenced by form-deprivation (FD) and lens-imposed defocus in the Retinopathy, Globe Enlarged (RGE) chicken. Young RGE chicks have poor visual acuity, without significant retinal pathology, resulting from a mutation in guanine nucleotide-binding protein β3 (GNB3), also known as transducin β3 or Gβ3. The mutation in GNB3 destabilizes the protein and causes a loss of Gβ3 from photoreceptors and ON-bipolar cells. (Ritchey et al. 2010)FD increased ocular elongation in RGE eyes in a manner similar to that seen in wild-type (WT) eyes. By comparison, the excessive ocular elongation that results from hyperopic defocus was increased, whereas myopic defocus failed to significantly decrease ocular elongation in RGE eyes. Brief daily periods of unrestricted vision interrupting FD prevented ocular elongation in RGE chicks in a manner similar to that seen in WT chicks. Glucagonergic amacrine cells differentially expressed the immediate early gene Egr1 in response to growth-guiding stimuli in RGE retinas, but the defocus-dependent up-regulation of Egr1 was lesser in RGE retinas compared to that of WT retinas. We conclude that high visual acuity, and the retinal signaling mediated by Gβ3, is not required for emmetropization and the excessive ocular elongation caused by FD and hyperopic defocus. However, the loss of acuity and Gβ3 from RGE retinas causes enhanced responses to hyperopic defocus and diminished responses to myopic defocus. PMID:22824538

  9. Photo guide for estimating fuel loading and fire behavior in mixed-oak forests of the Mid-Atlantic Region

    Treesearch

    Patrick H. Brose

    2009-01-01

    A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.

  10. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  11. Practical Approaches for Achieving Integrated Behavioral Health Care in Primary Care Settings

    PubMed Central

    Ratzliff, Anna; Phillips, Kathryn E.; Sugarman, Jonathan R.; Unützer, Jürgen; Wagner, Edward H.

    2016-01-01

    Behavioral health problems are common, yet most patients do not receive effective treatment in primary care settings. Despite availability of effective models for integrating behavioral health care in primary care settings, uptake has been slow. The Behavioral Health Integration Implementation Guide provides practical guidance for adapting and implementing effective integrated behavioral health care into patient-centered medical homes. The authors gathered input from stakeholders involved in behavioral health integration efforts: safety net providers, subject matter experts in primary care and behavioral health, a behavioral health patient and peer specialist, and state and national policy makers. Stakeholder input informed development of the Behavioral Health Integration Implementation Guide and the GROW Pathway Planning Worksheet. The Behavioral Health Integration Implementation Guide is model neutral and allows organizations to take meaningful steps toward providing integrated care that achieves access and accountability. PMID:26698163

  12. Practical Approaches for Achieving Integrated Behavioral Health Care in Primary Care Settings.

    PubMed

    Ratzliff, Anna; Phillips, Kathryn E; Sugarman, Jonathan R; Unützer, Jürgen; Wagner, Edward H

    Behavioral health problems are common, yet most patients do not receive effective treatment in primary care settings. Despite availability of effective models for integrating behavioral health care in primary care settings, uptake has been slow. The Behavioral Health Integration Implementation Guide provides practical guidance for adapting and implementing effective integrated behavioral health care into patient-centered medical homes. The authors gathered input from stakeholders involved in behavioral health integration efforts: safety net providers, subject matter experts in primary care and behavioral health, a behavioral health patient and peer specialist, and state and national policy makers. Stakeholder input informed development of the Behavioral Health Integration Implementation Guide and the GROW Pathway Planning Worksheet. The Behavioral Health Integration Implementation Guide is model neutral and allows organizations to take meaningful steps toward providing integrated care that achieves access and accountability.

  13. Virtual Worlds, Virtual Literacy: An Educational Exploration

    ERIC Educational Resources Information Center

    Stoerger, Sharon

    2008-01-01

    Virtual worlds enable students to learn through seeing, knowing, and doing within visually rich and mentally engaging spaces. Rather than reading about events, students become part of the events through the adoption of a pre-set persona. Along with visual feedback that guides the players' activities and the development of visual skills, visual…

  14. Using Visual Literacy to Teach Science Academic Language: Experiences from Three Preservice Teachers

    ERIC Educational Resources Information Center

    Kelly-Jackson, Charlease; Delacruz, Stacy

    2014-01-01

    This original pedagogical study captured three preservice teachers' experiences using visual literacy strategies as an approach to teaching English language learners (ELLs) science academic language. The following research questions guided this study: (1) What are the experiences of preservice teachers' use of visual literacy to teach science…

  15. Self-Monitoring of Gaze in High Functioning Autism

    ERIC Educational Resources Information Center

    Grynszpan, Ouriel; Nadel, Jacqueline; Martin, Jean-Claude; Simonin, Jerome; Bailleul, Pauline; Wang, Yun; Gepner, Daniel; Le Barillier, Florence; Constant, Jacques

    2012-01-01

    Atypical visual behaviour has been recently proposed to account for much of social misunderstanding in autism. Using an eye-tracking system and a gaze-contingent lens display, the present study explores self-monitoring of eye motion in two conditions: free visual exploration and guided exploration via blurring the visual field except for the focal…

  16. Visual Landmarks Facilitate Rodent Spatial Navigation in Virtual Reality Environments

    ERIC Educational Resources Information Center

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain…

  17. Evidence from Visuomotor Adaptation for Two Partially Independent Visuomotor Systems

    ERIC Educational Resources Information Center

    Thaler, Lore; Todd, James T.

    2010-01-01

    Visual information can specify spatial layout with respect to the observer (egocentric) or with respect to an external frame of reference (allocentric). People can use both of these types of visual spatial information to guide their hands. The question arises if movements based on egocentric and movements based on allocentric visual information…

  18. The Preference of Visualization in Teaching and Learning Absolute Value

    ERIC Educational Resources Information Center

    Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge

    2012-01-01

    Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…

  19. Visual cues for the retrieval of landmark memories by navigating wood ants.

    PubMed

    Harris, Robert A; Graham, Paul; Collett, Thomas S

    2007-01-23

    Even on short routes, ants can be guided by multiple visual memories. We investigate here the cues controlling memory retrieval as wood ants approach a one- or two-edged landmark to collect sucrose at a point along its base. In such tasks, ants store the desired retinal position of landmark edges at several points along their route. They guide subsequent trips by retrieving the appropriate memory and moving to bring the edges in the scene toward the stored positions. The apparent width of the landmark turns out to be a powerful cue for retrieving the desired retinal position of a landmark edge. Two other potential cues, the landmark's apparent height and the distance that the ant walks, have little effect on memory retrieval. A simple model encapsulates these conclusions and reproduces the ants' routes in several conditions. According to this model, the ant stores a look-up table. Each entry contains the apparent width of the landmark and the desired retinal position of vertical edges. The currently perceived width provides an index for retrieving the associated stored edge positions. The model accounts for the population behavior of ants and the idiosyncratic training routes of individual ants. Our results imply binding between the edge of a shape and its width and, further, imply that assessing the width of a shape does not depend on the presence of any particular local feature, such as a landmark edge. This property makes the ant's retrieval and guidance system relatively robust to edge occlusions.

  20. Eye Movements, Visual Search and Scene Memory, in an Immersive Virtual Environment

    PubMed Central

    Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary

    2014-01-01

    Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency. PMID:24759905

  1. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    PubMed

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  2. Figure-ground activity in primary visual cortex (V1) of the monkey matches the speed of behavioral response.

    PubMed

    Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F

    2003-06-26

    To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.

  3. Self-Study and Evaluation Guide/1968 Edition. Section D-3: Rehabilitation Centers.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on rehabilitation centers is one of 28 guides designed for organizations undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by the self-evaluation…

  4. Self-Study and Evaluation Guide/1979 Edition. Section B-1: Agency Profile.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This guide on developing an agency profile is one of 28 guides designed for organizations serving the blind and the visually handicapped who are undertaking a self-study as part of the process for accreditation by the National Accreditation Council (NAC). Instructions for preparing a packet of informative data and material for advance study by…

  5. Self-Study and Evaluation Guide/1977 Edition. Section D-8: Rehabilitation Teaching Services.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on rehabilitation teaching services is one of 28 guides designed for organizations who are undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by…

  6. Self-Study and Evaluation Guide [1976 Edition]. Section D-4: Workshop Services.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on workshop service is one of twenty-eight guides designed for organizations who are undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by the…

  7. Self-Study and Evaluation Guide/[1975 Edition]. Section D-6: Vocational Services.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on vocational services is one of 28 guides designed for organizations who are undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by the…

  8. Mobile Guide System Using Problem-Solving Strategy for Museum Learning: A Sequential Learning Behavioural Pattern Analysis

    ERIC Educational Resources Information Center

    Sung, Y.-T.; Hou, H.-T.; Liu, C.-K.; Chang, K.-E.

    2010-01-01

    Mobile devices have been increasingly utilized in informal learning because of their high degree of portability; mobile guide systems (or electronic guidebooks) have also been adopted in museum learning, including those that combine learning strategies and the general audio-visual guide systems. To gain a deeper understanding of the features and…

  9. Transient inactivation of basolateral amygdala during selective satiation disrupts reinforcer devaluation in rats

    PubMed Central

    West, Elizabeth A.; Forcelli, Patrick A.; Murnen, Alice T.; McCue, David L.; Gale, Karen; Malkova, Ludise

    2012-01-01

    Basolateral amygdala (BLA) function is critical for flexible, goal-directed behavior, including performance on reinforcer devaluation tasks. Here we tested, in rats, the hypothesis that BLA is critical for conditioned reinforcer devaluation during the period when the primary reinforcer (food) is being devalued (by feeding it to satiety), but not thereafter for guiding behavioral choices. We used a spatially-independent task, which employed two visual cues, each predicting one of two foods. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received BLA or sham lesions, or cannulae implanted in BLA. Under control conditions (sham lesions, saline infusions), devaluation of one food significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. BLA lesions impaired this devaluation effect. Transient inactivation of BLA by microinfusion of the GABAA agonist muscimol resulted in an impairment, only when BLA was inactivated during satiation. When muscimol was infused after satiation and, therefore, BLA was inactivated only during the choice test, rats showed no impairment. Thus, BLA is necessary for registering or updating cues to reflect updated reinforcer values, but not for guiding choices once the value has been updated. Our results are the first to describe the contribution of rat BLA to specific components of reinforcer devaluation, and are the first to show impairment in reinforcer devaluation following transient inactivation in the rat. PMID:22845705

  10. Vision for navigation: What can we learn from ants?

    PubMed

    Graham, Paul; Philippides, Andrew

    2017-09-01

    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  12. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: A review

    NASA Astrophysics Data System (ADS)

    Teodósio, Maria Alexandra; Paris, Claire B.; Wolanski, Eric; Morais, Pedro

    2016-12-01

    A series of complementary hypotheses have been proposed to explain the recruitment of marine and temperate pelagic fish larvae originated from pelagic eggs in coastal environments. In this review, we propose a new and complementary hypothesis describing the biophysical processes intervening in the recruitment of temperate fish larvae into estuaries. This new hypothesis, the Sense Acuity And Behavioral (SAAB) hypothesis, recognizes that recruitment is unlikely if the larvae drift passively with the water currents, and that successful recruitment requires the sense acuity of temperate fish larvae and their behavioral response to the estuarine cues present in coastal areas. We propose that temperate fish larvae use a hierarchy of sensory cues (odor, sound, visual and geomagnetic cues) to detect estuarine nursery areas and to aid during navigation towards these areas. The sensorial acuity increases along ontogeny, which coincides with increased swimming capabilities. The swimming strategies of post-flexion larvae differ from offshore areas to the tidal zone. In offshore areas, innate behavior might lead larvae towards the coast guided by a sun compass or by the earth's geomagnetic field. In areas under limited influence of estuarine plumes (either in energetic nearshore areas or offshore), post-flexion larvae display a searching swimming behavior for estuarine disconnected patches (infotaxis strategy). After finding an estuarine plume, larvae may swim along the increasing cue concentration to ingress into the estuary. Here, larvae exhibit a rheotaxis behavior and avoid displacement by longshore currents by keeping bearing during navigation. When larvae reach the vicinity of an estuary, merging diel rhythms with feeding and predator avoidance strategies with tidally induced movements is essential to increase their chances of estuarine ingress. A fish larva recruitment model developed for the Ria Formosa lagoon supports the general framework of the SAAB hypothesis. In this model, the ingress of virtual Sparidae temperate larvae into this nursery area increases from 1.5% to 32.1% when directional swimming guided by estuarine cues is included as a forcing parameter.

  13. Iatrogenic submucosal tunnel in the ureter: a rare complication during advancement of the guide wire.

    PubMed

    El Darawany, Hamed; Barakat, Alaa; Madi, Maha Al; Aldamanhori, Reem; Al Otaibi, Khalid; Al-Zahrani, Ali A

    2016-01-01

    Inserting a guide wire is a common practice during endo-urological procedures. A rare complication in patients with ureteral stones where an iatrogenic submucosal tunnel (IST) is created during endoscopic guide wire placement. Summarize data on IST. Retrospective descriptive study of patients treated from from October 2009 until January 2015. King Fahd Hospital of the University, Al-Khobar, Saudi Arabia. Patients with ureteral stones were divided to 2 groups. In group I (335 patients), the ureteral stones were removed by ureteroscopy in one stage. Group II (97 patients) had a 2-staged procedure starting with a double J-stent placement for kidney drainage followed within 3 weeks with ureteroscopic stone removal. Endoscopic visualization of ureteric submucosal tunneling by guide wire. IST occurred in 9/432 patients with ureteral stones (2.1%). The diagnosis in group I was made during ureteroscopy by direct visualization of a vanishing guide wire at the level of the stone (6 patients). In group II, IST was suspected when renal pain was not relieved after placement of the double J-stent or if imaging by ultrasound or intravenous urography showed persistent back pressure to the obstructed kidney (3 patients). The condition was subsequently confirmed by ureteroscopy. Forceful advancement of the guide wire in an inflamed and edematous ureteral segment impacted by a stone is probably the triggering factor for development of IST. Definitive diagnosis is possible only by direct visualization during ureteroscopy. Awareness of this potential complication is important to guard against its occurrence. Relatively small numbers of subjects and the retrospective nature of the study.

  14. Priming and the guidance by visual and categorical templates in visual search.

    PubMed

    Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L

    2014-01-01

    Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.

  15. Search guidance is proportional to the categorical specificity of a target cue.

    PubMed

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  16. Using Eye Tracking to Explore Consumers' Visual Behavior According to Their Shopping Motivation in Mobile Environments.

    PubMed

    Hwang, Yoon Min; Lee, Kun Chang

    2017-07-01

    Despite a strong shift to mobile shopping trends, many in-depth questions about mobile shoppers' visual behaviors in mobile shopping environments remain unaddressed. This study aims to answer two challenging research questions (RQs): (a) how much does shopping motivation like goal orientation and recreation influence mobile shoppers' visual behavior toward displays of shopping information on a mobile shopping screen and (b) how much of mobile shoppers' visual behavior influences their purchase intention for the products displayed on a mobile shopping screen? An eye-tracking approach is adopted to answer the RQs empirically. The experimental results showed that goal-oriented shoppers paid closer attention to products' information areas to meet their shopping goals. Their purchase intention was positively influenced by their visual attention to the two areas of interest such as product information and consumer opinions. In contrast, recreational shoppers tended to visually fixate on the promotion area, which positively influences their purchase intention. The results contribute to understanding mobile shoppers' visual behaviors and shopping intentions from the perspective of mindset theory.

  17. Screening Algorithm to Guide Decisions on Whether to Conduct a Health Impact Assessment

    EPA Pesticide Factsheets

    Provides a visual aid in the form of a decision algorithm that helps guide discussions about whether to proceed with an HIA. The algorithm can help structure, standardize, and document the decision process.

  18. The contributions of vision and haptics to reaching and grasping

    PubMed Central

    Stone, Kayla D.; Gonzalez, Claudia L. R.

    2015-01-01

    This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference. PMID:26441777

  19. Increased Complexities in Visual Search Behavior in Skilled Players for a Self-Paced Aiming Task

    PubMed Central

    Chia, Jingyi S.; Burns, Stephen F.; Barrett, Laura A.; Chow, Jia Y.

    2017-01-01

    The badminton serve is an important shot for winning a rally in a match. It combines good technique with the ability to accurately integrate visual information from the shuttle, racket, opponent, and intended landing point. Despite its importance and repercussive nature, to date no study has looked at the visual search behaviors during badminton service in the singles discipline. Unlike anticipatory tasks (e.g., shot returns), the serve presents an opportunity to explore the role of visual search behaviors in movement control for self-paced tasks. Accordingly, this study examined skill-related differences in visual behavior during the badminton singles serve. Skilled (n = 12) and less skilled (n = 12) participants performed 30 serves to a live opponent, while real-time eye movements were captured using a mobile gaze registration system. Frame-by-frame analyses of 662 serves were made and the skilled players took a longer preparatory time before serving. Visual behavior of the skilled players was characterized by significantly greater number of fixations on more areas of interest per trial than the less skilled. In addition, the skilled players spent a significantly longer time fixating on the court and net, whereas the less skilled players found the shuttle to be more informative. Quiet eye (QE) duration (indicative of superior sports performance) however, did not differ significantly between groups which has implications on the perceived importance of QE in the badminton serve. Moreover, while visual behavior differed by skill level, considerable individual differences were also observed especially within the skilled players. This augments the need for not just group-level analyses, but individualized analysis for a more accurate representation of visual behavior. Findings from this study thus provide an insight to the possible visual search strategies as players serve in net-barrier games. Moreover, this study highlighted an important aspect of badminton relating to deception and the implications of interpreting visual behavior of players. PMID:28659850

  20. Increased Complexities in Visual Search Behavior in Skilled Players for a Self-Paced Aiming Task.

    PubMed

    Chia, Jingyi S; Burns, Stephen F; Barrett, Laura A; Chow, Jia Y

    2017-01-01

    The badminton serve is an important shot for winning a rally in a match. It combines good technique with the ability to accurately integrate visual information from the shuttle, racket, opponent, and intended landing point. Despite its importance and repercussive nature, to date no study has looked at the visual search behaviors during badminton service in the singles discipline. Unlike anticipatory tasks (e.g., shot returns), the serve presents an opportunity to explore the role of visual search behaviors in movement control for self-paced tasks. Accordingly, this study examined skill-related differences in visual behavior during the badminton singles serve. Skilled ( n = 12) and less skilled ( n = 12) participants performed 30 serves to a live opponent, while real-time eye movements were captured using a mobile gaze registration system. Frame-by-frame analyses of 662 serves were made and the skilled players took a longer preparatory time before serving. Visual behavior of the skilled players was characterized by significantly greater number of fixations on more areas of interest per trial than the less skilled. In addition, the skilled players spent a significantly longer time fixating on the court and net, whereas the less skilled players found the shuttle to be more informative. Quiet eye (QE) duration (indicative of superior sports performance) however, did not differ significantly between groups which has implications on the perceived importance of QE in the badminton serve. Moreover, while visual behavior differed by skill level, considerable individual differences were also observed especially within the skilled players. This augments the need for not just group-level analyses, but individualized analysis for a more accurate representation of visual behavior. Findings from this study thus provide an insight to the possible visual search strategies as players serve in net-barrier games. Moreover, this study highlighted an important aspect of badminton relating to deception and the implications of interpreting visual behavior of players.

  1. Food-pics: an image database for experimental research on eating and appetite.

    PubMed

    Blechert, Jens; Meule, Adrian; Busch, Niko A; Ohla, Kathrin

    2014-01-01

    Our current environment is characterized by the omnipresence of food cues. The sight and smell of real foods, but also graphically depictions of appetizing foods, can guide our eating behavior, for example, by eliciting food craving and influencing food choice. The relevance of visual food cues on human information processing has been demonstrated by a growing body of studies employing food images across the disciplines of psychology, medicine, and neuroscience. However, currently used food image sets vary considerably across laboratories and image characteristics (contrast, brightness, etc.) and food composition (calories, macronutrients, etc.) are often unspecified. These factors might have contributed to some of the inconsistencies of this research. To remedy this, we developed food-pics, a picture database comprising 568 food images and 315 non-food images along with detailed meta-data. A total of N = 1988 individuals with large variance in age and weight from German speaking countries and North America provided normative ratings of valence, arousal, palatability, desire to eat, recognizability and visual complexity. Furthermore, data on macronutrients (g), energy density (kcal), and physical image characteristics (color composition, contrast, brightness, size, complexity) are provided. The food-pics image database is freely available under the creative commons license with the hope that the set will facilitate standardization and comparability across studies and advance experimental research on the determinants of eating behavior.

  2. Food-pics: an image database for experimental research on eating and appetite

    PubMed Central

    Blechert, Jens; Meule, Adrian; Busch, Niko A.; Ohla, Kathrin

    2014-01-01

    Our current environment is characterized by the omnipresence of food cues. The sight and smell of real foods, but also graphically depictions of appetizing foods, can guide our eating behavior, for example, by eliciting food craving and influencing food choice. The relevance of visual food cues on human information processing has been demonstrated by a growing body of studies employing food images across the disciplines of psychology, medicine, and neuroscience. However, currently used food image sets vary considerably across laboratories and image characteristics (contrast, brightness, etc.) and food composition (calories, macronutrients, etc.) are often unspecified. These factors might have contributed to some of the inconsistencies of this research. To remedy this, we developed food-pics, a picture database comprising 568 food images and 315 non-food images along with detailed meta-data. A total of N = 1988 individuals with large variance in age and weight from German speaking countries and North America provided normative ratings of valence, arousal, palatability, desire to eat, recognizability and visual complexity. Furthermore, data on macronutrients (g), energy density (kcal), and physical image characteristics (color composition, contrast, brightness, size, complexity) are provided. The food-pics image database is freely available under the creative commons license with the hope that the set will facilitate standardization and comparability across studies and advance experimental research on the determinants of eating behavior. PMID:25009514

  3. Move with Me: A Parents' Guide to Movement Development for Visually Impaired Babies.

    ERIC Educational Resources Information Center

    Blind Childrens Center, Los Angeles, CA.

    This booklet presents suggestions for parents to promote their visually impaired infant's motor development. It is pointed out that babies with serious visual loss often prefer their world to be constant and familiar and may resist change (including change in position); therefore, it is important that a wide range of movement activities be…

  4. Studies of Visual Attention in Physics Problem Solving

    ERIC Educational Resources Information Center

    Madsen, Adrian M.

    2013-01-01

    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…

  5. Sex Education Instruction for Students Who Are Visually Impaired: Recommendations to Guide Practitioners

    ERIC Educational Resources Information Center

    Kapperman, Gaylen; Kelly, Stacy M.

    2013-01-01

    Individuals with visual impairments (that is, those who are blind or have low vision) do not have the same opportunities to develop their knowledge of sexual health and participate in sex education as their sighted peers (Krupa & Esmail, 2010), although young adults with visual impairments participate in sexual activities at similar rates as their…

  6. Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search

    ERIC Educational Resources Information Center

    Calvo, Manuel G.; Nummenmaa, Lauri

    2008-01-01

    In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…

  7. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  8. Retrocausation acting in the single-electron double-slit interference experiment

    NASA Astrophysics Data System (ADS)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  9. Understanding the Implications of Neural Population Activity on Behavior

    NASA Astrophysics Data System (ADS)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the relationship between neural activity and behavior as recorded neural populations continue to grow.

  10. Behavioral and Nondirective Guided Self-Help for Parents of Children with Externalizing Behavior: Mediating Mechanisms in a Head-To-Head Comparison.

    PubMed

    Katzmann, Josepha; Hautmann, Christopher; Greimel, Lisa; Imort, Stephanie; Pinior, Julia; Scholz, Kristin; Döpfner, Manfred

    2017-05-01

    Parent training (PT) delivered as a guided self-help intervention may be a cost- and time-effective intervention in the treatment of children with externalizing disorders. In face-to-face PT, parenting strategies have repeatedly been identified as mediating mechanisms for the decrease of children's problem behavior. Few studies have examined possible mediating effects in guided self-help interventions for parents. The present study aimed to investigate possible mediating variables of a behaviorally oriented guided self-help program for parents of children with externalizing problems compared to a nondirective intervention in a clinical sample. A sample of 110 parents of children with externalizing disorders (80 % boys) were randomized to either a behaviorally oriented or a nondirective guided self-help program. Four putative mediating variables were examined simultaneously in a multiple mediation model using structural equation modelling. The outcomes were child symptoms of ADHD and ODD as well as child externalizing problems, assessed at posttreatment. Analyses showed a significant indirect effect for dysfunctional parental attributions in favor of the group receiving the behavioral program, and significant effects of the behavioral program on positive and negative parenting and parental self-efficacy, compared to the nondirective intervention. Our results indicate that a decrease of dysfunctional parental attributions leads to a decrease of child externalizing problems when parents take part in a behaviorally oriented guided self-help program. However, none of the putative mediating variables could explain the decrease in child externalizing behavior problems in the nondirective group. A change in dysfunctional parental attributions should be considered as a possible mediator in the context of PT.

  11. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  12. Single-Case Experimental Designs to Evaluate Novel Technology-Based Health Interventions

    PubMed Central

    Cassidy, Rachel N; Raiff, Bethany R

    2013-01-01

    Technology-based interventions to promote health are expanding rapidly. Assessing the preliminary efficacy of these interventions can be achieved by employing single-case experiments (sometimes referred to as n-of-1 studies). Although single-case experiments are often misunderstood, they offer excellent solutions to address the challenges associated with testing new technology-based interventions. This paper provides an introduction to single-case techniques and highlights advances in developing and evaluating single-case experiments, which help ensure that treatment outcomes are reliable, replicable, and generalizable. These advances include quality control standards, heuristics to guide visual analysis of time-series data, effect size calculations, and statistical analyses. They also include experimental designs to isolate the active elements in a treatment package and to assess the mechanisms of behavior change. The paper concludes with a discussion of issues related to the generality of findings derived from single-case research and how generality can be established through replication and through analysis of behavioral mechanisms. PMID:23399668

  13. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks.

    PubMed

    Sgadò, Paola; Rosa-Salva, Orsola; Versace, Elisabetta; Vallortigara, Giorgio

    2018-04-12

    Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.

  14. Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.

    PubMed

    Oemisch, Mariann; Johnston, Kevin; Paré, Martin

    2016-10-01

    Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Seniors' self-preservation by maintaining established self and defying deterioration - A grounded theory.

    PubMed

    Eriksson, Jeanette Källstrand; Hildingh, Cathrine; Buer, Nina; Thulesius, Hans

    2016-01-01

    The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of "remaining themselves as who they used to be" by self-preservation. Within this category, the strategies maintaining the established self and defying deterioration emerged as the most prominent in our data. The theme maintaining the established self is mostly guided by change inertia and includes living the past (retaining past activities, reminiscing, and keeping the home intact) and facading (hiding impairment, leading to avoidance of becoming a burden and to risk juggling). Defying deterioration is a proactive scheme and involves moving (by exercising, adapting activities, using walking aids, driving), adapting (by finding new ways), and networking by sustaining old support networks or finding new networks. Self-preservation is generic human behavior and modifying this theory to other fields may therefore be worthwhile. In addition, health care providers may have use for the theory in fall preventive planning.

  16. Seniors’ self-preservation by maintaining established self and defying deterioration – A grounded theory

    PubMed Central

    Eriksson, Jeanette Källstrand; Hildingh, Cathrine; Buer, Nina; Thulesius, Hans

    2016-01-01

    The purpose of this classic grounded theory study was to understand how seniors who are living independently resolve issues influenced by visual impairment and high fall risk. We interviewed and observed 13 seniors with visual impairment in their homes. We also interviewed six visual instructors with experience from many hundreds of relevant incidents from the same group of seniors. We found that the seniors are resolving their main concern of “remaining themselves as who they used to be” by self-preservation. Within this category, the strategies maintaining the established self and defying deterioration emerged as the most prominent in our data. The theme maintaining the established self is mostly guided by change inertia and includes living the past (retaining past activities, reminiscing, and keeping the home intact) and facading (hiding impairment, leading to avoidance of becoming a burden and to risk juggling). Defying deterioration is a proactive scheme and involves moving (by exercising, adapting activities, using walking aids, driving), adapting (by finding new ways), and networking by sustaining old support networks or finding new networks. Self-preservation is generic human behavior and modifying this theory to other fields may therefore be worthwhile. In addition, health care providers may have use for the theory in fall preventive planning. PMID:27172511

  17. How aquatic water-beetle larvae with small chambered eyes overcome challenges of hunting under water.

    PubMed

    Stowasser, Annette; Buschbeck, Elke K

    2014-11-01

    A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.

  18. Neural Integration in Body Perception.

    PubMed

    Ramsey, Richard

    2018-06-19

    The perception of other people is instrumental in guiding social interactions. For example, the appearance of the human body cues a wide range of inferences regarding sex, age, health, and personality, as well as emotional state and intentions, which influence social behavior. To date, most neuroscience research on body perception has aimed to characterize the functional contribution of segregated patches of cortex in the ventral visual stream. In light of the growing prominence of network architectures in neuroscience, the current article reviews neuroimaging studies that measure functional integration between different brain regions during body perception. The review demonstrates that body perception is not restricted to processing in the ventral visual stream but instead reflects a functional alliance between the ventral visual stream and extended neural systems associated with action perception, executive functions, and theory of mind. Overall, these findings demonstrate how body percepts are constructed through interactions in distributed brain networks and underscore that functional segregation and integration should be considered together when formulating neurocognitive theories of body perception. Insight from such an updated model of body perception generalizes to inform the organizational structure of social perception and cognition more generally and also informs disorders of body image, such as anorexia nervosa, which may rely on atypical integration of body-related information.

  19. Self-Study and Evaluation Guide/1968 Edition. Section D-5: Social Services. (Revised 1977).

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on social services is one of twenty-eight guides designed for organizations who are undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by the…

  20. Self-Study and Evaluation Guide/1977 Edition. Section D-2A: Orientation and Mobility Services.

    ERIC Educational Resources Information Center

    National Accreditation Council for Agencies Serving the Blind and Visually Handicapped, New York, NY.

    This self-study and evaluation guide on orientation and mobility services is one of 28 guides designed for organizations undertaking a self-study as part of the process for accreditation from the National Accreditation Council (NAC) for agencies serving the blind and visually handicapped. Provided are lists of standards to be appraised by the…

  1. An evaluation of the experiences of guide dog owners visiting Scottish veterinary practices.

    PubMed

    Fraser, M; Girling, S J

    2016-09-10

    Guide dogs and their owners will visit a veterinary practice at least twice a year. The aim of this study was to evaluate what guide dog owners thought about these visits, in order to identify areas of good practice which could be incorporated into the undergraduate curriculum. Nine guide dog owners volunteered to take part in the study and were interviewed by the primary researcher. Thematic analysis was carried out and several themes were identified: good experiences were highlighted where staff had an understanding of visual impairment and the work of a guide dog; the importance of good communication skills involving the owner in the consultation; the need for veterinary professionals to understand the bond between an owner and guide dog; how medication and information could be provided in a user-friendly format for someone affected by a visual impairment and concerns about costs and decision making for veterinary treatment. This work highlights the importance for veterinary staff to talk to, empathise with and understand the individual circumstances of their clients and identifies areas that should be included in veterinary education to better prepare students for the workplace. British Veterinary Association.

  2. Timing of Visual Bodily Behavior in Repair Sequences: Evidence from Three Languages

    ERIC Educational Resources Information Center

    Floyd, Simeon; Manrique, Elizabeth; Rossi, Giovanni; Torreira, Francisco

    2016-01-01

    This article expands the study of other-initiated repair in conversation--when one party signals a problem with producing or perceiving another's turn at talk--into the domain of visual bodily behavior. It presents one primary cross-linguistic finding about the timing of visual bodily behavior in repair sequences: if the party who initiates repair…

  3. "Building" 3D visualization skills in mineralogy

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Ajoku, C. N.; McCarthy, B. S.; Lambart, S.

    2016-12-01

    Studying mineralogy is fundamental for understanding the composition and physical behavior of natural materials in terrestrial and extraterrestrial environments. However, some students struggle and ultimately get discouraged with mineralogy course material because they lack well-developed spatial visualization skills that are needed to deal with three-dimensional (3D) objects, such as crystal forms or atomic-scale structures, typically represented in two-dimensional (2D) space. Fortunately, spatial visualization can improve with practice. Our presentation demonstrates a set of experiential learning activities designed to support the development and improvement of spatial visualization skills in mineralogy using commercially available magnetic building tiles, rods, and spheres. These instructional support activities guide students in the creation of 3D models that replicate macroscopic crystal forms and atomic-scale structures in a low-pressure learning environment and at low cost. Students physically manipulate square and triangularly shaped magnetic tiles to build 3D open and closed crystal forms (platonic solids, prisms, pyramids and pinacoids). Prismatic shapes with different closing forms are used to demonstrate the relationship between crystal faces and Miller Indices. Silica tetrahedra and octahedra are constructed out of magnetic rods (bonds) and spheres (oxygen atoms) to illustrate polymerization, connectivity, and the consequences for mineral formulae. In another activity, students practice the identification of symmetry elements and plane lattice types by laying magnetic rods and spheres over wallpaper patterns. The spatial visualization skills developed and improved through our experiential learning activities are critical to the study of mineralogy and many other geology sub-disciplines. We will also present pre- and post- activity assessments that are aligned with explicit learning outcomes.

  4. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions?

    PubMed Central

    Nurminen, Lauri; Angelucci, Alessandra

    2014-01-01

    The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770

  5. The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia.

    PubMed

    Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F

    2016-04-01

    Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades.

  6. Reference Collections and Standards.

    ERIC Educational Resources Information Center

    Winkel, Lois

    1999-01-01

    Reviews six reference materials for young people: "The New York Public Library Kid's Guide to Research"; "National Audubon Society First Field Guide. Mammals"; "Star Wars: The Visual Dictionary"; "Encarta Africana"; "World Fact Book, 1998"; and "Factastic Book of 1001 Lists". Includes ordering information.(AEF)

  7. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  8. Guided goal setting: effectiveness in a dietary and physical activity intervention with low-income adolescents.

    PubMed

    Shilts, Mical Kay; Horowitz, Marcel; Townsend, Marilyn S

    2009-01-01

    Determining the effectiveness of the guided goal setting strategy on changing adolescents' dietary and physical activity self-efficacy and behaviors. Adolescents were individually assigned to treatment (intervention with guided goal setting) or control conditions (intervention without guided goal setting) with data collected before and after the education intervention. Urban middle school in a low-income community in Central California. Ethnically diverse middle school students (n = 94, 55% male) who were participants of a USDA nutrition education program. Driven by the Social Cognitive Theory, the intervention targeted dietary and physical activity behaviors of adolescents. Dietary self-efficacy and behavior; physical activity self-efficacy and behavior; goal effort and spontaneous goal setting. ANCOVA and path analysis were performed using the full sample and a sub-sample informed by Locke's recommendations (accounting for goal effort and spontaneous goal setting). No significant differences were found between groups using the full sample. Using the sub-sample, greater gains in dietary behavior (p < .05), physical activity behavior (p < .05), and physical activity self-efficacy (p < .05) were made by treatment participants compared to control participants. Change in physical activity behaviors was mediated by self-efficacy. Accounting for goal effort and spontaneous goal setting, this study provides some evidence that the use of guided goal setting with adolescents may be a viable strategy to promote dietary and physical activity behavior change.

  9. Goal setting in diabetes self-management: taking the baby steps to success.

    PubMed

    DeWalt, Darren A; Davis, Terry C; Wallace, Andrea S; Seligman, Hilary K; Bryant-Shilliday, Betsy; Arnold, Connie L; Freburger, Janet; Schillinger, Dean

    2009-11-01

    To evaluate the usefulness of a diabetes self-management guide and a brief counseling intervention in helping patients set and achieve their behavioral goals. We conducted a quasi-experimental study using a one group pretest posttest design to assess the effectiveness of a goal setting intervention along with a self-management guide. English- and Spanish-speaking patients with diabetes had one in-person session and two telephone follow-up calls with a non-clinical provider over a 12-16-week period. At each call and at the end of the study, we assessed success in achieving behavioral goals and problem solving toward those goals. Satisfaction with the self-management guide was assessed at the end of the study. We enrolled 250 patients across three sites and 229 patients completed the study. Most patients chose to set goals in diet and exercise domains. 93% of patients achieved at least one behavioral goal during the study and 73% achieved at least two behavioral goals. Many patients exhibited problem solving behavior to achieve their goals. We found no significant differences in reported achievement of behavior goals by literacy or language. Patients were very satisfied with the guide. A brief goal setting intervention along with a diabetes self-management guide helped patients set and achieve healthy behavioral goals. Non-clinical providers can successfully help a diverse range of patients with diabetes set and achieve behavioral goals.

  10. Response Blocking with Guided Compliance and Reinforcement for a Habilitative Replacement Behavior: Effects on Public Masturbation and On-Task Behavior

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Watson, T. Steuart; Weaver, Adam

    2005-01-01

    There is limited empirical research regarding effective treatment for public masturbation. In the current study, the relative and combined effects of reinforcement of an incompatible habilitative replacement behavior and response blocking with guided compliance on masturbation and on-task behavior were evaluated for a seven year-old…

  11. Developing and Pretesting a Text Messaging Program for Health Behavior Change: Recommended Steps.

    PubMed

    Abroms, Lorien C; Whittaker, Robyn; Free, Caroline; Mendel Van Alstyne, Judith; Schindler-Ruwisch, Jennifer M

    2015-12-21

    A growing body of evidence demonstrates that text messaging-based programs (short message service [SMS]) on mobile phones can help people modify health behaviors. Most of these programs have consisted of automated and sometimes interactive text messages that guide a person through the process of behavior change. This paper provides guidance on how to develop text messaging programs aimed at changing health behaviors. Based on their collective experience in designing, developing, and evaluating text messaging programs and a review of the literature, the authors drafted the guide. One author initially drafted the guide and the others provided input and review. Steps for developing a text messaging program include conducting formative research for insights into the target audience and health behavior, designing the text messaging program, pretesting the text messaging program concept and messages, and revising the text messaging program. The steps outlined in this guide may help in the development of SMS-based behavior change programs.

  12. Visual Scan Adaptation During Repeated Visual Search

    DTIC Science & Technology

    2010-01-01

    Junge, J. A. (2004). Searching for stimulus-driven shifts of attention. Psychonomic Bulletin & Review , 11, 876–881. Furst, C. J. (1971...search strategies cannot override attentional capture. Psychonomic Bulletin & Review , 11, 65–70. Wolfe, J. M. (1994). Guided search 2.0: A revised model...of visual search. Psychonomic Bulletin & Review , 1, 202–238. Wolfe, J. M. (1998a). Visual search. In H. Pashler (Ed.), Attention (pp. 13–73). East

  13. Operational Symbols: Can a Picture Be Worth a Thousand Words?

    DTIC Science & Technology

    1991-04-01

    internal visualization, because forms are to visual communication what words are to verbal communication. From a psychological point of view, the process... Visual Communication . Washington, DC: National Education Association, 1960. Bohannan, Anthony G. "C31 In Support of the Land Commander," in Principles...captions guide what is learned from a picture or graphic. 40. John C. Ball and Francis C. Byrnes, ed., Research, Principles, and Practices in Visual

  14. Rapid innate defensive responses of mice to looming visual stimuli.

    PubMed

    Yilmaz, Melis; Meister, Markus

    2013-10-21

    Much of brain science is concerned with understanding the neural circuits that underlie specific behaviors. While the mouse has become a favorite experimental subject, the behaviors of this species are still poorly explored. For example, the mouse retina, like that of other mammals, contains ∼20 different circuits that compute distinct features of the visual scene [1, 2]. By comparison, only a handful of innate visual behaviors are known in this species--the pupil reflex [3], phototaxis [4], the optomotor response [5], and the cliff response [6]--two of which are simple reflexes that require little visual processing. We explored the behavior of mice under a visual display that simulates an approaching object, which causes defensive reactions in some other species [7, 8]. We show that mice respond to this stimulus either by initiating escape within a second or by freezing for an extended period. The probability of these defensive behaviors is strongly dependent on the parameters of the visual stimulus. Directed experiments identify candidate retinal circuits underlying the behavior and lead the way into detailed study of these neural pathways. This response is a new addition to the repertoire of innate defensive behaviors in the mouse that allows the detection and avoidance of aerial predators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Wavefront-Guided Scleral Lens Correction in Keratoconus

    PubMed Central

    Marsack, Jason D.; Ravikumar, Ayeswarya; Nguyen, Chi; Ticak, Anita; Koenig, Darren E.; Elswick, James D.; Applegate, Raymond A.

    2014-01-01

    Purpose To examine the performance of state-of-the-art wavefront-guided scleral contact lenses (wfgSCLs) on a sample of keratoconic eyes, with emphasis on performance quantified with visual quality metrics; and to provide a detailed discussion of the process used to design, manufacture and evaluate wfgSCLs. Methods Fourteen eyes of 7 subjects with keratoconus were enrolled and a wfgSCL was designed for each eye. High-contrast visual acuity and visual quality metrics were used to assess the on-eye performance of the lenses. Results The wfgSCL provided statistically lower levels of both lower-order RMS (p < 0.001) and higher-order RMS (p < 0.02) than an intermediate spherical equivalent scleral contact lens. The wfgSCL provided lower levels of lower-order RMS than a normal group of well-corrected observers (p < < 0.001). However, the wfgSCL does not provide less higher-order RMS than the normal group (p = 0.41). Of the 14 eyes studied, 10 successfully reached the exit criteria, achieving residual higher-order root mean square wavefront error (HORMS) less than or within 1 SD of the levels experienced by normal, age-matched subjects. In addition, measures of visual image quality (logVSX, logNS and logLIB) for the 10 eyes were well distributed within the range of values seen in normal eyes. However, visual performance as measured by high contrast acuity did not reach normal, age-matched levels, which is in agreement with prior results associated with the acute application of wavefront correction to KC eyes. Conclusions Wavefront-guided scleral contact lenses are capable of optically compensating for the deleterious effects of higher-order aberration concomitant with the disease, and can provide visual image quality equivalent to that seen in normal eyes. Longer duration studies are needed to assess whether the visual system of the highly aberrated eye wearing a wfgSCL is capable of producing visual performance levels typical of the normal population. PMID:24830371

  16. Multicultural Arts: An Infusion.

    ERIC Educational Resources Information Center

    Wilderberger, Elizabeth

    1991-01-01

    Presents two examples from 1990 curriculum guide written for Pullen School. Designed for middle school students, "The Japanese Gardener as Visual Artist" emphasizes nature in aesthetic depictions including architecture, horticulture, and visual arts. Appropriate for primary grades, "Reading/Language Arts: Using Books from the…

  17. CT-Guided Biopsy of Small Liver Lesions: Visibility, Artifacts, and Corresponding Diagnostic Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stattaus, Joerg, E-mail: joerg.stattaus@uni-due.de; Kuehl, Hilmar; Ladd, Susanne

    2007-09-15

    Purpose. Our study aimed to determine the visibility of small liver lesions during CT-guided biopsy and to assess the influence of lesion visibility on biopsy results. Material and Methods. Fifty patients underwent CT-guided core biopsy of small focal liver lesions (maximum diameter, 3 cm); 38 biopsies were performed using noncontrast CT, and the remaining 12 were contrast-enhanced. Visibility of all lesions was graded on a 4-point-scale (0 = not visible, 1 = poorly visible, 2 = sufficiently visible, 3 = excellently visible) before and during biopsy (with the needle placed adjacent to and within the target lesion). Results. Forty-three biopsiesmore » (86%) yielded diagnostic results, and seven biopsies were false-negative. In noncontrast biopsies, the rate of insufficiently visualized lesions (grades 0-1) increased significantly during the procedure, from 10.5% to 44.7%, due to needle artifacts. This resulted in more (17.6%) false-negative biopsy results compared to lesions with good visualization (4.8%), although this difference lacks statistical significance. Visualization impairment appeared more often with an intercostal or subcostal vs. an epigastric access and with a subcapsular vs. a central lesion location, respectively. With contrast-enhanced biopsy the visibility of hepatic lesions was only temporarily improved, with a risk of complete obscuration in the late phase. Conclusion. In conclusion, visibility of small liver lesions diminished significantly during CT-guided biopsy due to needle artifacts, with a fourfold increased rate of insufficiently visualized lesions and of false-negative histological results. Contrast enhancement did not reveal better results.« less

  18. Guiding the mind's eye: improving communication and vision by external control of the scanpath

    NASA Astrophysics Data System (ADS)

    Barth, Erhardt; Dorr, Michael; Böhme, Martin; Gegenfurtner, Karl; Martinetz, Thomas

    2006-02-01

    Larry Stark has emphasised that what we visually perceive is very much determined by the scanpath, i.e. the pattern of eye movements. Inspired by his view, we have studied the implications of the scanpath for visual communication and came up with the idea to not only sense and analyse eye movements, but also guide them by using a special kind of gaze-contingent information display. Our goal is to integrate gaze into visual communication systems by measuring and guiding eye movements. For guidance, we first predict a set of about 10 salient locations. We then change the probability for one of these candidates to be attended: for one candidate the probability is increased, for the others it is decreased. To increase saliency, for example, we add red dots that are displayed very briefly such that they are hardly perceived consciously. To decrease the probability, for example, we locally reduce the temporal frequency content. Again, if performed in a gaze-contingent fashion with low latencies, these manipulations remain unnoticed. Overall, the goal is to find the real-time video transformation minimising the difference between the actual and the desired scanpath without being obtrusive. Applications are in the area of vision-based communication (better control of what information is conveyed) and augmented vision and learning (guide a person's gaze by the gaze of an expert or a computer-vision system). We believe that our research is very much in the spirit of Larry Stark's views on visual perception and the close link between vision research and engineering.

  19. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Kim, D; Kang, S

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unitmore » and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation therapy. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less

  20. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  1. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    PubMed

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  2. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives

    PubMed Central

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context. PMID:24550798

  3. Child behavior check list and Korean personality inventory for children with functional visual loss.

    PubMed

    Kyung, Sung Eun; Lee, Sang Mi; Lim, Myung Ho

    2014-08-01

    To investigate the clinical psychiatric characteristics of children with the main complaint of functional visual loss, their behavior and personality were evaluated by the means of the Korean child behavior check list (K-CBCL), and the Korean personality inventory for children (KPI-C). The evaluation was carried out by the K-CBCL and the KPI-C, the domestically standardized tools, with 20 child subjects suspected of functional visual loss, among the patients who visited our hospital, between August, 2005 and December, 2012. The control group included 160 children in general schools of the same region. The 20 patients whose main complaint was functional visual loss were diagnosed as having a functional visual disorder. The child patient group showed a higher score for the K-CBCL and KPI-C sub-scales of somatic complaints, social problems, aggressive behavior, internalizing problems, externalizing problems, total behavioral problems, somatization and hyperactivity, than that of the control group. The results of the K-CBCL and KPI-C tests among children with functional visual loss, were significantly different from those of the normal control group. This result suggested that psychological factors may influence children with a main complaint of functional visual loss.

  4. Intertrial Temporal Contextual Cuing: Association across Successive Visual Search Trials Guides Spatial Attention

    ERIC Educational Resources Information Center

    Ono, Fuminori; Jiang, Yuhong; Kawahara, Jun-ichiro

    2005-01-01

    Contextual cuing refers to the facilitation of performance in visual search due to the repetition of the same displays. Whereas previous studies have focused on contextual cuing within single-search trials, this study tested whether 1 trial facilitates visual search of the next trial. Participants searched for a T among Ls. In the training phase,…

  5. How a Visual Language of Abstract Shapes Facilitates Cultural and International Border Crossings

    ERIC Educational Resources Information Center

    Conroy, Arthur Thomas, III

    2016-01-01

    This article describes a visual language comprised of abstract shapes that has been shown to be effective in communicating prior knowledge between and within members of a small team or group. The visual language includes a set of geometric shapes and rules that guide the construction of the abstract diagrams that are the external representation of…

  6. Effects of shade tab arrangement on the repeatability and accuracy of shade selection.

    PubMed

    Yılmaz, Burak; Yuzugullu, Bulem; Cınar, Duygu; Berksun, Semih

    2011-06-01

    Appropriate and repeatable shade matching using visual shade selection remains a challenge for the restorative dentist. The purpose of this study was to evaluate the effect of different arrangements of a shade guide on the repeatability and accuracy of visual shade selection by restorative dentists. Three Vitapan Classical shade guides were used for shade selection. Seven shade tabs from one shade guide were used as target shades for the testing (A1, A4, B2, B3, C2, C4, and D3); the other 2 guides were used for shade selection by the subjects. One shade guide was arranged according to hue and chroma and the second was arranged according to value. Thirteen male and 22 female restorative dentists were asked to match the target shades using shade guide tabs arranged in the 2 different orders. The sessions were performed twice with each guide in a viewing booth. Collected data were analyzed with Fisher's exact test to compare the accuracy and repeatability of the shade selection (α=.05). There were no significant differences observed in the accuracy or repeatability of the shade selection results obtained with the 2 different arrangements. When the hue/chroma-ordered shade guide was used, 58% of the shade selections were accurate. This ratio was 57.6% when the value-ordered shade guide was used. The observers repeated 55.5% of the selections accurately with the hue/chroma-ordered shade guide and 54.3% with the value-ordered shade guide. The accuracy and repeatability of shade selections by restorative dentists were similar when different arrangements (hue/chroma-ordered and value-ordered) of the Vitapan Classical shade guide were used. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  7. Development of the navigation system for visually impaired.

    PubMed

    Harada, Tetsuya; Kaneko, Yuki; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2004-01-01

    A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without the help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for their correct route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination is used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and make notice to an user by vibration. This system recognizes the line of the color stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.

  8. Serious Video Games for Health: How Behavioral Science Guided the Development of a Serious Video Game

    ERIC Educational Resources Information Center

    Thompson, Debbe; Baranowski, Tom; Buday, Richard; Baranowski, Janice; Thompson, Victoria; Jago, Russell; Griffith, Melissa Juliano

    2010-01-01

    Serious video games for health are designed to entertain players while attempting to modify some aspect of their health behavior. Behavior is a complex process influenced by multiple factors, often making it difficult to change. Behavioral science provides insight into factors that influence specific actions that can be used to guide key game…

  9. SOS! Help for Parents: A Practical Guide for Handling Common Everyday Behavior Problems [With Video Leader's Guide].

    ERIC Educational Resources Information Center

    Clark, Lynn

    This book provides parents with guidance for handling a variety of common behavior problems based on the behavioral approach to child rearing and discipline. This approach suggests that good and bad behavior are both learned and can be changed, and proposes specific methods, skills, procedures, and strategies for parents to use in getting improved…

  10. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    PubMed Central

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  11. DVV: a taxonomy for mixed reality visualization in image guided surgery.

    PubMed

    Kersten-Oertel, Marta; Jannin, Pierre; Collins, D Louis

    2012-02-01

    Mixed reality visualizations are increasingly studied for use in image guided surgery (IGS) systems, yet few mixed reality systems have been introduced for daily use into the operating room (OR). This may be the result of several factors: the systems are developed from a technical perspective, are rarely evaluated in the field, and/or lack consideration of the end user and the constraints of the OR. We introduce the Data, Visualization processing, View (DVV) taxonomy which defines each of the major components required to implement a mixed reality IGS system. We propose that these components be considered and used as validation criteria for introducing a mixed reality IGS system into the OR. A taxonomy of IGS visualization systems is a step toward developing a common language that will help developers and end users discuss and understand the constituents of a mixed reality visualization system, facilitating a greater presence of future systems in the OR. We evaluate the DVV taxonomy based on its goodness of fit and completeness. We demonstrate the utility of the DVV taxonomy by classifying 17 state-of-the-art research papers in the domain of mixed reality visualization IGS systems. Our classification shows that few IGS visualization systems' components have been validated and even fewer are evaluated.

  12. The effects of task difficulty on visual search strategy in virtual 3D displays

    PubMed Central

    Pomplun, Marc; Garaas, Tyler W.; Carrasco, Marisa

    2013-01-01

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an “easy” conjunction search task and a “difficult” shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x−y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the “easy” task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the “difficult” task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios. PMID:23986539

  13. The interaction of Bayesian priors and sensory data and its neural circuit implementation in visually-guided movement

    PubMed Central

    Yang, Jin; Lee, Joonyeol; Lisberger, Stephen G.

    2012-01-01

    Sensory-motor behavior results from a complex interaction of noisy sensory data with priors based on recent experience. By varying the stimulus form and contrast for the initiation of smooth pursuit eye movements in monkeys, we show that visual motion inputs compete with two independent priors: one prior biases eye speed toward zero; the other prior attracts eye direction according to the past several days’ history of target directions. The priors bias the speed and direction of the initiation of pursuit for the weak sensory data provided by the motion of a low-contrast sine wave grating. However, the priors have relatively little effect on pursuit speed and direction when the visual stimulus arises from the coherent motion of a high-contrast patch of dots. For any given stimulus form, the mean and variance of eye speed co-vary in the initiation of pursuit, as expected for signal-dependent noise. This relationship suggests that pursuit implements a trade-off between movement accuracy and variation, reducing both when the sensory signals are noisy. The tradeoff is implemented as a competition of sensory data and priors that follows the rules of Bayesian estimation. Computer simulations show that the priors can be understood as direction specific control of the strength of visual-motor transmission, and can be implemented in a neural-network model that makes testable predictions about the population response in the smooth eye movement region of the frontal eye fields. PMID:23223286

  14. Nature and Nurture: the complex genetics of myopia and refractive error

    PubMed Central

    Wojciechowski, Robert

    2010-01-01

    The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761

  15. Parent-Collected Behavioral Observations: An Empirical Comparison of Methods

    ERIC Educational Resources Information Center

    Nadler, Cy B.; Roberts, Mark W.

    2013-01-01

    Treatments for disruptive behaviors are often guided by parent reports on questionnaires, rather than by multiple methods of assessment. Professional observations and clinic analogs exist to complement questionnaires, but parents can also collect useful behavioral observations to inform and guide treatment. Two parent observation methods of child…

  16. Guided Writing Lessons: Second-Grade Students' Development of Strategic Behavior

    ERIC Educational Resources Information Center

    Gibson, Sharan A.

    2008-01-01

    This study describes intra-individual change in strategic behavior of five second-grade students during three months of guided writing instruction for informational text. Data sources included sequential coding of writing behavior from videotaped writing events and analytic assessment of writing products. Students' development of self-scaffolding…

  17. Wearable ultrasonic guiding device with white cane for the visually impaired: A preliminary verisimilitude experiment.

    PubMed

    Cheng, Po-Hsun

    2016-01-01

    Several assistive technologies are available to help visually impaired individuals avoid obstructions while walking. Unfortunately, white canes and medical walkers are unable to detect obstacles on the road or react to encumbrances located above the waist. In this study, I adopted the cyber-physical system approach in the development of a cap-connected device to compensate for gaps in detection associated with conventional aids for the visually impaired. I developed a verisimilar, experimental route involving the participation of seven individuals with visual impairment, including straight sections, left turns, right turns, curves, and suspended objects. My aim was to facilitate the collection of information required for the practical use of the device. My findings demonstrate the feasibility of the proposed guiding device in alerting walkers to the presence of some kinds of obstacles from the small number of subjects. That is, it shows promise for future work and research with the proposed device. My findings provide a valuable reference for the further improvement of these devices as well as the establishment of experiments involving the visually impaired.

  18. Metadata Mapper: a web service for mapping data between independent visual analysis components, guided by perceptual rules

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Matasci, Naim

    2011-03-01

    The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.

  19. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  20. Special Education Instructional Skills Guide for Identifiable Perceptual or Communicative Disorders (IPCD) and Significant Identifiable Emotional or Behavioral Disorders (SIEBD) K-12.

    ERIC Educational Resources Information Center

    George-Nichols, Nancy; And Others

    The guide is intended to provide information on appropriate programing for elementary and secondary pupils with either perceptual/communicative or emotional/behavioral disorders. The guide, which is patterned after regular education objectives, offers comprehensive task analysis in four content areas (subtopics in parentheses): (1) readiness…

  1. The Use of Guided Imagery as an Intervention in Addressing Nonsuicidal Self-Injury

    ERIC Educational Resources Information Center

    Kress, Victoria E.; Adamson, Nicole; DeMarco, Carrie; Paylo, Matthew J.; Zoldan, Chelsey A.

    2013-01-01

    This article presents guided imagery as an intervention that can be used to address clients' nonsuicidal self-injurious behaviors. Guided imagery is a behavioral therapy technique that involves the use of positive thoughts or images to regulate negative emotional experiences, and it can be used to prevent and manage impulses to self-injure.…

  2. Handbook for Teachers of the Visually Handicapped.

    ERIC Educational Resources Information Center

    Napier, Grace D.; Weishahn, Mel W.

    Designed to aid the inexperienced teacher of the visually handicapped, the handbook examines aspects of program objectives, content, philosophy, methods, eligibility, and placement procedures. The guide to material selection provides specific information on the acquisition of Braille materials, large type materials, recorded materials, direct…

  3. Pilot/vehicle model analysis of visually guided flight

    NASA Technical Reports Server (NTRS)

    Zacharias, Greg L.

    1991-01-01

    Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.

  4. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.

  5. Sequencing Stories in Spanish and English.

    ERIC Educational Resources Information Center

    Steckbeck, Pamela Meza

    The guide was designed for speech pathologists, bilingual teachers, and specialists in English as a second language who work with Spanish-speaking children. The guide contains twenty illustrated stories that facilitate the learning of auditory sequencing, auditory and visual memory, receptive and expressive vocabulary, and expressive language…

  6. Advanced Texas Studies: Curriculum Guide.

    ERIC Educational Resources Information Center

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating curriculum concepts in Texas studies to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and audio-visual and resource materials. Career information is included on 24 related occupations. Space is provided for teachers' notes which…

  7. The Benefit of Positive Visualization on the U.S. Army

    DTIC Science & Technology

    2014-06-13

    calm, guided imagery allows individuals to envision what it would be like to be in an ideally peaceful, serene , and comforting scene. Typically...ideally peaceful, serene , and comforting scene. Typically, guided imagery is conducted by a qualified mental health specialist hence the term

  8. Fluorescence-guided surgical resection of oral cancer reduces recurrence

    NASA Astrophysics Data System (ADS)

    Lane, Pierre; Poh, Catherine F.; Durham, J. Scott; Zhang, Lewei; Lam, Sylvia F.; Rosin, Miriam; MacAulay, Calum

    2011-03-01

    Approximately 36,000 people in the US will be newly diagnosed with oral cancer in 2010 and it will cause 8,000 new deaths. The death rate is unacceptably high because oral cancer is usually discovered late in its development and is often difficult to treat or remove completely. Data collected over the last 5 years at the BC Cancer Agency suggest that the surgical resection of oral lesions guided by the visualization of the alteration of endogenous tissue fluorescence can dramatically reduce the rate of cancer recurrence. Four years into a study which compares conventional versus fluorescence-guided surgical resection, we reported a recurrence rate of 25% (7 of 28 patients) for the control group compared to a recurrence rate of 0% (none of the 32 patients) for the fluorescence-guided group. Here we present resent results from this ongoing study in which patients undergo either conventional surgical resection of oral cancer under white light illumination or using tools that enable the visualization of naturally occurring tissue fluorescence.

  9. Topography-guided photorefractive keratectomy for irregular astigmatism after small incision lenticule extraction.

    PubMed

    Ivarsen, Anders; Hjortdal, Jesper Ø

    2014-06-01

    To report the outcome of topography-guided photorefractive keratectomy (PRK) after complicated small incision lenticule extraction (SMILE). Retrospective case series of 5 eyes with irregular topography and ghost images after complicated SMILE. All eyes received transepithelial topography-guided PRK. Two eyes were treated with 0.02% mitomycin C. Patients were examined after a minimum of 3 months with evaluation of uncorrected (UDVA) and corrected (CDVA) distance visual acuity, Pentacam tomography (Oculus Optikgeräte, Wetzlar, Germany), and whole-eye aberrometry. In 3 eyes, subjective symptoms were diminished and UDVA, CDVA, topography, and corneal wavefront aberrations were improved. The remaining 2 eyes developed significant haze with worsened topography and wavefront aberrations. One eye experienced a two-line reduction in CDVA. Eyes with haze development had not been treated with mitomycin C. Transepithelial topography-guided PRK may reduce visual symptoms after complicated SMILE if postoperative haze can be controlled. To reduce the risk of haze development, application of mitomycin C may be considered. Copyright 2014, SLACK Incorporated.

  10. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  11. Insights into the Feelings, Thoughts, and Behaviors of Children with Visual Impairments: A Focus Group Study Prior to Adapting a Cognitive Behavior Therapy-Based Anxiety Intervention

    ERIC Educational Resources Information Center

    Visagie, Lisa; Loxton, Helene; Stallard, Paul; Silverman, Wendy K.

    2017-01-01

    Introduction: Anxiety is the most common psychological problem reported among children with visual impairments. Although cognitive behavior therapy interventions have proven successful in treating childhood anxiety, it is unclear whether they are suitable and accessible for children who have visual impairments. This study aimed to determine if and…

  12. Research progress on Drosophila visual cognition in China.

    PubMed

    Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang

    2010-03-01

    Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

  13. Goal setting in diabetes self-management: Taking the baby steps to success

    PubMed Central

    DeWalt, Darren A.; Davis, Terry C.; Wallace, Andrea S.; Seligman, Hilary K.; Bryant-Shilliday, Betsy; Arnold, Connie L.; Freburger, Janet; Schillinger, Dean

    2014-01-01

    Objective To evaluate the usefulness of a diabetes self-management guide and a brief counseling intervention in helping patients set and achieve their behavioral goals. Methods We conducted a quasi-experimental study using a one group pretest posttest design to assess the effectiveness of a goal setting intervention along with a self-management guide. English- and Spanish-speaking patients with diabetes had one in-person session and two telephone follow-up calls with a non-clinical provider over a 12–16-week period. At each call and at the end of the study, we assessed success in achieving behavioral goals and problem solving toward those goals. Satisfaction with the self-management guide was assessed at the end of the study. Results We enrolled 250 patients across three sites and 229 patients completed the study. Most patients chose to set goals in diet and exercise domains. 93% of patients achieved at least one behavioral goal during the study and 73% achieved at least two behavioral goals. Many patients exhibited problem solving behavior to achieve their goals. We found no significant differences in reported achievement of behavior goals by literacy or language. Patients were very satisfied with the guide. Conclusions A brief goal setting intervention along with a diabetes self-management guide helped patients set and achieve healthy behavioral goals. Practice implications Non-clinical providers can successfully help a diverse range of patients with diabetes set and achieve behavioral goals. PMID:19359123

  14. Effects of ambient stimuli on measures of behavioral state and microswitch use in adults with profound multiple impairments.

    PubMed

    Murphy, Kathleen M; Saunders, Muriel D; Saunders, Richard R; Olswang, Lesley B

    2004-01-01

    The effects of different types and amounts of environmental stimuli (visual and auditory) on microswitch use and behavioral states of three individuals with profound multiple impairments were examined. The individual's switch use and behavioral states were measured under three setting conditions: natural stimuli (typical visual and auditory stimuli in a recreational situation), reduced visual stimuli, and reduced visual and auditory stimuli. Results demonstrated differential switch use in all participants with the varying environmental setting conditions. No consistent effects were observed in behavioral state related to environmental condition. Predominant behavioral state scores and switch use did not systematically covary with any participant. Results suggest the importance of considering environmental stimuli in relationship to switch use when working with individuals with profound multiple impairments.

  15. Feast for the Eyes: An Introduction to Data Visualization.

    PubMed

    Brigham, Tara J

    2016-01-01

    Data visualization is defined as the use of data presented in a graphical or pictorial manner. While data visualization is not a new concept, the ease with which anyone can create a data-drive chart, image, or visual has encouraged its growth. The increase of free sources of data and need for user-created content on social media has also led to a rise in data visualization's popularity. This column will explore what data visualization is and how it is currently being used. It will also discuss the benefits, potential problems, and uses in libraries. A brief list of visualization guides is included.

  16. Zero-fluoroscopy cryothermal ablation of atrioventricular nodal re-entry tachycardia guided by endovascular and endocardial catheter visualization using intracardiac echocardiography (Ice&ICE Trial).

    PubMed

    Luani, Blerim; Zrenner, Bernhard; Basho, Maksim; Genz, Conrad; Rauwolf, Thomas; Tanev, Ivan; Schmeisser, Alexander; Braun-Dullaeus, Rüdiger C

    2018-01-01

    Stochastic damage of the ionizing radiation to both patients and medical staff is a drawback of fluoroscopic guidance during catheter ablation of cardiac arrhythmias. Therefore, emerging zero-fluoroscopy catheter-guidance techniques are of great interest. We investigated, in a prospective pilot study, the feasibility and safety of the cryothermal (CA) slow-pathway ablation in patients with symptomatic atrioventricular-nodal-re-entry-tachycardia (AVNRT) using solely intracardiac echocardiography (ICE) for endovascular and endocardial catheter visualization. Twenty-five consecutive patients (mean age 55.6 ± 12.0 years, 17 female) with ECG-documentation or symptoms suggesting AVNRT underwent an electrophysiology study (EPS) in our laboratory utilizing ICE for catheter navigation. Supraventricular tachycardia was inducible in 23 (92%) patients; AVNRT was confirmed by appropriate stimulation maneuvers in 20 (80%) patients. All EPS in the AVNRT subgroup could be accomplished without need for fluoroscopy, relying solely on ICE-guidance. CA guided by anatomical location and slow-pathway potentials was successful in all patients, median cryo-mappings = 6 (IQR:3-10), median cryo-ablations = 2 (IQR:1-3). Fluoroscopy was used to facilitate the trans-septal puncture and localization of the ablation substrate in the remaining 3 patients (one focal atrial tachycardia and two atrioventricular-re-entry-tachycardias). Mean EPS duration in the AVNRT subgroup was 99.8 ± 39.6 minutes, ICE guided catheter placement 11.9 ± 5.8 minutes, time needed for diagnostic evaluation 27.1 ± 10.8 minutes, and cryo-application duration 26.3 ± 30.8 minutes. ICE-guided zero-fluoroscopy CA in AVNRT patients is feasible and safe. Real-time visualization of the true endovascular borders and cardiac structures allow for safe catheter navigation during the ICE-guided EPS and might be an alternative to visualization technologies using geometry reconstructions. © 2017 Wiley Periodicals, Inc.

  17. Electric organ discharges and electric images during electrolocation

    NASA Technical Reports Server (NTRS)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  18. The Motivating Power of Visionary Images: Effects on Motivation, Affect, and Behavior.

    PubMed

    Rawolle, Maika; Schultheiss, Oliver C; Strasser, Alexandra; Kehr, Hugo M

    2017-12-01

    Visionary images are identity-relevant, picture-like mental representations of a desirable and attainable future appearing regularly in a person's stream of thought. Prior research indicates that both mental and real images provide access to implicit motives. We therefore proposed that visionary images motivate people by arousing their implicit motives and tested this hypothesis in two experimental studies. We used guided visualizations to administer motive-domain-specific visionary images (Study 1: achievement and neutral, M age  = 24.4, 51 participants, 34 women; Study 2: affiliation and power, M age  = 24.01, 51 participants, 28 women) to arouse the respective implicit motive. Motivation was measured via residual changes in affective (i.e., changes in affective arousal), behavioral (i.e., performance on a concentration task, behavioral choices in a prisoner's dilemma), and mental (i.e., motive imagery in the Picture Story Exercise) indicators of motivation. The results largely confirmed our hypothesis. Visionary images increased motivation in the targeted domain. Some effects were moderated by participants' implicit motives. The findings underscore the role of implicit motives in understanding the motivational effectiveness of visionary images. © 2016 Wiley Periodicals, Inc.

  19. Values and the Scientific Culture of Behavior Analysis

    PubMed Central

    Ruiz, Maria R; Roche, Bryan

    2007-01-01

    As scientists and practitioners, behavior analysts must make frequent decisions that affect many lives. Scientific principles have been our guide as we work to promote effective action across a broad spectrum of cultural practices. Yet scientific principles alone may not be sufficient to guide our decision making in cases with potentially conflicting outcomes. In such cases, values function as guides to work through ethical conflicts. We will examine two ethical systems, radical behaviorism and functional contextualism, from which to consider the role of values in behavior analysis, and discuss potential concerns. Finally, we propose philosophical pragmatism, focusing on John Dewey's notions of community and dialogue, as a tradition that can help behavior analysts to integrate talk about values and scientific practices in ethical decision making. PMID:22478484

  20. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

Top